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Abstract

Standard descriptions of both classical physics, as described by Hamiltonian dy-
namics, and quantum physics, as described by unitary dynamics, describe closed sys-
tems. Their formalism excludes the possibility of describing systems which exchange
energy with their surroundings. In classical physics, this issue is remedied by port-
Hamiltonian theory, which allows to describe open systems and their interaction with
each other. In quantum mechanics no such comprehensive theory of open systems ex-
ists. Quantum systems are much harder to compose and decompose due to the tensor
product constructions, by which the composition of quantum systems are defined. In
this thesis, we successfully address the kinematic part of this problem by exploita-
tion of the fact that any tensor product composition of finite-dimensional quantum
systems can be rewritten as a direct sum decomposition. A unique such direct sum
decomposition is obtained by considering, without loss of generality, only fundamental
quantum systems whose Hilbert spaces are reducible or irreducible representations of
SU(2). The description of the dynamics of a quantum system that is decomposed in
quantum port-Hamiltonian fashion can now be erected on this result and is briefly
touched upon.
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1 Introduction

Standard descriptions of classical physics, as described by Hamiltonian dynamics, and
quantum physics, as described by unitary dynamics, describe closed systems. Closed means
that not only is there no interaction with another system. The impossibility to exchange
energy is, in fact, encoded at the heart of the respective formalisms. Indeed, the double
role of the classical Hamiltonian function as both the generator of time evolution on the
one hand, and as the energy observable on the other hand means that1

Ḣ = {H,H},

which then, by the antisymmetry of the canonical Poisson bracket {·, ·}, inevitably implies

Ḣ = 0

for any such system. Similarly, in the Heisenberg picture of quantum mechanics, where
operators representing as quantum observables carry the time evolution of the system, the
time evolution is given by

˙̂
H =

i

ℏ
[Ĥ, Ĥ] = 0

in terms of the antisymmetric commutator bracket [·, ·] and thus again reveals an inherently
closed system. This means that neither the Hamiltonian formalism for classical nor the
standard formulation of quantum systems is able to describe subsystems of a closed system,
unless each of these themselves are energetically closed and thus do not exchange energy
with each other. In other words, the Hamiltonian formulation requires to model a closed
system ‘as a whole’, rather than as a composition of mutually exchanging subsystems.

For the modelling of simple physical systems with few degrees of freedom, such a holistic
modelling ultimately amounts to reverse engineering: both the choice of state space and
the choice of Hamiltonian are made such as to yield the observed behaviour of the system.
For the case of a pointlike mass m in non-relativistic classical physics, for instance, one
models the Hamiltonian as

H(q, p) :=
p2

2m
,

where q ∈ R and p ∈ R are the position and the momentum of the particle respectively2.
The Hamiltonian evolution of the position of the particle then yields the uniform straight
motion laid down in Newton’s first law, and, much more importantly, the observed be-
haviour of such a system under idealized laboratory conditions. Thus one obtains the
Hamiltonian theory of a single free mass as a closed system. Similarly, one may model
a Hooke spring of mass µ, spring constant k, and very short rest length ℓ. Usually one
does not model a spring by itself, describing its actual mechanics, but by prescription of
an effective potential whose gradient yields the force that the spring exerts on a mass. If
we were to model a spring on its own, however, for once modelling it as an object with
mass, we may consider its mass µ to be much smaller than the mass m of any pointlike
particle, we intent to connect it to. This way, the spring-mass will not have a significant
effect, as is usually assumed. By pretending that the mass is distributed in equal parts to
the endpoints one may then model the Hamiltonian of such a spring as

H(q1, q2, p1, p2) :=
p21
µ

+
p22
µ

+
k

2
(q2 − q1 − ℓ)2

1Properly written, the temporal rate of change law for an observable F along a phase space trajectory
X reads d

dt
(F ◦X) = {F,H} ◦X. This is often notationally condensed to Ḟ = {F,H} as used here.

2We choose the smallest possible classical mechanical phase space here in order to illustrate the con-
ceptual points we wish to make. All conclusions generalize to general Hamiltonian systems.
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where q1, q2 ∈ R are the left and right endpoints of the spring respectively and p1, p2 ∈ R are
its momenta. This Hamiltonian is the simplest description of the behaviour of an isolated
physical spring. Indeed, the naive modelling folklore, that an isolated spring somehow
corresponds to just a potential V (q) = 1

2k(q − ℓ)2, produces an inconsistent Hamiltonian
system, since H(q, p) = V (q) implies q̇ = 0 and ṗ = −k(q − l), which would describe a
spring whose elongation can not change while its momentum grows arbitrarily for q ̸= ℓ.

Hence also just folklore within Hamiltonian theory is the idea that two masses, that are
attached to both ends of a spring, would somehow transfer their ‘kinetic’ energies to each
other via the ‘potential’ energy of the spring. Not only is the formalism of Hamiltonian
theory no more able to distinguish between the kinetic energy T and the potential energy
V in H = T +V than the algebra of natural numbers is able to uniquely decompose 5 into
2+3 rather than 1+4. But the Hamiltonian formalism is also not able to magically convert
its inevitably closed system descriptions of a free mass and an isolated spring into open
subsystem descriptions, which would be required to underpin the folklore that maintains
that the masses and the spring exchange energy. Indeed, this idea is in direct conflict with
the basic structure of both the classical and quantum Hamiltonian formalisms.

The modelling of Hamiltonians for intuitively composed systems thus can not be a well-
defined formal procedure but ultimately proceeds by rules of thumb and by experience,
one developed some intuition for the observed and desired result. In other words, the
standard descriptions of classical physics and quantum physics do not provide a rigorous
theory for the composition of systems. This severe theoretical problem is not much of a
practical problem as long as one considers only small and simple physical systems. But
for large complex systems, this lack of a formal way to describe open subsystems and their
interconnection becomes a serious practical liability of the standard formulations.

For classical physics there exists port-Hamiltonian theory which can rigorously describe
open subsystems and their interconnection. This is a largely worked out theory and is
used in high-level engineering and numerical modelling of physical systems. Its full power
unfolds in the consideration of large complicated systems such as a nation or continent-wide
power grid or modern robotics. Since classical port-Hamiltonian theory — a description
of subsystems which allows energy exchange with other subsystems that ensures overall
energy conservation and a formal theory of interaction of such subsystems — requires
conceptually and technically an entirely different implementation in its classical setting
than will be required in the quantum setting we consider in this thesis, it is not useful to
provide a review of the classical port-Hamiltonian theory and we will not do so.

It is the aim of this thesis to implement the essential idea of port-Hamiltonian theory
in quantum mechanics. As classical physics and quantum mechanics vastly differ, we can
only consider the basic ideas that underlie port-Hamiltonian theory, rather than its existing
conceptual and technical implementation. In our review of quantum mechanics in chapter
2, following from the fourth axiom of quantum mechanics, we will encounter the difficulties
that arise from composing quantum systems with a tensor product. As the composition and
decomposition of systems is of central importance for a construction of a port-Hamiltonian
theory of quantum mechanics, the inability to decompose combined quantum systems is
the central problem of this thesis.

After chapter 2, we will provide a direct sum decomposition of the Hilbert spaces of
composed quantum systems, by considering only fundamental quantum systems. This
decomposition identifies the state spaces for the subsystems in which the composed system
can be decomposed in port-Hamiltonian fashion. Since it is valid (and indeed a prerequisite)
for all possible dynamical decompositions built on it, we will refer to it more precisely as a
kinematic decomposition. We however touch upon dynamic decompositions in chapter 4.
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2 The foundation of quantum mechanics

In order to construct a formalism for quantum mechanics which is able to describe open
subsystems such that their composition, to one closed system, is compatible with the
standard axioms of quantum mechanics for closed systems, we now first review the latter.
As stated in the first axiom, the underlying mathematical structure of quantum mechanics
is a Hilbert space and the rest of quantum theory will be modelled upon such space. This
research will only focus on finite-dimensional Hilbert spaces, restricting our attention in
this thesis to finite-dimensional quantum systems. In this chapter, we will look at the
mathematical framework of quantum mechanics, especially: the state space of quantum
mechanics, the dynamics of a quantum system, measurement in quantum mechanics, and
the composition of quantum systems.

2.1 The state space of quantum mechanics

In this section, we start by defining the mathematical framework necessary to model a
quantum system. Additionally, we will define the general state space of quantum mechanics
and define quantum states in this section.

Axiom 1. Associated to any isolated quantum system is a separable Hilbert space3

(H, ⟨·|·⟩) with a complex Hermitian inner product ⟨·|·⟩. The choice of Hilbert space is
a question of physical modelling.

Now that we have defined the underlying mathematical space of quantum mechanics,
we are interested in describing a quantum system, which is done by defining a quantum
state4.

Definition 1. The state of a quantum system, at any particular time, is given by a linear
map ρ : H → H which is:
(i) Hermitian: ∀ ψ ∈ H : ⟨ρ(ψ)|ψ⟩ = ⟨ψ|ρ(ψ)⟩
(ii) non-negative: ∀ ψ ∈ H : ⟨ψ|ρ(ψ)⟩ ≥ 0
(iii) normalized: tr(ρ) = 1.

In quantum mechanics there exist two different kinds of states: pure states and mixed
states. Mathematically, the two types of states can be classified by tr(ρ2) = 1 for pure
states and tr(ρ2) < 1 for mixed states. As we will see in axiom 3, one can not predict
the outcome of a measurement. Yet, measurement will spontaneously alter the quantum
state depending on the measurement outcome. It is possible, however, to perform a mea-
surement, thereby collapsing the state to a new state, and to not obtain the measurement
result. This is called ‘classical ignorance’ as the observer does not obtain the information
from the measurement apparatus and generates a mixed state. Pure states are states with
no classical ignorance and are convenient to work with as they can be uniquely expressed
by elements of the Hilbert space. These elements, which are called ‘the state vectors’ ψ or
|ψ⟩, are often much easier to work with.

Lemma 1. A pure state can be uniquely determined by a state vector ψ ∈ H such that

ρpure =
|ψ⟩⟨ψ|
⟨ψ|ψ⟩

. (2.1)

3As mentioned previously we will restrict our attention to finite-dimensional Hilbert spaces. It is also
important to note that the standard convention in quantum mechanics is to take the inner product to be
antilinear in the first slot.

