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Abstract

English

After a Cerebral Vascular Accident (CVA), intensive arm training can improve arm function. Using Inertial
Measurement Units (IMUs), movement quality and compensatory movements can be captured. In this
study, the accuracy of a system of nine IMUs is investigated during a reach-to-point movement in healthy
adults. Three subjects reached to a cylindrical object and touched it briefly using three stroke compen-
sation movements: trunk flexion, shoulder abduction and shoulder elevation. The results are evaluated
by comparison with Vicon, an optical motion capture system. This study indicates that IMU based human
motion analysis cannot provide accurate kinematic assessment of the of shoulder abduction, trunk flexion
and reaching distance.

Nederlands

Na een cerebrovascular accident (CVA) kan de armfunctie worden verbeterd met behulp van intensieve
training van de armen. Bewegingskwaliteit en compensatoire bewegingen kunnen worden vastgelegd door
Inertial Measurement Units (IMU’s). In deze studie is de accuraatheid van een systeem bestaand uit negen
IMU’s onderzocht tijdens een reikbeweging bij gezonde volwassenen. De drie proefpersonen reikten naar
een cylindrisch object en raakten het vervolgens kort aan tijdens het uitvoeren van drie compensatoire
bewegingen: rompflexie, schouderabductie en schouderelevatie. De resultaten zijn vergeleken met Vicon,
een optisch systeem voor het vastleggen van bewegingen. Uit deze studie is gebleken dat bewegingsanal-
yse met behulp van IMU’s geen accurate kinematische beoordeling van schouderabductie, rompflexie and
reikafstand kan geven.
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Chapter 1

Introduction

1.1 Problem Statement

Stroke, or a CVA, occurs when the blood supply to part of the brain is disrupted. Brain cells do not get
enough oxygen and therefore die. There are two types of strokes: an ischaemic CVA, in which a blood clot
obstructs the arteries in the brain, and a haemorrhagic CVA, in which a blood vessel bursts and blood flows
into the brain. This results in a sudden onset of symptoms of focal failure in the brain [1] [2].

A CVA is one of the most common causes of disability and causes a large burden of disease. Between
1990 and 2019, the prevalence of a CVA increased by 85 percent, the mortality rate by 43 percent. The
Disability Adjusted Life Years (DALYs) due to a CVA have increased by 32 percent. Thus, more and more
people have to learn to live with the consequences of a CVA. 60 percent of CVA patients have permanent
neurological problems with impaired motor skills. This limits their independence in daily life [3][4].

Hemiparesis, unilateral muscle weakness or paralysis, is common after a stroke. Sensory and motor
function is impaired as cell death of neurons and supporting cells occurs in the centre of the infarct. Re-
covery occurs through adaptation, regeneration, and neuroplasticity. Neuroplasticity is the most important
process, involving remapping of sensory and motor function from the damaged cells [5][6].

In CVA patients, muscle synergies change. A muscle synergy is a spatio-temporal pattern of activity across
different muscles involved in performing a movement. Muscle synergies change as healthy synergies are
disrupted, followed by new synergies through alternative descending pathways. After a CVA, two abnormal
synergies of the upper extremities are often seen in the chronic phase, namely flexor synergy and extensor
synergy. Flexor synergy is characterized by shoulder abduction with elbow flexion, supination and wrist and
finger flexion. Extensor synergy is characterized by shoulder adduction, elbow extension, and pronation
[7]. These synergies can cause neuromuscular control to be limited [8].

Rehabilitation can reduce the problems created by a stroke by stimulating neuroplasticity. Intensive arm
training can improve arm motor function in both the acute and subacute phases after stroke. Measured
effects on arm motor recovery are apparent after two hours of training per week [9][10]. The Fugl-Meyer
Assessment (FMA) and the Action Research Arm Test (ARAT) are widely used to assess motor function.
These tests, however, are insufficiently sensitive to capture the quality of sensorimotor function through
the ordinal scales, and have a ceiling effect. Using these tests, it is not possible to distinguish recovery
of movements from compensatory movements. By using objective metrics, both movement quality and
compensatory movements can be captured [11] [12].
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2 CHAPTER 1. INTRODUCTION

Inertial Measurement Units (IMUs) can be used for a kinematic analysis of arm movements. An IMU
contains an accelerometer and a gyroscope. An accelerometer measures the acceleration of an object,
and a gyroscope measures the angular velocity [13]. Performance of patients can be provided with imme-
diate feedback using IMUs. A new generation of IMUs, which are low cost, wireless and simple to use, can
be used for different applications such as home-based training [14][15]. Research has shown that a sys-
tem of nine IMUs, placed on the chest, both shoulders, upper and lower arms, and hands, can distinguish
movements of the affected and unaffected upper extremity of CVA patients. It was also possible to identify
pathological muscle excitations and measure features related to pathological synapses [12]

Currently, it is unclear with what accuracy metrics measured with sensors can be determined during arm
movements [11]. How accurately metrics can be measured with sensors depends on sensor placement,
sensor measurement errors, sensor-to-segment calibration, and drift (due to integration of gyroscope data)
and how you correct for them [14].

In the ArmCoach4Stroke project, it is important to investigate the accuracy of metrics during arm move-
ments measured with sensors. The sensors will be used during the measurement of arm exercises in CVA
patients in the home situation. Based on these measurements, the therapist can see how much and how
well the patient is performing the arm exercises and can give feedback. The prerequisite for this is that
the sensors provide sufficiently accurate measurements of metrics during arm exercises. Good accuracy
means that relevant metrics can be determined with small measurement error, despite the high movement
variability resulting from compensatory muscle synergies and segmented movements in stroke patients
[14].

During a focus meeting of the ArmCoach4Stroke project, therapists indicated that relevant metrics during a
reach-to-point movement are trunk flexion, shoulder abduction, shoulder elevation, reaching distance and
smoothness. These metrics mainly show compensatory movements [11] Shoulder abduction and elbow
extension are often seen in CVA-related abnormal muscle synergies. One of the compensatory strategies
is trunk displacement to overcome the shoulder-elbow synergy [16].

This study focuses on investigating the accuracy of metrics measured with motion sensors during a reach
to point movement in healthy adults. The accuracy of the metrics is determined by comparing the out-
comes of the sensors to the gold standard (the Vicon system). The next step is to investigate the accuracy
of metrics measured with motion sensors during a reach to point movement in CVA patients.

1.1.1 Research Question

The research question of this study is: What is the accuracy of trunk flexion, shoulder abduction, and
reaching distance measured with IMU sensors during a reach-to-point movement in healthy adults?

