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Abstract

Honeybees are very important to the ecosystem and mankind as they play a vital
role in the pollination process of the agricultural process and providing a balance to
the bio-diversity of ecosystem. The state of the environment can also be deduced
by keeping a track of bee health status. This leads to the need of a bee health clas-
sification system which can ubiquitously identify bee health status. Recent decades
have seen research and development in the area of artificial intelligence to perform
classification tasks from input images via a camera. Therefore, an image dataset
with over five thousand images is taken into consideration for this project. This work
presents the recent advances in the area in the last two to three decades, exper-
iment with the state of the art models namely VGG-16 and DenseNet-121. The
development methodology is inspired by the technique of transfer learning with pre-
trained VGG-16 and DenseNet-121 on the ImageNet dataset. Initially, the reasons
why the task of image based bee health classification differs from the pre-training of
the deep models on ImageNet are mentioned. The reasons are also verified by the
results of experiment 1. The results of experiment 1 provide a very clear picture as to
what kind of features are extracted by both the models from images from ImageNet
and the BeeImage dataset. The pre-trained models are observed to successfully
extract fine and smooth features from underlying images that includes edges, tex-
ture, shape, surroundings of the objects. But the down stream task demands even
finer features to detect bee health like orientation of bee, wing structure and quality,
bodily deformities etc. In extension, the work establishes evaluation metrics for the
task of image based bee health classification and critically analyses the results of
model performances with evaluation metric of F1 scores and macro-F1 scores. The
project also delivers on the best fine-tuning strategy for the image base bee health
classification. In the end, it is found that DenseNet-121 based models outperform
VGG-16 based models. Also, it is observed that both models have three ’feature-
extracting blocks’ along with two ’interpreting blocks’. It is deduced and concluded
that the ’interpreting blocks’ do indeed need fine-tuning to perform better than the
"out of the box" pre-trained deep models. In the end, the research question derived
with the project is answered conclusively.
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Chapter 1

Introduction

Beekeeping is an ancient tradition and it has been carried out for several millen-
nia. Honeybees are very important to mankind [1]. For starters, while managing the
growing population and hence growing food requirements, the contribution of bees
for providing high quality food (honey, royal jelly and pollen) and various products
(beeswax, propolis, honey bee venom) cannot be ignored. Second, honeybees play
a major role in the pollination process of agricultural crops. Farmers have evolved
to grow more crops that are dependant on pollination for growth (i.e. fruit, vegeta-
bles, seeds, nuts and oil seeds). Finally, honeybees play a major role in providing
a balance to the bio-diversity of ecosystem. By providing pollination, which is an
enabler of food production, they help in maintaining and protecting animal and plant
species. Honeybees are also used to evaluate the state of the environment. Their
existence, non-existence and quantity represent a specific state of the environment
and indicate towards necessary actions. If the development and health of honey-
bees is observed, in quite some cases the state of the environment can be deduced
and lead to necessary action in due time.

InsectSense’s BeeSense is a project that aims to build a system which can in-
culcate the method of training and conditioning the honeybees to detect volatile or-
ganic compounds (VOCs). Honeybees are considered to have extremely sensitive
olfactory receptors that can sense the VOCs in the range of parts per billion [2]. Us-
ing specially designed hardware and image recognition software, BeeSense can be
used to train the honeybees to detect VOCs or diagnose diseases such as Covid-
19 [3]. The project BeeSense has an additional functionality to provide the bee-
keeper with a health status of the honeybees in training. Keeping track of health
condition during recurring training of honeybees through BeeSense will help the
beekeeper to deduce beehive conditions and take necessary precautions in time.
To provide the beekeeper with the health status, images of bees taken by a cam-
era in BeeSense hardware module would be used. The goal of this project is to
research and build the best possible artificially intelligent system to categorize hon-
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2 CHAPTER 1. INTRODUCTION

eybee health status from it’s images.
To hold experiments and conclude results the Bee Annotated Dataset [4] is used

which contains more than 5,000 thousand bee images labelled for their health status.
The dataset is publicly available at Kaggle. A detailed analysis of the dataset and
it’s components is discussed in Chapter 3. The technique of transfer learning [5], [6]
will be used to train models during the course of experiments.

1.1 Project Goals

The goal of this project is to research and build the best possible model for the
task of classifying bee health status from it’s image. Most of the current prevailing
work on the task of image classification uses the technique of deep convolutional
networks [7], [8] and residual training techniques [6], [9]. However, Zhu et. al. [10],
discuss that such complex and deep models need training data in high amounts to
train themselves from scratch. Hence, the scope of this project includes deep pre-
trained networks (with and without the architecture of residual training) to fine-tune
with transfer learning [5] on the bee annotated dataset [4]. Furthermore, the project
compares the performance of fine-tuned DenseNet-121 [9], and VGG-16 [8] on the
task of image based bee health classification.

1.2 Motivation and Research Questions

The pre-trained deep models are pre-trained on the task of object detection from the
ImageNet dataset.The models need to be down-streamed or fine-tuned for the task
of image based bee health classification. Hence, a comparison would be needed
to identify similarities or differences in the pre-training and down-stream task. This
comparison would be critical to decide and guide, as to what level the pre-trained
deep models need to be fine-tuned. Also, it should be noted that the complete deep
model need not to be fine-tuned for best classification performance. This stems
from the fact that the deep pre-trained models are pre-trained over millions of images
giving the models the ability to extract fine low-level features from input images. Also,
it would be important to observe what features are the deep pre-trained models able
to extract from images from the BeeImage dataset. This will give a very close look
on what features do the pre-trained models focus on and consider important for
the task of image classification. Moreover, it will also visualise what features can
be extracted for the task of image based bee health classification from honey bee
images.
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The second part of the project focuses more on the training and evaluation strat-
egy of the deep pre-trained models. It is necessary to evaluate the fine-tuned mod-
els using an evaluation metric that is relevant to the project goal of helping the bee
keeper while at the same time is not skewed because of the distribution the eval-
uation test split. Furthermore, there are different strategies to fine-tune the deep
pre-trained models that are discussed in further chapters. Hence, the best training
strategy has to be identified to fine-tune the deep pre-trained models. In effect, the
best training environment has to be concluded. Something to note is that the goal
is not to deliver the best possible model, but the best training environment that is
possible for the task of image based bee health classification. A better performing
model can be found alternatively to this project with hyper-parameter tuning and pos-
sibly a bigger train set. However, the goal is to identify the best training environment
and strategy for deep pre-trained models namely VGG-16 and DenseNet-121 on the
task of image based bee health classification. The fine-tuned models could be then
evaluated using the decided evaluation metric so the best training environment is
concluded. Hence, the broad research question is summed by RQ as to what level
can transfer learning support the task of image based bee health classification. The
RQ is then divided into sub questions in alignment with the motivation presented
above. To complete the goals of this project the following research questions arise:

RQ) How does transfer learning with available pre-trained CNN models perform
on the task of image-based bee health classification?
Sub RQ1) What are the requirements which make image-based bee health classifi-
cation different from the classification problems with ImageNet?
Sub RQ2) What image-based features can be inherited from pre-trained models
with ImageNet for the bee health classification?
Sub RQ3) Which evaluation metric would be effective to evaluate the performance
of artificially intelligent systems for classifying bee health status from their images?
Sub RQ4) What is the most suitable transfer learning scheme for image-based bee
health classification, given pre-trained CNN models with ImageNet?