4The following definition of a state is often also called a ‘density operator’.
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Proof. Since ρ is a Hermitian map there exists an orthonormal basis such that we can
express ρ by its spectral decomposition ρ =

∑
i=1 λi|i⟩⟨i|, where λi are its eigenvalues and

|i⟩ the respective eigenvectors. Since ρ is a pure state, tr(ρ) = tr(ρ2) = 1,

tr(ρ) =
∑
n

⟨n|ρ|n⟩ =
∑
n

∑
i

λi⟨n|i⟩⟨i|n⟩ =
∑
n

∑
i

λiδn,i =
∑
i

λi = 1,

tr(ρ2) =
∑
n

∑
i

λ2i ⟨n|i⟩⟨i|n⟩ =
∑
i

λ2i = 1.

Therefore, the difference of the traces is given by
∑

i λi(1 − λi). Since ρ is a positive
operator its eigenvalues must be positive and therefore it is only possible to have one
λk = 1 while all others must be zero. Lastly, since arbitrary Hilbert space elements are
not normalized, we introduce a normalization factor in the denominator.

From this proof, it is clear that even though we prefer to talk about states ρ, in the
pure case, we may equivalently work with the state vectors ψ as they uniquely generate
the state ρψ. Note that the converse is not true, there does not exist a state vector ψ for
every state ρ. It is the mixed states, which arise from classical ignorance, that can only
be described by some ρ, but not in terms of a state vector ψ. Although the state of a
quantum system is commonly defined in many undergraduate textbooks as the elements
of the Hilbert space, this only captures pure states as they can be generated from the state
vectors as given Eq.2.1. To fully capture all possible states in quantum mechanics we must
adhere to the definition of a state as given in definition 1.

2.2 The dynamics of quantum systems

Now that we have defined the general state space of quantum mechanics, defining states
at any particular time as linear maps on the underlying Hilbert space, we are interested in
their time evolution. In this section, we will define what quantum observables are and give
the axiom that describes the time evolution of quantum states in closed quantum systems.

Definition 2. A quantum observable is a physically measurable quantity A and is de-
scribed by a Hermitian operator A acting on the Hilbert space H of the system.

Since the operators that describe quantum observables are Hermitian they have real
eigenvalues, and as we will see in the next section, these eigenvalues are the measurement
outcomes when measuring a physical quantity. Similar to the energy observable in classical
physics, quantum mechanics has an energy observable called ‘the Hamiltonian’, a Hermitian
operator Ĥ : H → H. Again similar to classical physics, this Hamiltonian plays an
important role in the time evolution of quantum mechanics.

Axiom 2. The time evolution of a quantum state in a closed quantum system is described
by the Schrödinger equation

ρ̇(t) =
−i
ℏ
[Ĥ, ρ(t)], (2.2)

where ℏ is a physical constant called Planck’s constant, Ĥ the Hamiltonian, and [·, ·] the
commutator bracket which is defined by the composition of linear maps on the Hilbert
space [A,B] = A ◦B −B ◦A.
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Alternatively, one can give a discrete time evolution of the state from time t1 to time
t2 by describing a unitary map U(t1, t2) such that the system’s state ρ(t2) at time t2 is
obtained from the state ρ(t1) at time t1 by virtue of

ρ(t2) = U(t1, t2)ρ(t1)U(t1, t2)
†, (2.3)

where † is used to denote the conjugate transpose. The relation between the unitary map
U(t1, t2) and the Hamiltonian operator is then given by

U(t1, t2) = e
−iĤ(t2−t1)

ℏ . (2.4)

As previously mentioned, often only pure quantum states are considered. Since, in
that case, we can uniquely determine the state from the state vectors, a specific case of
the Schrödinger equation can be used

iℏ
d|ψ⟩
dt

= Ĥ|ψ⟩. (2.5)

Again, as this does not capture all states in quantum mechanics, namely it ignores the
presence of mixed states, it is merely a special case of axiom 2.

2.3 Measurement in quantum mechanics

The previously given description of time evolution of a state only concerns the time evolu-
tion of a state in a closed quantum system. In this section, we will see how measurement
in quantum mechanics will give an alternative time evolution that instantaneously changes
the state. Additionally, we will look at quantum measurement and the importance of
probability in quantum measurement.

Axiom 3. All measurements in quantum mechanics, often called projective measurements,
are observables described by a Hermitian operator M : H → H which has a spectral
decomposition

M =
∑

m∈Spec(M)

mPeigm(M), (2.6)

where Peigm(M) is an orthogonal Hermitian projector to the eigenspace of M for the re-
spective eigenvalue m. Only the elements m ∈ Spec(M) ⊂ R are possible measurement
outcomes. One can not predict which m ∈ Spec(M) will measured, only the probability
for a measurement to yield the definitive value m

p(m|ρ−) = tr(Pmρ
−), (2.7)

where ρ− is the state right before the measurement takes place. Only by actually measuring
the state, ρ− will collapse into the new state

ρ+ =
Pmobs

ρ−Pmobs

tr(Pmobs
ρ−)

, (2.8)

where mobs is the observed measurement result[1].

Of course, by definition, the total probability of measuring all possible measurement
outcomes must be equal to one and indeed this simply follows from the definition given in
the axiom: ∑

m

p(m|ρ−) =
∑
m

tr(Pmρ
−) = tr

(∑
m

Pmρ
−

)
= tr(ρ−) = 1,
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where we used that the sum of all eigenprojectors is equal to the identity, that the trace is
linear, and that states are normalized.

A subtle consequence of Axiom 3, is the generation of mixed states by not reading off a
measurement. Indeed, if one performs a measurement on a quantum system such that its
state collapses, but the observer does not look at the measurement apparatus, the observer
creates classical ignorance and the state collapses into a mixed state. Since the observer
did not look at the measurement outcome, one can only conclude the collapsed state will
be a mixture of all possible measurement state outcomes with their respective probability.
The mixed state can thus be described by

ρ+ =
∑
m

p(m|ρ−) Pmρ
−Pm

tr(Pmρ−)
=
∑
m

Pmρ
−Pm. (2.9)

The previously introduced Hamiltonian also functions as the energy observable in quan-
tum mechanics. It is an observable just like the M observable given in axiom 3 and its
eigenvalues are the possible energy values of the system. Although one could recognize
some similarities between the classical and quantum Hamiltonian, it being the generator
of time evolution in the Schrödinger equation and the energy observable, this comparison
must be taken with a grain of salt as they are very different mathematical objects with
very different properties.

This section has provided us with a second time evolution. If a state in a closed quan-
tum system evolves with time it does so according to Eq.2.2. If the system is measured,
however, the state collapses instantaneously, as opposed to the unitary time evolution for
a closed quantum system, resulting in a new state as given axiom 3.

2.4 The composition of quantum systems

For a proper theory of interaction in quantum mechanics, analogous to the classical im-
plementation of port-Hamiltonian theory, it is of central importance to understand how
systems are composed. In quantum mechanics, the composition of quantum systems is
realized by taking the tensor product of constituent subsystems, resulting in the composed
system having a dimension which is the product of the dimensions of its constituents. This
composition of systems results in a state space that contains states that cannot be under-
stood anymore in terms of states of the constituent subsystems. This loss of information,
following from the axioms of quantum mechanics, is a central problem when trying to
construct a theory that requires the combining and decoupling of quantum systems.

Axiom 4. Given two quantum systems with underlying Hilbert spaces HA and HB, the
composite quantum system has HA ⊗HB as its underlying Hilbert space.

As the dimension of two Hilbert spaces composed by a tensor product is the dimension
of the individual Hilbert spaces multiplied by each other, composing a Hilbert space of
dimension m with a Hilbert space of dimension n will result in a Hilbert space of dimension
nm. Since the dimension of the combined Hilbert space (in almost all cases) is higher than
the sum of the dimensions of the constituent Hilbert spaces, the combined Hilbert space
can contain states that can not be expressed in the separate constituent systems. Such
states are called ‘entangled states’ and their existence makes a simple decomposition of
H1 ⊗H2 into H1 and H2 nonsensical.

By the structure provided in axiom 4, composing two states ρA and ρB from two
different systems is defined by taking their tensor product such that ρAB = ρA⊗ ρB. This
then leads to the following definition of entangled states.
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Definition 3. A composed state is entangled if it can not be described as a single tensor
product of quantum states.

Since the tensor product of two Hilbert spaces (almost always) has a higher dimension
than the sum of the dimensions of its constituent Hilbert spaces, these entangled states
can exist in the composed Hilbert space but do not exist in the individual constituent
Hilbert spaces. In the case of pure states, for example, given state vectors ψ1, ψ2 ∈ H1 and
ϕ1, ϕ2 ∈ H2, we can, at this point, make no sensical remark how the entangled state vector
ψ1⊗ϕ2+ψ2⊗ϕ1 ∈ H1⊗H2 would correspond to state vectors in the original Hilbert spaces
and therefore decomposing the statespace of H1 ⊗H2 into H1 and H2 is impossible. It is
important to note that classically, the composition of two systems is merely the thought of
thinking of two systems as one, nothing changes within the systems except our conceptual
notion of what we define as a system. According to this axiom, whether we consider two
separate quantum systems or consider them as a single (larger) system matters, as these
considerations differ. This is problematic for our conceptual notion of what we define as
a quantum system and for a port-Hamiltonian theory of quantum mechanics which would
require the repeated composition, but also decomposition of (open) systems. This lack of a
simple decomposition of quantum systems, therefore, is the central problem of this thesis,
which directly stems from the fourth axiom of quantum mechanics.
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3 Kinematic decomposition of quantum systems

As seen in chapter 2, the composition of two quantum systems occurs by composing their
associated Hilbert spaces with a tensor product. The tensor product structure allows for
the existence of entangled states in quantum mechanics, which largely complicates a simple
decomposition of the composed Hilbert spaces. As a port-Hamiltonian theory of quantum
mechanics would require the coupling and decoupling of multiple (open) subsystems, this
issue is the central problem of this thesis. There do exist certain methods for subdividing
quantum systems, e.g. the partial trace and purification, yet non of these methods, by
construction, preserve all the states that describe the system. In this chapter, we will
clearly present the problem that arises from the tensor product composition as stated in
the axioms of quantum mechanics. A solution to this problem is to express the composed
Hilbert spaces, by their isomorphisms, as a direct sum of Hilbert spaces. Yet, by using the
Hilbert space isomorphisms there exist many possible configurations of this decomposition.
In order to resolve this ambiguity and to rightfully decompose the Hilbert spaces, we will
consider fundamental quantum systems, which model quantum systems by using all infor-
mation possibly available. This will lead us to the fundamental symmetry of non-relativistic
quantum mechanics and will help us find a unique such direct sum decomposition. As we
still only consider finite-dimensional Hilbert spaces, we will focus our attention to spin
systems which describe the spin of a particle. The main result of this chapter is a complete
decomposition of composed finite-dimensional fundamental quantum systems into a direct
sum of finite-dimensional fundamental quantum systems. This decomposition rightfully
constitutes a ‘kinematic decomposition’ and describes how to decompose the state spaces
as well as the state vectors of finite-dimensional fundamental quantum systems.

