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Abstract

Numerous services and products use large databases to store all kinds of data. One commonly used
operation is sorting. The amount of data to be sorted is increasing rapidly [15]. Current CPU
architectures are not able to scale/advance with the same rate. A solution is needed to optimise
the sorting of these large databases. Previous research has shown that specialised hardware such
as GPUs and configurable logic (FPGA, ASIC) can accelerate certain database operations by lever-
aging their natural parallelism. FPGAs and ASICs show the greatest performance gains over a
commonly used server CPU (i.e. Intel Xeon). However, manufacturing an ASIC is very expensive
and only profitable if it is produced in large quantities. ASICs cannot be reconfigured and therefore
can only optimise non-application specific tasks. FPGAs are reconfigurable and not only have higher
performance, but also more efficient energy utilisation compared to their GPP/CPU counterparts
by using significantly lower clock speeds while having better performance [15].

In this thesis we describe the development of an accelerator on the Intel Hardware Accelerator
Research Program (HARP) platform. This platform provides tools and services to build FPGA
based accelerators that work closely together with a GPP/CPU to optimize certain workloads. We
focus on the design and development of a sorting accelerator.

The concept of hardware based sorting is explored using sorting networks. Sorting networks are
a straightforward, efficient and predictable way of implementing sorting in hardware. Using sorting
networks we can maximize the parallel capabilities a FPGA has to offer since a lot of the sorting
stages can be executed simultaneously. Sorting networks can be implemented in hardware with
combinational, synchronous and pipelined circuits. Pipelined sorting networks provides the best
throughput. Research [13] shows that the Batcher’s even-odd merge sort network is most efficient
in hardware resource usage and throughput.

Different concepts are being analysed and found that the best solution is to move the sorting op-
eration completely to the FPGA. When fully executing this operation on the FPGA we reduce the
maximum amount of load of the CPU and make the most use of the available FPGA resources
compared to the other given concepts. By using faster local memory of the FPGA for merging, the
overall throughput is increased.

Sorting networks are predictable when it comes to hardware cost. When examining the synthesised
design we discover that the hardware usage of our design matches the hardware usage estimation.
Comparing the sorting accelerator to similar solutions shows that although the throughput is higher,
the performance of the sort accelerator is limited by the bandwidth of the communication bus be-
tween FPGA and the host CPU memory. Existing solutions face the same limitation and try to
reduce this by applying compression to the data that is being transferred between the FPGA and
CPU.

Finally, we conclude about the feasibility of using the Intel Hardware Accelerator Research Pro-
gram (HARP) platform, OPAE and the remaining available tools.
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Chapter 1

Introduction

Many services and products use large databases to store all kinds of data. One commonly used
operation is sorting. The amount of data to be sorted is increasing rapidly [15]. Current CPU
architectures are not able to scale/advance with the same rate. A solution is needed to optimise
the sorting of these large databases. Previous research has shown that specialised hardware such
as GPUs and configurable logic (FPGA, ASIC) can accelerate certain database operations by lever-
aging their natural parallelism. FPGAs and ASICs show the greatest performance gains over a
commonly used server CPU (i.e. Intel Xeon). However, manufacturing an ASIC is very expensive
and only profitable if it is produced in large quantities. ASICs cannot be reconfigured and therefore
can only optimise non-application specific tasks. FPGAs are reconfigurable and not only have higher
performance, but also more efficient energy utilisation compared to their GPP/CPU counterparts
by using significantly lower clock speeds while having better performance [15].

This research focuses on accelerating the sorting operation using hardware available from the In-
tel Hardware Accelerator Research Program (HARP). The Intel HARP environment is a cluster of
servers with an Intel FPGA attached. The goal of this programme is make the research opportunity
into hardware-based accelerators available to a broader audience.

The objective of this thesis is to develop a sorting accelerator using hardware and tools provided by
the Intel Hardware Accelerator Research Program (HARP). Sub-objectives include a performance
evaluation of this solution compared to existing solutions and a discussion of the convenience of
using this platform.

This gives us the following research questions:

e Is it possible to develop a high performant sorting accelerator on the Intel Hardware Accelerator
Research Program (HARP) platform?
— How does the performance compare to existing sorting solutions?
— What is the benefit of using an accelerator card for sorting instead of a more traditional

solution?

e How feasible is it to develop a sorting accelerator using the Intel Hardware Accelerator Research
Program (HARP)?



— Are the hardware and tools made available through the platform ready to be used in a
production environment?



Chapter 2

Background Information

Before talking about the design and implementation of the sorting accelerator, there are important
concepts the reader should be slightly familiar with. In this chapter a brief explanation of these
concepts is given.

1 ASIC

An ASIC (Application-Specific Integrated Circuit) is an Integrated Circuit (IC) customised for a
particular use, rather than intended for general-purpose use. Designers of digital ASICs often use a
Hardware Description Language (HDL), such as Verilog or VHDL, to describe the functionality of
ASICs. [2]

2 GPP/CPU

GPP sometimes referred as CPU in this document is an abbreviation for General Purpose Processors.
These processors can be traditional consumer processors which can do a large set of tasks. However,
because it supports a large set of tasks it is often not efficient because it uses a lot of energy for
the same task compared to a hardware implementation. A hardware implementation used to be
considered inflexible until the introduction of FPGAs.

3 FPGA

An FPGA (Field Programmable Gate Array) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing — hence the term ”field-programmable”. The FPGA
configuration is generally specified using a Hardware Description Language (HDL), similar to that
used for an Application-Specific Integrated Circuit (ASIC). Circuit diagrams were previously used
to specify the configuration, but this is increasingly rare due to the advent of electronic design
automation tools. [3]

FPGASs contain an array of programmable logic blocks, and a hierarchy of ”reconfigurable inter-
connects” that allow the blocks to be ”wired together”, like many logic gates that can be inter-wired
in different configurations. Logic blocks can be configured to perform complex combinational func-
tions, or merely simple logic gates like AND and XOR. In most FPGAs, logic blocks also include



memory elements, which may be simple flip-flops or more complete blocks of memory. Many FP-
GAs can be reprogrammed to implement different logic functions by using Look Up Tables (LUTS),
allowing flexible reconfigurable computing as performed in computer software. [3]

Partial Reconfiguration

Partial Reconfiguration is the ability to dynamically modify blocks of logic by downloading partial
bit files while the remaining logic continues to operate without interruption. Partial Reconfiguration
technology allows designers to change functionality on the fly, eliminating the need to fully reconfig-
ure and re-establish links, dramatically enhancing the flexibility that FPGAs offer. The use of Partial
Reconfiguration can allow designers to move to fewer or smaller devices, reduce power, and improve
system upgrade-ability. Make more efficient use of the silicon by only loading in functionality that
is needed at any point in time. [8]

4 IL Academic Compute Environment provided by Intel

Intel is building a family of FPGA accelerators aimed at data centers. The family shares a common
software layer, the Open Programmable Acceleration Engine (OPAE), as well as a common hardware-
side Core Cache Interface (CCI-P). Intel is making a collection of systems available to researchers
through IL Academic Compute Environment and the Intel Hardware Accelerator Research Program
(HARP). [4]



Chapter 3

System Overview

Different platforms exist for creating FPGA-based accelerators. For this research a platform provided
by Intel was used. Most concepts of the sorting accelerator can be applied to any FPGA accelerator
platform. In this chapter, we discuss some specific concepts related to the provided platform. This
platform is a key element for the design choices made in order to develop the sorting accelerator.
We will discuss the most relevant features of this platform and some important details which led
into the design of the sorting accelerator.

1 IL Academic Compute Environment
The IL Academic Compute Environment provides tools and compute nodes for academic research.

One of the research clusters focuses on the development of FPGA Accelerators using a variety of
Intel FPGAs. These FPGAs are mainly focused on accelerating tasks in a data center environment.