1.3 Technical and Scientific Contributions

This work aims to experiment with prevalent transfer learning techniques to build
on the application of image based bee health detection in the domain of pervasive
computing. The project goals defined above make it clear that the project will deliver
on a classification system fine-tuned using transfer learning while experimenting to
find the best possible strategy to fine-tune the deep pre-trained models. Chapter
2 discusses the history and evolution of artificially intelligent systems designed for
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classifying input images. The latest developments mention the use of transfer learn-
ing technique with deep pre-trained models to develop state of the art models. The
research defines research questions around its motivation as discussed in the pre-
vious section. The results of designed experiments is used to conclude answers to
those questions.

The broad research question would quantify and enlist the results of transfer
learning techniques on the task of image based bee health classification. This is a
novel approach of detecting bee health statuses using deep pre-trained models. Im-
portant thing to note is the deep models are pre-trained not on bee images rather on
images of all possible objects in environment (and present in the ImageNet dataset).
It is interesting to evaluate the performance of a model trained to detect objects
but then fine-tuned to detect health statuses of honey bees. The project also con-
ducts a detailed comparison between the based dataset used for pre-training the
deep models and the dataset used for fine-tuning for the downstream task. Another
comparison between both tasks helps to deduce that both tasks indeed differ on
fundamental features needed to classify for target classes however the models suc-
cessfully learn the downstream task on the chosen dataset as discussed in chapter
6. Moreover, the dataset chosen for the project is visibly imbalanced towards some
of the classes. This is also discussed in Chapter 3 in the detailed analysis of the
dataset. Hence, the experiments also give a view on the performance of deep pre-
trained models on an imbalanced dataset. Using some pre-processing and data
augmentation techniques discussed also in Chapter 3, the deep pre-trained mod-
els successfully manage class imbalance in the dataset for the downstream task as
shown by the results in chapter 5. It is imperative to note that deep models which
are trained on object detection successfully manage class imbalance in the dataset
of the downstream task which require completely different base features for classi-
fication. This is something which needs to be acknowledged that deep pre-trained
models are indeed sensitive to a lower representation in the downstream tasks. The
experiments and evaluation metrics are designed to conduct and measure perfor-
mances in the discussed scope to create contributions as discussed in this chapter.



Chapter 2

Background and Related Works

This chapter is divided into two sections.The first sections enlists and discusses
background and related works in the domain of honey bee health monitoring and
the other section enlists and describes the evolution of machine learning and deep
learning techniques on the task of image classification. This particular domain is
chosen since this research aims to hold experiments and comparisons of artificially
intelligent systems on an image dataset.

2.1 Honey bee health

Beekeeping has been around humanity for about a millenia. The western honey-
bees, Apis mellifera are an important part of the ecosystem and help in sustaining
biodiversity by providing essential pollination for a wider range of crops and plant [1].
Over the past decade or so, many beekeepers have reported the unusual decline of
bee colonies and numbers in several countries across the globe [11], [12]. There are
various causes leading to bee loss which include attacks by pathogens and invasive
species – such as the Varroa mite (Varroa destructor) [13], the Asian hornet (Vespa
velutina) [14], and the small hive beetle (Aethina tumida) [15] and environmental
changes (e.g. habitat fragmentation and loss) [16] . In order to maintain a healthy
bee stock, it is important to monitor and maintain it globally.

For the past century, research has been going on the various diseases infesting
upon the honey bees. Varroa is one of the eminent parasitic mites that has been
a problem for the beekeepers for a long time. The type species of the Varroa was
described early in the twentieth century from a colony eastern honey bees [17]. The
common honey bees are very vulnerable to the Varroa mites. Since the mites feed
on the brood, they can weaken and kill the colonies [18] [13] [19]. Also, the Varroa
mites cause transmission of viruses like deformed wing virus(DWV), sacbrood virus,
acute paralysis complex to honey bees which results in deadly diseases [20] [21].

5
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Another invasive pest for bee hives is the small hive beetle Aethina tumida (SHB)
[22]. The small hive beetle is a destructive insect that can damage honey bee
colonies. If it gets too heavy, it can cause the bees to abandon their nests. Just
like small hive beetles and Varrao mites, ants are also a problem for the honey bee
colonies. The ants feed on the honey bees brood and disseminate viruses to honey
bees by invading hives and transmitting the viruses to hive cells [23]. The other fac-
tors that possess threat to the honey bees are attacks of the robber bees [24], the
queen missing in the hive [25].

The problems mentioned above make bee health monitoring important so that
countermeasures can be taken promptly. There are several traditional methods that
have been carried out for bee monitoring. One of the common methods to detect
the Varroa mites is a roll test with powdered sugar or roasted soybean flour [26].
Another traditional method to detect the hive beetles and ants is visual observation.
However, these methods are time consuming and not very efficient. Hence, the
use of image processing, computer vision and machine learning techniques can be
proved much efficient and faster than the traditional methods [27] [28] [29].

2.2 Machine learning systems

This section enlists and discusses evolution of machine learning and deep learning
techniques on the task of image classification. The project BeeSense includes a
camera to monitor bees during their training process. The images captured from
this camera would be then used to categorize health of each bee from a set of pre-
defined classes. This project aims to build an artificially intelligent solution to enable
this functionality. The bee monitoring techniques that prevail as the market standard
[30] currently involve the use of IoT technologies for real time bee monitoring. Also,
recent products and research involve the use of machine learning and deep learning
techniques [31] to analyse bee and beehive characteristics.

This project aims to build a solution that categorizes a bee’s health from it’s im-
age. The techniques of building artificially intelligent systems for the task of image
classification have evolved quite a lot during the recent years [32]. From the late
90s neural networks [33] (feed forward networks) were used for the task of image
classification. A point to note here is that a simple multi layer perceptron taking in-
put from each pixel of image would not have been a feasible solution. The reason
behind it is the inefficiency to process this large size of input (equal to number of
pixels in the image) even though the adjacent pixels are spatially correlated. Hence,
there was a need to first extract meaningful and low dimensional features of an im-
age to provide to a neural network to learn on. In 1998, Lecun et. al. [34] proposed
the LeNet architecture (shown in figure2.1 ) of training an artificially intelligent sys-
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tem. To tackle the problem (feasibility) mentioned above, the solution proceeded
in multiple steps. First, the input images for training are passed through multiple
convolutional and activation layers of fixed size to generate and low level meaningful
features from images. A neural network is then trained on these features as input us-
ing back-propagation to classify images. Hence, ConvNets (LeNet) were successful
in extracting low level features from images and training a neural network on these
features.