3.1 The inability to decompose quantum systems

In chapter two, we discussed the composition of quantum systems and introduced the def-
inition of ‘entangled states’. In this section, we will restate the central problem of this
thesis on how to compose and decompose quantum systems and we will provide our main
idea on how to solve this problem. The following sections will build on this idea and by
the end of this chapter, this idea will lead to the construction of a complete kinematic
decomposition of finite-dimensional fundamental quantum systems. As stated previously,
we will focus on finite-dimensional quantum systems, which as we will see in this section,
are equivalent to quantum spin systems.

As stated in the fourth axiom of quantum mechanics, the composition of two quantum
systems occurs by composing their associated Hilbert spaces with a tensor product. Since
the tensor product effectively multiplies the dimension of the composed Hilbert spaces, the
sum of the dimensions of the constituent Hilbert spaces is (almost always) smaller than
the dimension of their composed Hilbert space. As introduced in chapter 2, this allows for
the existence of entangled states, states that can exist in the composed Hilbert space, due
to its larger dimension, but can not be expressed in the individual Hilbert spaces. This
problem does not arise when composing two Hilbert spaces with a direct sum as a direct
sum composed Hilbert space has the same dimension as the sum of the dimensions of its
constituent Hilbert spaces. Additionally, the composition by a direct sum, by definition,
maintains separate independent Hilbert spaces.

As stated before, we will only consider finite-dimensional quantum systems, i.e. quan-
tum systems whose associated Hilbert spaces are finite-dimensional. The Hilbert space of
any non-relativistic quantum system can be modelled by H = L2(R3)⊗Cn, where L2(R3)

10



is associated to the movement of the particle and Cn describes the spin of a particle. In or-
der to only consider finite-dimension Hilbert spaces, therefore, we must consider quantum
systems with no translational degrees of freedom, i.e. we ignore, without loss of generality,
the first part of the Hilbert space. From this consideration, it follows that when we are
considering finite-dimensional quantum systems we will always be modelling spin, with
Hilbert space H = Cn, and often refer to such finite-dimensional quantum systems as ‘spin
systems’.

Spin is a property carried by all fundamental particles and the spin of a particle is given
by a positive number (including zero) which is either an integer or half-integer. When
measuring the spin of a particle with spin s ∈ N0

2 , there are 2s + 1 possible measurement
outcomes m ranging from s to −s in steps of one. Therefore, in order to model the spin of
such a particle requires a Hilbert space H = C2s+1, which contains 2s+1 orthonormal basis
vectors, one for each possible measurement outcome, and allows for complex linear combi-
nations. We then choose a specific basis such that the basis vectors are eigenvectors of the
Sz operator, which in this basis will be a diagonal matrix with eigenvalues m ranging from
s to −s in steps of one. Since these eigenvalues m, often called ‘the spin level’ or ‘magnetic
quantum number’, of the Sz operator are also the possible measurement outcomes, this
choice of basis makes Sz the spin level measurement observable. So these eigenvalues m
can be obtained by applying the Sz operator to a Hilbert space basis element commonly
denoted as |s m⟩ ∈ H,

Sz|s m⟩ = m|s m⟩. (3.1)

In this notation |s m⟩ = |32 −
1
2⟩ would describe a spin-3/2 system, which can be modelled

with H = C4 with a basis of four eigenvectors of Sz, and the basis vector corresponding to
the spin level −1/2.

As a consequence of modelling finite-dimensional Hilbert spaces by H = Cn, we could
decompose the Hilbert spaces of composed spin systems by using their isomorphisms

Cn ⊗ Cm ∼= C⊕ C⊕ · · · ⊕ C⊕ C︸ ︷︷ ︸
n×m times

.

By expressing the Hilbert spaces up to isomorphisms, we seem to implicate that we can
express the Hilbert spaces composed by a tensor product in many different configurations
of direct sums of Hilbert spaces

C3 ⊗ C2 ∼= C6 ∼= C5 ⊕ C1 ∼= C3 ⊕ C⊕ C2.

This decomposition is purely based on mathematical arguments and to investigate which
configurations of direct sum decompositions are possible we will consider fundamental
quantum systems. When fundamentally modelling a quantum system we incorporate all
known information of that system without simplifying or neglecting any information. This
will allow us to consider all possible knowledge of quantum systems and to give physical
arguments for why certain configurations of direct sum decompositions are not possible.

3.2 Fundamental quantum systems

When modelling any physical system one has the option to model a system fundamentally
or to give a merely effective model of the system. A fundamental model incorporates all de-
tails of the system at the level of current knowledge. A merely effective model, in contrast,
takes the freedom to summarize the effect, of an often much more complex physical situa-
tion, in order to provide a simplified description that is assumed to suffice for a particular
question of interest. As effective models typically break the symmetry that a fundamental
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description possesses and we are interested in describing fundamental quantum systems,
this section will focus on the underlying symmetries of quantum mechanics and how they
can be incorporated into quantum theory to model fundamental quantum systems.

In physics, the conservation of a physical quantity is the result of an underlying sym-
metry of the physical system. In quantum mechanics, when we do not consider the trans-
lational degrees of freedom of a particle as described in the previous section, spin is a
conserved quantity. The fundamental symmetry of non-relativistic quantum mechanics,
therefore, is SU(2) as its representations are able to describe particle spin [2]. In order to
use elements of the symmetry group SU(2) as quantum operators acting on some Hilbert
space requires the use of representation theory. In this thesis, we will mainly focus on
the application of representation theory of SU(2). SU(2) is known as a Lie group, but as
we want to use it for practical purposes, it will not be important to have any additional
knowledge of Lie groups. Alternatively, we will define the group SU(2) and work with the
given definition

SU(2) ≡
{(

α −β̄
β ᾱ

) ∣∣∣α, β ∈ C, |α|2 + |β|2 = 1

}
. (3.2)

With this definition, SU(2) is the special unitary group of unitary 2 × 2 matrices with
determinant 1 where the group operation is matrix multiplication. Associated to the group
SU(2) is a Lie algebra, a vector space with an additional bilinear map, but we will, again,
only work with the given definition. This associated Lie algebra, called su(2), is useful as
it is often much easier to work with than its group SU(2)

su(2) ≡
{(

ia b+ ic
−b+ ic −ia

)
| a, b, c ∈ R

}
. (3.3)

Hence, su(2) describes the vector space of 2 × 2 anti-Hermitian matrices with trace zero
where the Lie bracket is defined as the commutator bracket of these matrices. A possible
basis for su(2) is

E1 =
1

2

(
i 0
0 −i

)
E2 =

1

2

(
0 1

−1 0

)
E3 =

1

2

(
0 i
i 0

)
.

The Lie group elements of SU(2) and the associated Lie algebra elements are related such
that the group elements can be obtained from the algebra elements by

R̂j = eEjθ.

where R̂j ∈ SU(2) and Ej ∈ su(2). Conversely, one obtains the algebra elements of su(2)
from SU(2) by

Ej =
∂R̂j
∂θ

∣∣∣
θ=0

j = 1, 2, 3.

As shown in [2], SU(2) is the fundamental symmetry group for non-relativistic finite-
dimensional quantum systems, but in order to use these group and algebra elements on
the Hilbert spaces of quantum theory we must turn to representation theory.

Definition 4. A finite-dimensional linear representation of the Lie algebra su(2) is a linear
map

ρ : su(2) −→ End(V )
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with the property

ρ(Jl1, l2K) = [ρ(l1), ρ(l2)].

Here J·, ·K defines the commutator bracket of su(2) matrices, V is some finite-dimensional
vector space, called the representation space and [·, ·] is the commutator bracket, which is
defined by the composition of maps ϕ, ψ ∈ End(V ) such that [ϕ, ψ] := ϕ ◦ ψ − ψ ◦ ϕ. It is
often easier to work with the associated Lie algebra su(2) and its representations, yet we
do also need the definition of a linear representation of the group SU(2).

Definition 5. A finite-dimensional linear representation of the Lie group SU(2) is a linear
map:

Γ : SU(2) −→ GL(V )

such that

Γ(g1) ◦ Γ(g2) = Γ(g1g2),

where

GL(V ) := {φ ∈ End(V )| det(φ) ̸= 0}.

An important subspace of representations are the ‘irreducible representations’.

Definition 6. If Γ : SU(2) → GL(V ) is a representation of SU(2), then if ∃ W ⊆ V such
that ∀g ∈ SU(2), Γ(g)w ∈W ∀ w ∈W , Γ is an irreducible representation of SU(2) if and
only if W = 0 or W = V .

In other words, the representation can not be made into smaller representations and is
therefore an irreducible representation — often abbreviated to ‘irrep’.

Now that we have defined linear representations of both SU(2) and su(2) we can find
the spin matrices which are used to describe spin

Sx =
ℏ
2

(
0 1
1 0

)
Sy =

ℏ
2

(
0 −i
i 0

)
Sz =

ℏ
2

(
1 0
0 −1

)
, (3.4)

where these 2× 2 Hermitian spin matrices follow from the su(2) representation ρ(Ei) such
that

Si = iℏρ(Ei), (3.5)

with the commutation relations

[Sx, Sy] = iℏSz, [Sz, Sx] = iℏSy, [Sy, Sz] = iℏSx. (3.6)

The third spin matrix, Sz, is the spin operator used in the last section, where its eigenvalues
give the different spin levels. It might be of interest to raise the spin level in a spin system,
effectively changing from one basis element to another. This can be done with the ladder
operators

S+ = Sx + iSy

S− = Sx − iSy,
(3.7)
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such that

S±|s m⟩ =
√
s(s+ 1)−m(m± 1) |s m± 1⟩. (3.8)

These operators also ensure that when the highest spin level is raised or the lowest spin level
is lowered the statevector |s m⟩ will be annihilated. As Sx and Sy are defined by represen-
tations of su(2) as given in Eq.3.5, similarly S+ and S− can be defined by representations
of su(2).

Definition 7. Suppose (Γ1, V1) and (Γ2, V2) are two representations of SU(2). The direct
sum of these two representations: Γ1 ⊕ Γ2 : SU(2) → GL(V1 ⊕ V2) is given by

(Γ1 ⊕ Γ2)(A) = Γ1(A)⊕ Γ2(A).