Hypothesis
There will be a small deviation between the metrics measured with the IMU system and the Vicon system.
This is because perfect positions are assumed in the calculation steps for the calibration of the IMUs. To
calculate the metrics, integration steps are needed, which adds drift to the data. However, the accuracy will
be good enough to provide feedback on the execution of arm exercises by patients.



Chapter 2

Methods

2.1 Study Design

The accuracy of trunk flexion, shoulder abduction, and reaching distance, measured with IMUs, is deter-
mined in this study. It is a qualitative cross-sectional study, performed in the mobility lab of Roessingh
Research and Development (Enschede, The Netherlands).

2.2 Subjects

Eight subjects are recruited from University of Twente, The Netherlands. Criteria for selecting the subjects
are as follows:

• Between 18 and 35 years old

• Right hand dominant

• No trunk, shoulder, arm, hand or finger injuries at the time of the measurement that may influence
the performance of arm exercises

The subjects are instructed to perform some arm exercises. The experimental protocol is approved by the
Ethics Committee of Computer & Information Science of the University of Twente and all subjects provided
written informed consent prior to the measurements.

2.3 Measurement Setup

Nine IMU sensors (2M Engineering, fs = 50 Hz) on the subject, an IMU sensor on a cylinder object
(fs = 100 Hz), a Vicon system (Vicon Motion Systems Ltd UK,fs = 100 Hz) and two Rollei video cameras
(fs = 100 Hz) will be used to record a set of arm exercises.

The Vicon system, consisting of six high-speed infrared cameras, captures the three-dimensional posi-
tion of the different markers in space. This is assumed as the gold standard for the kinematic data in this
study [17]. Objects blocking the camera view or producing undesired reflections were removed from the
measurement environment.

An overview of the experiment is shown in table 2.1. The experiment lasted two and a half hours per
subject. For this study, only data of session 1 is analysed.

3



4 CHAPTER 2. METHODS

Table 2.1: Steps in experiment
Steps in experiment Time duration (min)

1. Explanation of experiment and signing informed consent 5
2. Annotation of: age, gender. Measurement of body mass, length of arms,
upper arm, lower arm, hands, and offsets

10

3. Attachment of 9 IMU sensors and 21 markers (for Vicon measurement)
to subject

15

4. Sensor-to-segment calibration movements 10
5. Performance of arm exercises (session 1) 30
6. Removal of 9 IMU sensors 10
7. Attachment of 9 IMU sensors to subject 15
8. Sensor-to-segment calibration movements 10
9. Performance of arm exercises (session 2) 30
11. Removal of 9 sensors and Vicon markers 10
12. End of experiment and oral debriefing 5
Total time duration 150

Figure 2.1: IMU attachment. Adapted from [12]

2.3.1 Attachment locations of the IMUs and markers

The IMU sensors are attached with medical tape on the skin on the following locations on the body (see
figure 2.1[12]

• Sternum (ST): at the centre of the chest

• Shoulder (SH): on top of the acromion, between the superior border of the scapula and the clavicle,
near the acromioclavicular joint

• Upper Arm (UA): lateral side, close to the elbow

• Lower Arm (LA): dorsal side, close to the wrist

• Hand (H): central on dorsal side

The 14 mm markers for the Vicon system were placed according to the Plug-in Gait Upper Body model
(excluding the markers on the head), see figure 2.2 and appendix A [18]. Markers on the hand (RFIN and
LFIN) and shoulders (LSHO and RSHO) were placed on top of the IMUs. Two additional markers were
placed on both index fingers. The markers were attached with EMG stickers.
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(a) Front view (b) Back view

(c) Right side view

Figure 2.2: Marker placement on the upper body. The head markers were excluded. From [18]

2.3.2 Sensor-to-segment calibration

This sensor-to-segment calibration is important for the estimation of the joint angles based on the IMU-
data. The IMU sensors will be aligned with the atomical segment frames using the functional alignment
method (FMA), see table 2.2

Table 2.2: Sensor-to-segment calibration protocol to define the anatomical axes. Adapted from [12]
Calibration Position/Movement Anatomical Axis

1. Hand flat on table (static) for 5 seconds z⃗h

2. Side of hand (ulna) on table with elbow 90 degrees flexion (static) for 5
seconds

y⃗h

3. Lower arm and hand flat on table for 5 seconds (static) z⃗la

4. Wrist pronation, starting from supination position (dynamic movement):
three times

x⃗la

5. Shoulder adduction with elbow in 90 degrees flexion (static) for 5 sec-
onds

x⃗ua

6. Shoulder abduction with elbow in 90 degrees flexion (static) for 5 sec-
onds

z⃗ua

7. Standing straight in ‘neutral pose’ with arms straight along body pointing
downward (static) for 5 seconds

z⃗sh,z⃗st

8. Trunk flexion movement with arms straight along body (dynamic move-
ment): three times

y⃗sh,y⃗st

9. Sitting straight with arms straight along body pointing downward (static)
for 5 seconds

z⃗sh,z⃗st

10. Trunk flexion while sitting, with arms straight along body (dynamic
movement): three times

y⃗sh,y⃗st
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2.3.3 Global frame definition

Prior to the exercises, the global frame is defined by the following movements (see figure 2.3):

• Sitting straight with arms along the body to define the common vertical axis using the gravity vector

• Trunk flexion with arms moving along the upper body to define the horizontal axis using the angular
velocity

Figure 2.3: Movements used to define the global frame

This step is necessary to define the initial (start) orientation of the sensors. Using the Madgwick filter, it
is then possible to estimate the next sensor orientations based on the initial orientation. The global frame
definition is important for defining the initial orientation of the sensors in the global frame [12].

2.3.4 Arm exercises

The following arm exercises are performed:

1. Reach from the start position to a cylinder object and touch it briefly. The cylinder object stands on
one of the four end positions (10 trials per end position)

2. Reach from the start position to the cylinder object and grasp it, move the object a bit upward, put the
object back on its place on the table, move hand back to start position. The cylinder object stands on
one of the four end positions (10 trials per position).

3. Reach from the start position, grasp, and transport the cylinder object from one place of the table to
the other and back. Cylinder object stands on one of the four end positions.

• Moving the object from the left end position to the right end position and back (10 trials).

• Moving the object from the nearest end position to the farthest end position and back (10 trials).