Figure 2.1: LeNet Architecture

Figure 2.2: AlexNet Architecture

Until 2012, ConvNets or CNNs were not able to make their claim to fame. The
reason, as explained by Krizhevsky et. al. [7] in 2012, that the complete potential of
CNNs was not being leveraged during training of the model. Krizhevsky proposed
several changes to a general LeNet [34] architecture. First of all, better linearity
was introduced in the LeNet architure using the ReLu activation. This helped in
gradient propagation back through the model. Second, dropout as regularization
was introduced. To make representation easier, it can be thought that the model
forgets things at random so it can perceive the next input in a better way. Third, the
approach introduced data augmentation during training by randomly rotating, trans-
lating and cropping of images in the input during training. This helped the system to
be able to learn to extract features from images that were not in perfect alignment of
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the images in the training set. Hence, making the model more robust in terms of per-
formance towards new data. Finally, the most important contribution that AlexNet [7]
made, is that it went "deeper". As can be seen in figure2.2, there are more convolu-
tional layers stacked before pooling operations. This equipped the system to extract
finer features from the image which in turn led to better classification. AlexNet [7]
outperformed the state of the art in 2012 on the ImageNet dataset [35].

In 2015, came the next big milestone in the field of image classification. Pro-
posed by Simonyan et. al. [8], the VGGNet outperformed the state of the art systems
on the Imagenet dataset [35]. The architecture mainly focused on "going deeper".
As can be visualized in figure 2.3 there are significantly more convolutional opera-
tions before pooling when compared to AlexNet [7]. Another important thing to note,
is the size of the convolutional layers is mostly set to a 3X3 matrix. Implying that
the model has more number of convolutional layers but of small sizes. The authors
provide three major motivations for building such an architecture. First of all, smaller
filters lead to further more non-linearity which in turn makes more degrees of free-
dom for the model. Second, stacking more of such filters increases the reception of
the model. Implying, if two such filters are stacked next to each other the systems
then gains a 5X5 pixel reception; if three, a 7X7 reception and so on. Hence, the
proposed system [8] also includes findings from AlexNet [7]. Finally, using small
filters limits the number of parameters of the system which is good since the model,
as the name suggests goes "very deep".

Figure 2.3: VGGNet Architecture
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The VGGNet [8] and AlexNet [7] both had the idea of building deep networks to
extract finer features for better image classification. However, researchers realised
that stacking more layers on top of each other doesn’t always lead to a better classi-
fication performance. The reason behind this are vanishing gradients and the layers
are not optimized during training. Hence, researchers came up with the technique
to counter this effect named residual learning [6]. As shown in figure 2.4 there is
an identity mapping after every other layer. This mapping is proposed to exist af-
ter every other layer throughout the network. This connection creates an additional
path for the network to back-propagate error hence solving the problem of vanishing
gradients. Another advantage of having the identity mapping connection is the later
layer perceives input as it’s previous layer along with it’s own perception. This acts
as an added advantage during training to form better understanding of the image to
the model. ResNet [6] until very recently was the best performing model on image
classification task on the ImageNet dataset [35]. Another major milestone archi-
tecturally was developed on the same logic. In 2018, Huang et. al. [9], proposed
the DenseNet architecture which had an identity mapping like that of ResNet [6]
amongst all the layers of the network as can be seen in figure 2.5.

Figure 2.4: Residual Learning

Figure 2.5: DenseNet Architecture
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Hence, from these works the two major points to note are, first, going deeper
increases the classification performance of a model. However, just stacking up con-
volutional layers only helps to train the system to some extent. If the number of layers
are significantly high, the gradients start to vanish and the model doesn’t train to the
full extent. Second, to minimize/solve the problem of vanishing gradients residual
learning technique is used, creating an additional channel to back-propagate gradi-
ents. Hence an ideal approach to an image classification task would be to develop
a deep convolutional system trained with residual learning. However, training such
deep and complex models on a small dataset is not the right approach. Zhu et.
al. [10] discuss that high amount of training data is needed to ideally train more and
more complex models. Hence training a complex model like a deep ResNet [6] from
scratch on a small dataset would not lead to the best possible model. Weiss et.
al. [5] discuss the evolution of an old technique to solve this problem. The solution,
transfer learning. Different complex networks that discussed in the prevailing sec-
tions have been pre-trained on different big datasets like ImageNet [35]. An instance
of these pre-trained models are open source and used along with transfer learning
to build artificially intelligent systems. A general architectural representation of this
approach can be seen in figure 2.6. However, while using transfer learning with
pre-trained systems leads to a question on the training methodology. The question
becomes, which pre-trained model is chosen and of what size?

Figure 2.6: Transfer Learning
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As the rising amount of data and the technology to compute complex operations
increases, machines have known outperform humans on several image classifica-
tion tasks [36]. In history, when Krizhevsky et al. [37] proposed their deep convolu-
tional approach for the task of image classification on the ImageNet dataset, they set
the standard for further experiments [38]. Deep convolutional networks were widely
accepted and preferred for the task of image classification [39], [40], [41]. However,
training deep convolutional networks from scratch takes a lot of time, resources and
data. As a resolve, it is prevalent to initialize a pre-trained deep model and then
downstream it for a smaller dataset for a particular task. Some of the state of the
art systems for the task of classification with transfer learning include Rahul et. al.’s
approach [42] where a ReseNet architecture is fine-tuned to detect audio spoofs.
Another benchmark of transfer learning based approiach is the one proposed by
Akash [43]. Another example of a state of the art classifier on natural plant images
to detect deseases is the one presented by Anjaneya [44].
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Chapter 3

Dataset

This section describes the dataset which is being used for the experimental setup.
The dataset is taken from Kaggle [4] containing images which were extracted from
still time-lapse videos of bees. The frames were averaged to calculate a background
image and each frame of the video was subtracted against that background to bring
out the bees in the forefront. The bees were then cropped out of the frame so that
each image has only one bee.

There are total 5172 images in the dataset with 9 columns namely ’file’, ’date’,
’time’, ’location’, ’zipcode’, ’subspecies’, ’health’, ’pollen_carrying’ and ’caste’. The
target class among these columns will be ’health’. There are 6 unique values of
the ’health’ class. These 6 values are ’Varroa, Small Hive Beetles’, ’ant problems’,
’few varrao, hive beetles’, ’healthy’, ’hive being robbed’ and ’missing queen’. The
distribution of the target class is represented in table 3.1 and shown in figure 3.1.

Class name Count Relative count
Varroa, Small Hive Beetles 472 0.09
ant problems 457 0.09
few varrao, hive beetles 579 0.11
healthy 3384 0.65
hive being robbed 251 0.04
missing queen 29 0.01

Table 3.1: Distribution of target class

13
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Figure 3.1: Distribution of target class

As the dataset is not evenly distributed across classes and the target class ’miss-
ing queen’ has only 29 images in the dataset, the data for this class is not taken into
consideration. This is done so the model doesn’t receive train and evaluation data
with little to no representation in the training set, which would lead to deviation from
the model’s optimal learning capabilities.

3.1 Data Pre-processing

As it can be seen from 3.1, the number of images for each class are not balanced.
This would create a problem for the model training since the model will tend to learn
more about the class with more samples in the training set. Not giving the model a
chance to generalize itself. However, the deep pre-trained models are considered to
be sensitive towards smaller sample set as well. Moreover, during training the input
images are randomly flipped horizontally and vertically and also rotated by random
angles. This is done to tackle the class imbalance and provide the model with more
general view of bee images. Another measure taken is that during the experiments
all models are fed images in a batch size large enough to include some images from
all classes most of the times. Also to tackle class imbalance a stratified train-test split
has been done. The dataset is split into train and test sets in a way that preserves
the same proportions of examples in each class as observed in the original dataset.
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The train set forms 80% of the total dataset and the test set takes 20% of the total
dataset.

