The Effect of Higher Order Activation Functions on Infinitely
wide Neural Networks

Tjeerd Jan Heeringa, s1497324

2022-04-18

Abstract

Machine learning using neural networks is a very powerful tool used for solving high di-
mensional and nonlinear problems. Neural networks can approximate almost any function to
arbitrary precision, and seem not to suffer from the curse of dimensionality. A key goal in
Applied Mathematics and Computer Science is to understand which neural networks can ap-
proximate which functions well, and to figure out why neural networks do not suffer from the
curse of dimensionality. A major step towards that goal is to understand the continuous limit of
neural networks. In recent research several function spaces have been suggested as candidates
for this limit. However, the mathematical relationship between these spaces is not fully under-
stood. In the thesis we further the understanding of these candidates, and investigate which of
the function spaces continuously embeds into which. We show that Barron space with ReLLU as
activation function is the largest of these spaces, and derive a novel description of the remainder
of a Taylor series in terms of a shallow neural network with the higher order ReLLU as activation
function. We demonstrate that this shallow neural network does not suffer from the curse of
dimensionality. We conclude with an analysis of the continuous limit of a deep neural network
using control techniques.

CONTENTS

Contents

1 Introduction

1.1 Related work
1.2 Our contribution
1.3 Structure of thiswork L
1.4 Notation and used concepts o

2 Framework for Estimating functions using Neural Networks

2.1 Problem Description

2.2 ErrorBounds

3 Infinitely Wide Neural Network Spaces

3.1 Completeness L
3.2 More general weight functions
3.3 Reproducing kernel Hilbert spaces
3.4 Activation Functions
3.5 Duality theorems Lo
3.5.1 Predual
352 Dual

4 Taylor and Relu

4.1 Single variable functionso L
4.2 Multivariate functionso L
4.3 Fourier Expansion L
4.4 Error bound and Approximation Theorem

12

17

23

26

30

32

39

40

42

44

CONTENTS

5 Numerics

5.1 Error bounds

5.2 Methodology e

5.3 Results. e

6 The Big Picture

6.1 Bach and Barron

6.2 Fourier based spaces

7 Deep Learning and Control

7.1 Deep Learning in Control

7.1.1 Model adaptive control

7.1.2 Approximate dynamic programming

7.1.3 Model-based and model-free control with deep learning
7.2 Control in Deep Learning
7.2.1 ResNets, and how they generalize to Neural ODEs
7.2.2 Hamiltonian Equations oL

7.2.3 Functions that can be approximated

8 Future work and Open Questions

II

60

60

63

65

72

72

74

80

80

81

84

88

88

89

91

94

96

1 INTRODUCTION

1 Introduction

In many real world scenarios we have access to data, and we are interested in the structure behind
this data. We wish to find a function that represents the data well enough, whilst simultaneously
predicts any new data we might acquire accurately. What function does this best depends on the
scenario. Typically we will consider a set of candidate functions, and try to find the best function
among those. This set of candidate functions needs to be chosen carefully. For example trying to
represent a sinusoidal function using a linear function is generally not going to work well.

To determine which set of candidate functions is a good choice, we study the properties of these
sets. This is done by studying error bounds. One of these errors is the approximation error, where a
bound is sought for how well a candidate function f can be approximated by an approximation of it,
fm, that is only allowed to use a finite number of parameters, m. When norms can be used, the error
bounds are often given in the form of an a-priori or a-postiori error bound. For the approximation
error between f and f,, these are given by

If = fmlly < Cim™ %[fl5, A-priori (1)
If— me?, < C'277176||fm”4- A-postiori (2)

Here ||-||; are norms that depend on which normed vector spaces f and f,, are from, and C1, Cs, o, 3
are constants that depend on the problem. The higher m needs to be to let f,,, properly approximate
f, the higher the computational cost. Hence, we want C; and C5 to be small and more importantly
« and S to be big. One problem dependent parameter that influences the constants C4, Cs, a, 8
is the dimension d; o and 8 often become small when d increases. A set of candidate functions is
said to suffer from the curse of dimensionality when this happens. Such a set is likely of little use
when the problem studied is a high dimensional one, like image recognition. To illustrate this let
f € H® be a function from a Sobolev space and f,, an approximation of f consisting of m piece-wise
polynomials. The a-postiori approximation error bound is given by

1 = frllp2 < Cm” I f |l o 3)

for some C. To achieve m~%/¢ = 0.1, we need m = 10%®. Hence, we need exponentially more
parameters to get to the same level of accuracy for higher d [E et al., 2020]. This is alright for low
dimensional problems, but if the dimension is high then this becomes prohibitively expensive.

Empirical evidence has shown that neural networks do not suffer from the curse of dimensionality.
Hence, we should be able to construct a function space that contains all neural networks, and provide
an a-priori or a-postiori bound that shows the curse of dimensionality is indeed not present. Neural
networks come in many forms. This means that finding a function space for all of them is a non-
trivial matter. Hence, in this work we will mainly talk about the simplest type of neural networks.
These are 2 layer neural networks with a single output, called shallow neural networks. When a
shallow neural network has m neurons in the hidden layer, it can be represented using

Ful@) = e+ > av(Catws) + by), (4)

i=1

where a; and ¢ are the weights and bias associated to the output node, w; and b; are the weights
and biases for the hidden layer, and ¢ the activation function for the hidden layer. The activation

Page 1 of 103

1 INTRODUCTION

function is applied pointwise. Typically the constant ¢ is omitted, since it can be fitted using a single
extra neuron in the hidden layer for all commonly used activation functions. We will also do this in
this work. All shallow neural networks with m elements can be grouped into a set Fj,. This is not
a vector space, since Fy, + F,;, € F5,,. This shows that we should look to a bigger set of function,
and consider shallow neural networks approximations thereof.