The tensor product of Γ1 and Γ2 is the representation Γ1 ⊗ Γ2 : SU(2) → GL(V1 ⊗ V2)
given by

(Γ1 ⊗ Γ2)(A) = Γ1(A)⊗ Γ2(A)

Similarly the direct sum and tensor product of Lie algebra representations can be defined
as

(γ1 ⊕ γ2)(X) = γ1(X)⊕ γ2(X)

(γ1 ⊗ γ2)(X) = γ1(X)⊗ I2 + I1 ⊗ γ2(X),

where I1 and I2 are the identities in the respective representation spaces [2].

This now allows us to define the ladder operators and Sz for composed finite-dimensional
quantum systems

S
(tot)
+ = S

(m)
+ ⊗ In + Im ⊗ S

(n)
+

S
(tot)
− = S

(m)
− ⊗ In + Im ⊗ S

(n)
−

S(tot)
z = S(m)

z ⊗ In + Im ⊗ S(n)
z ,

(3.9)

where S(tot) denotes operators on the composed Hilbert space Cm ⊗ Cn and S(m) denotes
operators which act on the Hilbert space Cm.

As the spin matrices are Hermitian, trace free, 2×2 matrices, physicists often choose to
multiply the previously defined su(2) by i. In that case, the previously given spin matrices
form a basis for i · su(2)

i · su(2) ≡
{(

a c− bi
c+ bi −a

)
| a, b, c ∈ R

}
. (3.10)

This change to the Lie algebra su(2) also slightly changes its relation to the Lie group
SU(2). To obtain the new Lie algebra elements from the Lie group SU(2) requires an
additional i:

Sj = i
∂R̂j
∂θ

∣∣∣
θ=0

j = 1, 2, 3,

where Sj is a basis element of i · su(2) and R̂j is an element of SU(2). Furthermore,
to obtain the Lie group elements of SU(2) from i · su(2), one has to exponentiate the
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Lie algebra elements with an additional i resulting in a unitary group element. Often in
quantum mechanics, the chosen convention is to also include a minus in the exponent

R̂j = e−iSjθ.

This then results in the SU(2) elements (where α = θ
2)

R̂x =

(
cosα −i sinα

−i sinα cosα

)
R̂y =

(
cosα − sinα
sinα cosα

)
R̂z =

(
e−iα 0
0 eiα

)
. (3.11)

Now that we have seen that SU(2) is the fundamental symmetry of non-relativistic finite-
dimensional quantum systems and we have used representations of su(2) to define many
useful operators for modelling the spin in quantum mechanics, we can define finite-dimensional
fundamental quantum systems.

Definition 8. A finite-dimensional fundamental quantum system is a quantum system
whose associated Hilbert space H is a finite-dimensional representation space of SU(2).

In the following sections, we will consider how to decompose the state spaces of such
finite-dimensional fundamental quantum systems. As this whole thesis is limited to finite-
dimensional Hilbert spaces, we will always assume a quantum system is finite-dimensional
in this thesis, even if this is not explicitly mentioned. An interesting result following from
the fact that SU(2) is the fundamental symmetry of non-relativistic quantum mechanics,
is that finite-dimensional fundamental quantum systems are always invariant under a 4π
‘rotation’. Indeed, most matter that surrounds us, e.g. protons, neutrons, and electrons,
is fundamentally rotation invariant under 4π and not under 2π as we so often experience.
This is not just a theoretical idea but was measured in 1975 by using magnets to rotate
beams of neutrons [3].

3.3 Decomposing the state spaces of fundamental quantum systems

In the first section of this chapter, we showed the inability to decompose Hilbert spaces
which were composed with a tensor product and our desire to express composed Hilbert
spaces as a direct sum of Hilbert spaces. Such a direct sum of Hilbert spaces could be
achieved by considering the isomorphisms of composed finite-dimensional Hilbert spaces.
In order to make physical sense of this decomposition and to eliminate some of the iso-
morphic possibilities we studied finite-dimensional fundamental quantum systems. These
systems incorporate all knowledge currently available and we defined them as quantum sys-
tems whose underlying Hilbert space is a representation space of SU(2). By considering
the composition of fundamental quantum systems and requiring the isomorphism to again
produce fundamental quantum systems, such that this direct sum decomposition must be
SU(2) invariant, provides a unique direct sum isomorphism.

In the first section of this chapter, we proposed to use the isomorphisms of composed
Hilbert spaces as to provide a direct sum decomposition of Hilbert spaces. As this was
a mathematical argument with no physical limitations we could effectively express many
direct sum isomorphisms

C3 ⊗ C2 ⊗ C2 ∼= C7 ⊕ C5 ∼= C4 ⊕ C3 ⊕ C3 ⊕ C2.

Now that we have defined finite-dimensional fundamental quantum systems, we require
that both the composed Hilbert spaces are associated to fundamental quantum systems
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as well as the Hilbert spaces in the direct sum must correspond to fundamental quantum
systems. This can be achieved by finding an isomorphism of the tensor product of SU(2)
representation spaces that provides a direct sum of irreducible representation spaces while
also being SU(2) invariant. SU(2) invariance implies that when we apply an element
of SU(2) as given in Eq.3.11 to the basis vectors of the direct sum spaces, these basis
vectors must express as a linear combination of only basis vectors of that particular direct
sum space. Such a decomposition of the Hilbert spaces of finite-dimensional fundamental
quantum systems is given in the following theorem which stems from [4].

Theorem 1. For any half-integer or integer p = 0, 12 , 1,
3
2 , . . . let Vp denote a unique

representation space of su(2) with dimension 2p+ 1. Then for p ≥ q

Vp ⊗ Vq ∼= Vp+q ⊕ Vp+q−1 ⊕ · · · ⊕ Vp−q+1 ⊕ Vp−q

where ∼= denotes an isomorphism of su(2) representations.

Proof. For a full proof see appendix A.1.

The given vector spaces Vp in theorem 1 describe finite-dimensional representation
spaces of su(2). As these spaces must be the underlying Hilbert spaces for finite-dimensional
fundamental quantum systems with Hilbert space H = Cn, we can use Theorem 1 and write
it in a convenient form such that it is easily applicable.

Corollary 1. Let m and n be non-negative integers with m ≥ n > 0. The composition
of two fundamental quantum systems which have underlying Hilbert spaces Cm and Cn
respectively, can be decomposed into fundamental quantum systems with the following
Hilbert spaces.

Cm ⊗ Cn ∼= Cm+n−1 ⊕ Cm+n−3 ⊕ · · · ⊕ Cm−n+1.

Proof. The dimension of Vp as given in Theorem 1 is 2p + 1, while the Hilbert spaces
H = Cm have dimension m. Since the Hilbert space of fundamental quantum systems
must be a representation space of su(2), we obtain the relation Cm = V 1

2
(m−1). Then

Cm ⊗ Cn = V 1
2
(m−1) ⊗ V 1

2
(n−1),

which will have as its first subspace

V 1
2
(m−1)+ 1

2
(n−1) = V 1

2
(m+n)−1,

which has dimension m + n − 1 and is therefore equal to Cm+n−1. Following Theorem 1,
we can write all representation spaces in the form Cp with the appropriate dimensions.

With these results we have found a unique direct sum isomorphism that describes how to
decompose the Hilbert spaces of tensor product composed finite-dimensional fundamental
quantum systems. This result can be extended to the composition of multiple quantum
systems as the tensor product of Hilbert spaces is associative.
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3.4 Complete kinematic decomposition of quantum systems

In the previous section, we have provided a decomposition of tensor product composed
SU(2) representation spaces into a direct sum of irreducible representation spaces of SU(2).
With this knowledge, we could decompose the Hilbert spaces of finite-dimensional funda-
mental quantum systems into a direct sum of Hilbert spaces of finite-dimensional funda-
mental quantum systems. Now that we know how to decompose the Hilbert spaces, and
therefore the state spaces, of composed finite-dimensional fundamental quantum systems,
we want to know how to appropriately redistribute the elements of these Hilbert spaces
across the direct sum Hilbert spaces. This redistribution must assign the right amount of
basis vectors to each direct sum system while conserving the Sz eigenvalue of each basis
eigenvector and must preserve the fundamental SU(2) symmetry.

Theorem 1, by construction, provides a direct sum of representation spaces that is
SU(2) invariant. In other words, when an element of SU(2) is applied to any basis vector
of an individual direct sum Hilbert space, it will express as a linear combination of only
basis vectors in that Hilbert space. Therefore, we can justify the use of direct sums as the
vectors of the Hilbert spaces do not ‘mix’ and thus the Hilbert spaces are independent of
each other. If v and w are each basis vectors of two different fundamental quantum sys-
tems, then v⊗w is a basis vector of their composed systems. Applying an SU(2) element,
R̂i with i = 1, 2, 3 as given in Eq.3.11, to this composed basis vector

Ri(v ⊗ w) = (R̂i ⊗ R̂i)(v ⊗ w) = R̂i(v)⊗ R̂i(w),

will ultimately apply R̂i to the individual basis vectors, which are basis vectors of fun-
damental quantum systems and are therefore SU(2) invariant by construction. If the
decomposition provided in Theorem 1 is indeed SU(2) invariant, then applying an SU(2)
element to basis vectors of the direct sum spaces should express as a linear combination of
only basis vectors in that system. We will give a practical example to illustrate this point,
from which we will find a specific change of basis that appropriately redistributes the basis
vectors of the composed Hilbert spaces across the direct sum of Hilbert spaces.

Example 1. Let’s consider the decomposition of spin Hilbert spaces C2 ⊗ C2 = C3 ⊕ C
which follows from Corollary 1. The first system is composed of two Hilbert space of
dimension two, which therefore both contain an orthonormal basis of two vectors |12 ±

1
2⟩.

To keep track of these vectors in this example, we will denote them by |+⟩ = |12
1
2⟩ and

|−⟩ = |12 − 1
2⟩. The decomposed spin systems, a spin-1 and a spin-0 system, have basis

elements |1 j⟩ where j = −1, 0, 1 and |0 0⟩ respectively. Starting from the 2 level system,
in the given basis we can express

C2 = SpanC{|+⟩, |−⟩} |+⟩ =
(
1
0

)
, |−⟩ =

(
0
1

)
.

For this example, we pick a specific SU(2) element, in this case, R̂x

R̂x = e−iθ
σx
2 =

(
cos ( θ2) −i sin ( θ2)

−i sin ( θ2) cos ( θ2)

)
.

If we then apply this matrix to the given basis elements, using α = θ
2 to simplify the
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notation

R̂x|+⟩ =
(

cos (α)
−i sin (α)

)
= cos (α)|+⟩ − i sin (α)|−⟩

R̂x|−⟩ =
(
−i sin (α)
cos (α)

)
= −i sin (α)|+⟩+ cos (α)|−⟩.