4. Moving the palmar side of the hand over the back of the head 5 times (10 trials)

5. Imitating a stroke patient: reach, from the start position, to a cylinder object and touch it briefly. Move-
ment will be performed combining three stroke compensation movements: trunk flexion, shoulder
abduction and shoulder elevation (10 trials), see figure 2.4

The subjects are sitting on a crutch next to a table which are adjustable in height. The knees are at 90
degrees, and the elbow at 90 degrees when the hand is resting on the edge of the table, without shoulder
elevation. All exercises are performed at a self-preferred movement speed, first with the dominant right
arm, then with the left arm. There are four positions for the cylinder object in the experiment, see figure
2.5.
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Figure 2.4: Illustration of exercise 5, with the begin position (a) and the reaching movement with trunk
flexion and shoulder abduction (b, c)

Figure 2.5: Set up of the experiment. (0,0) is the starting position of the hand of the subject. The hand is
in the centre line of the trunk and 5 cm from the edge of the table. The cylindric object can be
on four different positions, namely 1(0,40), 2(30,30), 3(0,20) and 4(30,30)

2.4 Data Processing

Data collection of the IMUs on the subject was done using a PC software tool (2M Engineering). Data
collection of the IMU in the cylinder object was done using Matlab 2022a (Mathworks, Inc., Natick, MA,
USA). All data processing and the statistical analysis are performed in Matlab 2022a (The Mathworks
Incl.). Data of the IMUs and Vicon system are resynchronized using cross-correlation. For this, Vicon data
were resampled at 50 Hz to be easily compared to the IMU data. Both Vicon and IMU signals were filtered
by a second order Butterworth low-pass filter with a cut-off frequency of 20 Hz to remove high frequency
noise [19].

2.4.1 IMUs

An IMU consists of a gyroscope and an accelerometer. For further analysis of this data, a few steps are
necessary, namely sensor-to-segment calibration, defining the global frame, estimation of the orientation
and extraction of the joint angles [12].

First, some calibration corrections are performed on the accelerometer and gyroscope data, whereafter
some zero-velocity updates are performed to remove noise from gyroscope data. Then the accelerometer
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and gyroscope data are filtered.

Sensor-to-segment calibration
The sensor-to-segment calibration is necessary to find the orientation of the sensor with respect to the
corresponding the body segment. The axis of the anatomic frame of the corresponding body segment is
determined by the gravity vector in the static posture. The x-axis of the anatomic frames of the hands and
arms are in the longitudinal direction of these segments. In the static neural pose, the following axes are
determined: x⃗h, x⃗la, x⃗ua, z⃗sh and z⃗st. The other axes are determined using the angular velocity during
a dynamic movement. The following axes are determined using the dynamic movement: z⃗h, z⃗la, z⃗ua, y⃗sh
en y⃗st. For each sensor, two axes are measured, whereafter the third axis can be calculated using the
cross-product. To ensure that the axis are orthogonal, one axis will be redefined using the cross product.
The accelerometer data during the static movements and the gyroscope data during the static movements
are filtered using a median filter to remove noise [12].

The orientation of the coordinate system of the segment with respect to the sensor is given by the rotation
matrix shown in equation 2.1 [12].

SRseg =
[

⃗xseg ⃗yseg ⃗zseg

]
(2.1)

Global frame definition
The next step is to estimate the initial orientation of the sensors in the body frame. This is the initial ori-
entation as measured during the neutral pose. The x-axis corresponds to the frontal axis, the y-axis to the
sagittal axis, and the z-axis to the longitudinal axis. In this step, GRs in the initial position is determined.

Orientation estimation
The orientation change from the initial orientation to the starting position is calculated, whereafter the
sensor orientating during exercises starting in de start position is estimated. To estimate the orientation,
the angular velocity is integrated. This is performed using a Madgwick filter using the gyroscope and ac-
celerometer data to compensate for the integration drift.

The Madgwick filter is used to determine the orientations of the IMU sensors in the global frame based
on the initial orientation in the global frame. First, the filter is used to estimate the orientation change from
initial orientation to starting position, whereafter it is also used to estimate the sensor orientations during
exercises starting in the start position [20].

The orientation of a body segment in the global frame can be calculated using equation [20] 2.2

.GRseg(t) =
G Rs(t)

SRSeg (2.2)

Determine start and end of reaches
The start and end of reaches are determined in hand accelerometer data, see figure 2.6. The start point is
the last point in a certain range from the marked point when the normalized acceleration of the hand IMU
is less than the value at the marked point plus the value of the median plus 0.05 m/s2. The end point is the
point when the acceleration signal first crosses zero again after the negative peak.
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Figure 2.6: Determination of the start and end of two reaches using the normalized acceleration of the
hand IMU. 1 and 2 are the marked start and end points for the first reach, 3 and 4 for the
second reach

Joint angles
The joint angles are calculated using the orientation of the body segments. The first step in calculating the
joint angle is projecting a certain vector v⃗ on a certain frame (with normal vector n⃗), for which equation 2.3
is used.

v⃗p = v⃗ − v⃗ · n⃗
||n⃗2||

n⃗ (2.3)

The following step is to calculate the angle between two vectors, using equation 2.4

θ = atan2
( ||v⃗1 × v⃗2||

v⃗1 · v⃗2

)
(2.4)

The trunk flexion angle was determined using the x-coordinate of the sternum and shoulders, see figure
2.7a. The shoulder abduction/adduction angle was calculated by projecting x⃗ua on the zy-plane (frontal
plane) of the shoulders, whereafter the angle between x⃗pua en y⃗sh was determined, see figure 2.7b.

(a) Trunk flexion
angle

(b) Shoulder ab-
duction an-
gle

Figure 2.7: Trunk flexion is calculated using the angle between the x-axis (solid arrow) of the sternum x⃗st

or shoulder x⃗sh with respect to the x-axis before the movement (dashed arrow). To calculate
shoulder abduction, the x-axis of the upper arm x⃗ua is projected in the frontal plane (grey area),
whereafter the angle between x⃗pua and y⃗sh is determined
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Reaching distance
The reaching distance is calculated by some integration steps. The first step is to remove the gravity of the
vertical acceleration (2.5).

a =
[
ax ay az − 9, 81

]
(2.5)

Then, the velocity is calculated by integrating the acceleration (2.6), followed by correction for the integration
drift by assuming constant noise. To calculate the velocity drift, velocity is assumed to be zero at start and
end of the movement.

v(t) = v(t− 1) + a(t)dt (2.6)

The reaching distance is calculated by integrating the compensated velocity (2.7.

d(t) = d(t− 1) + vcom(t)dt (2.7)

The total reaching distance is equal to the distance in the x-, y- and z-direction (2.9)

d =
[
dx dy dz

]
(2.8)

|d| =
√
d2x + d2y + d2z (2.9)

2.4.2 Vicon

The optical kinematic data was modelled using the Plug-in Gait Upper Body model. The position of the
markers was captured by six high-speed cameras. The data was collected and labeled using Vicon Nexus
2.12 (Vicon Motion Systems Ltd UK.). A minimum of two cameras are required to start and continue a
trajectory.