1.1 Related work

One of the function spaces that has been associated to shallow neural networks is the class of the
functions that satisfy

e = [e fce)|de < o)
where f is the Fourier transform of f [Barron, 1993]. Using a separation argument Barron showed
that any function f € Z 1! could be approximated with shallow neural networks f,, using the step
function as activation function with the bound

I = Fline < OLEL22 ©)

for some C' > 0, compact set X € R? and probability measure 7. This shows that for .Z%! the curse
of dimensionality was avoided. Furthermore, by allowing the weights to become arbitrarily large
he showed that a similar result also holds for any sigmoidal activation function. Later he proved a
similar result with ReL U as activation function for functions f € .#2!, and up to a linear correction
with a squared ReLU as activation function for functions f € .Z#3![Klusowski and Barron, 2018].

The bound achieved by Barron is a Monte Carlo bound. This inspired E. et al. to slightly modify
the shallow Neural Network by adding a prefactor %, so that the shallow neural network, now given
by

fm(x) = Z a;p({x|wi) + b;), (7)

1
m
can be seen as the empirical estimate of the expectation
fz) = f ad((alw) + b)dm(a,w,b) = E(g .y wrlad((alw) + b)]. (8)
Q
The space constructed using these expectations is called Barron space. It has been shown that this
space produces the same Monte Carlo bound as Barron[E et al., 2021; theorem 4], that it contains

all functions from .#%! when ¢ is ReLU [E et al., 2021; proposition 2], and that every shallow neural
network with an activation function satisfying

JR 0% (2)|(1 + |2|)dw < 0 (9)

can be approximated by a shallow neural network with ReLU as activation function, which is an
element of Barron space[Li et al., 2020].

Page 2 of 103

1 INTRODUCTION

1.2 Our contribution

In this thesis we further the understanding of this Barron space. Our main focus is on how Barron
space changes when we change the activation function, and on the relation between Barron spaces
and other spaces. Additionally, we discuss how machine learning can be applied in control, and
study a generalisation of Barron spaces using control techniques.

In our study of the effect of the activation function on Barron spaces we had a particular interest in
the higher order ReLU

8 =0
os(7) = 0 <0

with s € N. Two novel results are derived that use the identity

| s = [o= w0 + (0o (5 - w0 p-w)du (10)
0 0

where z € [—¢, c] and f integrable on [—c,c]. The key idea of this identity is that it removes the
dependence on z from the limits of integration, so that the right hand side can be interpreted as a
Barron function with the higher order ReLU as activation function.

The first novel result is an interpretation of the remainder of Taylor series for sufficiently smooth

functions f € .Z; !, where .Z,! is a slightly smaller version of f € .Z%! given by

0 = [1+ lel| e fde < (1)

for t € N. In theorem 4.2 it is shown that the remainder of the Taylor series of order s is an element
of the Barron Space with a higher order ReLU o as activation function. We show that when we
approximate this remainder with a shallow neural network, the bound does not suffer from the curse
of dimensionality and decreases with the inverse of a factorial of s. The presence of this factorial
suggests that higher s give a lower error. We have tested this on a d = 1 Gaussian, and have seen
that higher s does not give a lower error. The numerical effects dominate and cause the error to
increase with increasing s.

The second novel result expands the number of activation functions ¢ for which the Barron spaces
can be approximated by Barron spaces with ReLU activation function. Instead of needing

JR 102(2)|(1 + J2])dz < oo, (12)

it is sufficient that ¢ € C%(R) or that ¢ = 0.

1.3 Structure of this work

After introducing the used notation and various used concepts in section 1.4, we start in section 2
with an explanation of the various error terms we consider in this work. These error terms are based

Page 3 of 103

1 INTRODUCTION

on the PAC framework. Then, we rigorously define the Barron spaces and related spaces called
the Bach spaces in section 3. We show the relation between them in the form of embeddings. In
section 3.1 we show that both are Banach spaces. In section 3.2 we use a different formulation of
the spaces to expand the set of possible weight functions. With this formulation we establish a link
between the Barron spaces and Reproducing Kernel Hilbert Spaces. In section 3.4 we study the
effect of changes in the activation function for the Barron and Bach spaces; in particular, we prove
the second novel result. In section 3.5 we take the first steps in understanding the dual and predual
of Barron space by studying the dual and predual of the Bach spaces.

In section 4 we study the Taylor expansion. We do this by first looking at the Taylor remainder
theorem for dimension d = 1 in section 4.1. Afterwards, we generalise the Taylor theorem to higher
dimensions. In section 4.3 we will go from the multivariate Taylor expansion to the multivariate
Taylor expansion in Fourier space. We show that the remainder of this expansion in Fourier space
is a Barron function with higher order ReLU as activation function. In section 4.4 we show that
the Barron spaces with higher order ReLU as activation function do not suffer from the curse of
dimensionality, and provide an error bound for approximating the remainder of this expansion in
Fourier space using shallow neural networks.

In section 5 we numerically test the bound derived in section 4.4. This is done using a d = 1
Gaussian. In section 5.1 we compute the error bound for the Gaussian analytically. After describing
the experiment in more detail in section 5.2, we present and discuss the results in section 5.3.

In section 6 we combine the various elements into a couple of graphs representing embeddings
between spaces. In section 6.1 we do this for the Barron spaces with different activation functions,
whereas in section 6.2 we do this for 9;’1 and the Sobolev spaces.

In section 7 we discuss the interplay between deep learning and control. In section 7.1 we show
how deep learning helps control by fitting high dimensional functions. We do this from a model
adaptive perspective in section 7.1.1, and from an approximate dynamic programming perspective
in section 7.1.2. In section 7.2 we study a generalisation of Barron space called the Neural ODE
using control methods.

In the final section of this work, section 8, we pose several open questions and conjectures.

1.4 Notation and used concepts

Let R denote the real numbers, and N the natural numbers without 0. When we define a function,
map or operator f, we write f like

f:A—> B, z~ f(x).