The train set has 4114 total images. The distribution of classes in the train set is
shown in the table 3.2 and figure 3.2. Similarly, the distribution of classes in the test
set with 1029 total images is shown in the table3.3 and figure3.3. After splitting the
dataset, the images are saved in two different directories namely ’Train’ and ’Test’.
Both the directories contain images inside sub-directories named same as the target
classes.

Class name Count Relative count
Varroa, Small Hive Beetles 377 0.09
ant problems 366 0.09
few varrao, hive beetles 463 0.11
healthy 2707 0.65
hive being robbed 201 0.05

Table 3.2: Distribution of train set

Class name Count Relative count
Varroa, Small Hive Beetles 95 0.09
ant problems 91 0.09
few varrao, hive beetles 116 0.11
healthy 677 0.65
hive being robbed 50 0.05

Table 3.3: Distribution of test set
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Figure 3.2: Distribution of train set

Figure 3.3: Distribution of test set



Chapter 4

Methodology

This chapter outlines the approach that is taken to hold research and conduct ex-
periments to answer the proposed the research questions. The broad question in
general is to evaluate how transfer learning with deep CNN models pre-trained on
ImageNet dataset perform on the task of image based bee health classification. To
conclusively answer this question with reasoning, four sub-questions have branched
out.

4.1 Problem Formulation

The task of image based bee health classification is a classification problem with
label set as the possible health conditions of a honey bee. The input space of this
problem consists of images of individual bees. Hence, in mathematical representa-
tion, it is a 5-class classification problem, given an image X predict the class Y from
the label set ’Varroa, Small Hive Beetles’, ’ant problems’,’few varrao, hive beetles’,
’healthy’, ’hive being robbed’.

4.2 ImageNet and bee annotated dataset

As mentioned before, to conclusively answer the research question with reasoning,
four sub-questions have branched out. The first sub-question (i.e. Sub RQ1) fo-
cuses on the uniqueness of the task of image based bee health classification and
how it is different from classification tasks of the ImageNet dataset. The ImageNet
dataset is a collection of more than 14 million images. All the images are hand an-
notated and verified by multiple annotators. The images are annotated by the object
presented in the given image. The label set of the ImageNet dataset contains more
than 20,000 annotations. The categories or annotations are nouns since they repre-
sent the object presented in an image for example ’blueberries’, ’horse’ etc. These

17
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annotations are then mapped to WordNet hierarchy [45] in which each node con-
tains thousands of images labelled to itself. Some of the images from the ImageNet
dataset and their corresponding labels are presented in figure 4.1.

Figure 4.1: ImageNet Example

Since the dataset contains images of objects, classification models trained on
this dataset are able to classify an image to a class in the label set i.e. to a noun
presented in the image. Intuitively, to classify an image to a noun or detecting objects
would need the model to comprehend fine features like edges, shapes and textures.
Also, the model might be a bit focused on assessing the surrounding of the object in
the image as well as it might support with detecting the object within the surrounding.
However, the task of image based bee health classification is even more granular
and fine grained than object detection. As can be seen in below figure 4.2 from bee
image dataset the features separating healthy bees from others are infinitesimally
small and can not easily be read by human eyes. When compared to the task of
object detection where a cat has to be distinguished from a dog, this task seems
fairly difficult for the system. Moreover, the features that are needed to be extracted
for such a task might include orientation of the bee, signs of deformities/injuries
on its body, the orientation in which if so a honey bee might be stuck or might be
unusual. Intuitively, the features needed to classify bee health conditions might not
even be very visible in small cropped images to the machine. Hence, features like
the shape of the bee or surroundings of the object (in this case the bee) might not
be very relevant to the model. Hence, we can say that the task of image based
bee health classification is very different than a classification task on the ImageNet
dataset. The features extracted from pre-trained models for images sampled from
both data sets are discussed in further sections.
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Figure 4.2: Examples from BeeImage Dataset

4.3 Feature extraction

The features extracted for the task of image classification plays an important role
for the model to classify the input images. Over the training/fine-tuning process, the
model is expected to improve at feature extraction. Implying, the more the model
weights are optimised during training/fine-tuning of model, the model is able to ex-
tract better features from input image. However, if the size of the training set is not
proportional to the size of the model in concern, the training might even result in
a model that extracts features that might not be as fine and clear as it was able
to extract before training. This is because complex models need higher amount of
training data to fine-tune themselves since the gradient of every batch is distributed
to a far greater number of weights during training. It is hence necessary to under-
stand what kind of features are extracted by the pre-trained models for the images
from the ImageNet Dataset and also the BeeImage dataset before the fine-tuning
process.

Moreover, this will also provide an insight as to what kind of features are nec-
essary for the model for images from the ImageNet dataset since the models are
pre-trained on the ImageNet dataset. Hence, to visualize the features extracted
from the pre-trained models, and experiment, experiment 1 is designed. The exper-
iment is described in detail in the further sections and is designed to visualize and
compare the features extracted by the pre-trained models from images of both the
ImageNet and BeeImage dataset. Also, the experiment will identify key unique fea-
tures that different pre-trained systems are able to extract. This will end in a defined
set of unique features that different pre-trained models can extract from underlying
images.
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4.4 Transfer Learning

The next two sub-research questions i.e. sub RQ 3 and sub RQ 4 focus on the
fine-tuning and evaluation of the pre-trained models. To conclusively answer sub-
RQ4 an experiment, experiment 2 is designed. The pre-trained models used for the
experiment are VGG-16 and DenseNet-121. The experiment is designed to find the
best strategy to fine-tune the pre-trained models. There can be various strategies to
fine-tune complex pre-trained convolution networks as represented in figure 4.3.

Figure 4.3: Fine-tuning strategies

The first strategy puts forward the whole model for training, implying that all the
convolutional blocks along with the classification layers on top of the model are opti-
mized during training. This indeed provides the model the most scope for optimising
itself for this specific task. However, the amount of data needed to optimize models
of this size might not resemble that of the training set. The second strategy freezes
half of the model while training, implying conserving the weights of feature extrac-
tion blocks and optimising those of the further blocks. This might be the best strat-
egy to move forward with the given dataset. However, the deep pre-trained models
within the scope of this project consist of 5 convolutional blocks leading two possible
parts of this strategy. The third strategy suggests to freeze the complete pre-trained
model while training and just fine-tune the classification layers on top. Experiment
2 is designed to fine-tune the pre-trained models with the mentioned strategies and
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compare results. The results from the experiment will conclusively answer sub-RQ4.
The research and results of the experiments would conclusively answer the broad
research question being to analyse how transfer learning performs on the task of
image based bee health classification.

4.5 Experimentation and evaluation setup

As outlined in the previous sections, two experiments are proposed namely experi-
ment 1 and experiment 2 to answer sub-RQ2 and sub-RQ4 respectively. This sec-
tion describes the proposed experiments in detail and the evaluation metric that
would be used to compare systems in experiment 2.