Gapfilling of markers on the upper limb was performed using a Dynamic BodyLanguage Model which
uses the 5 marker rigid body cluster with missing markers ’C7’, ’T10’, ’CLAV’, ’STRN’ and ’RBAK’ during
a dynamic trial. For all markers, gap filling is performed using Woltring quintic spline interpolation with a
maximum gap length of 10 frames.

A static model is run to calculate certain static values required for the dynamic modelling. Using the
dynamic Plug-in Gait model, positions of joints and angles between joints are calculated. The positions of
the rigid segments are defined on frame-by-frame basis.

Kinematics

The global (laboratory) co-ordinate system is defined with the z-axis perpendicular to the lab floor (vertical)
and the x-and y-axes in the plane of the lab floor, with the x-axis in the longitudinal direction.

The chord function is used to calculate the shoulder joint centre, the elbow joint centre and the hand joint
centre. The chord function uses three points, a previously calculated joint centre, a real marker at a known
offset from the required joint centre, and another point or marker, to define a plane [18]. An illustration of
the chord function can be seen in figure 2.8.

Thorax
The z-axis of the thorax is the direction from the midpoint of STRN and T10 to the midpoint of CLAV and
C7. The x-axis points forwards and is defined from the midpoint of C7 and T10 to the midpoints of CLAV
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Figure 2.8: Chord function. From [18]

and STRN. The y-axis is calculated using the cross product and points leftwards. The origin is calculated
from the CLAV marker with an offset of half a marker diameter along the x-axis [18].

Shoulder
The shoulder joint centre is defined as the origin for each clavicle. First, the virtual shoulder ’wand’ marker
is defined using a direction perpendicular to the line from the thorax origin to the SHO marker, and the
thorax x-axis. The shoulder ’wand’ marker is defined using this direction. The shoulder joint centre is cal-
culated using the chord function, with inputs shoulder offset, thorax origin, shoulder marker and shoulder
’wand’ [18].

Clavicle
The z-axis of the clavicle is defined from the direction from the joint centre to the thorax origin. The x-axis
is the shoulder ’wand’ direction and points forwards. The y-axis of the right clavicle points downwards, the
y-axis of the left upwards [18].

Elbow
The direction of a construction vector is perpendicular to the plane defined by the shoulder joint centre, the
elbow marker (ELB) and the midpoint of the two wrist makers (WRA and WRB). The elbow joint centre is
defined using the chord function using the shoulder joint centre, the elbow marker and the midpoint of the
two wrist markers [18].

Wrist
The wrist joint centre is determined as an offset from the midpoint of the wrist markers along a line perpen-
dicular to the line along the wrist bar, and the line joining the wrist bar midpoint to the elbow centre [18].

Humerus
The origin of the humerus is the elbow joint centre with the z-axis from elbow joint centre to the shoulder
joint centre and the x-axis between the elbow joint centre and wrist joint centre [18].

Joint angles
Plug-in Gait uses Euler angles in rotation order YXZ to calculate joint angles. Trunk flexion is calculated
using the angle between the thorax x-axis and the laboratory coordinate system. Shoulder angles are rel-
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ative, namely the angle between the upper arm and thorax [18].

Reaching distance
Reaching distance is calculated using the three-dimensional difference between the start position and the
maximum position in the longitudinal direction of the hand marker during reaching (2.10).

|d| =
√
d2x + d2y + d2z (2.10)

2.4.3 Statistic analysis

Both maximum angles and range of motion (ROM) of shoulder abduction and trunk flexion will be analysed.
Furthermore, reaching distance is evaluated.

The accuracy of the measurement system is the systematic difference between the measured average and
the true value (bias) [21]. To assess the agreement of the two methods, root-mean-square error (RMSE),
mean absolute error (MAE), and Pearson’s correlation coefficient are used to quantify the agreement. For
the RMSE and MAE, <5◦ was considered as excellent and between 5 and 10◦ as good [22]. For reaching
distance, good RMSE and MAE is equal to 10% of the total range, meaning 0.04 m [23].

Pearson’s correlation coefficient is used to determine linear correlation, which is categorized as weak (r
≤ 0.35), moderate (0.35 < r ≤ 0.67), strong (0.67 < r ≤ 0.90) and excellent (r > 0.90)[24].

Because the Pearson’s correlation coefficient does not account for systemic bias, the Bland-Altman analy-
sis is also used [25]. The Bland-Altman analysis is used to describe agreement between the IMU and Vicon
measurements, based on the limits of agreement. It results in a scatter plot XY, where the difference of the
data is plotted on y-axis, the average of the measurements on the x-axis [26]. The difference is equal to
M1−M2, in which M1 is the value of the IMUs and M2 the value of Vicon. The limits of agreement (LOA)
are defined as [27]:

LOA = mean± 1.96SD (2.11)

For the limits of agreement, 10 ◦ lower or upper LOA are acceptable for biomechanics applications, meaning
a standard deviation (SD) of 5◦ [28].
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Results

Data from three participants (3 F, age 24.7 ± 3.2 years, length 169 ± 3.5 cm, weight 79.6 ± 18.2 kg) is
analysed. For the subject measurements, see table 3.1. The arm length is measured from the acromion
clavicular joint to the wrist joint. Upper arm length is measured from the acromion clavicular joint to the
elbow joint. The lower arm length is measured from the elbow joint to the wrist joint. The hand length is
measured from the wrist joint to the tip of the middle finger.

The shoulder offset is the vertical distance from the centre of the glenohumeral joint to the base of the
marker on the acromion clavicular joint. The elbow width is measured along the flexion axis (between the
medical en lateral epicondyles of the humerus). The wrist width is the anterior/posterior thickness of the
wrist. The hand thickness is measured as the anterior/posterior thickness between the dorsum and palmar
surfaces of the hand [18].