In this case A and B refer to the input space and output space respectively. Whenever we say f is
p-integrable over C', we mean that §, f(x)du(z) exists and is finite. All measurable spaces have the
Borel o-algebra, and evaluating a measure p on a set A from the sigma algebra means computing

mm:me.

Page 4 of 103

1 INTRODUCTION

If for each Borel set A two measures p and v satisfy
p(A) =0 = v(4) =0,

then p « v and there exists a measurable function such that

o) = | fa)duta).
This is also denoted as

dv(z) = f(x)dp(z).

If v is a signed measure, then there exists a Hahn decomposition such that

o= iy —
| = py + p—

where p4 are nonnegative measures. When we say v is a pushforward of p along the map © given
by

0:X->Y, z~0(x),

then we write v := ©4p and mean

j F(y)dv(y) = f F(O(@)du(x),
Y X

where f is p-measurable. When 7 is a nonnegative measure with 7(X) = 1, then 7 is a probability
measure. The expectation of f with respect to 7 is given by

E.[f] = fX f(@)dn(z).

If we sample « from 7, then we write x ~ 7. If we sample a set S of n elements from 7, then we
write S ~ 7™,

The (strong) derivatives of a function f are represented by 0 f and the weak derivatives are repre-
sented by D®f. When f is a univariate function a € N, and when f is a multivariate function « is
a multi-index. The gradient of a multivariate function is given by

6(1’0""70)f

a(O,l,...,O)f
Vf= . .

8(0,0,....,1)f

Commonly used sets are X € R4, U < R% and Q < R%, where d; € N. Functions spaces over these
sets include

ck(x) k times continuous differentiable functions,

Page 5 of 103

1 INTRODUCTION

C%'(X) bounded Lipschitz continuous functions,

LP(Xx) equivalence classes of functions with finite |[-[| ;, y) norm,

LP(X,) equivalence classes of functions with finite ||-[|;,) norm,

H*(X) Sobolev space of k times weakly differentiable functions with finite ||-|| ik (x) Dorm,
WHP(X) Sobolev space of k times weakly differentiable functions with finite Iy (2¢,y) mOTI,

P(X) vectors with finite ||-||,, norm,

rca($2) real, countably additive, signed measures on ¥ with bounded finite variation,

Pr(0) probability measures on § with finite k-th moment.

If we add a 0 subscript, then we mean the same space but restricted to the functions that vanish
at infinity when they are defined over R? or have zero boundary when defined on a set with a

boundary. For example C%(R?) consists of k times continuously differentiable functions from R¢ to
R that vanish at infinity.

The norms corresponding to the above spaces are

Ifloeeey = sup suplo® ()],

0<|a|<k veX
|f(z) — f(y)|
7 - + sup —————
£l co 1(x) ”f“CO(X) I,?f){ |z — y|
THy

1/p
1l = (| If(w)lpda:) ,

1/p
1l ey = (| If(w)lpdﬂ(x)> ,
k

N g ey = Z HDijLQ(X)’
j=0

7

k
||f||wkvp(2() = Z HD]fHLP(X)’
j=0
1200 ey = O L),
7

||M||7"ca(Q) = ‘,LL|(Q),
Il ey = I71(@) = 1.

When a space S permits an inner product, then we write (-|-)q. If from context no confusion can
arise over what inner product we are taking, then we drop the index. Furthermore, we write ||z|| »
instead of ||z|,, or ||z]|,, when it is clear whether z is a vector or a function.

We write S instead of (S, [|-||g) when referring to the normed vector space S unless context requires
us to. Given two normed vector spaces (S, |-||g) and (7 -|;), then S continuously embeds in T
if S < T and for all f € S we have | f||; < C| f|lg for some constant C' € R. The symbol for this
is S — T. If both S — T and T — S, then S and T are isomorphic; this is denoted by ~. If
additionally || f||; = || fllg, then S and T are isometrically isomorphic, which is denoted by =~.

Page 6 of 103

1 INTRODUCTION

A function f is called subhomogeneous with order k& when for all positive scalar A it satisfies f(A\z) <
A¥ f(z), and homogeneous if the inequality holds with equality. A function f is called sigmoidal when
it is continuously differentiable, monotone increasing and has limits lim,_, +4 f(2z) = £1.

The Fourier transform is a bounded linear operator from L'(RY) — L*(R?) or L?(R%) — L?(R?).
If fe LY(RY), then its Fourier transform f can be computed using

1) = | e ds

where

1
Cq = 7(27[-)(1/27

and if f € L'(R%), then the inverse operation is given by
f@)=| felode.
R4

There is no proper integral formula describing the Fourier transform f, if f € L?(R9). Tt can however
be computed by considering a sequence of functions f,, € L'(R%) n L?(R9) such that

” . ” L2(R4)
fn —— [
The Fourier transform of f then equals the limit of the Fourier transforms fn of the f,, i.e.

fn H'”LZ(md) f

The Fourier transform is not defined on strict subsets of R?. To compute the Fourier transform on
compact sets U in R? the functions from L'(U) or L2(U) need to be extended to functions from
LY(RY) or L?(R%). One way to do so is by using an extension operator E : LP(U) — LP(R?) for
p € {1,2}, defined by

Ef—{f on U,

0 otherwise.

If f has some smoothness properties, e.g. f € W13(U), then this extension will generally not give
a function Ef € WH3(R%). However, if the boundary of U is smooth enough, then for any p € N
and for any open set O from R? such that U is compactly supported in O there exists an extension
operator £ : WhP(U) — WHP(R?) such that for all f € W'P(U) Ef = f a.e. on U, Ef is compactly
supported within O and there exists a constant C' depending on p, d, U and O such that

1EFllymgty < Cf o

Taking the Fourier transform of f € W13(U) then becomes taking the Fourier transform of Ef €
W13 (R?) for some extension operator E.