1.1 FPGA System classes

There are several system classes that can be used on the IL Academic Compute Environment [4]:



Class

Description

fpga-pac-s10

PClIe D5005 Programmable Acceleration Cards (PACs) with a Stratix 10 SX
FPGA (1SX280HN2F43E2VG). OpenCL and RTL are both supported. These
cards offer PCle Gen 3 x16 and 4 channels of 8SGB DDR4-2400 with ECC.

fpga-pac-s10-2

Two PCle D5005 Programmable Acceleration Cards (PACs) with a Stratix 10 SX
FPGA (1SX280HN2F43E2VG). OpenCL and RTL are both supported. The
cards are not yet networked with QSFP+ ports, but could be used for

projects requiring a pair of cards, communicating through system

memory.

fpga-pac-al0

PClIe Programmable Acceleration Cards (PACs) with an Arria 10 GX FPGA
(10AX115N2F40E2LG). Two cards are installed in each system and the 40GbE
QSFP-+ ports are connected to each other in order to facilitate research on networked
FPGAs. OpenCL and RTL are both supported.

fpga-bdx-opae

Broadwell Xeon CPUs (E5-2600v4) with an integrated in-package Arria 10
GX1150 FPGA (10AX115U3F45E2SGE3). These systems are for workloads
written in RTL.

fpga-bdx-opencl

The same Broadwell Xeon+FPGA systems as fpga-bdx-opae, but configured
for use with logic written in OpenCL. Unlike later OPAE-managed

systems, Broadwell uses different FPGA-side base logic for OpenCL,

forcing a separation of RTL and OpenCL servers.

fpga-bdx-aal

The same Broadwell Xeon+FPGA systems as fpga-bdx-opae, but the loaded

Linux kernel driver is Intel’s legacy Accelerator Abstraction Layer
(AAL).

1.2 Decision system class

The system class chosen for this research project is fpga-pac-s10. This Intel PAC FPGA is a PCI
Express add-in card that contains a Stratix 10 SX FPGA. The features of this card meet the goal of
this research project as this accelerator card can be added to existing systems rather than replacing
compute nodes in the data center. This has the advantage that system administrators can add these
cards to their existing compute nodes without changing the entire data center infrastructure. This
makes the acceleration compatible with any system that has PCle 3.0 x16 lanes. A tightly packed
configuration such as fpga-bdz-opae could be used for special use cases where the accelerator requires
more communication channels to the General Purpose Processor (GPP). However, this comes at the
cost of portability of the acceleration solution.
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2 System characteristics

XEON Processor Intel Accelerator Card D5005

Application (C++ or Python) AFU (RTL)

Intel Acceleration Stack FIM

(OPAE, PCle driver etc.) (CCI-P, Standard I/O Interfaces)

Figure 3.1: System Overview.

The system class fpga-pac-s10 provides an Intel CPU coupled with an Intel FPGA  Programmable Ac-
celeration Card (PAC) D5005. This accelerator card contains a Stratix 10 SX FPGA (1SX280HN2F/3E2VG).
This FPGA has 2.8 million configurable logic elements. The card is a PCI Express card that sup-

ports PCle 3.0 with 16 channels (PCle x16). The accelerator card contains four channels of 8 GB
DDR4-2400 with Error-Correcting Code (ECC). The card has two QSFP28 network interfaces that

can be used for research requiring more than one accelerator card.
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PGA Programmable Acceleration Card

Figure 3.2: D5005 Acceleration card [11]

Intel® FPGA Programmable Intel Enpirion® FLASH UsB
Acceleration Card D5005 Power Solutions .
BMC | USB
Intel MAX® 10 Hub
QSFP28 4x 25Gb Intel’ FPGA
Networking Interface . o ‘{ DDR4 w/ECC
’ Stratix 10 SX |
FPGA —  DDR4W/ECC |
QSFP28 4x 25Gb
Networking Interface . —{ DDR4 w/ECC ‘
2.8M Logic Elements DRI WECC ‘
—{ W.
A
/5/16x PCle*

HV

Figure 3.3: D5005 Acceleration card with internal interfaces [10]

The Programmable Acceleration Card is coupled with an Intel XEON CPU. The processor and
memory provided by the Hardware Acceleration Research Program have the following properties as
described in Table 3.1. The hardware properties of the FPGA are given in Table 3.2.
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Processor Intel® Xeon®) Platinum 8280 Processor
Base clock speed | 2,70 GHz

Max Clock speed | 4,00 GHz

No. cores 28

No. threads o6

Total cache 38,5 MB

Memory Available physical memory

Clock speed 2933 MHz

Size 791 GB

Table 3.1: Hardware properties of the Intel CPU provided by the Hardware Acceleration Research
Program

FPGA Intel 1SX280HN2F43E2VG
Max. clock speed | 1 GHz

No. logic elements | 2800

Memory (M20K) 11721 Blocks with 229 Mbit
Memory (MLAB) | 23796 Blocks with 15 Mbit

Table 3.2: Hardware properties of the Intel FPGA provided by the Hardware Acceleration Research
Program
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Intel(R) Xeon(R) Platinum 8280 CPU Main Memory Intel Stratix 10 SX DDR4-2400 ECC
1SX280HN2F43E2VG
L1(d&i)
cache
(32K x 2)

L2 cache L3 cache
(1024K) (39424K) -comp—p 8GB

42400 Mops=p 8GB

28 cores / 56 threads

“— 791 GB &— 2.8M Logic Elements

42400 Mbps—’ 8GB

Intel Acceleration Stack (OPAE, PCle driver etc.)

42400 Mbps=fp 8GB

Figure 3.4: System Overview.

The CPU and the FPGA are interconnected using a PCle 3.0 x16 connection. Initiating commu-
nication doesn’t require specific knowledge of the PCle bus. Instead the Intel HARP Program offers
an abstraction layer for communicating over this connection. The software uses an OPAE layer as
described in Section 3. The acceleration card abstracts this by using a FPGA Interface Manager
(FIM) as described in section 4.1. The AFU interfaces with the FIM using CCI-P (Section 4.2).

3 OPAE

OPAE is an abstraction layer used to implement a uniform communication method between FPGA(s)
and a CPU. It consists of a set of drivers, user-space libraries, and tools to discover, enumerate, share,
query, access, manipulate, and reconfigure programmable accelerators [16]. For users this means that
the provided abstraction makes resource access and management easier. Since users don’t have to
deal with infrastructure components such as register access, shared memory and synchronisation
and reconfiguration. OPAE has bindings for C, C++ and Python software. An important part to
facilitate the communication between the FPGA(s) and the CPU is CCI-P.
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3.1 Drivers

OPAE provides drivers for communication interfaces that the FPGA supports. The FPGA used for
this project uses PICe 3.0 x16. However, the developer does not require any knowledge of the protocol
since OPAE makes an abstraction. By making the abstraction, the software for communication
through different physical channels is always identical.

3.2 Libraries

This abstraction is exposed to the developer as a library. Using this library, the software can
communicate with FPGA.

4 FPGA Interface Manager (FIM)

The FPGA Interface Manager (FIM) is a container which includes all region which is statically
configured on the FPGA. This static region is provided by the platform to abstract external inter-
faces. This makes an AFU design more portable across different FPGA hardware and speeds up the
development of an AFU. The FIM consists of a FPGA Interface Unit (FIU), a Core Cache Interface
(CCI-P), an External Memory Interface (EMIF) and a High Speed Serial interface (HSSI). This is
shown in Figure 3.5. On other FPGA hardware the FIM might include other interfaces [6].

4.1 FPGA Interface Unit (FIU)

The FPGA Interface Unit (FIU) manages all traffic to the host machine. A main task is to translate
PCle 3.0 x16 signals to CCI-P. Another important part of the FIU is the FPGA Management Engine
(FME). This FME includes error monitoring and reporting, power and temperature monitoring,
configuration bootstrap, bitstream security flows and remote debug access to ease the deployment
and management of FPGAs in a data center environment [7].

4.2 CCI-P

Core Cache Interface Protocol (CCI-P) abstracts a couple of physical interfaces such as PCle and
UPI to transfer data between the FPGA(s) and the CPU.
CCI-P has the following features:

e MMIO request
e Memory request
e FPGA caching hint

e Virtual channels

An overview of some important CCI-P signals that an AFU should implement is given in Figure
3.6.

15



Intel FPGA PAC D5005

High-Speed Serial Interface (HSSI)

!