Table 3.1: Subject measurements (n=3)
Measurement left right

arm length (cm) 52.3 ± 2.7 50.6 ± 0.6
upper arm length (cm) 26.7 ± 2.5 27.1 ± 2.2
fore arm length (cm) 25.3 ± 1.2 24.9 ± 0.7
hand length (cm) 16.3 ± 0.6 15.0 ± 1.1
shoulder offset (mm) 50.7 ± 6.7 50.7 ± 8.1
elbow width (mm) 75.9 ± 4.5 74.9 ± 7.4
wrist width (mm) 35.2 ± 4.8 34.9 ± 4.2
hand thickness (mm) 23.7 ± 4.6 24.0 ± 6.1

3.1 Metrics

To assess the designed IMU-system, data of the IMUs was compared to the optical data (Vicon). Optical
data was selected based on minimal marker occlusions. An example of the shoulder abduction and trunk
flexion during exercise 5 can be seen in figure 3.1. Shoulder abduction and trunk flexion angles of all
subjects are shown in appendix B. Data of each subject is shown in figure 3.2 to assess the variability. Data
of range of motion of right shoulder abduction of subject two is excluded due to many marker occlusions.

The measured maximum angle and range of motion of shoulder abduction and trunk flexion are sum-
marised in table 3.2. In this table, the measured reaching distance is also set out.

13
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(a) Shoulder abduction angle (b) Trunk flexion angle

Figure 3.1: Example of the shoulder abduction and trunk flexion angles during exercise 5. Vicon data are
in blue. IMU data are a) in red and b) in red (measured with ST) and yellow (measured with
SH).

Table 3.2: Results for performance of exercise 5, with bias and SD of the Bland-Altman analysis as per-
centage of the Vicon mean. IMU: inertial measurement unit; SD: standard deviaton; RMSE: root
mean squared error; MAE: mean absolute error; Pearson’s r: Pearson’s correlation coefficient;
*p < 0.05, **p < 0.01

Metrics
IMU Vicon RMSE MAE Pearson’s r Bland-Altman
Mean SD Mean SD Bias (%) SD (%)

Shoulder abduction (°)
Left 80.0 18.1 82.4 17.4 18.6 -2.8 0.45* -2.8 (-3.4) 18.7 (22.7)
Right 71.0 26.8 80.0 19.8 13.2 -9.6 0.97** -9.6 (-12.0) 9.2 (11.5)
Trunk flexion ST (°)
Left 24.5 25.4 40.0 7.7 24.7 –15.5 0.83** -15.5 (-38.8) 19.5 (48.8)
Right 20.3 15.0 41.7 5.8 26.4 -21.4 0.05 -21.4 (-51.3) 15.8 (38.8)
Trunk flexion SH (°)
Left 34.2 8.4 40.0 7.7 9.9 -5.9 0.50** -5.9 (-14.8) 8.1 (20.0)
Right 30.1 11.6 41.7 5.8 13.7 -11.6 0.84** -11.6 (-27.8) 7.4 (17.7)
Shoulder abduction ROM (°)
Left 82.0 21.5 70.8 10.9 24.7 10.0 0.11 10.0 (14.1) 23.1 (32.6)
Right 61.0 20.6 70.6 13.6 9.1 -2.2 0.94** -2.2 (-3.1) 9.0 (12.7)
Trunk flexion ST ROM (°)
Left 18.5 18.4 31.9 7.2 20.8 -13.4 0.49** -13.4 (-42.0) 16.2 (50.8)
Right 21.1 13.4 34.2 8.3 18.3 -13.1 0.37* -13.1 (-38.3) 12.9 (37.7)
Trunk flexion SH ROM (°)
Left 26.6 6.9 31.9 7.2 12.3 -5.3 -0.27 -5.3 (-16.6) 11.2 (35.1)
Right 33.6 5.2 34.2 8.3 6.6 -0.7 0.60** -0.7 (-2.0) 6.7 (19.6)
Reaching distance (m)
Left 0.21 0.13 0.36 0.04 0.19 -0.14 0.50** -0.14 (-38.9) 0.12 (33.3)
Right 0.27 0.14 0.34 0.04 0.13 -0.07 0.97** -0.08 (-23.4) 0.11 (32.4)

3.2 RMSE and MAE

Root mean squared error (RMSE) and mean absolute error (MAE) are presented in table 3.2.
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(a) Left hand

(b) Right hand

Figure 3.2: Boxplots of maximum angles and range of motion of trunk flexion, shoulder abduction and
reaching distance of the exercises, performed with the left (a) and the right (b) hand

RMSE is not excellent for any of the metrics. However, it can be assessed as good for left trunk flexion
measured with shoulder IMU, ROM of right shoulder abduction and ROM of right trunk flexion measured
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with the shoulder IMU.

MAE is excellent for left shoulder abduction, ROM of right shoulder abduction and ROM of right trunk flex-
ion measured with the shoulder IMU. MAE is good for left shoulder abduction, left trunk flexion measured
with shoulder IMU and ROM of trunk flexion measured with shoulder IMU.

3.3 Pearson’s r

From the data shown in table 3.2, it can be seen that there is an excellent correlation for right shoulder
abduction and right shoulder abduction ROM. Correlation can be assessed as good for left trunk flexion
measured with sternum IMU, right trunk flexion measured with shoulder IMU and right reaching distance.

Metrics which can be assessed with good correlation are trunk flexion measured with the sternum IMU
for the left and trunk flexion measured with the shoulder IMU for the right.

3.4 Bland-Altman Analysis

The Bland-Altman plots to assess agreement between IMU and Vicon for maximum shoulder abduction
and trunk flexion and the reaching distance are shown in figures 3.3 and 3.4. The Bland-Altman plot for
range of motion of shoulder abduction and trunk flexion are shown in figures 3.5 and 3.6. Figure 3.7 shows
the Bland-Altman plot for reaching distance.

Figure 3.3: Bland-Altman plot of the maximal shoulder abduction angles for exercise five performed with
the left hand (left) and the right hand (right). Data of subject 1 is indicated in green, data of
subject 2 in blue and data of subject 3 in red.

The bias of the IMU system is relatively low for both maximum angles and ROM of shoulder abduction
and trunk flexion measured with shoulder IMU. The bias is highest for both maximum angles and ROM of
trunk flexion measured with the sternum IMU.

For all metrics, the plots demonstrated that the differences are within the limits of agreement, except for
some outliers. Overall, the standard deviation and thus the limits of agreement for the metrics are relatively
high.
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Figure 3.4: Bland-Altman plot of the maximal trunk flexion angles for exercise five performed with the left
hand (top) and the right hand (below), measured with the sternum (left) and shoulder (right)
IMU. Data of subject 1 is indicated in green, data of subject 2 in blue and data of subject 3 in
red.