An infimum over an empty set is defined as c0. For ce R, Ne N, f: R — R, and a set A we write

Page 7 of 103

1 INTRODUCTION

c+A={c+a

aeA}
aeA}

J(A) = fod= {f(a)

cA = {ca

aeA}

aiEAszN:N:i =1,¢ 20}

N
conv A = {Zi:l cia;

Finally, consider a subset U of a normed vector space, then Ry denotes the (possibly infinite) radius
of the smallest closed ball centered at the origin that fully contains U.

Page 8 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

2 Framework for Estimating functions using Neural Net-
works

In this work we discuss approximating a map f* using neural networks. Approximating functions
leads to error terms. The errors we are considering are listed in fig. 1. These errors are similar to
those defined in the Probably Approximately Correct (PAC) framework[Mohri et al., 2012; Shalev-
Shwartz and Ben-David, 2014]. In this section we will define these errors more rigorously, and we
will discuss the methods that are used later to estimate them.

yX
H I

L Projection Error
/ I3
Training Error f;-t Approximation Error

Estimation Error
*
fitns

(. J

Figure 1: Visual representation of the various errors. V¥ is the set of all functions from X to Y,
and the hypothesis space H is the set of 'nice’ functions we are considering. The projection error is
the error between the true data f* and f};, the best fit within H. The approximation error is the
error between f}; and the best fit within H of m elements, f};, . The estimation error is the error
between f, ~and the best fit within H of m elements for S < X, f;’_‘[m g- Lastly, the training error
is the error between f;—? ¢ and what is found using training, f7.

2.1 Problem Description

Consider an input space X, a target space), amap £:) x) — [0,0], and a probability measure
p € P (X) for some k € N. Let

YY=A{f1f: X -V}, (13)
i.e. Y% is the set of all the functions from X to). Lastly, define the loss functional
LYY %Y = (0.2, ()= | @), 9@)ipla) (14)
with the loss function
£:Y xY —[0,00). (15)

The probability measure 7 represents the way the data is sampled from X, the function ¢ represents
a pointwise penalty, and the loss £ aggregates the penalty over the sampled data.

Page 9 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

We are interested in approximating some function f*. We use the loss functional £ to determine
how close our approximation is to the function of interest f*. Logically, we want £ to be such that

L(f* f7) =0. (16)
Examples of functions ¢ used in practice that achieve this are
0(u,v) = (u—v)? (17)

and

(u,v) = {O v (18)

1 u#w.
From eq. (16) is follows that f* satisfies

f*=argmin L(f, f). (19)
feyx

Equation (19) is a recursive problem. In order to find the minimum argument f* € Y, we need to
choose an ¢ and know f* in order to evaluate L(f, f*). Even if we did not know f* and did have an
oracle

O: X x Y¥ — [0,0), (z, f) = £(f(2), [*(2)) (20)

that tells us the pointwise penalty at x for a given function f, we cannot solve eq. (19) in practice.
This is due to four reasons:

1. Y% is typically too large to search through.
2. We can only use a finite number of parameters to describe the function f.
3. We only have access to a finite number of samples from p with the corresponding f* values.

4. We have to use an algorithm to look for the best f, and this does not have to yield an optimal
solution.

The first of these can be addressed by restricting the set over which is optimised. To restrict Y¥ we
consider a hypothesis space H < Y¥. The best map inside the hypothesis space H that we are able
to find will be

f = argmin £(f, f*). (21)

feH

Ideally this hypothesis space is large enough to cover most functions of interest in Y whilst simul-
taneously allowing us to easily solve eq. (21). These two properties are trade-offs; making the space
‘H bigger typically means that eq. (21) is harder to solve. It heavily depends on the problem what
a suitable choice for H is. Regardless of the choice of hypothesis space H, we do not expect

L(f, f7) =0 (22)

to hold in general. This quantity £(f3,, f*) is called the projection error.

Page 10 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

The second reason can be addressed by looking only at a subset of H. Functions in H potentially
have infinitely many parameters. Let H,, contain the functions from H that at most require m
parameters. The best map inside it that we will be able to find is

fr, =argmin L(f, f*). (23)
JeHm
Again, we don’t expect
L(f3,,, ") = L(f1,) (24)

to hold in general. The quantity £(ff; ,f*)— L(f3;, [*) is called the approzimation error, and it is
a quantifier for the expressivity of the hypothesis space.

The third reason effectively states that we cannot evaluate £ at (f, g), but we can only evaluate the
loss functional Lg defined by

1
£S:yX XyX—>[07OO), (fmg)'_)@ Z E(f(xz)7g($l))7 (25)
:L‘iES
where S = (z;)I2, represents m € N i.i.d samples from p, at (f,g). S is called the training set.

Remark. Although S is called the training set, it is not a set. It is a sequence of |S| tuples. This
allows for an ordering and non-unique elements. This makes a difference for the algorithms used to
solve the minimisation problem.

This sampling introduces another error, commonly called the estimation error or sample error, and
is a quantifier for how well f3; can be reconstructed from data. The error is given by

E(f*7f7th,S)7‘C(f*af';[m,)a (26)
where
f,..s =argmin Ls(f, f*). (27)
feHm

The fourth reason also gives an error. This final error is due to the spaces H and H,, usually
being non-convex. Solving the resulting numerical non-convex optimisation problem in finite time
can usually only be done approximately. This process is called training. Denote with f7. the map
retrieved by training; the training error is then given by

‘C(f*vf;’) - ‘C(f*vf’;ttm,S)‘

So, whilst we wish to find f*, we are only compute f7. in practice. Only in the most trivial cases will
we have that f}. and f* match. We are interested in knowing how much they differ, i.e. we want to
know L(f*, f7). Using the four discussed errors we can write

LU IR = LU 5 +(£(f*7fi¢m>—£(f*7fq*{))
—_—

projection error

approximation error

(28)
+ (60" Fi) ~ LU)) + (L0715 = £ B)
estimation error traini;lg error

Page 11 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

Each of the four error terms is heavily influenced by the choice of hypothesis space H and ¢. Hence,
if we want to find good approximations f7. of f* based on finite data samples S using only m
parameters, then we should study how the four discussed error terms depend on the hypothesis
space H and ¢. Doing this in general is outside the scope of this thesis. In this work we will focus
on the Barron spaces as hypothesis spaces and only consider

U(u,v) = (u—v)? (29)
such that
L(f,9) = IIf = 9l 722 p)- (30)

In the remainder of this section we will focus on methods for bounding the four errors.