4.5.1 Experiment 1

This experiment is defined to analyse and compare the different key features that
are extracted by deep pre-trained models. The deep pre-trained models selected
are VGG-16 and DenseNet-121. These models are selected because of the find-
ings presented in section 2.2 i.e. these deep pre-trained models have outperformed
other prevalent conventional techniques on the task of multi-class image classifica-
tion hinting towards the fact that these models are successful in extracting fine low
level meaningful features from underlying images. Hence, to answer the sub RQ2,
feature maps that are activated by these deep models would be analysed.

Two images would be fed to these deep models consisting the image of a ’husky’
from the ImageNet dataset as represented in section 4.2. The other one is an image
of a healthy honeybee as shown in section 4.2. The image is chosen randomly
from the train and the test set. Also both images are normalized and rescaled to
a resolution of 224X224 pixels before input to the deep pre-trained model. The
feature maps activated by these deep models would be visualized and analysed.
The visualizations of feature images would be images that model is able extract from
the underlying image after the convolutional block. The figure 4.4 below represents
the architecture that would be used to conduct this experiment. This analysis will
lead to a set of unique key features essential for image classification that are being
extracted by these deep models. This set would answer sub RQ2 by enlisting the
features that these deep pre-trained models are able to extract from the underlying
images.
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Figure 4.4: Architecture - Experiment 1

4.5.2 Experiment 2

This experiment is designed to identify the most suitable transfer learning technique
for the task for image based bee health classification. To conduct this experiment,
the two deep pre-trained models mentioned in the previous section would be fine-
tuned on the task of image based bee health classification with the strategies out-
lined in section 4.4. Both deep pre-trained models i.e. VGG-16 and DenseNet-121
consist of 5 convolutional blocks. Hence, the strategies defined in section 4.4 lead
to four possible variants of fine-tuning a deep pre-trained model as represented in
figure 4.5.

Figure 4.5: Fine-tuning strategies - Experiment 2
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The four possible outcomes of the defined strategies in section 4.4 are visualised
in figure 4.5. The variant of each deep-model is named for the ease of comparison,
namely ’Full’, ’Three-quarter’, ’Quarter’ and ’Zero’, each representing a possible
variant. The ’Full’ model is the outcome of strategy 1 in section 4.4 where all con-
volutional blocks of the pre-trained deep model are fine-tuned along with the clas-
sification layers on top. Both the ’Three-quarter’ and ’Quarter’ variants branch out
from strategy 2 where half of the convolutional base model is frozen while training
while half of the base model is optimised during the training process. The ’Zero’
variant is a result of strategy 3 where the complete base model is frozen and the
classification layer on top is optimised. Important to consider here is the outcome
of experiment 1. The results of experiment 1 would identify the convolutional blocks
that are responsible for extracting lower level fine features and hence up to which
convolutional blocks would need to be optimally frozen for a better training environ-
ment. The variants that would result from the outcome of experiment 1 is unknown
and hence it is named the ’optimised’ variant. Hence the complete set of models
in the designed experiment include ’vgg-full’, ’vgg-three-quater’, ’vgg-quarter’, ’vgg-
zero’, ’vgg-optimised’, ’densenet-full’, ’densenet-three-quarter’, ’densenet-quarter’,
’densenet-zero’ and ’densenet-optimised’. The naming of the fine-tuned variants is
straight-forward, implying that the variant ’vgg-full’ represents the model with VGG-
16 as the base model fine-tuned with strategy 1 i.e. the whole model along with top
layers is optimised during training.

4.5.3 Evaluation metric

The systems designed to identify the honey bee health should be precise about cat-
egorizing a honey bee to a certain health status. This is so that the bee keeper can
take needed actions accordingly. If the system detects a wrong disease, the bee
keeper might take actions that might not bear fruit towards improving the bee hive’s
health. Hence, the system should precisely be able to identify the health status of
a bee from its image. Hence, precision is a metric that has to be used for the eval-
uation of the fine-tuned systems. The equations of calculating precision and further
macro-precision are represented in equation4.1 and equation4.5. Another metric
that is considered for evaluation of the systems is recall i.e. equation4.2 and further
macro-recall i.e. equation4.4. These metrics represent to what degree is a model
sensitive towards the target class. This metric is important to measure to what ratio
are fine-tuned models able to detect a disease from an input image of a honey bee.
This metric also represents the effectiveness of the working system by represent-
ing how many times is the model able to identify the underlying disease. Intuitively,
both precision and recall would be at trade off with each other and hence a metric
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F1 represented by equation 4.3, is also used to evaluate the models. The metric
macro-F1 (4.6) represents how much a model is sensitive and specific towards the
target class. Something to note is that macro averaging technique is considered for
calculating evaluation metrics. This is adopted to provide each class in the test set
with equal importance while calculating evaluation metrics for comparison. Hence,
sub-RQ3 is conclusively answered by the set of evaluation metrics {macro-Precision,
macro-Recall, macro-F1}.

Precision =
All Correctly Classified Examples for a target class

All Classified Examples for this class
(4.1)

Recall =
All Correctly Classified Examples for a target class

All Examples for this class
(4.2)

F1 =
2 * Precision * Recall

Precision + Recall
(4.3)

macro-Recall = avg (Recall for all target classes) (4.4)

macro-Precision = avg (Precision for all target classes) (4.5)

macro-F1 = avg (F1 for all target classes) (4.6)



Chapter 5

Results and Discussions

This chapter enlists and discusses the results of experiments described in section
4.5. The first experiment is designed to compare extracted features of images from
different datasets by different models. While the second experiment is designed
to identify the best possible fine-tuning technique for the task of image based bee
health classification on this dataset.

5.1 Experiment 1

This section enlists and discusses the results of experiment 1 in detail. The sec-
tion 4.5.1 describes that two images are chosen as sample to visualize the feature
maps activated by the two different deep pre-trained models namely VGG-16 and
DenseNet-121. This experiment is designed to visualise and observe the lower
level fine and smooth features that the deep pre-trained models are able to extract
from input images. The input images are selected from both datasets ImageNet and
BeeImage dataset. The images of extracted features are reported in this section
and discussed in detail. A conclusion on which convolutional blocks of the two men-
tioned models are responsible for extracting lower level features is also drawn. The
figures 5.2, 5.3, 5.4 and 5.5 represent the features extracted by the deep pre-trained
models. The (a) component of the figures represent the image which was input to
the models for feature extraction. The (b) component represents the features ex-
tracted by the models by the 1st convolutional block. The (c) component visualises
the output of the 2nd convolutional block and the (d), (e) and (f) components repre-
sent the output from the 3rd, 4th and 5th convolutional blocks of the models. Each
component contains multiple images of the extracted features of the input image
because all convolutional blocks try to focus on different possible features of an in-
put image in differentiating ways and channelises all outputs. For example, in some
feature map the focus would be on edges while on some maps it might be focus-
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ing on contrast. The number of channels in convolutional blocks of VGG-16 is 64
while for DenseNet-121 is 512. However, the visualisations have been capped to 64
channels.