We can similarly extend this to the composed system, where without confusion we can
define |+⟩ ⊗ |−⟩ = |+−⟩:(
R̂x ⊗ R̂x

)
|++⟩ = cos2(α)|++⟩ − i sin(α) cos(α) (|+−⟩+ | −+⟩)− sin2(α)| − −⟩(

R̂x ⊗ R̂x

)
|+−⟩ = −i sin(α) cos(α) (|++⟩+ | − −⟩) + cos2(α)|+−⟩ − sin2(α)| −+⟩(

R̂x ⊗ R̂x

)
| −+⟩ = −i sin(α) cos(α) (|++⟩+ | − −⟩)− sin2(α)|+−⟩+ cos2(α)| −+⟩(

R̂x ⊗ R̂x

)
| − −⟩ = − sin2(α)|++⟩ − i sin(α) cos(α) (|+−⟩+ | −+⟩) + cos2(α)| − −⟩.

As can be seen, applying the SU(2) elements will express all basis vectors of C2 ⊗ C2

as linear combinations of all the basis vectors of that space. If we want to redistribute
these basis vectors such that in the direct sum decomposition every Hilbert space gets the
appropriate amount of basis vectors equal to its dimension, while ensuring that the direct
sum decomposition is SU(2) invariant, we introduce the following unique change of basis

|11⟩ = |++⟩

|10⟩ = 1√
2
(|+−⟩+ | −+⟩)

|1− 1⟩ = | − −⟩

|00⟩ = 1√
2
(|+−⟩ − | −+⟩) .

This change of basis will express the previously given linear combinations such that the ba-
sis vectors that describe a spin-1 or spin-0 system are now expressed as a linear combination
of basis vectors of their own Hilbert space.

R̂x|11⟩ = cos2(α)|11⟩ − i
√
2 sin(α) cos(α)|10⟩ − sin2(α)|1− 1⟩

R̂x|10⟩ =
−i sin (2α)√

2
(|11⟩+ |1− 1⟩) + cos(2α)|10⟩

R̂x|1− 1⟩ = − sin2(α)|11⟩ − i
√
2 sin(α) cos(α)|10⟩+ cos2(α)|1− 1⟩

R̂x|00⟩ = |00⟩.

Indeed, the spin-1 system with Hilbert space H = C3, contains the vectors |1 − 1⟩, |1, 0⟩
and |1 1⟩, and when applying R̂x to any of these basis vectors will express each of them
as a linear combination of only these three basis vectors. The same happens for the spin-0
system. This example only uses one of the three elements of SU(2), namely R̂x, but instead
applying R̂y or R̂z will yield similar results

Example 1 shows, that a decomposition as given in Corollary 1, C2 ⊗ C2 = C3 ⊕ C,
is indeed SU(2) invariant, but, more importantly, we have found a unique change of basis
that describes how to redistribute the vectors across the appropriate direct sum spaces
while preserving their Sz eigenvalues. The change of basis chosen in example 1 is the
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well known Clebsch-Gordan change of basis. It is often used in physics for combining
the angular momentum and spin of multiple particles and has been studied intensively
such that it is known for all possible decompositions of spin systems. In port-Hamiltonian
fashion, we tried to understand the composition and decomposition of finite-dimensional
fundamental quantum systems and as it turns out we require the Clebsch-Gordan change of
basis to properly redistribute the Hilbert space elements of composed fundamental quantum
systems. We now fully know how to express composed finite-dimensional fundamental
quantum systems as a direct sum of finite-dimensional fundamental quantum system and
this rightfully constitutes a kinematic decomposition. As the tensor product follows from
the axioms of quantum mechanics its use is inevitable and it prevents us to look at quantum
systems with a ‘classical mindset’, such that making a distinction between, for example,
two separate electrons or one single system of electrons is not possible. With this kinematic
decomposition, we can now again think of two separate systems as one (larger) system and
vice versa. In the case of electrons, which are spin-1/2 particles similar to example one,
we can not think of two electrons separate or not, but instead, we can think of a spin-1
and spin-0 particle separately.
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4 Towards a dynamical decomposition of quantum systems

Now that we have provided a kinematic decomposition of finite-dimensional fundamental
quantum systems, describing how to decompose Hilbert spaces and their elements, we
want to describe the dynamics of fundamental quantum systems. As we considered finite-
dimensional quantum systems, and therefore ignore the translational degrees of freedom,
this chapter will focus on modelling the dynamics of spin systems. In this chapter, we
will give a general Hamiltonian description of composed spin systems, define interaction
between composed spin systems, and we will study the importance of energy degeneracy
following from the conservation of energy.

4.1 Constructing the Hamiltonian of composed spin systems

In this section, we will construct the general Hamiltonian of individual as well as composed
finite-dimensional quantum systems. As we only consider finite-dimensional quantum sys-
tems, we will, from now on, call them spin systems. From the composition of two spin
systems, we will define interaction and model the interaction between the two systems with
an interaction Hamiltonian.

The spin of a particle is proportional to a magnetic dipole moment, µ

µ = γS,

where γ is the gyromagnetic ratio. If a particle, with a magnetic moment, is then placed
in a magnetic field it experiences a torque that aligns the magnetic moment parallel to the
magnetic field. The energy associated to this torque is

H = −µ⃗ · B⃗,

where B⃗ is the magnetic field and H the Hamiltonian. In 3d space, the Hamiltonian can
be described as

H = −γB⃗ · S = −γ(BxSx +BySy +BzSz).

If we only align a magnetic field along the z direction, the Hamiltonian will be directly
proportional to Sz, and similarly, the energy levels of the Hamiltonian will be directly
proportional to the eigenvalues of Sz, which we called the spin levels. By assuming ℏ = 1
we can define E = −γBz as −γBz multiplied with ℏ has units of energy. This then provides
a more simplified Hamiltonian

H = ESz. (4.1)

If we consider a 2 level spin system, with Hilbert space H = C2, and describe its spin
vectors as in example 1

|+⟩ =
(
1
0

)
|−⟩ =

(
0
1

)
,

then according to Eq.4.1, the top state, in this case |+⟩, will correspond to an energy of 1
2E

and the bottom — or often also called the ground state — will correspond to an energy of
−1

2E. This interpretation is reflected in the fact that since the Hamiltonian is Hermitan,
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we can reconstruct it from its from its spectral decomposition5

H1 =
∑

E∈spec(H1)

EPE =
E

2
PE

2
+

(
−E
2

)
P−E

2
=
E

2
|+⟩⟨+|+

(
−E
2

)
|−⟩⟨−|

=
E

2

(
1 0
0 −1

)
=
E

2
σ3 = ES(1/2)

z ,

which is indeed the same as the given definition for the Hamiltonian in Eq.4.1. As the
Hamiltonian for spin systems is proportional to the Sz operator which is defined by a
representation of su(2), the Hamiltonian of a composed spin system can be described by
the tensor product of su(2) representations as given in definition 7. The Hamiltonian for
a spin-n system coupled to a spin-m system can thus be described by

H0 = H1 ⊗ I2 + I1 ⊗H2 = ES(n)
z ⊗ I2 + I1 ⊗ ES(m)

z , (4.2)

where H0 denotes that this is a non-interacting Hamiltonian of a composed spin system
and S

(n)
z describes the spin operator for a spin-n particle, where in the right basis it is a

diagonal matrix with eigenvalues −n,−n+ 1, . . . , n− 1, n.
Now that we have coupled two spin systems and since both spin systems have evenly

spaced energy gaps (between their spin levels) of the same size, we can define interaction.
For interaction to take place, one of the systems must lower in energy, therefore emitting
a photon, which raises the other system by exactly that amount of energy. As we have
seen previously, lowering and raising the spin states, and thus effectively the energy, is
done by the ladder operators as defined in Eq.3.8. As we assume that energy is conserved,
the interaction term of the Hamiltonian must contain the lowering and raising operators
simultaneously. We can, therefore, model this interaction with an interaction Hamiltonian
of the following form

Hint = γ
(
S
(n)
+ ⊗ S

(m)
− + S

(n)
− ⊗ S

(m)
+

)
, (4.3)

where γ from now on is the interaction strength (any real number) and not the gyromag-
netic ratio. Since the Hamiltonian must be Hermitian, the interaction Hamiltonian must
contain both possible interaction terms. The total Hamiltonian is then given as the sum
of the interacting and non-interacting Hamiltonian

Hγ = H0 +Hint = ES(n)
z ⊗ I2 + I1 ⊗ ES(m)

z + γ
(
S
(n)
+ ⊗ S

(m)
− + S

(n)
− ⊗ S

(m)
+

)
. (4.4)

Figure 1: Interaction between a 5 level and 2 level spin system

5The eigenprojectors can be given by |+⟩⟨+| and |−⟩⟨−|, where |+⟩⟨+| corresponds to the multiplication

of a column vector with a row vector
(
1
0

)(
1 0

)
=

(
1 0
0 0

)
.
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4.2 The dynamics of spin systems

Now that we have constructed the general Hamiltonian for composed spin systems, we
can find the time evolution of the quantum state that describes the system by solving
the Schrödinger equation as provided in axiom 2. In this section, we will work out the
quantum dynamics of the composed spin state such that we can fully describe its behaviour.

When we describe a quantum system, we can assume that we can pick any (feasi-
ble) initial conditions. Practically, this would mean we let the system evolve and measure
it repeatedly, once we obtain the desired initial conditions we start our experiment. Since
at no point do we not obtain the measured data, therefore not creating any classical igno-
rance and generating any mixed states, we can describe the system with pure states. As
pure states are unique dependent on the state vectors ψ, we can work with the state vectors
to describe the dynamics. To clearly illustrate the dynamics of a composed spin system
we start with a spin-1/2 and a spin-m system. We again pick the orthonormal basis of
the Hilbert space to be the eigenvectors of Sz such that these (spin) state vectors are also
eigenvectors of the Hamiltonian. We then choose the state vectors βb with b = −1/2, 1/2
for the spin-1/2 system and αn with n = −m,−m+1, . . . ,m−1,m for the spin-m system6.
As we also want to express an orthonormal basis in the composed quantum system, we
naturally extend the definition of an inner product such that it can be used for tensor
product composed vector spaces ⟨⟨·|·⟩⟩β⊗α = ⟨·|·⟩β⟨·|·⟩α. The new basis in the composed
quantum system, consisting of the tensor product of the basis vectors of the individual
systems, contains eigenvectors of the total non-interacting Hamiltonian

H0(βb ⊗ αn) = (Eσz ⊗ I2 + I1 ⊗ ESz) (βb ⊗ αn) = bEβb ⊗ αn + nEβb ⊗ αn

= E(b+ n)(βb ⊗ αn),

where σz is the Sz operator for the two level system and Sz is the spin level operator for
the spin-m system. Generally, for energy eigenvectors ψk where ψk = ψ(b,n) = βb⊗αn, the
non-interacting Hamiltonian can be written as

H0ψk = Ekψk. (4.5)

We can describe the solutions of the non-interacting Schrödinger equation as a superposi-
tion of energy eigenvectors

ψ(t) =
∑
l

al(t)ψle
−iElt/ℏ, (4.6)

where the time-dependence of the state vectors is carried by the coefficients al(t) which
describe the contribution of the respective eigenvectors to the superposition over time.
These solutions can then be applied to the interacting Schrödinger equation Hγ

Hγψ =
∑
l

al(t) (H0 +Hint)
(
ψle

−iElt/ℏ
)

=
∑
l

al(t)e
−iElt/ℏ (Elψl +Hintψl)

= iℏ
∂ψ

∂l
=
∑
l

e−iElt/ℏψl

(
iℏ
∂al
∂t

+ alEl

)
.