2.2 FError Bounds

We have discussed the projection error, approximation error, estimation error and the training
error. For the approximation error and estimation error various concepts and methods are available
to bound them. However, there are no general methods available for bounding the projection error
and the training error. Hence, we will consider the latter two out of the scope of this thesis. We will
now show one method for bounding the approximation error as well as one method for bounding
the estimation error. The method for bounding the estimation error relies on [Mohri et al., 2012;
Shalev-Shwartz and Ben-David, 2014]. Most of the proofs can be found there too, but they have
been included for completeness and adapted to the notation of this work.

The approximation error seems to depend on f*, but is in fact independent of f* for our choice of
¢, as is shown in proposition 2.1.

Proposition 2.1.

L) = LU fr) = £(Fs fr,,)

Proof.
LU Fi0) = 17 = Pl
= 1 = £ + B3 = B 22 e

= ”f* - f;[H%Z(X,p) + ||f’;l - f;[,mHiz(X’p) + 2<f* - f?tL’f;L - f’;[,m>L2(X’p)
= [’(f*’f?tl) + ﬁ(f;bf’;[m) + 2<f* - f’)tL‘f';[- f’;t,m>L2(X7p)

By definition of f3,

= f’;[|g>L2(X7p) =0

for all g € H. Since f}; — f3 ., € H,

<f* - f7tl|f’;l _f?t[,m>L2(X)p) =0.

Page 12 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

Hence,

L f7,,) = LU) + LU fr,)-
Rearranging finishes the proof. Q.E.D.

Proposition 2.1 shows that the approximation error depends on the relation between H and H.,
Hence, we cannot refine this further without specifying H.

For the estimation error we have fJ; ¢. This function depends on S, but S is randomly sampled.
This means that we expect an upper bound for the estimation error to be probabilistic. To formulate
this we will use the Rademacher complexity and the representativeness.

Definition 1 (Representativeness). Let p € P(R?) be a probability measure, F be a set of functions
for which E,[f] is well defined and finite when f € F, and S a collection of n points sampled from
p. The quantity

Rep(F) = supE,[f] — o7 WL

fer zeS

1s called the representativeness.

A low representativeness means that for each f € F the average over S is similar to the expectation
over p. At the same time we know from the definition of fy, ¢ that

Ls(f* fo,) = Ls(f*, fi,,.9)- (31)

We can use this to bound the estimation error by the representativeness:

L 1, 8) — LU f7,) = LU f, s) — £s (5 11,) + Ls (™ £, 5) — LU f1,)

< LU Fis) = Ls(5 Fius) + Ls (s fo) = LU i)
< ;up((f*, f) = Ls(f*, 1)) (32)
= 2Rep(F),
S
where
F={om s @) | reul. (33)

To compute the representativeness of F for a set S we still need to know p. If F has a low
representativeness for Sy, then the representativeness for another set Sy of the same size n is roughly
equal to

Lo 3 f@) = Y fa). (34)

This can be written more compactly as

5|

sup Xif(x;) 35
fe]:z1 ()

Page 13 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

by considering

1 1<n
;= 36
X {1 i>n ()

and concatenating Sy to S7 to get a single training set S, i.e. the first n elements of S are those
from Sy and the following n elements are those from S3. Instead of picking two sets S; and S5 and
combining this into one set S, we can also start with a training set S and split it into two sets S
and Sy by doing coin flips. Head means x € S becomes = € S and tails means z € So. The expected
outcome after doing coin flips is the Rademacher complexity.

Definition 2 (Rademacher complexity). The empirical Rademacher complexity is given by

1 |S|
Rgd(]-') = |S|Ex[su£; Xif(zi)], (37)

where x; are i.i.d. random variables with P(x; = 1) = P(x; = —1) = §. Its expectation
Rad (F;n) = Egpn Rgd(}") (38)

s the Rademacher complexity.

Intuitively, the Rademacher complexity quantifies how well functions from F can be used to fit
random noise. Sets of functions with higher Rademacher complexity tend to be able to fit more
complex functions. Note that the Rademacher complexity is an expectation, so it no longer depends
on the chosen S but only on the properties of F. If we can bound the representativeness using
the Rademacher complexity, we have gotten rid of the dependence on S of our upper bound for
the approximation error. The link between the Rademacher complexity and the expectation of the
representativeness for a function is given in proposition 2.2.

Proposition 2.2. Let 7 € P(R?) be a probability measure, and F be a set of functions for which
E,[f] is well defined and finite when f € F, then

Eg-nn [Rep(F)] < 2Rad (F;n). (39)
S

Proof. This follows from the sequence of (in)equalities

B [Rep(F)] = B [sup E [/ LY @)

feF - @ zeS
1 1
— Egmnn [;gg Es. [? ZS f@)] - T Z; f(@)]

1 1
=Egzn [;1612 Eg qn [ﬁ 3;5 f(@)] - o 7;5 f(@)]

= EsolswpEs L Y (@) - f)]

fer (z,y)eSx S

Page 14 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

1
< Egomn[Eg_ n[sup — Z f@) = f]] Jensen’s ineq.
feF 1)
(z,y)eSxS
1 .
= E\Esrn[Bg pmlsup— > x(f(2) = f®)]] F symmetric
feF 1 5
(z,y)eSxS
1 1
= EyEsnn[Eg_.[sup— > xf(z) +sup— > —xf(y)]]
fer ™ zes fer yes
1 1
= EyEg_pa[sup — > xf(@)] + ExEsnn[sup = > —xf(1)]
fer s fe7 M yes

1 1 .
=E\Eg_,..[sup — Z Xf(@)] + EyEgrn[sup — Z xf ()] F symmetric
fer ™ es JeF T s

= 2Rad (F;n)
Q.E.D.