Figure 3.5: Bland-Altman plot of the range of motion of shoulder abduction angle for exercise five per-
formed with the left hand (left) and the right hand (right). Data of subject 1 is indicated in
green, data of subject 2 in blue and data of subject 3 in red.
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Figure 3.6: Bland-Altman plot of the range of motion of trunk flexion angle for exercise five performed with
the left hand (top) and the right hand (below), measured with the sternum (left) and shoulder
(right) IMU. Data of subject 1 is indicated in green, data of subject 2 in blue and data of subject
3 in red.

Figure 3.7: Bland-Altman plot of the maximum reaching distance for exercise five performed with the left
hand (left) and the right hand (right). Data of subject 1 is indicated in green, data of subject 2
in blue and data of subject 3 in red.
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Discussion

4.1 Key findings and interpretation

The objective of this study was to determine the accuracy of both maximum angles and range of motion of
shoulder abduction, trunk flexion and reaching distance measured with a system of IMUs. This study indi-
cates that IMU based human motion analysis cannot provide accurate kinematic assessment of shoulder
abduction, trunk flexion and reaching distance when compared to Vicon, the gold standard for kinematics,
during a certain reach-to-point movement in healthy adults.

The RMSE and MAE varied between the different metrics. RMSE and MAE were only good for left trunk
flexion measured with shoulder IMU and ROM of right trunk flexion measured with sternum IMU. The RMSE
and MAE for trunk flexion measured with the shoulder IMU is lower than for trunk flexion measured with the
shoulder IMU, which indicates the shoulder IMU is more accurate to measure trunk flexion.

Pearson’s correlation coefficient ranged from 0.37 to 0.97. Correlation was only excellent or good for
right shoulder abduction, range of motion of right shoulder abduction and right reaching distance.

In general, the IMU system underestimated all angles, with exception to range of motion of left shoul-
der abduction. A constant bias does not limit the use of the IMUs because it can be accounted for in
the interpretation of the data [29]. The standard deviation and thus the limits of agreement are lowest for
maximum and ROM of trunk flexion measured with shoulder IMU. Overall, the Bland-Altman plots had wide
limits of agreement, which means the results are ambiguous and not acceptable for biomedical applica-
tions. However, data of the same subject has approximately the same bias in general. In the Bland-Altman
plots of the maximum right shoulder abduction and maximum reaching distance, for data of the same sub-
ject the bias systematically changed for larger angles and reaching distance.

The inconsistency of biases between subjects and the underestimation may be due to the calibration step,
in which the start and end have to be manually indicated per subject. These movements are used to define
the sensor to segment orientation and the orientation in the global body frame. More time between these
two movements would make recognition easier. Another possible explanation of the large errors is a not
well adopted instructed posture during the calibration movements, which results in deviations between the
measured joint angles and the real angles.

Other important sources for errors can be the sensor noise and sensor drift. For orientation estimation,
a sensor fusion algorithm can be used. In this study, a Magdwick filter is applied for orientation estimation
and compensates for the IMU inclination errors due to integration drift. The adjustable parameter β must

19
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be high enough to minimize the errors due to integral drift, and low enough to prevent introducing unnec-
essary noise [20]. In this study, β was equal to 0.1. To find the most optimal value of β, data has to be
processed with different values of β to compare the results and find the minimum offset at the beginning of
the measurements.

For reaching distance, the acceleration has to be double integrated, leading to a large measurement error.
The velocity drift is calculated assuming the velocity is zero at the beginning and end of the movement, and
there is compensated for the integration drift by assuming constant noise. These compensation techniques
can also have influence on the accuracy of the reaching distance.

Some technical problems were encountered during the exercise, namely loss of detection of the Vicon
reflective markers. Occlusions of markers on the torso were gapfilled assuming the torso is a rigid body
and thus ignoring breathing movements. Gaps on the upper limbs were filled using the Woltring quintic
spline. This method is best for filling short gaps because it only uses the endpoints of the missing trajectory
[30] These gap filling methods can result in low errors of marker positions [31] and can also have influence
on the calculated metrics. To prevent marker occlusions, the camera positions must change and a trans-
parent table to keep the markers in view must be used.

Altered soft tissue and skin artefacts can cause the IMUs to move with respect to the segments. How-
ever, in this low intensity exercises, the influence of these artefacts are negligible. During some exercises,
the sensors came loose. This can result in another orientation than calculated, because the orientation
of the IMUs is calculated in the sensor to segment calibration step and for defining the global frame. A
solution for this would be better attachment of the IMUs.

4.2 Strengths and shortcomings

A few limitations of the study should be acknowledged when interpreting the results. The system was tested
only with three participants that ware all female and relatively young. The subjects had body shapes, which
can play a role in the sensor to segment step and for defining the global frame, because the body positions
must be adapted perfectly. More subjects for testing the IMU system would result in better estimations of
systematic and random biases [32].

This is the first study in the world that compares IMU based metrics during upper arm exercises with
the Vicon Plug-in Gait as gold standard. The Plug-in Gait algorithm does not compute the angles on the
same basis as the IMU algorithm, which can have affected the calculated shoulder abduction angles. In the
Plug-in Gait algorithm, shoulder abduction is calculated relative to the thorax, in the IMU algorithm relative
to the shoulder [18]. It would be interesting to calculate the shoulder abduction angle relative to the sternum
IMU instead of the shoulder IMU.

Instead of IMUs, Magnetic, Angular Rate and Gravity (MARG) sensors can be used to provide a com-
plete measurement of orientation relative to the direction of gravity and the earth’s magnetic field to give
a unique orientation of each sensor [20]. A disadvantage of MARGs is magnetic distortion that can be
introduced by for example electrical appliances and metals for which must be compensated.

For the sensor to segment calibration step, only two movements are used, namely sitting straight (static)
and trunk flexion (dynamic). Using the calibration movements as stated in table 2.2 and used in a prelimi-



4.3. PREVIOUS RESEARCH 21

nary study [12] may lead to a better and more reliable calibration, although in a clinical setting it takes more
time to carry out.

In this study, the start and endpoint of reaching are determined manually. Wrong recognition of these
points influences the different calculated metrics. It would be preferred to have a validated automatic de-
tection of the start and endpoint of reaching.