6In the notation of previous chapters β(−1/2) =
∣∣ 1
2
− 1

2

〉
but in this chapter I have opted for a slightly

more compact notation.
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Applying ⟨ψk| to both sides of the Schrödinger equation∑
l

al(t)e
−iElt/ℏ (Elδkl + ⟨ψk|Hint|ψl⟩) =

∑
l

e−iElt/ℏδkl (iℏȧl + alEl) ,

then results in
iℏȧk =

∑
l

al(t)e
−i(El−Ek)t/ℏH

′
kl, (4.7)

where
H

′
kl = ⟨ψk|Hint|ψl⟩. (4.8)

From these differential equations it becomes evident that if there is no interaction, i.e.
γ = 0, the coefficients do not depend on time, resulting in a superposition of energy
eigenvectors that is stagnant. Additionally, the time-dependent coefficients, with their
initial values, describe the whole dynamics of the system. To understand the full dynamics
of the system the H ′

kl = H
′

(b,n),(b′,n′) term must be calculated.

H ′
(b,n),(b′,n′) = ⟨⟨βb ⊗ αn|Hint|βb′ ⊗ αn′⟩⟩

= γ⟨⟨βb ⊗ αn|σ− ⊗ S+ + σ+ ⊗ S−|βb′ ⊗ αn′⟩⟩
= γ (⟨βb|σ−|βb′⟩⟨αn|S+|αn′⟩+ ⟨βb|σ+|βb′⟩⟨αn|S−|αn′⟩)

= γ
(√

m(m+ 1)− n′(n′ + 1)δn,n′+1δb,b′−1 +
√
m(m+ 1)− n′(n′ − 1)δn,n′−1δb,b′+1

)
,

where σ± denotes the ladder operators in the two level system and S± denotes the ladder
operator in the m-level system from which the square root stem as given in Eq.3.8. The
ladder operators for the spin-1/2 system carry no coefficient and the other raising coefficient
can be simplified by Cm = m(m+ 1). The dynamics of the system are then described by
Eq.4.7 and since the spin-1/2 system consists of only two levels b = −1/2, 1/2 it can be
written out explicitly7

iȧ(1/2,n) =
∑

b′∈{−1/2,1/2}

m∑
n′=−m

a(b′,n′)(t)e
−i(E(b′,n′)−E(1/2,n))t

γ
(√

Cm − n′(n′ + 1)δn,n′+1δ1/2,b′−1 +
√
Cm − n′(n′ − 1)δn,n′−1δ1/2,b′+1

)
= γ

√
Cm − n(n+ 1) a(−1/2,n+1)

iȧ(−1/2,n) =
∑

b′∈{−1/2,1/2}

m∑
n′=−m

a(b′,n′)(t)e
−i(E(b′,n′)−E(−1/2,n))t

γ
(√

Cm − n′(n′ + 1)δn,n′+1δ−1/2,b′−1 +
√
Cm − n′(n′ − 1)δn,n′−1δ−1/2,b′+1

)
= γ

√
Cm − n(n− 1) a(1/2,n−1),

where we used the degeneracy in the energy E(−1/2, n + 1) = E(1/2, n) = (n + 1/2)E.
This energy degeneracy is expected as energy conservation only allows these two energy
levels to interact with each other. It is also important to note that these are coupled
first order differential equations, the time derivative of a coefficient is dependent on the

7For most practical purposes we will assume ℏ = 1.
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coefficient of its degenerate partner state

ȧ(1/2,n) = −iγ
√
Cm − n(n+ 1) a(−1/2,n+1)

ȧ(−1/2,n+1) = −iγ
√
Cm − n(n+ 1) a(1/2,n)

ȧ(1/2,m) = 0

ȧ(−1/2,−m) = 0.

(4.9)

The last line shows that the states |−⟩⊗ |−m⟩ and |+⟩⊗ |m⟩ are time-independent, which
makes sense as these are the ground state and top state of the composed system. From
this example, it becomes clear that energy degeneracy is indeed necessary for interaction
if we want to respect energy conservation. Both the top and ground states have energy
degeneracy one, and thus will not interact. The first order coupled differential equations
can be linked to get two second order (uncoupled) differential equations

ä(−1/2,n+1) = −
(
γ
√
Cm − n(n+ 1)

)2
a(−1/2,n+1)

ä(1/2,n) = −
(
γ
√
Cm − n(n+ 1)

)2
a(1/2,n),

(4.10)

which are the famous harmonic oscillator differential equations. Solving the ODE’s results
in

a(−1/2,n+1)(t) =
1

2

(
a(−1/2,n+1)(0)− a(1/2,n)(0)

)
eiγ

√
Cm−n(n+1)t

+
1

2

(
a(−1/2,n+1)(0) + a(1/2,n)(0)

)
e−iγ

√
Cm−n(n+1)t

a(1/2,n)(t) =− 1

2

(
a(−1/2,n+1)(0)− a(1/2,n)(0)

)
eiγ

√
Cm−n(n+1)t

+
1

2

(
a(−1/2,n+1)(0) + a(1/2,n)(0)

)
e−iγ

√
Cm−n(n+1)t.

Now that we have completely solved the differential equations that described the dynamics
of the statevector, we can completely describe it as described in Eq.4.7

ψ(t) =a(−1/2,−m)β−1/2 ⊗ α−me
i( 1

2
+m)Et + a(1/2,m)β1/2 ⊗ αme

−i( 1
2
+m)Et

+
m−1∑
n=−m

a(−1/2,n+1)(0)
(
cos(γAt)β−1/2 ⊗ αn+1 − i sin(γAt)β1/2 ⊗ αn

)
e−iE(n+

1
2)t

+

m−1∑
n=−m

a(1/2,n)(0)
(
−i sin(γAt)β−1/2 ⊗ αn+1 + cos(γAt)β1/2 ⊗ αn

)
e−iE(n+

1
2)t,

where A =
√
Cm − n(n+ 1) to make everything a bit more compact. This is a complete

solution to the interacting Schrödinger equation. Given initial conditions, we can fully
describe ψ(t) and how it behaves with time. Since we are still working with a pure state,
we can describe the state ρ = |ψ⟩⟨ψ|

⟨ψ|ψ⟩ from the given initial conditions. This example is
not completely general as I wanted to give a clear and in depth description of dynamics of
coupled spin systems. By using a 2-level spin system, as the energy degeneracy is limited to
the smallest composed spin system, we could write out the dynamical equations explicitly
which gave a lot of insight into this interaction. Of course, a general description of spin
systems is almost similar to the description provided in this section except there will be
multiple coupled first-order differential equations and the complete solution can not be
written out explicitly.
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4.3 The role of energy degeneracy

In the previous chapter, it became evident why the degeneracy of eigenvalues of the Sz op-
erator was so important for the structure of decomposing fundamental quantum systems.
In the previous section, interaction was only possible due to degenerate energy eigenvectors
as a result of the conservation of energy. In this section, we investigate this underlying
energy structure and incorporate this knowledge into a theorem, which hints at a ‘puzzle
piece’ for a port-Hamiltonian description of quantum mechanics.

In the last chapter, we realized that we can decompose su(2) representation spaces,
that were originally composed with a tensor product, based on degenerate eigenvectors of
the composed spin operator Sz. Since the energy of a spin state is directly proportional
to its eigenvalue of Sz, Eq.4.1, the degenerate energy structure of the eigenvalues of the
Hamiltonian is to be expected. In the previous section, we observed that by assuming en-
ergy conservation while modelling the composed spin systems, interaction can only occur
if there exist degenerate energy eigenvectors. In other words, there need to be multiple
eigenvectors of equal energy for the system to be capable of energy transfer from one state
to another. This is illustrated by last section’s example where the top and ground states
did not interact and were ‘static’. Since this degenerate behaviour is so important for
interaction, it might be interesting to only consider the degenerate energy eigenspaces of
the Hamiltonian.

If [A,B] = 0 and A has eigenvalue λ such that Av = λv and B has eigenvalue µ such
that Bw = µw then

0 = [A,B]v = ABv −BAv = A(Bv)− λ(Bv)

and therefore Bv is also an eigenvector of A with eigenvalue λ. Consequently, if [H0, Hint] =
0 then for v ∈ Eλ(H0) the λ-energy eigenspace of H0

Hintv ∈ Eλ(H0), Hint(Eλ(H0)) ⊆ Eλ(H0). (4.11)

So applying the interaction Hamiltonian does not get you out of the energy eigenspace of
H0, once they commute. Note that this is a beautiful reformulation of energy conservation.
As long as the interaction Hamiltonian and the non-interaction Hamiltonian commute,
interaction will not change the energy eigenspace and thus the energy before, during and
after interaction will remain the same. Given a Hamiltonian we can pick an orthonormal
eigenbasis vλ ∈ Eλ(H0) such that

H =
⊕

λ∈Spec(H0)

Eλ(H0) and v =
∑

λ∈Spec(H0)

vλ, ∀ v ∈ H.

This then leads to the previous idea of describing the Hamiltonian of a system by its energy
eigenspaces, especially since

(H0 +Hint)(Eλ(H0)) = H0(Eλ(H0) +Hint(Eλ(H0)

⊆ Eλ(H0) + Eλ(H0) = Eλ(H0),

where we used that H0(Eλ(H0)) = Eλ(H0) and [H0, Hint] which then implies Eq 4.11.