S >  3GBDDR4
B " [ 7| 8B DDR4
External
Partial reconfigurable area (AFU) Memory
Interface (EMIF)
> N 8GB DDR4
PN _ | .| 8GBDDR4

!

Core Cache Interface (CCI-P)

Host

Main memory I

FPGA Interface Unit (FIU)

OPAE
Y

PCle3.0x16

Figure 3.5: FPGA Interface Manager, this is an overview of important external interfaces embedded
into the FIM.

MMIO request

MMIO requests are used to send messages with a small payload (4B, 8B, 64B) [14] from CPU to I/O
memory of the AFU and receive messages from I/O memory to the CPU (4B, 8B). The AFU receives
MMIO read requests over pck_cp2af_sRx.c0 and drives read responses over pck_af2cp_sTx.c2.
The AFU receives write requests over pck_cp2af_sRx.c0. The maximum amount of outstanding
MMIO requests is 64.

Virtual channels

For a direct physical link one can make use of Virtual Channels (VC). Virtual channels are introduced
to make an abstraction of the communication interface/protocol. A FPGA can have multiple physical
connections to the CPU. To speed up development these are abstracted. However, the chosen FPGA
class has only a single physical connection and therefore all Virtual Channels map to the same
physical interface. There are three Virtual Channels available:

e VLO, a low latency virtual channel that is mapped to VHO.

e VHO, a high latency virtual channel that is mapped to PCle.
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$ module ccip_std_afu(
// CCI-P Clocks and Resets

input logic pClk, // CCI-P clock domain. Primary
// interface clock

input logic pClkDiv2, 1/ CCI-P clock domain

input logic pClkDiv4, 1/ CCI-P clock domain

input logic uClk_usr, // User clock domain

input logic uClk_usrDiv2, // User clock domain. Half the programmed
// frequency

input logic pck_cp2af_softReset, // CCI-P ACTIVE HIGH Soft

// Reset
input logic [1:0] pck_cp2af_pwrsState, // CCI-P AFU Power State
input logic pck_cp2af_error, // CCI-P Protocol Error

// Detected

// Interface structures

input t_if_ccip_Rx pck_cp2af_sRx, // CCI-P Rx Port

output t_if_ccip_Tx pck_af2cp_sTx // CCI-P Tx Port
)3

Figure 3.6: Overview of CCI-P signals [5].

e VHI, a high latency virtual channel that is mapped to VHO.

e VA (Virtual Auto), in general a combined channel that uses all available physical links to
achieve the highest bandwidth but on this platform mapped to PCle.

According to [12] use the VA for producer-consumer type flows, VHO channel for the latency
sensitive flows and VHO for data dependent flow. Since VH1 and VL0 are mapped to VHO on this
specific accelerator platform it does not matter which channel is selected.

Theoretical bandwidth

PClIe 3.0 has a theoretical bandwidth of 8 GT/s. The accelerator card is connected using a PCle 3.0
X16 connection. This means that 16 lanes of PCle 3.0 are used. Therefore the combined theoretical
bandwidth is 8 GT/s - 16 lanes = 128 GT/s, which equals to 16 GB/s. Each CCI-P requests can
read a maximum of 512 bits per cache lane. The maximum amount of cache lanes is 4 meaning that

the maximum data transfer size is 212-bits éif;c}‘c lanes — 956 Bytes.

These specifications are obtained from the Intel Acceleration Stack for Intel Xeon CPU with FPGAs
Core Cache Interface (CCI-P) Reference Manual [9], Table 3 and Table 40.

Bandwidth measurement

The first step to discover some key characteristics of the FPGA. An important property is the
throughput. The throughput is a combination of the measured read and write bandwidth. The
throughput can be measured by reading and writing arbitrary data from and to the FPGA. To
measure the throughput on the Intel compute environment you can make use of a built-in tool called
fpgadiags. fpgadiag contains several tests to diagnose, test and report on the FPGA hardware
[Fpgadiag]. To perform certain tests the tool requires the user to program a certain bitfile to the
FPGA for diagnoses. The througput test (trput) requires the bitfile nlb mode 3. This bitfile contains
a implementation of a loopback interface that is used for diagnosis tools. This bitfile can be found in

17



the Acceleration Stack installation folder which is located on the Intel compute environment when
the correct environment variables are set. Running the tool gives the following output:

[basnijkamp@iam-sshl ~]$ fpgadiag -m trput
Cachelines Read_Count Write_Count Rd_Bandwidth Wr_Bandwidth
1024 914706692 914706592 11.708 GB/s 11.708 GB/s

Read and write to main memory

CCI-P provides the ability to access host memory using physical addresses. CCI-P maps reads
and writes to individual channels. Channel 0 is used for sending read requests and receiving read
responses. Channel 1 is used for sending write requests and receiving write responses. Both channels
have a similar interface. Each request contains a header which specify some specifics of the requests.
These headers can have special properties like the specification of the number of cachelines used for
the request and the specification of caching behaviour.

4.3 Clock specifications

Table 3.3 provides a list of available internal clock frequencies which can be used to synchronize the
sorting accelerator hardware. We use the most common clock frequency pCIk to prevent complica-
tions and synchronization issues with the CCI-P Interface.

Clock name Clock frequency | Notes

Primary interface clock.

pClk 250 MHz All CCI-P interface signals are synchronous to this clock.
pClkDiv2 125 MHz Synchronous and in phase with pClk. 0.5x the pClk clock frequency.
pClkDiv4 62.5 MHz Synchronous and in phase with pClk. 0.25x the pClk clock frequency.
. Minimum user-defined clock. This clock is not synchronous with

uClk-usr Min 10 MHz the pClk. You can adjust this clock using .

Default user-defined clock. This clock is not synchronous with
uClk-usr Default 312.5 MHz the pClk. You can adjust this clock using OPAE.

Maximum user-defined clock. This clock is not synchronous with
uClkusr Max 600 MHz the pClk . You can adjust this clock using OPAE.

Minimum user defined clock that is synchronous with uClk_usr

and 0.5x the frequency.
uClk_usrDiv2 Min 10 MHz

Note: You can use OPAE to set the frequency to be a value other
than half the uClk_usr frequency.

User defined clock that is synchronous with uClk_usr
and 0.5x the frequency.

uClk_usrDiv2 Default | 156.25 MHz
Note: You can use OPAE to set the frequency to be a value other
than half the uClk_usr frequency.

Maximum user defined clock that is synchronous with uClk_usr
and 0.5x the frequency.

uClk_usrDiv2 Max 600 MHz
Note: You can use OPAE to set the frequency to be a value other
than half the uClk_usr frequency.

Table 3.3: List of available internal clock frequencies on the Intel PAC D5005 FPGA Accelerator
Card.

The clock specifications from Table 3.3 are obtained from the FPGA Interface Manager Data
Sheet [6], Table 4.
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4.4 Intel FPGA Basic Building Blocks

Intel provides a set of basic building blocks to bring some additional features to the CCI-P inter-
face. These features are bundled into three building blocks: BBB_cci_mpf, BBB _ccip_async and
BBB_ccip_.mux. Accompanied with these building blocks samples are provided to make it easier
to start with AFU development. For certain functionality libraries on the software side are also
included [17].

BBB _cci_mpf

Memory Properties Factory (MPF) enhances CCI-P by adding features such as virtual memory,
ordered read responses, read/write hazard detection and masked (partial) writes [17].

BBB _ccip_async

This package provides a clock crossing shim for designs that require a lower clock frequency than
CCI-P can interact with the interface [17].

BBB_ccip_mux

CCI-P Multiplexer makes it possible for multiple CCI-P agents to share a single CCI-P interface
[17].

4.5 Local memory interface

The FPGA has its own local memory available. The FIM provides a Avalon Memory Mapped
(Avalon-MM) slave interface to access each memory bank. This interface consists of the signals
shown in Figure 3.7.

——writedata[63:0]—

address[63:0]—

waitrequest—>

write——

Avalon-MM readdatavalid—>

read———
——readdata[63:0]—

byteenable—|

burstcount———

Figure 3.7: Signals of the Avalon Memory Mapped interface.