This is a bound for the expectation of the representativeness in terms of the Rademacher complexity,
not a bound for the representativeness itself. For that we use McDiarmid’s inequality.

Lemma 2.0.1 (McDiarmid’s inequality). Let V < R? be some set and let g : V™ — R be a function

of n variables such that for some ¢ > 0, for all i € [n] and for all x1,...,z,,x; € V we have
lg(z1, .. xn) —g(@1, .o T 1, T a1, - 20| S e (40)
Let X; forie[l,...,n] be i.i.d. random variables taking values in V , then
n 2
P (‘g(Xl,...7Xn) —E[g(Xl,...,Xn)]' <c 210g<5>) >1-4 (41)

McDiarmid’s inequality allows us to establish a bound for the representativeness in terms of the
Rademacher complexity that holds with high probability, and thus a bound for the estimation error.

Proposition 2.3. If the functions in F are bounded by M and L-Lipschitz with respect to H, then
with probability at least 1 — §

* * * * 2log(%)
LU Fius) — £, fi,) < AL Rad (Hm) + 200y | =258 (12)
over the sets S with |S| = n.
Proof. Let V = supp p,
g: V" >R S~ Rep(F), (43)
s

and

Sl = {Zl,...7Zj,...Zn}

Page 15 of 103

2 FRAMEWORK FOR ESTIMATING FUNCTIONS USING NEURAL NETWORKS

/
52 = {21,...7zj,...zn}

with 21, ..., 2n, 2 € V. We will show that

j9(51) — g(52)] < 2L

To achieve that set .
= E - — ;
fs, = argmax < olf1 - Z;& f(zﬂ),
3 i

and observe that

Rep(F) = Eolfs] - 3, fsi(2)

2_7'657;

and

Blfs] == 3 foule) SEplfsl -5 3 fuales)

Zj ESQ Zj ESQ

This implies that

950 - (521 = |(Bolfs] = 7 X faulen)) = (sl = 5 3 fuale)
ZjGS] ZJ'GSQ
1 1
< El’flff flzj 7Epf177 flzj
(E7s) 0 3 1l)) - (Edss] 0 3 1l)
A W e
zjesl Zjes2
=Y Ss - Y S|
ZiESQ Zf,ESl

By construction S; and Sy differ only in one element, thus

9(50) g < -| X T () = Y Fo (20

2;ESy z;€851

< %\fsl(zé) — fs,(z))-

By assumption of the functions in F being bounded by M it follows that

|fs,(25) = fs, ()| < 2M.

Therefore oNf
Fgep(f) - Fgep(f) =19(51) —g(S2)l < —.

Page 16 of 103

(46)

(47)

3 INFINITELY WIDE NEURAL NETWORK SPACES

Applying McDiarmid’s inequality to g gives

PQRyUﬁ—Eﬂ%?Gﬂﬂg%y "%§$>>1—& (50)

where the sets S, S’ are of size |S| = |S’| = n. Hence, with probability at least 1 — ¢

Rep(F) < Eg/[Rep(F)]] + M 2os(3) (51)
S S’ n

By using the bound for the representativeness of proposition 2.2, we have

2log(2)

: (52)

Rep(F) < 2Rad (F;n) + M
s

with probability at least 1 — §. Combining eq. (32) with eq. (52) gives a bound for the estimation
error in terms of .%.

* * * * 2 1Og(%)
Finally, according to [Wolf, 2018; theorem 1.14 and lemma 2.7] it holds that
Rad (F;n) < LRad (H;n) (54)

by the assumptions on the functions in F. Substituting eq. (54) into eq. (53) allows us to rewrite
the bound of estimation error in terms of H and not in terms of F. Q.E.D.

3 Infinitely Wide Neural Network Spaces

In the previous section the optimisation problem of interest has been established, and the need for
a properly chosen hypothesis space is explained. In this section the optimisation problem will be
further specified. In particular, the Bach and Barron spaces will be considered as hypothesis spaces.

Fix d € N. Let (X,(z,y) — ||z —yl/,=) be a metric space with its metric induced by the £*
norm defined over a set X < R? with X a compact set and the boundary of X smooth. Let
(2, (z,y) — ||z — y||,1) be a metric space with its metric induced by the ¢! norm defined over a set
Q c R4 with Q a non-empty closed set. Restrict the possible sets for Q and X to sets that contain
a closed ball centered at the origin with positive radius. Let) be the real numbers, and p be any
probability measure with full support on X. X and) represent the input and output spaces for
the Barron and Bach spaces. €2 represents the parameters that can be used to construct functions
in these spaces. When we write (w, b) € Q, w refers to the first d coordinates and b only to the last
coordinate. To construct a neural network with parameters in 2, we use the construction operator.

Definition 3 (Activation function; construction operator). If ¢ : R — R is a nonzero function that
1s applied pointwise to vectors, i.e.

$(2) = (6(=1) ... ¢(za)" (55)

Page 17 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

for all z € R?, then ¢ is called an activation function, and the operator

}ﬁmwm%ﬂXﬁm,MH(WALMMM+MWW@> (56)

1s called the construction operator.