Vicon markers were placed on soft tissue anatomical landmarks rather than attached to the IMUs. In
this way, the motion analysis could be analysed [29]. A systematic underestimation of the angles and
reaching distance for the IMU system was found. This was also found in other studies, placing the marks
on landmarks rather than on the sensor [33]. This can be caused by the difference in position of the IMUs
and the markers: the IMUs are placed more centrally on the segments, the markers more distally and thus
undergoing larger angular displacements. To determine the absolute accuracy of the sensors and minimize
the errors, the markers can also be placed on top of the IMU sensors.

4.3 Previous research

The findings of the current study do not support previous research from Bhagubai et al. [12]. In this study,
the quality of some metrics was assumed to be acceptable based on trials performed on a rigid model of
the arm and on healthy subjects, who were instructed to take some instructed positions with certain angles.
The shoulder angles were measured with a standard deviation from the desired target from 3◦ in a rigid
body model and 5◦ in healthy subjects. However, in this study, the accuracy of the IMUs was not determined
with the gold standard, an optical motion system. Furthermore, in this study, a more extensive calibration
was used for the sensor to segment step and the shoulder abduction angle was calculated by projecting x⃗ua

to the zy-plane of the sternum’s frame instead of the shoulder’s frame. Despite that, to make the IMU sys-
tem easy to set up at home, a simple system with as few IMUs and calibration steps as possible is preferred.

For the measurement of joint angle in the upper limb, wearable sensors are still in a developmental phase
[17]. Previous studies compared other IMU devices to the gold standard VICON, in both healthy individuals
and in other pathological conditions. However, different algorithms to process IMU signals were used, and
different clinical variables were analysed. In a study from Poitras et al. ([32], the RMSE for trunk flexion
varied from 1.8 to 5.9 ◦ and the correlation coefficient from 0.72 to 0.99. The shoulder abduction had
an RMSE of 4.2 to 5.7 ◦ and a correlation coefficient from 0.72 to 0.91. In this study, it is emphasized
that complex movements in two or three axes can account for the variability of results, because increasing
movement complexity decreases the validity.

Fusion of data can enhance accuracy. In a review of Walmsley et al. [17] it was found that a multiple
sensor fusion algorithms can be used for upper limb motion, but it is not clear which is best for specific
joints or movements. Kalman filters can also be used to estimate the orientation of the human segment.
However, a high sampling frequency is needed, and the filter has high computational costs. A Madgwick
filter gives accurate results at lower sampling frequency and is better real time because of its low compu-
tational cost [34].

4.4 Recommendations

Further research should be undertaken to investigate the accuracy of the IMUs for reach-to-point move-
ments, which also consider other arm activities and changes in the algorithm of the IMU system. More
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focus on the sensor-fusion algorithm and the calibration is suggested. The present study is a necessary
preliminary step before further research comparing IMUs to Vicon in CVA patients, although typical move-
ments to mimic CVA patients have been investigated in this study. Using the IMUs in pathologic movement,
can potentially introduce larger measurement errors for IMU based motion analysis.



Chapter 5

Conclusion

The aim of this study was to investigate the accuracy of trunk flexion, shoulder abduction and reaching dis-
tance measured with IMU sensors. The comparison demonstrated insufficient agreement between IMUs
and Vicon, the gold standard for motion analysis. In general, metrics were underestimated by the IMU
system. Correlation was variable for the metrics, as were the RMSE and MAE. Measurement accuracy
could be subject to invalid calibration, sensor noise and drift. Notwithstanding the relatively limited sample
size, this work offers valuable insights into the accuracy of the metrics measured with IMUs. The accuracy
of IMUs for a reach-to-point movement in healthy adults must be further investigated and optimized before
investigating the system in CVA patients.
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[19] Avinash Parnandi, Eric Wade, and Maja Matarić. “Motor function assessment using wearable inertial
sensors”. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBC’10 (2010), pp. 86–89. DOI: 10.1109/IEMBS.2010.5626156.

[20] Sebastian O.H. Madgwick, Andrew J.L. Harrison, and Ravi Vaidyanathan. “Estimation of IMU and
MARG orientation using a gradient descent algorithm”. In: IEEE ... International Conference on Re-
habilitation Robotics : [proceedings] 2011 (2011). ISSN: 1945-7901. DOI: 10.1109/ICORR.2011.
5975346.

[21] H.C. Theisens, D. Harborne, and T.J. Hesp. “7 CIMM Process Level IV - Creating Capable processes”.
In: Lean Six Sigma Green Belt Mindset, Skill set and Tool set. 4th ed. Enschede: Lean Six Sigma
Academy, 2020. Chap. 7 CIMM Pro, pp. 191–325. ISBN: 978-94-92240-06-4.

[22] Isabelle Poitras et al. “Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A
Systematic Review”. In: Sensors 2019, Vol. 19, Page 1555 19.7 (Mar. 2019), p. 1555. ISSN: 1424-
8220. DOI: 10.3390/S19071555.

[23] Margit Alt Murphy, Carin Willén, and Katharina S. Sunnerhagen. “Responsiveness of upper extremity
kinematic measures and clinical improvement during the first three months after stroke”. In: Neu-
rorehabilitation and Neural Repair 27.9 (Nov. 2013), pp. 844–853. ISSN: 15459683. DOI: 10.1177/
1545968313491008.

[24] Bernd J. Stetter et al. “A Machine Learning and Wearable Sensor Based Approach to Estimate Ex-
ternal Knee Flexion and Adduction Moments During Various Locomotion Tasks”. In: Frontiers in Bio-
engineering and Biotechnology 8 (Jan. 2020), p. 9. ISSN: 22964185. DOI: 10.3389/FBIOE.2020.
00009/BIBTEX.

[25] P. F. Watson and A. Petrie. “Method agreement analysis: A review of correct methodology”. In: The-
riogenology 73.9 (June 2010), pp. 1167–1179. ISSN: 0093-691X. DOI: 10.1016/J.THERIOGENOLOGY.
2010.01.003.

https://doi.org/10.1109/JTEHM.2020.3042931
https://doi.org/10.1109/JTEHM.2020.3042931
https://doi.org/10.1016/B978-0-12-812939-5.00004-5
https://doi.org/10.1186/S12984-019-0612-Y/FIGURES/4
https://doi.org/10.3390/S21041057
https://doi.org/10.3390/S21041057
https://doi.org/10.1177/15459683211062890
https://doi.org/10.1186/S40798-018-0167-7/TABLES/4
https://doi.org/10.1109/IEMBS.2010.5626156
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.3390/S19071555
https://doi.org/10.1177/1545968313491008
https://doi.org/10.1177/1545968313491008
https://doi.org/10.3389/FBIOE.2020.00009/BIBTEX
https://doi.org/10.3389/FBIOE.2020.00009/BIBTEX
https://doi.org/10.1016/J.THERIOGENOLOGY.2010.01.003
https://doi.org/10.1016/J.THERIOGENOLOGY.2010.01.003


26 BIBLIOGRAPHY

[26] J. Martin Bland and Douglas G. Altman. “STATISTICAL METHODS FOR ASSESSING AGREEMENT
BETWEEN TWO METHODS OF CLINICAL MEASUREMENT”. In: The Lancet 327.8476 (Feb. 1986),
pp. 307–310. ISSN: 0140-6736. DOI: 10.1016/S0140-6736(86)90837-8.