5 Accelerator Functional Unit (AFU)

The Accelerator Functional Unit (AFU) is the reconfigurable part of the FPGA which can be used
for an accelerator design. This design is written in RTL and must follow some rules in order to fit
onto the FPGA. An AFU has 2 communications paths to the host:

e FPGA to host: The FPGA can access host memory using CCI-P which uses multiple channels
to provide simultaneous read and writes. The maximum throughput is achieved when using 4
Cache Lines (CL) on a channel [9)].
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e Host to FPGA: The second communication path is from host to FPGA. This implemented
using Memory Mapped 10 (MMIO). Using these small transactions status registers on the
FPGA hardware can be controlled [9].

6 ASE

Intel Accelerator Functional Unit (AFU) Simulation Environment (ASE) provides a hardware and
software co-simulation environment for a Intel Xeon Processor in combination with a Intel FPGA
Programmable Acceleration Card D5005. The simulation environment provides a model for the
CCI-P protocol as well as a model for the local memory attached to the FPGA. The ASE also val-
idates Accelerator Functional Unit (AFU) compliance to the CCI-P protocol specification, Avalon
Memory Mapped (Avalon-MM) Interface Specification and the Open Programmable Acceleration
Engine (OPAE). ASE only supports single slot simulation to simulate one AFU and one software
application at the same time. The ASE cannot guarantee that a simulated design can be synthesised.
However, the environment provides some sanity checks to discover common errors like protocol cor-
rectness, illegal memory transactions and data hazards.

Although ASE is a comprehensive tool for functional simulation it has some limitations. ASE is a

transaction-level simulator. It doesn’t model PCle packet structures or protocol layers. It cannot
model caching and it cannot simulate accurate timings or latency of the design.
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Chapter 4

Sorting Algorithms and Existing
Research

Sorting is a common algorithmic operation that has been researched for years to optimise perfor-
mance. There are a variety of different sorting algorithms. Each sorting algorithm has its own
advantages and uses. A common property of these algorithms is that the time required to sort a set
increases as the set is increased, also known as asymptotic order. To reduce this increase in time,
some algorithms attempt to sort in parallel, using multiple processor cores.

1 Frequently used sorting algorithms

Although there are many different sorting algorithms, some are more commonly used than others.
Here we discuss some of the most popular sorting algorithms used in computer science. The algo-
rithms can be distinguished on the basis of their efficiency on small and large data sets, complexity
and performance.

Insertion sort

Insertion sort is a simple algorithm that iterates over each element and inserts the new element into
a sorted list. This is efficient for small datasets and especially when that dataset is mostly sorted.
However, for large datasets this becomes inefficient as the algorithm has to perform long iterations
over the entire dataset. Insertion sort is often used as part of more complex algorithms. [20] [21]

Selection sort
Selection sort iterates over all elements and tries to find the minimum of the unsorted part and
places it at the beginning. The operation requires no more than N swaps. [20] [21]

Merge sort

Merge sort merges two presorted data sets into one list. It starts by merging elements in pairs of
two. When this operation is completed it merges it into small lists of four and this continues until
the whole set is sorted/merged. Merge sort scales really well for large data sets since the worst
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running time is O(n log n). For a comparison sort algorithm (insertion sort, merge sort etc.) O(n
log n) is the best possible performance. [20] [21]

TimSort

Tim sort is a combination of merge sort and insertion sort. The algorithm tries to find sub-sequences
which are already sorted and uses this to sort the other parts more efficiently. This algorithm is
designed for real-word data. Real-world data often includes already sorted sub-sequences which
makes it possible to sort a list more efficiently. TimSort is highly standardised among many different
programming languages like Python, Java and Perl. [21]

Heapsort

Heapsort is similar to selection sort. It takes the same approach of finding the smallest/largest
element and placing this at the end. A key difference with selection sort is how the data is stored
during the sort. In heapsort, the data set is converted into a heap data structure. This heap makes
searching for the smallest/largest element more efficient. With selection sort it can take up to O(n)
to find the element, when using a heap it only takes O(log n). [20] [21]

Quick sort

Quick sort partitions the dataset by selecting a pivot. The algorithm places the pivot in the correct
position in the list and then orders all smaller items before that pivot and all larger items after that
pivot. A difficult task is to determine a pivot by which the algorithm becomes most efficient. [20]
[21]

Shell sort

Shell sort improves on insertion sort by moving elements in multiple positions instead of just one
position. By first sorting elements that are far apart, the distance between element positions becomes
progressively smaller. When a list is partially sorted, these gaps are small, making it efficient. [20]
[21]

Bubble sort

Bubble sort is a simple algorithm that compares the first two elements, swaps them if necessary, and
continues this process until the end of the list. This is inefficient for large unsorted datasets. Bubble
sort is efficient on datasets that are nearly sorted. However, the elements must not be significantly
out of place. [20] [21]
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Algorithm Best Average | Worst
Insertion sort | n n? n?
Selection sort | n? n? n?
Merge sort nlog(n) | nlog(n) | nlog(n)
TimSort n nlog(n) | nlog(n)
Heapsort nlog(n) | nlog(n) | nlog(n)
Quick sort nlog(n) | nlog(n) | n?

Shell sort nlog(n) | n3 ns
Bubble sort n n? n?

Table 4.1: Frequently used sorting algorithms and their time complexity [20] [21].

2 Sorting networks

2.1 Combinational sorting networks

Sorting networks can be implemented in hardware with combinational, synchronous, and pipelined
circuits. In a combinational sorting network, the network does not use a clock for synchronisation.
Instead, it uses only a large block of combinational logic through which the signal is propagated.
A key characteristic of such a combinational implementation is that no registers are used between
circuits. You can only provide a single set to be sorted in the network at all time, when a new set
needs to be sorted, it must wait until the sorting network is finished and the signal is propagated
to the output register. The time required to sort a new set after a set is inserted into the circuit,
the latency, is entirely determined by the length of the total combinational signal path between the
input and the output of the sorting network. The throughput is m sets per second. [15]

2.2 Synchronous Sorting Networks

The combinational sorting network can be made synchronous by inserting registers between the
stages of the combinational circuit. In this case, a register is added after each comparator. By
adding registers, the length of the signal path is divided into several stages. A clock is used to move
the data from stage to stage in the circuit. With the registers, the design requires more area but can
be clocked higher because the maximum clock speed is now determined by a shorter maximum path
(the path from register to register, rather than the entire combinational circuit). This makes the
latency % The registers make the circuit synchronous, but not fully pipelined, since signals

not processed in a stage are not buffered, making the throughput % fek- [15]

2.3 Pipelined Sorting Networks

To fully pipeline the synchronous sorting network, additional registers must be added. By adding
registers to each signal after each state, and not just to the processed signals, all signal paths have
the same length. Therefore, the throughput is completely defined by fex. [15]

2.4 Basic sorting element

Each sorting network implementation shares the same basic sorting element. This element is a
building block for sort trees. The functionality of this building block is Compare-Exchange. The
building block evaluates two inputs and checks which one is greater/smaller compared to the other.
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If the inputs are not yet in order an exchange will be made and therefore swapping the 2 inputs. A
basic Compare-Exchange block is shown in Figure 4.1.

Figure 4.1: Compare-Exchange element [18]: figure 3a.

An alternative to the Compare-Exchange element is the Select-Value element, as shown in Figure
4.2.

out

Figure 4.2: Select-Value element [18]: figure 3b.

One advantage of using basic sort elements to assemble a sort tree is flexibility. One only needs to
change the mapping of the input and output types of the basic sort element to make the sort network
compatible with a different sorting requirement such as fractions or larger numbers by increasing
the number of wires to a sort element [18].

3 Batcher’s even-odd merge sort network

Research [13] shows that the Batcher’s even-odd merge sort network is most efficient in hardware
resource usage and throughput.

3.1 Comparator unit

A comparator unit has two inputs and 2 outputs, one output produces the minimum of both inputs
and the other output produces the maximum of the inputs (Figure 4.3a). For easier representation
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of comparator networks we use a simplified version of a comparator represented by a vertical line
between two horizontal lines as shown in Figure 4.3b.

a — —— min{a,b}

b ——— — max{a,b}
(a)

a min{a,b}

b max{a,b}

(b)

Figure 4.3: Comparator unit.