The construction operator turns a measure p € rca(f2) into an (infinitely wide) shallow neural
network Kizu. In particular, if u is a sum of m Dirac measures, i.e.

po= Z ai0(w, by) (57)
i=1
for (w;, b;) € Q and a; € R, then
KQu: X >R, 2o Y aio(alws) + by) (58)
i=1

is a shallow neural network. For different p € rca(f2) it is possible that Kgu describes the same
function f: X — R. We group those together into M 4? 7 given by

M(?’f = {ue rea(Q)) ‘ Vee X : Ki}u(m) = f(x)} (59)
The special case for f(z) = 0 is denoted by Méfo The Barron and Bach spaces are determined by
those functions for which M q? 7 is non-empty.

Definition 4. Let W : Q — R be a non-negative function, and let ¢ be an activation function. The
space

New = {1:2 =R Ifl,, <0}

1llye, = inf Il (60)

peM;
Iillwe = | W()dlule)
1s called an infinitely wide neural network space. If
W(w,b) =1, (61)
then (N(;%W, ”'HNf,w) is denoted (V(;l, H||V¢Q) If ¢ is such that
(lwlly + 16D ¢(2) = 00 := max(0,2)*,a €N

Wg:Q—R, (w,b) — {1+ |wl|, +|b] ¢ Lipschitz (62)
1+ [Jwll; ¢ e COD(R)

is well defined, then (N$W¢, ||-||ng)zw) is denoted (327 ||HB§) Vf is called a Bach space, and Bg
W

is called a Barron space.

Page 18 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Remark. In literature (Fi,71) is written instead of (Vq?, ||-Hvd§7)[Bach, 2017]. The notation was
changed, because in this thesis the Fourier transform is denoted by F as well as to add explicit
dependence on the activation function ¢ and the set €.

Remark. Definition A.2 of [E and Wojtowytsch, 2020a] uses a slightly different definition of the
Barron spaces. The authors use the ReLU o instead of the higher order ReLU o, we use here. In
[E and Wojtowytsch, 2020b] there are 6 other formulations for the Barron space. Two of these will
appear in later sections.

Remark. Although the Barron spaces are not defined for many activation functions, this definition
covers all commonly used activation functions.

From definition 4 it follows that the Bach and Barron spaces only differ in the weights they assign to
(w, b) € Q in their norms. The Bach spaces do not differentiate between the various (w,b) € Q. This
makes them the simpler function spaces to analyse, but in practice smaller weights w and biases b
are preferred over larger ones. The Barron spaces are an adaptation of the Bach spaces that take
into account these weights and biases for (locally) Lipschitz continuous activation functions. This
ensures the Barron spaces are more realistic, but also harder to analyse. However, in many cases
this change in weight function can be bounded by multiplying the other norm with a constant.

Proposition 3.1. Let ¢ be an activation function for which Wy from eq. (62) is well defined, but
not a higher order ReLU o,. If Q € R is not a compact set, then Bg — V<z§2' IfQc R s a

compact set, then Vd? >~ Bg.

Proof. The assumption on ¢ implies that
W(w,b) = 1< Wy(w,b) (63)
for all (w,b) e Q. If pe Méz,f for fe Bf;, then

e < [duw.0) < il o (64)
Q
Taking the infimum over u € Mé} 7 gives

||va¢Q < HfHBg- (65)

This shows the first statement.

If © is a compact set, then it is closed and bounded by Heine-Borel. Hence, there must be a constant
C > 0 such that

Wy(w,b) <C (66)
for all (w,b) € Q. This implies that if p e Mg,f for f € V5, then
115y < Wil < © | o) (67
Taking the infimum over p € Mé} 7 gives
IFllsg < CllF s (68)
The combination of eq. (65) and eq. (67) shows the second statement. Q.E.D.

Page 19 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Note that proposition 3.1 excludes the higher order ReLU. Since the higher order ReLLU satisfies
c%04(2) = 04(c2) (69)

for all ¢ > 0 and z € R, we can restrict the size of the elements in 2 and compensate by increasing
the measure. This allows us to write down a stronger version of proposition 3.1 for the higher order
ReLU.

Proposition 3.2. Let a € N. If ¢ = 0,, then
BY ~ B85 = VST (70)
If Q is a compact set, then we also have that

SRR 70 (71)

Oo Oo

Proof. Observe that Bidﬂ and Vde have the same definition. This means that it is sufficient to

show that both the Bach and Barron spaces for higher order ReLU can be expressed over S*! as
well as over any other nonempty 2 € R4+,

We will first prove this for the Barron spaces, i.e prove eq. (70). If u e Mg, for f € B , then the
measure

dry(w, b) = ([Jw]| + [b])*dv(w, b) (72)

defined using the push forward
v =04(u) (73)

along the map
w b

l[wll + 161" lwl] + [b]

0:0 -8 (w,b) - () (74)

satisfies

ScH»l

RS 9(@) = [oGl + Biar(w.)
= LM oo ((xlw) + b)(|lwl + [b)*dv (w, b)
e
= [[oaCalu + Dyan
Q

= K ()

w b
+ wl| + [0])*dp(w, b
w||+|b|> Tl o) el = 16D e)

and thus
||f||3§i+1 S ||’YHWGQ,Sd+1 = HMHWGQ,Q' (75)

After taking the infimum over p € My ¢, we get

1 llggess < 1 lp. (76)

Page 20 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

It remains to show that

1 llmgeer = 1 g - (77)

This is immediate when S¢+! < Q. When S%+! ¢ €, consider the biggest sphere B < R+ centered
at the origin such that B € Q. Again, it follows immediately that

1fllss. > 1/ lsg, - (78)

Hence, showing that

1 llggaer = 1 Fll sz, (79)

is sufficient. The radius of S¥*! is one, and let r be the radius of B. Use this to define a new map
©:B — S™ (w,b) — (w/r,b/r). (80)

If pe My, s for fe B[S,jfl’ then the push forward

v(w,b) = O (r*u(w,b)) (81)
satisfies
f oo ({x|w) + b)dv(w,b)
= J < ’w> + =)r*du(w, b)
= J o({z|w) + b)du(w, b)
— K5 ()
= f(x),
and thus
1llsp < ¥lw,, 5 = llw,, gon- (s2)
After taking the infimum over y we get
1£llss. < 11 gt (83)

Now, we will prove it for the Bach spaces, i.e. prove eq. (71). For this we have that € is compact.
The strategy that we will use is similar to that for the Barron spaces.