Lemma 2. Given a non-interacting Hamiltonian H0 and an interacting Hamiltonian Hint.
If they commute, [H0, Hint] = 0, the following result holds

H0 +Hint =
⊕

λ∈Spec(H0)

Hλ,
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where

Hλv =

{
(H0 +Hint)v, v ∈ Eλ(H0)
0 else

Proof. Using v =
∑

λ vλ for vλ ∈ Eλ(H0)

⊕
λ

Hλ(v) =
⊕
λ

Hλ

(∑
µ

vµ

)
=
∑
λ

∑
µ

Hλ(vµ)

=
∑
λ

∑
µ

δµ,λH
λvµ =

∑
λ

Hλvλ

= (H0 +Hint)

(∑
λ

vλ

)
= (H0 +Hint)v

where δµ,λ is the Kronecker-delta.

Lemma 2 shows that instead of using the Hamiltonian on the entire Hilbert space
we can use the Hamiltonian for each energy eigenspace separately. This only holds for
[H0, Hint] = 0, but conveniently, it turns out this is the case for all composed spin systems.

Lemma 3. For a system composed of two spin systems, a spin-n and a spin-m system,
where the Hamiltonian’s are given by

H0 = E
(
S(m)
z ⊗ In + Im ⊗ S(n)

z

)
Hint = γ

(
S
(m)
+ ⊗ S

(n)
− + S

(m)
− ⊗ S

(n)
+

)
,

the Hamiltonian’s always commute [H0, Hint] = 0.

Proof. Using the relations for the ladder operators S± = Sx ± iSy and that the tensor
product is bilinear, Hint can be written as

Hint = 2γ
(
S
(m)
+ ⊗ S

(n)
+ + S(m)

y ⊗ S(n)
y

)
.

The commutation of H0 and Hint then results in

[H0, Hint] = 2Eγ
(
S(m)
x ⊗ [S(n)

z , S(n)
x ] + [S(m)

z , S(m)
x ]⊗ S(n)

x

+ S(m)
y ⊗ [S(n)

z , S(n)
y ] + [S(m)

z , S(m)
y ]⊗ S(n)

y

)
.

Using the commutation relations [Si, Sj ] = iεijkSk the result is [H0, Hint] = 0.

This is a convenient result, when working with composed spin systems we know that
the interaction will always conserve energy and we can work with the energy eigenspaces on
at a time instead of working with the whole Hilbert space. Many of these useful properties
can be combined and are encapsulated in a single theorem8.

Theorem 2. If Hγ = H0 + Hint with [H0, Hint] = 0 and iρ̇ = [Hγ , ρ] where ρ is a pure
state. Then

tr(ρ̇PEλ
(H0)) = 0 ∀ λ ∈ Spec(H0)

8The form and relevance of this theorem has been conceived together with my fellow student Kia
Romero Hojjati.
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Proof. For a full proof see appendix A.2.

This seems like a very simple result, but it includes many of the properties we discovered
in this section. The proof uses the energy conservation propertyHint(Eλ(H0)) ⊆ Eλ(H0) as
it labels vectors by their energy eigenspace. In chapter 2, we saw that the probability of the
system being in a certain state for a given energy is given by P (E|ρ) = tr(ρPE), which if all
degenerate energy eigenvectors are taken into account by multiple eigenprojectors, should
be equal to 1. Therefore, taking the time derivative of this probability gives tr(ρ̇PE). In
addition to that, the trace as given in Theorem 2, contains the full dynamics of the system
as given by the Schrödinger equation. Ultimately, these three properties make theorem 2
an extremely useful component as it describes the full dynamics as well as the degenerate
energy structure. This might be a useful tool for constructing a port-Hamiltonian theory
of quantum mechanics.
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5 Conclusions

Starting with an axiomatic review of quantum mechanics, we identified the main problem
for constructing a port-Hamiltonian theory of quantum mechanics. As described in the
fourth axiom, the composition of quantum systems occurs by composing their Hilbert
spaces with a tensor product. The existence of entangled states, which results from the
increase of the dimension of the composed system, eliminates the possibility to split two
Hilbert spaces composed with a tensor product H1⊗H2 back into the original H1 and H2.

In chapter 3, we realized that this problem could be circumvented if we could express
the composed Hilbert spaces as a direct sum of Hilbert spaces, which by definition, would
be independent of each other. In that case, an entangled state would express as a linear
combination of vectors in different direct sum spaces, which could easily be separated.
By considering only finite-dimensional quantum systems with Hilbert space H = Cm we
could express the isomorphisms of composed Hilbert spaces as such a desired direct sum
of Hilbert spaces. Such a direct sum decomposition, however, was not unique as it was
purely based on mathematical reasoning and did not take any of the physical arguments
into account.

To make sure we had all the physical information to justify specific configurations
of the Hilbert space isomorphisms we required only considering fundamental quantum
systems. Fundamentally modelling a quantum system requires using all knowledge of
quantum systems currently available without simplifying any information. We realized that
SU(2) is the fundamental symmetry of non-relativistic quantum mechanics and that finite-
dimensional fundamental quantum systems, those with no translational degrees of freedom,
must have Hilbert spaces that are representation spaces of SU(2). A consequence of the
fundamental SU(2) symmetry is that most quantum matter around us is fundamentally
rotation invariant under 4π.

By now only considering the composition of finite-dimensional fundamental quantum
systems and only isomorphisms that include a direct sum of finite-dimensional fundamental
quantum systems we obtained a unique isomorphism

Cm ⊗ Cn ∼= Cm+n−1 ⊕ Cm+n−3 ⊕ · · · ⊕ Cm−n+1

that respects the fundamental SU(2) symmetry of non-relativistic quantum mechanics.
Although the axioms of quantum mechanics require us to compose quantum systems with
a tensor product, now there do exist certain quantum systems that can be composed with
a direct sum as long as they correspond to a possible tensor product composition. This
classical way of thinking now allows us to consider, for example, two electrons, which are
spin-1/2 particles, as one spin-1 particle and one spin-0 particle.

Although we had found a way to decompose the Hilbert spaces of finite-dimensional fun-
damental quantum systems, we still had to find a change of basis such that the elements
of these systems were redistributed appropriately. We found that the unique Clebsch-
Gordan change of basis preserves the SU(2) invariance in the direct sum decomposition,
provides a basis for each direct sum system and conserves the eigenvalues of Sz for each
basis vector. Therefore, we have provided a complete description of the decomposition
of finite-dimensional fundamental quantum systems, describing how to decompose both
the Hilbert spaces as well as their elements, and this rightfully constitutes a ‘kinematic
decomposition of finite-dimensional fundamental quantum systems’.

Although this kinematic decomposition is the main result of this thesis, a first attempt
at a dynamic decomposition of quantum systems was made. The Hamiltonian and the
full dynamics of composed spin systems were derived. Due to energy conservation, only
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interaction between degenerate energy eigenstates was possible. We then realized that if
the interacting and non-interacting Hamiltonian’s commute we could analyze the system
by looking at the specific energy eigenspaces instead of looking at the whole Hilbert space
at once. As much of the dynamical structure is a consequence of this energy degeneracy,
this approach makes the dynamics much more transparent and will help a lot in future
attempts of finding a complete dynamical decomposition.

Much work has been done on trying to understand the dynamics in the direct sum
decomposition. Unfortunately, due to time limitations, not enough concrete results have
been obtained to mention in this thesis. It does, however, seem that most physical compo-
nents can be carried to the direct sum decomposed systems by the simple transformation
A⊕ = TA⊗T

−1, where the transformation T is the described Clebsch-Gordan change of
basis. Even Theorem 2 conveniently seems to apply in the direct sum system. This makes
future research into the dynamical decomposition much more pleasant as then the dynam-
ics can be described by only regarding the individual energy eigenspaces.

This research has been done with the greater purpose of constructing a port-Hamiltonian
theory of quantum mechanics. Although not explained here, it aims at describing open
quantum systems and how they are connected such that the overall energy is preserved
and the full dynamics of the system are described. Such a theory would give a rigorous
description of a theory of interaction within quantum mechanics. A major goal of this re-
search was to find the power ports, which exist in classical port-Hamiltonian theory. This
has not been accomplished yet but with the kinematic decomposition that was described
in this thesis, a dynamic decomposition seems insight.

This research was limited to finite-dimensional quantum systems, as one only needed
to have knowledge of linear algebra. Additionally, we modelled all quantum systems as
fundamental quantum systems, describing all details and no effective models. The ulti-
mate goal is to make a port-Hamiltonian description of most physical theories that can be
formulated in a Hamiltonian fashion. For non-relativistic quantum mechanics, the funda-
mental symmetry group is SU(2). If a complete port-Hamiltonian theory of non-relativistic
quantum mechanics was formulated this could possibly be extended to relativistic quantum
theory by changing the symmetry group to sl(2,C), as its representations describe rela-
tivistic spin. It could be that by formulating a rigorous theory of interactions of quantum
mechanics it would be relatively simple to extend this idea to more areas of physics.
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A Appendix

A.1 Proof of Theorem 1

The original proof of this theorem comes from [4]. I modified it slightly but it is still the
same proof.

Proof. Take a basis for each of the two spaces Vm and Vn and label them by their eigenvalues
of Sz, the spin levels. So we get the bases um, um−1, . . . , u−m for Vm and vn, vn−1, . . . , v−n
for Vn. As these are eigenvectors of Sz for their respective space Szum = mum and
Szvn = nvn. Then the composed vectors ui ⊗ vj form a basis for Vm ⊗ Vn such that if Sz
is applied to the composed system9(

S(m)
z ⊗ I + I ⊗ S(n)

z

)
ui ⊗ vj = (i+ j)ui ⊗ vj .

Thus each basis element is an eigenvector of Sz on Vm⊗Vn, with eigenvalues ranging from
m+ n to −(m+ n) in increments of 1. The eigenspace with eigenvalue m+ n, the largest
eigenvalue, is one dimensional and is spanned by um ⊗ vn. If n > 0, i.e. the second space
has dimension higher than 1, then the eigenspace with eigenvalue m+n−1 has dimension
2 and is spanned by um−1⊗ vn and um⊗ vn−1. Each time we decrease the eigenvalue of Sz
by one, we increase the degeneracy of the corresponding eigenspace by 1. This continues
until we reach the eigenvalue m−n, an eigenvalue with max degeneracy, with an eigenspace
spanned by

um ⊗ v−n, um−1 ⊗ v−n+1, . . . , um−2n+1 ⊗ vn−1, um−2n ⊗ vn.