3.2 0Odd Even Merge Network (OEM)

An Odd Even Merge Network is a circuit that consists of multiple comparator units to merge two
sorted arrays of the size N into a sorted array of size N - 2. N should be a power of 2 (n = 2F).
The first step of a OEM is to extract the odd elements to one side and the even elements to the
other side. The second step is to merge the odd side and even side recursively and in parallel. The
outputs are interleaved meaning that the first input of the odd side is the first output and the first
output of the even side is the second output and so on as shown in Figure 4.4.
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Figure 4.4: OEM interleaved, CE is short for Compare and Exchange.

A basic OEM is a 1x1 OEM which merges 2 sorted arrays of size N = 1. This contains a single
comparator unit and is shown in Figure 4.5a. A 2x2 OEM uses the same steps as a 1x1 OEM,
we interleave the outputs and recursively compare and exchange (Figure 4.5b). In Figure 4.5¢ a
4x4 OEM is shown, in this figure you can easily identify a 2x2 OEM is used to compose the 4x4
OEM. This shows how a Odd Even Merge Network can be composed of smaller (reusable) building
blocks. When increasing the size of an OEM the number of comparisons and the number of parallel
execution comparison steps increases.
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U
(b)

9CuU
3ES
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(©)

CU = comparator unit, ES =execution steps

Figure 4.5: 1x1 OEM (a), 2x2 OEM (b) and a 4x4 OEM (c).

3.3 0Odd Even Merge Sort (OEMS)

We can use a OEM as described in Section 3.2 to compose a network which not only merges two
sorted arrays but can sort an unsorted array of size IV - 2. We call this network an Odd Even Merge
Sort Network (OEMS). A 1x1 OEMS is exactly the same as a 1x1 OEM since both inputs are already
sorted. When composing a 2x2 OEMS we first want to make sure that the two input arrays are
sorted before passing it to a merge network. This is achieved by adding 2 extra comparator units
as shown in Figure 4.6.

27



I __________ A
a } I
, |
) L) |
| | 5¢cu
c l | | 3ES
: |
d | '
, |
|

Figure 4.6: 2x2 OEMS.

Odd Even Merge Sort Networks support a high level of parallelism since many comparison
operations are independent and can be executed in the same time slot. This feature makes it a very
good solution since a FPGA focuses on parallelism. A regular CPU might have multiple processing
cores but each core is operated sequentially and can achieve only a limited level of parallelism.

3.4 Analysing hardware cost
Analysing complexity of Odd-Even Merging
T(2N) =1+logz2(N) (4.1)
Where T'(2N) is the time required for an Odd Even Merge Network to merge two sorted lists of size
N.
CC(2N) =1+ N -loga(N) (4.2)
Where CC(2N) is the comparator count of an Odd Even Merge Network of size N.

Analysing complexity of Odd-Even Merge Sorting
_ loga(N) - (log2(N) + 1)
2

Where T(N) is the time required for an Odd Even Merge Sort Network to sort an unsorted list of
size N.

T(N) (4.3)

CC(N) = O(N -loga(N)) (4.4)

Where CC(N) is the comparator count of an Odd Even Merge Sort Network of size N.
These analyses are obtained from CS 662: Batcher’s sort [22].
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Chapter 5

Concept

In this chapter, we discuss the general concept and architecture of the sorting accelerator, a number
of solutions are being explored and a final solution is chosen.

1 Data delivery / Communication

Transferring data to the FPGA to process is key in every solution that is being explored. To achieve
a high throughput the data delivery must be as fast as possible to ensure that the bottleneck of data
transfer is limited to a minimum. This optimised data delivery can be implemented using CCI-P (as
discussed in Section 4.2). All four cache-lines must be used in order to get the maximum throughput.
Each cache line is a bus with a width of 512 bit. Therefore, a total of 2048 bits can be transferred
each read/write request. MPF is used to add more features to the base CCI-P implementation. A
valuable feature is Virtual to Physical address translation (VIP). By using VTP we can use virtual
addresses instead of physical ones; therefore it is possible to store all data in one continuous virtual
memory block while in reality the data doesn’t need to be aligned continuously. This makes the
implementation easier because reading the data no longer requires the usage and implementation of
advanced hardware to jump between addresses.

2 Exploration

When designing the sort algorithm we can define three possible implementations. A hybrid solution,
full sort on FPGA using direct access to host memory and sort on FPGA using large chunks of data.

2.1 Hybrid solution

In a hybrid solution, we make use of the CPU and the FPGA. Firstly we move the data to the
FPGA, since the transfer size of the data is small we can quickly sort these chunks immediately
when they come in. When a chunk is sorted it is sent back into the main memory, so the chunk
can be merged with other chunks that are already sorted. This solution spreads the workload of
sorting between the FPGA and CPU. An advantage is that the AFU on the FPGA is relatively
simple and doesn’t require much control logic to buffer and iteratively merge the chunks of data.
A big disadvantage is the CPU load. A goal to use an FPGA as accelerator is not only to make
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it faster but also more resource efficient by dedicating specialised hardware for sorting so that the
CPU cycles can be saved for other tasks on the server.

2.2 Full sort on FPGA

A second solution is to move the whole sorting chain, consisting of sort and merge, to the FPGA. A
big advantage of this approach is the minimum amount of CPU cycles that is required. The CPU
needs to initiate and prepare the data for the sort but in between it can use its CPU cycles for other
tasks which is specifically beneficial in datacenters where CPU resources are shared [1]. When less
CPU resources are required it improves power usage as well since the FPGA solution is more efficient
compared to the CPU counterpart [19]. The solution works as follows, the sorting part is similar to
the hybrid solution (see Section 2.1). The FPGA reads chunks of data using direct memory access
using CCI-P (see Section 4.2).
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FPGA Interface Manager (FIM)

FPGA Interface Unit (FIU)

MMIO Decoder Logic
Memory Properties Factory
(MPF) BBB

CCI-P to Avalon-MM adapter

Sort logic Merge logic

Figure 5.1: Concept 2 full sort on FPGA.

2.3 Full sort on FPGA using local memory

The third solution is similar to the Full sort on FPGA (see Section 2.2). Data is transferred in chunks
using CCI-P and on arrival sorted. The key difference is that the data now not will be transferred
back to main memory using the relatively slow CCI-P interface but to the local memory using direct
access instead. The FPGA has 32 GB of local memory available, this faster memory, (compared
to accessing the main memory using CCI-P, 15.360 GB/s instead of 12.644 GB/s) is used to store
the results of the initial sort that happens when the data arrives. When all data is transferred to
the FPGA or when the memory of the FPGA is filled the data will be merged using an OEM (Odd
Even Merge Network). Merging requires a lot of read/write operations to the memory where the
presorted data is stored. Since this solution uses the local memory, which has a higher throughput
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and lower latency than accessing main memory over the CCI-P interface, the OEM can operate
faster than the other solutions. A downside of this solution is that to be sorted data is limit to
32GB per execution because of the physical memory limit of the FPGA configuration. This makes
the solution less scalable and therefore makes it slightly more difficult to calculate timings.