5.1.1 VGG-16

The figures 5.2 and 5.3 represent the features extracted from VGG-16. The first fig-
ure i.e. figure 5.2 visualizes the features extracted from the input image of a husky.
This image is chosen from the ImageNet dataset. The VGG-16 model has been
initially pre-trained on the ImageNet dataset as well. As can be seen, lower level
features extracted by the 1st convolutional block are fine and smooth. The model
is able to extract edges, shapes, edges in the background in the first convolutional
block. It can also be observed that the extracted features or feature maps are trans-
lated and are also visible in the output of the 2nd convolutional block and also in
the output of the 3rd convolutional block. However, the output from the 4th and 5th
convolutional blocks does not represent much of the image but just shaded blocks.

The figure 5.3 represents the features extracted by the same pre-trained VGG-16
model on an input image selected from the BeeImage dataset. A similar trend, as
observed above with the input example from ImageNet, is observed in this case. The
lower level features extracted from input image of a bee are smooth and fine however
they do not translate upto the output of the 4th and 5th convolutional block. This hints
towards the fact that the lower blocks of the VGG-16 model are responsible feature
extraction and passing the extracted features over to higher blocks for interpretation
and vectorization. Another thing to note would be, since the last two blocks are
responsible for the interpreting the extracted features, they would need to fine-tuned
for interpreting the features extracted for this task. This is because the interpretation
understanding of the 4th and 5th block would be very general (21,000 target classes
in ImageNet), and would need to be optimised for a specific task. Also, the lower
level blocks might not need fine-tuning since the blocks can already extract and
visualise fine and smooth features of the bee.

5.1.2 DenseNet-121

The figures 5.4 and 5.5 represent the features extracted by DenseNet-121. Al-
though, as mentioned before that the convolutional blocks of DenseNet-121 have
512 channels, the visualisations are capped at 64.

A similar trend as seen with the VGG-16 model is observed with the case of
DenseNet-121 with feature extraction. The lower level blocks i.e. 1st, 2nd and 3rd
convolutional blocks are able to extract very fine and smooth feeatures however the
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higher level blocks ouput only shaded squares. Something to note would be that
the output from the 1st and 5th blocks of both models seems similar, however the
ouputs from 2nd, 3rd and 4th block of DenseNet-121 differ from the ones coming
of VGG-16. This shows that the DenseNet-121 is deep enough to transform output
of the 1st block and generate even finer features in the blocks in the middle. This
shows that the DenseNet-121 has much deeper networks to enhance and augment
the extracted features when compared with VGG-16. Since a similar trend is ob-
served across both the base models, the first three convolutional blocks are referred
to as ’feature-extracting blocks’ and the fourth and fifth blocks are referred to as
’interpreting blocks’ further in the discussion.

Also, since it can be deduced that the first three convolutional blocks are ’feature-
extracting blocks’ and the last two blocks are ’interpreting blocks’ with both models,
it can be concluded that the ’optimised’ variant of both models is exactly same as
the ’quarter’ variant of both the models. Hence, the results of ’optimised’ variant
are reported as the ’quarter’ variant in the next section. This is also represented by
figure 5.1

Figure 5.1: Result of Experiment 1
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Figure 5.2: Feature extraction of ImageNet example with VGG-16
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Figure 5.3: Feature extraction of honeybee image with VGG-16
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Figure 5.4: Feature extraction of ImageNet example with DenseNet-121
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Figure 5.5: Feature extraction of honeybee image with DenseNet-121
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5.2 Experiment 2

This section enlists and discusses the results of experiment 2 in detail. Detailed
results of this experiment are also presented in Appendix B. The section 4.5.2 de-
scribes the four fine-tuning strategies for fine-tuning the deep pre-trained models.
As discussed, two models namely, VGG-16 and DenseNet-121 are fine-tuned and
their classification performance on the test set is discussed. The test set is de-
scribed in detail in chapter 3. The four different strategies of fine-tuning along with
the variant to be considered after analysing results of experiment - 1 leads to a
total ten fine-tuned models, namely ’vgg-full’, ’vgg-three-quater’, ’vgg-quarter’, ’vgg-
zero’, ’vgg-optimised’, ’densenet-full’, ’densenet-three-quarter’, ’densenet-quarter’,
’densenet-zero’ and ’densenet-optimised. As discussed in the above section, the
’feature-extracting blocks’ of the deep models are the first three and the ’interpret-
ing blocks’ are the top two convolutional blocks. Preserving the feature extraction
abilities of the models, and fine-tuning the rest of the model, would effectively result
in ’quarter’ variants of the models. The nomenclature of these models is also dis-
cussed in detail in section 4.5.2 along with experiment 2. The evaluation metrics that
are highlighted while definition of the experiment are also reported in this section.

5.2.1 VGG

Model name macro-Precision macro-Recall macro-F1
vgg-full 0.47 0.50 0.45

vgg-three-quarter 0.57 0.59 0.57
vgg-quarter 0.78 0.70 0.73

vgg-zero 0.81 0.34 0.38

Table 5.1: Results of VGG models
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Figure 5.6: Confusion matrix vgg-quarter

The table 5.1 above represents the results of performance of the different VGG
models. As can be seen, vgg-quarter out-performs other VGG-16 models in con-
sideration with a macro-F1 of 0.73. Following the vgg-quarter model are the vgg-
three-quarter, vgg-full and vgg-zero models with a macro-F1 of 0.57, 0.45 and 0.38
respectively. As discussed earlier, macro-F1 scores represent a wholesome classifi-
cation performance of the model taking into consideration both the precision scores
and recall scores which are at trade off. The figure 5.6 represents the confusion
matrix determined by the predictions of the vgg-quarter model on the test set. It can
be seen that the model indeed learns to distinguish between multiple health classes
from input bee images.

The model vgg-quarter hence also results in a macro-precision of 0.78 and a
macro-recall of 0.70. However, the precision scores of this model lag behind the
precision scores of the vgg-zero. But this does not imply that vgg-zero is more
precise at detecting bee health statuses from it’s image. Upon close analysis and
comparison of the confusion matrices determined by the predictions from both the
fine-tuned models it can be observed that that vgg-zero doesn’t learn much from the
training process and ends up classifying almost all test samples as ’healthy’. The
confusion matrix of the vgg-zero model is visualised by figure 5.7. The number of
’healthy’ samples are high in number in the test set and hence boost the precision
scores of the model. This is one of the major reasons why F1 scores are taken into
consideration to provide a more ’realistic’ insight on the classification performance of
the model. Something else to note would be if the ’weighted’ technique of averaging
for classification metrics was considered instead of the ’macro’ technique, the results
might have been skewed and might not represent a holistic view. Simply because
the distribution of the test set is highly imbalanced, leading to ’boosted’ or ’inflated’



34 CHAPTER 5. RESULTS AND DISCUSSIONS

metrics as seen above in case of precision scores of vgg-zero. The precision scores,
recall scores and F1 scores for vgg-quarter all exceed the other models with VGG-16
as the base model.