This space has dimension 2n + 1. If we continue decreasing the eigenvalue of Sz by one
in each step, the dimension remains the same until we reach the eigenvalue n−m. After
this eigenvalue, the dimension of the eigenspace starts to decrease by one, similar to the
structure of the top eigenvalues. This continues until we reach the lowest eigenvalue −(m+
n) which has an eigenspace of dimension 1 and is spanned by u−m ⊗ u−n. This pattern
is illustrated in the following table for V2, with dimension 5, and V1 with dimension 3.
The total dimension of the composed system is 15 and thus we get the following 15 basis
vectors.

Eigenvalues for Sz Basis
3 u2 ⊗ v1
2 u1 ⊗ v1 u2 ⊗ v0
1 u0 ⊗ v1 u1 ⊗ v0 u2 ⊗ v−1

0 u−1 ⊗ v1 u0 ⊗ v0 u1 ⊗ v−1

−1 u−2 ⊗ v1 u−1 ⊗ v0 u0 ⊗ v−1

−2 u−2 ⊗ v0 u−1 ⊗ v−1

−3 u−2 ⊗ v−1

In the general case, consider the first eigenvector um⊗vn with the largest eigenvalue for Sz
ofm+n. It is annihilated by S+ as it is the top spin level. We can lower the spin level by S−
and applying the operator repeatedly gives a chain of eigenvectors for Sz with eigenvalues
lowered by one until they reach −(m + n). We define the span of these vectors, as W,
which is invariant under su(2) as if we apply any of the basis elements of su(2), S+, S−, Sz,
we still get an element in W. Therefore by linear extension, any element of su(2) applied
to W will give us an element of W. According to [4], the span of W is also irreducible
and isomorphic to Vm+n as W contains 2(m+n)+ 1 vectors. Additionally, the orthogonal

9From now on we will define Sz, S+, S− as in Eq.3.9 for composed systems.
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complement of W is also invariant under actions of su(2). Since W contains eigenvectors
for all eigenvalues of Sz with multiplicity one, each eigenvector for Sz in W⊥ will have
its multiplicity lowered by one. As the top and bottom spin level only had multiplicity
1 and are part of W, the highest eigenvalue of W⊥ will be one lower than that of W. So
m+n is not an eigenvalue of Sz in W⊥ but the largest eigenvalue in W⊥ is m+n−1 with
multiplicity one.

Now if we start at the top eigenvector for Sz in W⊥, so with eigenvalue m + n − 1,
it will be annihilated by S+ in W⊥. We can apply the lowering operator to again gain a
string of eigenvectors, this time of length 2(m+ n) + 1− 2 = 2(m+ n− 1) + 1. Therefore
this process generates an irreducible invariant subspace isomorphic to Vm+n−1.

We then repeat this process, at each step looking at the orthogonal complement of
the sum of all invariant subspaces that we have obtained in previous stages. Each step
reduces the multiplicity of the Sz-eigenvalue by 1 and thereby reduces the largest remaining
eigenvalue of Sz by one. This process can continue until all degenerate eigenvectors are in
a different irreducible subspace. As the maximum degeneracy of Vm ⊗ Vn is 2n + 1 and
every new subspace has a dimension of 2 lower than the previous subspace, starting with
dimension 2(m+ n) + 1 we end with dimension 2(m+ n) + 1− 4n = 2(m− n) + 1. Thus
the last subspace will be Vm−n.

A.2 Proof of Theorem 2

In this section, I will first state Theorem 2, then give the idea behind the proof and then
give the actual proof.

Theorem. If Hγ = H0 +Hint with [H0, Hint] = 0 and iρ̇ = [H, ρ] where ρ is a pure state.
Then

tr(ρ̇PEλ
(H0)) = 0 ∀ λ ∈ Spec(H0).

The idea of the proof is very similar to the derivation in the section ’The dynamics
of spin systems’. This is a very common way to describe the quantum dynamics of a
system. Using the required commutation relation given by the Theorem, we can address
each energy eigenspace separately. With these properties we can proof the result. As in
the proof we need to keep track of the energy eigenspaces and the orthonormal basis of
that particular energy eigenspace we will label everything with two indices.

Proof. Let ρ be a pure state ρ = |ψ⟩⟨ψ|
⟨ψ|ψ⟩ where ψ(t) is a general solution to the Schrödinger

equation for H0. Such a solution is of the form

ψ(t) =
∑
n

ân(t)ψ̂ne
−iEnt/ℏ,

where we use hats to denote vectors containing an orthonormal basis within a specific
energy eigenspace of value k.

ψ̂k := (ψ
(1)
k , ψ

(2)
k , . . . , ψ

(deg(λk))
k )

âk := (a
(1)
k , a

(2)
k , . . . , a

(deg(λk))
k ),

where deg(λk) is the degeneracy of the energy eigenvalue. Then

ψ̂kâk = âkψ̂k =

deg(λk)∑
i=1

a
(i)
k ψ

(i)
k and

d

dt
âkψ̂k =

deg(λk)∑
i=1

ȧ
(i)
k (t)ψ

(i)
k .
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Using the Schrödinger equation (ℏ = 1), i∂tψ = Hγψ

i∂tψ = i
∑
n

˙̂an(t)ψ̂ne
−iEnt + i

∑
n

ân(t)ψ̂n (−iEn) e−iEnt

=
∑
n

(
i ˙̂anψ̂ne

−iEnt + ânψ̂nEne
−iEnt

)
=
∑
n

e−iEntψ̂n

(
i ˙̂an + ânEn

)
.

Since Hγ = H0 +Hint

Hγψ =
∑
n

H0

(
ânψ̂ne

−iEnt
)
+
∑
n

Hint

(
ânψ̂ne

−iEnt
)

=
∑
n

âne
−iEnt

(
H0ψ̂n +Hintψ̂n

)
=
∑
n

âne
−iEnt

(
Enψ̂n +Hintψ̂n

)
.

As we are working with an orthonormal basis

⟨ψ̂k|ψ̂n⟩ :=
(
⟨ψ(i)

k |ψ(j)
n ⟩
)
1≤i≤deg(λk),1≤j≤deg(λn)

= δkn :=

{
idEλn

, n = k
0 ∈ L (En, Ek) , n ̸= k

By then equating both sides and applying ⟨ψ̂k| to both sides∑
n

âne
−iEnt

(
Enδkn +H ′

kn

)
=
∑
n

e−iEntδkn

(
i ˙̂an + Enân

)
.

Where we defined H ′
kn in terms of the basis elements, of the two energy eigenspaces

H
′
kn = ⟨ψ̂k|Hint|ψ̂n⟩ :=

(
⟨ψ(i)

k |Hint|ψ(j)
n ⟩
)
ij
.

After rewriting we end up with

i ˙̂ak =
∑
n

âne
−i(En−Ek)tH

′
kn.

Since Hintψ̂n ∈ Eλn and we have an orthonormal basis

H ′
kk = δknH

′
kn.

Hence,
iâk = H ′

kkâk.

As ψ was previously given by a superposition, we can now write it out explicitly.

|ψ(t)⟩ =
∑
n

deg(λn)∑
s=1

e−iEnta(s)n

∣∣∣ψ(s)
n

〉

⟨ψ(t)| =
∑
k

deg(λk)∑
j=1

eiEkta
∗(j)
k

〈
ψ
(j)
k

∣∣∣ .
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For example, in the composition of a two level spin system with another spin system it
would look like

|ψ(t)⟩ =
∑
n

e−iE(n+ 1
2
)t
(
a(1/2,n)

(
β1/2 ⊗ αn

)
+ a(−1/2,n+1)

(
β−1/2 ⊗ αn+1

))
.

Combining the two expressions for the state vector

|ψ(t)⟩⟨ψ(t)| =
∑
k,n

∑
s,j

e−i(En−Ek)ta(s)n a
∗(j)
k |ψ(s)

n ⟩⟨ψ(j)
k |.

we then define the projector to the energy-eigenspace of λl by its eigenvector basis elements

PEl :=

deg(λl)∑
m=1

|ψ(m)
l ⟩⟨ψ(m)

l |.

Applying the projector

|ψ(t)⟩⟨ψ(t)|PEl =
∑
k,n

e−i(En−Ek)t|ânψ̂n⟩⟨âkψ̂l|δk,l

=
∑
n

e−i(En−El)t|ânψ̂n⟩⟨âlψ̂l|.

Since unitary time evolution preserves the inner product ⟨ψ(0)|ψ(0)⟩ = ⟨U(t)ψ(0)|U(t)ψ(0)⟩ =
⟨ψ(t)|ψ(t)⟩ the probability of measuring energy E = lE is given by:

p(E = lE|ρ) = tr(ρPEl) =
1

⟨ψ(0)|ψ(0)⟩
∑
n

e−i(En−El)ttr(|ânψ̂n⟩⟨âlψ̂l|).

Since

tr(|ânψ̂n⟩⟨âlψ̂l|) =
∑
i,j

a(i)n a
∗(j)
l tr(|ψ(i)

n ⟩⟨ψ(j)
l |)

=
∑
i,j

δn,lδi,ja
(i)
n a

∗(j)
l =

∑
i

|a(i)l |2.

Thus

p(E = lE|ρ) = tr(ρPEl) =
1

⟨ψ(0)|ψ(0)⟩

deg(λl)∑
i

|a(i)l (t)|2.

Now that we know the above given relation holds we can look at the summand

tr(ρPEl) = 0 ⇐⇒ ||âl||2 = 0

tr(ρ̇PEl) = 0 ⇐⇒ d

dt
||âl||2 = 0.

Continuing with the norm squared approach

d

dt
||âl||2 =

d

dt

deg(λl)∑
i=1

a
(i)
l a

∗(i)
l

 =
∑
i

ȧ
(i)
l a

∗(i)
l + a

(i)
l ȧ

∗(i)
l .
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Substituting the previously found equation, iȧ(j)k =
∑

iH
k
jia

(i)
k , for the time derivatives of

the coefficients

d

dt
∥âl∥2 =

d

dt

∑
j

a
(j)
l a

∗(j)
l

 =
∑
j

ȧ
(j)
l a

∗(j)
l + a

(j)
l ȧ

∗(j)
l

=
∑
j

{(
−i
∑
p

H l
jpa

(p)
l

)
a
∗(j)
l + a

(j)
l

(
i
∑
q

H∗l
jqa

∗(q)
l

)}

= i
∑
j

{∑
q

H∗l
jqa

(j)
l a

∗(q)
l −

∑
p

H l
jpa

(p)
l a

∗(j)
l

}

= i

∑
j,q

H l
qja

(j)
l a

∗(q)
l −

∑
j,p

H l
jpa

(p)
l a

∗(j)
l

 = 0.

Where we used that the Hamiltonian is Hermitian and thus taking the complex conjugate
with the star results in H∗

ab = Hba.
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