FPGA Interface Manager (FIM)

FPGA Interface Unit (FIU)

MMIO Decoder Logic
Memory Properties Factory
(MPF) BBB

CCI-P to Avalon-MM adapter

Sort logic Merge logic Merge logic
NXN NXN (N*2)X(N*2)
| A
v v N
Block ram Memory
(MZOK) Merge
Controller

Avalon-MM
Avalon-MM

Local memory interface (FPGA)

Figure 5.2: Concept 3 full sort on FPGA using local memory.
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Concept 3 has been chosen as the final solution. This concept reduces the maximum amount of
load of the CPU and makes the most use of the available FPGA resources compared to the other
given concepts. By using faster local memory of the FPGA for merging, the overall throughput
is increased since the sorting network is less dependent on slower memory due to memory locality
(the local memory of the FPGA can be accessed at higher speeds and lower latency than the host

memory).
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Chapter 6

Implementation

In the following chapter a more detailed description of the implementation is given. With the use

of textual and visual descriptions the created sorting accelerator is explained in detail.

sort_afu

*AA

A A

ccip_communicator sort_control

Figure 6.1: Architecture of sorting accelerator.

v

memory_control

iterative_merger

Figure 6.1 shows the general architecture of the sorting accelerator. The next sections will go in
detail how each subcomponent’s works and is interlinked.
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1 sort_afu

The sort_afu is the top-level unit of the sort accelerator. This unit instantiates all the subcomponents
needed for the complete sort flow. sort_afu uses a state machine to control the flow. The state
machine is shown in Figure 6.2. In state IDLE, the sorter waits for a new sorting job provided
by the software interface. When a sort request is received and the data to be sorted is stored into
main memory, the state machine transitions to the READ _SORT _STORE state. In this state, the
sort_afu signals the ccip_communictator to begin reading data from main memory. This data is then
passed to the sort controller, which already performs some early processing on this data. The sort
control data is written to local memory using the memory_control unit. When this data is stored
in local memory, the state machine transitions to the MERGE _AND ‘WRITEBACK state. In this
final state, the data is read from local memory and iteratively merged by the iterative_merger. When
this merge is complete, the data is transferred back to main memory using the ccip_.communicator.

No sorting job

arrived (\

Sorting job arrived & READ SORT
data prepared in main memory STORE

MERGE AND
WRITEBACK

Sorted data chunks stored
into local memory

Merge finished & merged data
stored into main memory

Figure 6.2: State machine of sort_afu.

2 ccip_communicator

The ccip_communicator is responsible for all communication between the CPU and the accelerator
card. This unit uses the CCI-P interface to read data from and write data to main memory. To
simplify the control flow, the ccip_.communicator uses its own state machine. The state machine
consists of the following states: IDLE, READ and WRITE and is shown in Figure (6.3). In the READ
state, it sends read requests for a specific memory range. This range is provided by the software
interface and is guaranteed to be sequential since we use virtual addressing. Virtual addressing is
a feature provided by the MPF BBB (Memory Properties Factory Basic Building Block). It also
ensures that requests are received in the correct order. During the same state, the ccip_.communicator
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waits for the read responses and forwards them as output. When the 4th cache line has been read,
the ccip_communicator signals this to the sort controller. The sort controller can then process the
data from all 4 cache lines simultaneously. The WRITE state writes the data back to the main
memory in several iterations, depending on the size of the input data and limited by the local
memory on the FPGA (32 GB).

Waiting for Wait and parse

start (\ read responses(\

Initiate read from
main memory

Finished writing data back Sorted data chunks stored
to main memory into local memory

Figure 6.3: State machine of ccip_communicator.

3 Sort Controller

The sort controller receives data from the ccip_communicator and instantiates a 32X32 OEMS (Odd-
Even Merge Sort) network. Since not all cache lines arrive on the same clock cycle, the sort controller
must buffer the data before passing it to the OEMS. The Sort Controller uses an OEMS of size N=32
because using 64 bit values with an OEMS of N=32 results into a output of 2048 bits every cycle.
This matches the maximum amount of data that can be transferred each clock cycle using CCI-P
(see section 4.2: Theoretical bandwidth).

Implementation of OEMS 32x32

The 32x32 Odd-Even Merge Sort (OEMS) network is derived by mixing lower order mergers into a
single entity. The most basic merger is a 1x1 OEM(S) that compares two 64-bit data entries and
outputs the lower one on the first output and the higher one on the second output. With this basic
merger we can build a merge tree of arbitrary size, as explained in (see OEM 3.2). Therefore, we
need to use one instantiation of a 16x16 OEM, two of an 8x8 OEM, four of a 4x4 OEM, eight of a
2x2 OEM and sixteen of a 1x1 OEM. It is important to note that between each merge stage that
has data dependencies and therefore cannot be executed in parallel, a register is added to pipeline
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the design. By using a pipelined merge/sort network, we can improve the throughput as explained
in 2.3.

4 Memory Controller

The memory controller manages all accesses to local memory (memory directly connected to the
FPGA). The FPGA has 32 GB of DDR4 memory divided into four memory banks of 8 GB each. A
single transfer to memory has a maximum size of 64 bits. Since we have four memory banks, we can
access them simultaneously and can transfer 64 - 4 = 256 bit of data per clock cycle. The memory
controller receives the data generated by the sort controller. This data consists of 32 sorted entries,

each 64 bits in size. Since 64 bits fit exactly into 1 memory address, we can write all this data to
2-64
memory in 556 8 clock cycles. The memory controller also uses a simple state machine to

prevent concurrent reads and writes.

5 Iterative Merger

After sorting all incoming data blocks and replacing the Odd-Even Merge Sort network with an
iterative merger. This merger iterates over all sorted chunks and merges them. The implementation
of this merger uses a tree of Odd-Even Merge Networks (OEM). These OEMs reuse a portion of the
OEMs required by Odd-Even Merge Sort Networks (OEMS). Reusing these components saves area
on the FPGA to support even larger merge trees in future implementations.
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Chapter 7

Results

In this chapter the result of the synthesis is given and the produced hardware is explained. Further-
more, performance measurements of various sorting algorithms and the sorting accelerator will be
given to make a comparison possible between existing solutions and the created accelerator.

1 Hardware implementation of the Odd FEven Merge net-
works

1.1 1x1 Odd Even Merge (OEM) network

Figure 7.1 shows the implementation of the comparator building block. The comparator block
accepts two 64 bit inputs (unsorted_data_1 and unsorted_data_2), compares them and forwards the
largest data input to the first output (sorted_data-1) and the smallest data on the second output
(sorted_data_2). The design consists of 1 comparison unit, 3 multiplexers and 2 registers, which
consist of 64 D flip-flops each. The unit has a clock (clk), enable input and a synchronous reset.
The execution time of this comparator unit is 1 clock cycle ( fcllock ).

[0].merger_1x1

=]

clk] sorted_data_1[0]~reg[63..0]

261:324
1'h0 ciN_ LessThan_O Pp———ei D

unsorted_data_1[63..0] sorted_data_1(63..0]
Al63..0 out LK Q
unsorted_data_2[63..0] 64'h0] ScIr

BI63.0]
enable|

reset]

sorted_data_2[0]~reg[63..0]

325:388

D
LK Ql
SCLR

sorted_data_2[63..0]

64'h0]

(OEM_1X1)

Figure 7.1: Hardware implementation of a comparator building block (1x1 OEM).
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1.2 2x2 Odd Even Merge (OEM) network

Figure 7.2 shows the implementation of the 2x2 OEM building block. The 2x2 OEM block accepts
two sets of 64 bit sorted inputs (unsorted_data_partl and unsorted_data_part2), merges them and
gives a sorted list of four 64 bit values. The design consists of 3 comparator units, 8 added multi-
plexers and 8 registers, consisting of 64 D flip-flops each. The unit has a clock (clk), enable input

and a synchronous reset. The execution time of this 2x2 OEM unit is 2 clock cycles ( Frok
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Figure 7.2: Hardware implementation of a 2x2 OEM.

1.3 4x4 Odd Even Merge (OEM) network

Figure 7.3 shows the implementation of the 4x4 OEM building block. The 4x4 OEM block accepts

2 sets of 4 64 bit sorted inputs (unsorted_data_partl and unsorted_-data_part2), merges them and

gives a sorted list of 8 64 bit values. The design consists of 9 comparator units, 32 added multiplexers

synchronous reset. The execution time of this 4x4 OEM unit is 3 clock cycles ( 7 39,
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and 32 registers, consisting of 64 D flip-flops each. The unit has a clock (clk), enable input and a
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Figure 7.3: Hardware implementation of a 4x4 OEM.

1.4 8x8 Odd Even Merge (OEM) network

Figure 7.4 shows the implementation of the 8x8 OEM building block. The 8x8 OEM block accepts 2
sets of 8 64 bit sorted inputs (unsorted_data_partl and unsorted_data_part2), merges them and gives
a sorted list of 16 64 bit values. The design consists of 27 comparator units, 128 added multiplexers
and 128 registers, consisting of 64 D flip-flops each. The unit has a clock (clk), enable input and a
synchronous reset. The execution time of this 8x8 OEM unit is 4 clock cycles ( fclick )-
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Figure 7.4: Hardware implementation of a 8x8 OEM.