Figure 5.7: Confusion matrix vgg-zero

5.2.2 DenseNet

Figure 5.8: Confusion matrix for densenet-quarter
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Model name macro-precision macro-recall macro-F1
densenet-full 0.90 0.90 0.90

densenet-three-quarter 0.90 0.92 0.91
densenet-quarter 0.96 0.93 0.95

densenet-zero 0.87 0.71 0.77

Table 5.2: Results of DenseNet models

The table 5.2 represents the classification results of the models that are fine-
tuned with DenseNet-121 as the base model. As can be seen in this case too,
the densenet-quarter model outperforms all its other counterparts with a macro-F1
of 0.95. The performances of densenet-three-quarter, densenet-full and densenet-
zero follow with a macro-F1 of 0.91, 0.90 and 0.77. A similar trend is observed with
models with VGG-16 as its base as discussed above. These trends are discussed
in detail further in this section.

The densenet-quarter brings a macro-precision and a macro-recall of 0.96 and
0.93. These values also exceed the other macro-precision and macro-recall val-
ues reported in the table. It can also be observed that densenet-three-quarter
and densenet-full perform close to the densenet-quater model with their individual
macro-recall scores. However, the densenet-quarter model outperforms other mod-
els ’significantly’ by a margin of 0.06 at least. The confusion matrix determined by
the predictions of densenet-quarter on the test set is visualised in figure 5.8.

5.2.3 VGG vs DenseNet

Figure 5.9: macro Precision Trend
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Figure 5.10: macro Recall Trend

Figure 5.11: macro F1 Trend

The evaluation metrics in consideration for the experiment includes macro-Precision,
macro-Recall and macro-F1 scores. The visualisations 5.9, 5.9 and 5.11 represent
the trend of these metrics across different model variants for both the VGG-16 based
and DenseNet-121 based models. As per expectations, the DenseNet-121 based
models outperform VGG-16 models as can be observed in all three plots. This can
be credited to the bigger dense base of the DenseNet-121 based models providing
more residual input for the layers to interpret features as discussed in chapter 2 sec-
tion 2.2. Also, as discussed in section 5.1, the features extracted by DenseNet-121
were more clear and finer when compared to that of VGG-16. Hence, DenseNet-121
based models resulted in better performance when compared to those models with
VGG-16 as their base models.

From figure 5.9 it can be seen that the DenseNet-121 based models outperform
VGG-16 models with macro-precision scores. However, there is a visible spike with
macro-precision score of the vgg-zero model. The unexpected and ’inflated’ spike
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of this model is discussed above in section 5.2.1. Another interesting thing to note is
that both the VGG-16 based models and DenseNet-121 models show similar trends
across the training strategy used to fine-tune the models as can be seen in figure
5.11 with macro-F1 scores and also in figure 5.10 with macro-recall scores.

5.3 Best training strategy

The trends observed by plotting performance metrics of both the VGG-16 based
models and DenseNet-121 based models are similar as can be seen in figures 5.9,
5.9 and 5.11. These trends since can be observed with both VGG-16 models and
DenseNet-121 models would conclusively identify the best training strategy for deep
pre-trained models. It is clear that the ’quarter’ variant emerging from strategy 2
as described in section 4.4 outperforms its counterparts with both VGG-16 based
models and DenseNet-121 based models. This also highlighted in figure 5.12.

Figure 5.12: Best fine-tuning strategy

From the plots 5.9, 5.9 and 5.11 presented in section 5.2.3 it can be seen that
the second best performing model in both cases of VGG-16 based models and
DenseNet-121 based models, is the ’three-quarter-variant’ which also emerges from
strategy 2 as described in section 5.2.3. This hints towards the different fine-tuning
results of the ’feature-extracting blocks’ and ’interpreting blocks’ of the base models.
As can be seen in section 5.1 both models are able to extract the features of the
input images of the bees upto and until the third convolutional block and the out-
puts from the fourth block and fifth block hardly represent the input image and its
features. Hence, the results indicate that finetuning selected blocks of the deep pre-
trained models without disturbing other blocks’ weights results in a better performing
model in this case. Also, on this basis it can also be defined that the first three
convolutional blocks are the ’feature-extracting blocks’ of both the deep pre-trained
models namely VGG-16 and DenseNet-121 since the ’quarter’ variant performs best
followed by the ’three-quarter’ variant.
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This deduction is also supported by the observation that the other two variants
i.e. ’zero’ and ’full’ lag behind in performance to that of ’quarter’ and ’three-quarter’
variants. Implying, that the model performance decreased if either the ’feature-
extracting blocks’ were optimised during the training process and the ’interpreting
blocks’ were not optimised during the training process with a training set of this
size. Also from section 5.1, it is observed that the top two blocks are responsible
for interpretation of underlying features. Since, ’quarter’ and ’three-quarter’ models
outperform the other two variants, it can be said that the interpreting blocks do in-
deed need optimisation to perform better. In extension, the model tries to optimise
its interpreting technique which indicates that it focuses more on areas and aspects
of image which the pre-trained model wasn’t initially trained to do. This can also be
seen with the case of ’full’ variants in both cases (of VGG-16 and DenseNet-121).
The ’full’ variant indeed does try to optimise the lower feature extracting blocks as
well, but doesn’t find enough and general data to optimise completely. Hence, de-
creasing the complete model performance after fine-tuning. This also in turn implies,
with enough dataset size the model will also try to extract features from different as-
pects of the image, which it wasn’t trained to by its pre-training task. Hence, it can
be verified that the tasks of pre-training (on ImageNet) and the task of image based
bee health classification differ in all aspects from feature extraction to interpretation.

If and only if, the size of the training set is very high for a specific task or the
nature of the classification task is similar to that of the pre-training task, the strategy
will have to experimented again. This can be said since provided more training data
there is a huge probability that the ’feature-extracting blocks’ of the model would
be optimised in a better and a more general way across all classes hence making
strategy 1 of section 4.4 best for fine-tuning. Also, if the nature of the classification
task at hand might be similar to that of the pre-training task, the ’interpreting blocks’
might not need fine-tuning and would be able to interpret lower level features as
extracted from the lower blocks making strategy 3 from section 4.4 best for fine-
tuning. However, the task of image based bee health classification is discussed to
be different of the pre-training task on ImageNet. Furthermore, as explained above
and why that strategy 2 from section 4.4 is the best fine-tuning strategy for the task
of image based bee health classification with a dataset size similar to that of the task
of image based bee health classification with the provided resources.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

This section answers the research question and the sub-questions that were formu-
lated in Chapter 1. To answer the research question conclusively the sub-questions
are answered first. The answers to sub research questions and the broad RQ are
as follows:

Sub RQ 1. What are the requirements which make image-based bee health
classification different from the classification problems with ImageNet? From
section 4.2, it can be observed that the classification on ImageNet dataset is dif-
ferent than the task of image based bee health classification. As is also discussed
in section 5.3, the deep pre-trained networks after fine-tuning focus on different as-
pects of the image, which were not of interest to the model after completing the pre-
training task. The models in both cases of VGG-16 and DenseNet-121 do indeed try
to optimise their ’interpreting blocks’, and when experimented try to optimize their
’feature-extracting blocks’ as well. This clearly verifies that both tasks are different.
Also, as discussed in chapters 2 and 4, the model would need to focus more on bee
orientation, body structure, wings shape and other similar small and precise features
which the pre-trained models being trained for 21,000 classes on ImageNet couldn’t
do.