[27] Davide Giavarina. “Understanding Bland Altman analysis”. In: Biochemia Medica 25.2 (June 2015),
pp. 141–151. ISSN: 13300962. DOI: 10.11613/BM.2015.015.

[28] Xavier Robert-Lachaine et al. “Validation of inertial measurement units with an optoelectronic system
for whole-body motion analysis”. In: Medical and Biological Engineering and Computing 55.4 (Apr.
2017), pp. 609–619. ISSN: 17410444. DOI: 10.1007/S11517-016-1537-2/TABLES/3.

[29] Ryan Sers et al. “Validity of the Perception Neuron inertial motion capture system for upper body
motion analysis”. In: (2019). DOI: 10.1016/j.measurement.2019.107024.

[30] Jonathan Camargo et al. “Automated gap-filling for marker-based biomechanical motion capture
data”. In: https://doi.org/10.1080/10255842.2020.1789971 23 (2020), pp. 1180–1189. ISSN: 14768259.
DOI: 10.1080/10255842.2020.1789971.

[31] Jakub Smolka and Edyta Lukasik. “The rigid body gap filling algorithm”. In: Proceedings - 2016 9th
International Conference on Human System Interactions, HSI 2016 (Aug. 2016), pp. 337–343. DOI:
10.1109/HSI.2016.7529654.

[32] Isabelle Poitras et al. “Validity and Reliability of Wearable Sensors for Joint Angle Estimation: A Sys-
tematic Review”. In: Sensors 2019, Vol. 19, Page 1555 19.7 (Mar. 2019), p. 1555. ISSN: 14248220.
DOI: 10.3390/S19071555.

[33] Eric Allseits et al. “A Novel Method for Estimating Knee Angle Using Two Leg-Mounted Gyroscopes
for Continuous Monitoring with Mobile Health Devices”. In: Sensors 2018, Vol. 18, Page 2759 18.9
(Aug. 2018), p. 2759. ISSN: 1424-8220. DOI: 10.3390/S18092759.
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Appendix A

Marker placement

The marker set for the Plug-in Gait upper body was used (except the head), see table A.1[18].

Table A.1: Marker placement for Vicon. *Additional markers
Marker
label

Definition Position

Torso
C7 7th cervical vertebra Spinous process of the 7th cervical vertebra
T10 10th thoracic verte-

bra
Spinous process of the 10th thoracic vertebra

CLAV Clavicle Jugular notch where the clavicles meet the sternum
STRN Sternum Xiphoid process of the sternum
RBAK Right back Anywhere over the right scapula
Left upper limb
LSHO Left shoulder Acromio-clavicular joint
LUPA Left upper arm Upper lateral 1/3 surface of the left arm
LELB Left elbow Lateral epicondyle
LFRM Left forearm Lower lateral 1/3 surface of the left forearm
LWRA Left wrist marker A Thumbside on the posterior of the left wrist, as close to the wrist

joint center as possible
LWRB Left wrist marker B Little finger side on the posterior of the left wrist, as close to the

wrist joint center as possible
LFIN Left finger Proximal to the middle knuckle on the left hand
LINDEX* Left index Top of the index finger
Right upper limb
RSHO Right shoulder Acromio-clavicular joint
RUPA Right upper arm Upper lateral 1/3 surface of the right arm
RELB Right elbow Lateral epicondyle
RFRM Right forearm Lower lateral 1/3 surface of the right forearm
RWRA Right wrist marker A Thumbside on the posterior of the right wrist, as close to the

wrist joint center as possible
RWRB Right wrist marker B Little finger side on the posterior of the right wrist, as close to

the wrist joint center as possible
RFIN Right finger Proximal to the middle knuckle on the right hand
RINDEX* Right index Top of the index finger
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Appendix B

Shoulder abduction and trunk flexion
angles of all subjects

B.1 Subject 1 left

(a) Shoulder abduction angle

(b) Trunk flexion angle

Figure B.1: Shoulder abduction and trunk flexion angles of subject 1 during exercise 5 performed with left.
Vicon data are in blue. IMU data are a) in red and b) in red (measured with ST) and yellow
(measured with SH).
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B.2. SUBJECT 1 RIGHT 29

B.2 Subject 1 right

(a) Shoulder abduction angle

(b) Trunk flexion angle

Figure B.2: Shoulder abduction and trunk flexion angles of subject 1 during exercise 5 performed with
right. Vicon data are in blue. IMU data are a) in red and b) in red (measured with ST) and
yellow (measured with SH).
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B.3 Subject 2 left

(a) Shoulder abduction angle

(b) Trunk flexion angle

Figure B.3: Shoulder abduction and trunk flexion angles of subject 2 during exercise 5 performed with left.
Vicon data are in blue. IMU data are a) in red and b) in red (measured with ST) and yellow
(measured with SH).
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B.4 Subject 2 right

(a) Shoulder abduction angle

(b) Trunk flexion angle

Figure B.4: Shoulder abduction and trunk flexion angles of subject 2 during exercise 5 performed with
right. Vicon data are in blue. IMU data are a) in red and b) in red (measured with ST) and
yellow (measured with SH).
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B.5 Subject 3 left

(a) Shoulder abduction angle

(b) Trunk flexion angle

Figure B.5: Shoulder abduction and trunk flexion angles of subject 3 during exercise 5 performed with left.
Vicon data are in blue. IMU data are a) in red and b) in red (measured with ST) and yellow
(measured with SH).
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B.6 Subject 3 right

(a) Shoulder abduction angle

(b) Trunk flexion angle

Figure B.6: Shoulder abduction and trunk flexion angles of subject 3 during exercise 5 performed with
right. Vicon data are in blue. IMU data are a) in red and b) in red (measured with ST) and
yellow (measured with SH).
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