1.5 16x16 Odd Even Merge (OEM) network

Finally, Figure 7.5 shows the implementation of the 16x16 OEM building block. The 16x16 OEM
block accepts 2 sets of 16 64 bit sorted inputs (unsorted_data_partl and unsorted_data_part2),
merges them and gives a sorted list of 32 64 bit values. The design consists of 69 comparator units,
512 added multiplexers and 512 registers, consisting of 64 D flip-flops each. The unit has a clock
(clk), enable input and a synchronous reset. The execution time of this 16x16 OEM unit is 5 clock

cycles (¢ 15 -).
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Figure 7.5: Hardware implementation of a 16x16 OEM.
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2 Sort Controller unit

2.1 Hardware implementation

32x32 Odd Even Merge Sort (OEMS) network

Figure 7.6 shows the implementation of the 32x32 Odd Even Merges Sorter (OEMS) which is the
main component of the Sort Control unit. This sorter accepts four sets of 8 64 bit unsorted inputs,
sorts them and merges these values resulting one set of 32 64 bit outputs. The OEMS consists of
199 comparator units. The execution time of this 32x32 OEMS unit is 15 clock cycles.

Figure 7.6: Hardware implementation of a 32x32 OEMS.
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2.2 Hardware usage

Figure 7.7 shows the logic utilization of the Sort Controller unit (highlighted in green), the design
is disconnected from the total design and therefore the total I/O pins (highlighted in red) is not an
accurate representation. The logic utilization of the Sort Controller unit is 1.024 ALMs (Adaptive
Logic Modules).

& Compilation Dashboard X | & compilation Report - sortPipeline X 4 OEM_1X1.sv X @ top module soripipelinesy X
Table of Contents ey e soeary |
B Flow summary Q, <<Fitter
Flow Settings Fitter Status Failed - Tue Mar 111:42:54 2022
Flow Mon-Default Global Settings Quartus Prime Version 18.0.0 Build 219 04/25/2018 SJ Pro Edition
Flow Elapsed Time Revision Name SortPipeline
Flow OS Summary Top-level Entity Name top_module_sortpipeline
E Flowlog Family Stratix 10
Synthesis Device 15GO8SHN1F43ETVG
Fitter Timing Models Preliminary
B summary Logic utilization (in ALMs) 1,024/ 284,960 (< 1%)

Settings Total dedicated logic registers 0

Farallel Compilation Total pins 2,051/912(225%)
Partition Summary Total block memory bits 0/71,208,950 (0 %)
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O Flow suppressed Messages Total PLLs 0/79(0%)

Figure 7.7: Logic utilization of the Sorting Controller unit (Post Fitter).

2.3 Simulation results

Figure 7.8 shows the simulation result of the sorter unit (32x32 OEMS). An array consisting of eight
64 bit unordered values is provided at unsorted_data. After 15 clock cycles the result is propagated
to the output sorted_data and pipeline_valid_out is set to high.

]
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Figure 7.8: Simulation of the Sort Controller unit
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3 Iterative Merger unit

3.1 Hardware implementation
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Figure 7.9: Hardware implementation of the Iterative Merger unit.

3.2 Hardware usage

Figure 7.10 shows the logic utilization of the Iterative Merger unit (highlighted in green), the design
is disconnected from the total design and therefore the total I/O pins (highlighted in red) is not an
accurate representation. The logic utilization of the Iterative Merger unit is 13.984 ALMs (Adaptive
Logic Modules).
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Figure 7.10: Logic utilization of the Iterative Merging unit (Post Fitter).
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3.3 Performance of the High Throughput Sort Accelerator

In Section 4.2: Bandwidth measurement, a bandwidth measurement is given of the system with of
a optimized implementation of the data transfer between the memory of the FPGA, host memory,
and the FPGA.

[basnijkamp@vs1089 ~]$ fpga_dma_test -s 104857600 -p 1048576 -r mtom

PASS! Bandwidth = 12644 MB/s
Figure 7.11: Bandwidth between host memory and FPGA using Direct Memory Access (DMA)

Figure 7.11 shows a bandwidth measurement of 12.644 GB/s using Direct Memory Access (DMA).
In Figure 7.8 you can see that a initial setup of the Odd Even Merge Sort Network takes 6 clock
cycles and then produces 32 64 bit outputs every clock cycle. The sorter operates using the 250
MHz internal clock for synchronization. This gives us a bandwidth of 64 GB/s (see equation 7.1)

1

550 MHz 1"
32 - 64 bit = 2048 bits = 256 Bytes (7.1)
256 Bytes — 64 GB/s

4 ns

The bandwidth between host memory and FPGA (12.644 GB/s) is lower than the bandwidth of
sorting unit (64 GB/s). Therefore, the bandwidth of the sorting accelerator is limited by the
bandwidth of this data transfer.

The first phase of the sorting accelerator is to transfer data from host memory to the sorting unit
on the FPGA and storing the presorted blocks into the local memory of the FPGA. This results us
in a data rate of 12.644 GB/s for phase 1 of the sorting accelerator. It takes 2.52 seconds seconds
to fill the local FPGA memory with 32GB of data (see equation 7.2).

32 GB

2P 95 .
12.644 GBJs 228 (7.2)

The second phase of the sorting accelerator is to merge the presorted blocks in local FPGA
memory iteratively and write this data back to the host memory once the complete merge has been
executed.

The FPGA has four local memory banks, each local memory bank of the FPGA has 8 GB of
DDR4 Memory that operates at 1200 MHz (2400 MT/s). The data width of this memory is 72 bit
(64 bit for data and 8 bit ECC (Error Correction Code)). The effective bandwidth is

2400 MT/s - 64 bit = 15.360 GB/s. This available bandwidth is higher than the bandwidth of the
data transfer between host memory and the FPGA (12.644 GB/s), which is currently limiting the
throughput of the Sorting Accelerator. The Iterative merger operates at 250 MHz, it reads every
presorted set of data and merges them iteratively.

The full iterative merge takes %QSGGE’ = 1.25 - 10® iterations. Each clock cycle takes

1/250 MHz = 4 ns. The total time to complete the iterative merge is 1.25- 108 -4 ns = 0.5 s. This
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results in a throughput of 33'5’;3 = 64 GB/s. However, the memory available memory bandwidth is

slightly slower (4 memory banks - 15.360 GB/s = 61.44 GB/s) than the maximum merge
throughput and therefore limiting this throughput. The adjusted time to complete the iterative
merge is: mf)’ﬁ,‘i(él%/s = 0.521 s. The data can be prepared for the next merge by reading from
memory simultaneously with execution of the merging operation. This preparation adds a small
startup time for the first merge but this is so small that we consider it negligible. This results in a
total throughput of 5.754 GB/s (see equation 7.3).

2.525-2+0.521 s =5.561 s

32 GB (7.3)
el = 0754 GBJs
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Chapter 8

Discussion

In this chapter a discussion will be made to interpret the results given in Chapter 7. A compari-
son between the synthesised hardware and the predicted hardware usage is given. Furthermore, a
comparison of the measurements is explained and a conclusion about the performance of the sorting
accelerator is derived.

1 Implementation of hardware components

In Chapter 4.3 a theoretical explanation of Odd Even Merge (OEM) and Odd Even Merge Sort
(OEMS) networks is given. With equation 4.2 we can calculate the amount comparators needed for
given size N of the network. In Figure 7.1 an OEM of size N = 1 is shown. If we fill this in into the
equation we get a comparator count of 1 (see calculation 8.1).

CC(2N) =1+ N -loga(N),N =1
CC(2-1) =1+4loga(1) (8.1)
cCc2)=1

In figure 7.2 an OEM of size N = 2 is shown. If we fill this in into the equation we get a comparator
count of 3 (see calculation 8.2).

CC(2N)=1+ N -log2(N),N =2
CC(2-2)=1+2-log2(2) (8.2)
CcC(4) =3

The figure shows the usage of 3 comparators, the synthesized hardware matches the theoretical
comparator count.

In figure 7.3 an OEM of size N = 4 is shown. If we fill this in into the equation we get a comparator
count of 9 (see calculation 8.3).