Sub RQ 2. What image-based features can be inherited from pre-trained
models with ImageNet for the bee health classification? It is observed from the
results of experiment 1, the pre-trained deep models on ImageNet do indeed extract
very fine and smooth features from underlying images. The results presented and
discussed clearly visualise the extracted features by both VGG-16 and DenseNet-
121. It can be inferred that the models are accurate in extracting edges, textures,
colour ratios, surrounding aspects of the objects and other features mentioned in the
discussion of the results. However, the task image based bee health classification
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differ from the classification task on ImageNet from feature extraction to interpreta-
tion.

Sub RQ 3. Which evaluation metric would be effective to evaluate the per-
formance of artificially intelligent systems for classifying bee health status
from their images? From section 4.5.3, it was observed that precision is useful
so that the model is able to precisely identify the health status of honeybee from its
image so appropriate actions can be considered. Also, recall is an important metric
as it would represent the degree of sensitiveness of the model towards the target
class. Since both these metrics are at a trade-off. Hence, the harmonic mean of
both precision and recall i.e. F1 score, would be the most efficient evaluation met-
ric. Also, since there are multiple target classes, an averaging technique, the macro
averaging technique is used to calculate a final evaluation metric. So that equal im-
portance is given to all target classes while the evaluation metric is calculated. So,
it can be concluded that the macro-F1 is the best evaluation metric for the models
as it represents to what extent the model is sensitive and specific in categorizing the
health of the honeybee.

Sub RQ 4. What is the most suitable transfer learning scheme for image-
based bee health classification, given pre-trained CNN models with ImageNet?
As it can be seen in section 4.4, it can seen that there are three different transfer
learning techniques to train the model for image-based bee health classification.
From the result of experiment 2 in section 5.3, it can be concluded that the strategy
2, where half parameters were frozen and other half were trained, turned out to be
the best transfer learning scheme. Also, the ’quarter’ variant (in our case), where
the bottom three layers were frozen and top two were trained gave the best macro
F1 scores in case of both VGG-16 and DenseNet-121. This trend over both deep
models shows that the feature extraction blocks of the deep models shouldn’t be
disturbed provided there is enough data to optimise weights to extract even finer
and general features. This trend also shows that the top two blocks might also not
need any fine-tuning if the down-stream task is similar to that of the pre-trained task.
Hence, in conclusion the best scheme involves the fine-tuning of the top two blocks
responsible for interpretation since the task of image based bee health classification
is very different from the task of the pre-training for the deep models. However,
the fine-tuning of the lower blocks is dependent on the size of dataset provided for
the downstream task in this case image based bee health classification. Given the
scope and resources of the project the ’quarter’ and ’third-quarter’ models perform
best (in order), implying that strategy 2 from section 4.4 is the best strategy to fine-
tune models for the task of image based bee health classification.

RQ.How does transfer learning with available pre-trained CNN models per-
form on the task of image-based bee health classification? Transfer learning
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with available pre-trained CNN models performs well with a macro-F1 of 0.95 and
0.73 delivered by DenseNet-121 and VGG-16 based models. The DenseNet-121
based models perform significantly better than VGG-16 based models since they
are deeper and much more complex. Also, the best fine-tuning strategy for the deep
pre-trained models is discussed in detail in answers to sub RQs. It is learnt that
the both VGG-16 and DenseNet-121 have a set of ’feature-extracting blocks’ and
’interpretation blocks’ within their architecture. Experiments’ results and discussions
conclude that that if the interpreting blocks’ of the deep models are optimised the
models deliver the best results. Also, a conclusion is drawn for fine-tuning tasks in
future for deep pre-trained models based on the size of dataset of the downstream
task and similarity between the downstream task and pre-training task.

6.2 Future Works

This research elaborates on ways to use and build state-of-the-art artificially intel-
ligent systems for the task of image based bee health classification. In its work,
the project identifies best pre-trained deep models that can be used for this task.
Furthermore, clear strategies are outlined, experimented and evaluated to identify
the best scheme to develop the model based on pre-trained deep models. In its re-
sults, the work concludes on specific strategies of fine-tuning dependent on the size
of data available for the down-stream task and similarity between the down-stream
task and the pre-train task. Future work of this work might include definition of ways
to quantify similarity between the pre-train tasks and the down-stream task. This
strategy would equip researchers to clearly evaluate similarity between tasks and
choose a fine-tuning strategy. In extension, the work might also include a strategy to
quantify and define a threshold for down-stream task dataset size to pre-train task
dataset size. This would also clearly define what size of dataset might be needed
to fine-tune feature extracting blocks and make the performance of resulting models
even better.

From an industry perspective, with regards to data collection, it would be bene-
ficial to use images collected in real time from machine BeeSense. The results de-
rived in experiments are from a dataset collection of images of honey bees collected
in a free environment. However, the images collected by cameras in the machine
might not be able to provide complete bee structure and orientations. Hence, it might
beneficial to observe models’ performance on real time data from BeeSense. How-
ever, it can be said from this work that the models are adequate to determine bee
health status from bee images and also deliver good performances. Hence, if good
classification performance is not achieved with the discussed models and strategies,
it would be a hint to improve data collection or pre-processing techniques. Another



42 CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

aspect of the research would be to involve an entomologist to help and identify what
features is the model able to identify which separates targets classes to get a better
understanding of the inference mechanism within the models. With this new out-
look models can optimized using various techniques to focus and learn more about
differentiating features.
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Appendix A

Appendix A - Technical
specifications of experiments

This chapter mentions the technical specifications used to carry out the project. The
table A.1 enlists all specifications

Specification Purpose
Python Programming language

Numpy, Pandas, CV2 Data management libraries
Matplotlib, Seaborn Data visualisation libraries

TensorFlow Model designing and training
Sklearn Model evaluation

Seed value = 22 Reproducing results
Learning rate = 2e-3 Optimizing model parameters
Optimizer = Adam Optimizing model parameters

Epochs = 5 Training of models
Batch size = 32 Training of models

Machine = NVIDIA Tesla K80 Processing
nGPU = 1 Processing

Table A.1: Technical Specifications and Descriptions
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Appendix B

Appendix B - Detailed results of
Experiment 2

B.1 VGG-16 variants

B.1.1 VGG-16 Zero

Figure B.1: Classification report of zero variant
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Figure B.2: Confusion matrix of zero variant

B.1.2 VGG-16 Quarter

Figure B.3: Classification report of quarter variant
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Figure B.4: Confusion matrix of quarter variant

B.1.3 VGG-16 ThreeQuarter

Figure B.5: Classification report of three quarter variant
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Figure B.6: Confusion matrix of three quarter variant

B.1.4 VGG-16 Full

Figure B.7: Classification report of full variant
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Figure B.8: Confusion matrix of full variant

B.2 DenseNet-121 variants

B.2.1 DenseNet-121 Zero

Figure B.9: Classification report of zero variant
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Figure B.10: Confusion matrix of zero variant

B.2.2 DenseNet-121 Quarter

Figure B.11: Classification report of quarter variant
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Figure B.12: Confusion matrix of quarter variant

B.2.3 DenseNet-121 Three Quarter

Figure B.13: Classification report of three quarter variant
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Figure B.14: Confusion matrix of three quarter variant

B.2.4 DenseNet-121 Full

Figure B.15: Classification report of full variant
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Figure B.16: Confusion matrix of full variant
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