CC(2N)=1+ N -loga(N),N =4
CC(2-4)=1+4-log2(4) (8.3)
CcCcB)=9
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The figure shows the usage of 9 comparators, the synthesized hardware matches the theoretical
comparator count.

In figure 7.4 an OEM of size N = 8 is shown. If we fill this in into the equation we get a comparator
count of 25 (see calculation 8.4).

CC(2N) =1+ N -logs(N),N = 8
CC(2-8) =1+8-logs(8) (8.4)
CC(16) = 25

The figure shows the usage of 25 comparators, the synthesized hardware matches the theoretical
comparator count.

In figure 7.4 an OEM of size N = 16 is shown. If we fill this in into the equation we get a
comparator count of 65 (see calculation 8.5).

CC(2N)=1+ N -log2(N),N =16
CC(2-16) = 1 + 16 - logs(16) (8.5)
CC(32) = 65

The figure shows the usage of 65 comparators, the synthesized hardware matches the theoretical
comparator count.

2 Analysing Sort Control unit

In chapter 3.4 we discuss how many execution steps the implemented design should take. We can
calculate the amount of execution steps of the 32x32 OEMS using equation 4.3.

_ loga(N) - (loga(N) + 1)

T(N) : (N =32
T(32) = %“)
T(32) = 15

Filling in the equation with N=32 gives us 15 execution steps (see calculation 8.8).

Figure 7.6 shows the implementation of the most important part of the Sort Control Unit. This
32x32 Odd Even Merge Sort (OEMS) network consists of 16 1x1 OEM, 8 2x2 OEM, 4 4x4 OEM,
2 8x8 OEM and 1 16x16 OEM. The execution time of this unit is determined by the sum of its
subcomponents (see equation 8.9).

T(32) = Thx1 + Toxo + Tuxa + Tsxs + Tioxie
T(32)=1+2+3+4+5 (8.7)
7(32) = 15
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The result in Equation 8.9 matches the calculated time in Equation 8.8. Therefore the generated
implementation equals the expected implementation.

3 Analysing Iterative Merger unit

In chapter 3.4 we discuss how many execution steps the implemented design should take. We can
calculate the amount of execution steps of the 32x32 OEMS using equation 4.3.

_ loga(N) - (loga(N) + 1)

T(N) 5 N =32

T(32) = 092(32) (l;)gz(32) +1) .
T(32) = @

T(32) = 15

Filling in the equation with N=32 gives us 15 execution steps (see calculation 8.8).

Figure 7.6 shows the implementation of the most important part of the Sort Control Unit. This
32x32 Odd Even Merge Sort (OEMS) network consists of 16 1x1 OEM, 8 2x2 OEM, 4 4x4 OEM,
2 8x8 OEM and 1 16x16 OEM. The execution time of this unit is determined by the sum of its
subcomponents (see equation 8.9).

T'(32) = Tix1 + Toxa + Tuxa + Tsxs + T16x16
T(32)=1+2+3+4+5 (8.9)
T(32) = 15

The result in equation 8.9 matches the calculated time in equation 8.8. Therefore the generated
implementation equals the expected implementation.

4 Interpreting the measurements

4.1 Comparing the performance to existing similar solutions

The measurements give an insight of the performance of the system. Using these results we can
compare our solution to existing systems. The sorting accelerator has the most similarities with the
system described in A High Performance FPGA-Based Sorting Accelerator with a Data Compression
Mechanism [13], when comparing the throughput with this system we see that the throughput of
the developed sorting accelerator is higher than this existing solution. However, we can’t make a
good comparison if we only focus on the throughput.

Table 8.1 shows a hardware comparison between the High Throughput Sorting Accelerator (HTSA)
and the existing sorting solution.
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High Throughput Sorting Accelerator

Existing sorting solution [13]

Throughput 5.574 GB/s 3.200 GB/s
Operating frequency 250 MHz 200 MHz
Bandwidth host memory to FPGA (PCle) 12.644 GB/s 3.20 GB/s
PCle Version 3.0 x16 2.0 x8
Available memory 32 GB 4 GB
Memory speed 1200MHz 800 MHz

FPGA hardware

Intel Stratix 1SX280HN2F43E2VG

Xilinx Virtex-7 XC7VX485T

Data compression

X

Table 8.1: A comparison between the High Throughput Sorting Accelerator (HTSA) and an existing

sorting accelerator

When reviewing the comparison we can see that one property can be differentiated. The PCle
bandwidth difference between both systems is significant. The HTSA uses a newer version of the
PCle bus with double the amount of lanes compared to the other solution. Both implementations
conclude that the PCle bandwidth is limiting factor of the sorting system. Both proposed
hardware solutions can sort at a high throughput but are slowed down by the duration it takes to
transfer data from host memory to the FPGA and vice versa. The existing sorting solution reduces
this limitation slightly by applying a compression algorithm to the data before transferring it to
the FPGA. This compression increases the throughput.
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Chapter 9

Conclusion

In this thesis, we investigated the feasibility of making a sort accelerator on the Intel HARP platform.
A theoretical design was made, implemented and partially tested. The Intel HARP platform provides
numerous tools and abstractions to make the development of an AFU easier. However, I found that
in practice these abstractions and the platform itself are not ready to be used in a production
environment. The base of the platform seems stable but is quite advance to use. Intel provides a
set of Building Blocks separately which include functionality which feel like basic functionality for
anyone who has limited experience in designing a CPU/FPGA co-design. These building blocks are
not bug-free and while being open-source and updated more frequently than the rest of the platform
it makes developing cycle for an inexperienced developer unnecessarily difficult. Documentation and
examples do exist but are limited. The platform can benefit if more people start using it. But, in
order to achieve a larger user base, the platform must put more effort making the platform easily
accessible by providing more examples and tutorials focused on clear use cases.

Is it possible to develop a high performant sorting accelerator on the Intel
Hardware Accelerator Research Program (HARP) platform?

Yes, Although the platform is in early development it shows a great potential in harvesting the
power of configurable logic in combination with big scale solutions like datacenters. A powerful
property of this hardware is that its packaged in a way that fits into a PCle expansion slot. This
method is a standardized form factor which can be implemented in datacenters without changing
the infrastructure.

How does the performance compare to existing sorting solutions?

The performance of the sorting solution is faster than some other solutions, but this is mostly due to
the given hardware in combination with the high bandwidth of the PCle link with the host system.
This communication link is often the limiting factor in the sorting accelerator solutions.

What is the benefit of using an accelerator card for sorting instead of a more traditional
solution?

An accelerator card can be configured with a hardware design that is more efficient in doing an
equivalent task on the GPP/CPU. However, most of the dedicated hardware solution come with the
cost of losing flexibility. Flexibility here means not able to repurpose the resource for something else
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when the hardware is not in use. An accelerator card creates a bridge between these problems, on
one side it is flexible since it has the ability of being reconfigured on the go and on the other side it
can be configured with an efficient hardware design to perform a specific task like sorting.

How feasible is it to develop a sorting accelerator using the Intel Hardware
Accelerator Research Program (HARP)?

Are the hardware and tools made available through the platform ready to be used in
a production environment?

At the start of this research there were some bugs in the platform which made it difficult to use and
recommend. However, during this research the platform evolved into a state that can be used in a
production environment. A clear recommendation for this platform is to provide more documentation
and examples. One of the goals of this platform is to make it easier for people less experienced in
FPGA design to make accelerators. With the current state of documentation the platform has a
steep learning curve.
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Chapter 10

Future work

e The implementation of sorting accelerator can be improved on some key areas. Since only a
small percentage of the available reconfigurable area is being used there is room for additional
hardware to optimise the accelerator. A suggestion could be to add compression/decompression
hardware in order to increase the bandwidth between the CPU memory and the FPGA.

e Another possible improvement to make more use of the provided embedded on chip memory
(M20K, MLAB). This memory is faster than the locally attached DDR4 memory and can be
used to cache sorting results.

e An interesting follow-up research could be to incorporate the High Throughput Sorting Accel-
erator into existing software like a SQL database. When integrating this into real-world use
cases a more elaborate performance evaluation can be made between systems with and without
this accelerator.
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