Let Rq be the radius of the smallest closed ball Bg,, (0) centered at the origin such that Q = Bg, (0).
IfpeM,, sfor fe Vg%, then the measure

dy(w,b) = (lwl]| + [b])*dv(w,b) (84)
defined using the push forward
v =04(n) (85)

along the map
w b

0:0 -8 (w,b)— (,
lwll + 16" [lw]| + [b]

) (86)

Page 21 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

satisfies
Ky = K2 p=f, (87)

and thus
||f||v§i+1 < ||7||rca(sd+1) < R?Z”V”rca(Sd"H) = R?ZHH’“TC@(Q)' (88)

Taking the infimum over € M, ; gives

£ llygon < Ral s (89)

What remains is to show that
I£llygass = Clifllva (90)

for some constant C' > 0. Let Rq be the radius of the biggest closed ball Bg,,(0) centered at the
origin such that Br, (0) < Q. Clearly

1 llve <A1 pago- (91)

If peM,, ¢for fe ij“, then the push forward

v = 04(Ry") (92)
along the map
0 : 8™ - By, (0), (w,b) — (wRq,bRq) (93)
satisfies _— .
Koo Oy = k=, (94)
and thus
||f||VUiRQ<0> S WlcaBrg o)) = B lllrcagsarny: (95)

Taking the infimimum over 1 € M, ¢ gives
AN prg o < B[fllygarr- (96)

The combination of eq. (91) and eq. (96) shows that eq. (90) holds. Q.E.D.

Note that in proposition 3.2 we purposefully demand that €2 is compact in order to have

v 2 Ve (97)
On unbounded 2 we see that
f(z) = f ga((@lw) +b)dp(w,b) = lim | oo ((zlway +ba)d(a™ 1) (w,b) (98)
Q a=0 Jq
whilst
0<[fllve < lim [a™u, 0 = Jim |a=*[lln], o) =0 (99)

for all e My, ;. This implies that on unbounded © we cannot find a constant C' > 0 such that
[fllygaer < Cllfllve (100)

for all f € V[fi. On bounded domains this construction also shows that the measures giving the
smallest Bach norms will place the weights w and biases b on the boundary of the domain.

Page 22 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

3.1 Completeness

The weight function Wy not only makes the Barron spaces more realistic, it also makes them Banach
spaces for arbitrary 2. The Bach spaces, on the other hand, are only Banach spaces on compact €.

To prove that a space is Banach we need to show that it is a complete normed vector space. This
is typically done by checking each of the axiomatic properties. In this case we know that

£z = ot e (101)
for all f € quz. At the same time we recall that the norm of the quotient space Z/Q, with Z a
Banach space and @ are closed subspace thereof, is given by

=11l 2/ = inf gl (102)
q€(z]

for each equivalent class [z] € Z/M. This strongly suggests that Vq? can be identified with a quotient
space of rca(§2). We show in proposition 3.3 that this is indeed the case. Subsequently, we can use
that completeness is a three-space-property to conclude that the Bach spaces must be Banach spaces.
That completeness is a three-space-property is often seen a standard result, but we will include the
proof for completeness. This can be found in lemma 3.0.1.

Lemma 3.0.1. Let Z be a Banach space and Q a closed linear subspace such that Z /Q is a quotient
space. If Z is complete, so is Z/Q.

Proof. We will first show that Z is Banach if and only if for every sequence (z,)nen for which
> llwnll, converges the sum Y7 | z,, converges too.

Assume Y7 | ||z, converges, then the partial sums (Zle Zn)ken are Cauchy. Since Z is complete,
they converge.

Conversely, suppose (Z,)nen is Cauchy. Then there exists a relabelling (z,,)ken such that Hxnk“ — T, H ;<
27, This implies that the partial sums (Zle |Zniss — @,
implies that the partial sums

) ken converge as k — c0. This in turn

k

Z(xni+1 - xnz) = Tngyr — Ty (103)
1=1

converge to some x € Z. Hence, the relabelled sequence (2,)ren converges to £+ x,,. Since (Zy)nen
has a convergent subsequence (,,)ken, it must converge too. Z must be Banach, because (z,)nen
was chosen arbitrarily.

Now what remains is to show that sequences ([z,,])nen With [z,] € Z/Q and Y- | I[zn]ll 7/ <

indeed converge. For each of those sequences ([z,])nen and each n € N there exists a y € Q such
that 1

lzn = ynllz < znlllz/q + 5 (104)
By construction >, ||#y, — yn||, < o0. This implies that the partial sums (22:1 Ty — Yn)keN form

a Cauchy sequence. Since Z is complete, the partial sums (ZfL:l Ty, — Yn) keN CONVErge to some z € Z
as k — 0.

Page 23 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Since 0 € Q, [[[2]]l £, < ||zl 7 for all z € Z. Furthermore, since y, € @, so is Zﬁzl yn. Hence,

D [ea] ~ [2]

z/q Il n=1

n=1 Z/Q
k
= [Z(mn — Yn) — 2]
n=l z/Q
k
< Z(l'n_yn)_z -0

Z

as k — oo0. This shows that the partial sums (Zszl[zn]keN converge to [z] € Z/Q when k — 0.

Since the sequence ([z,])neny Was chosen arbitrarily, Z/M must be Banach. Q.E.D.

Now that we have shown that completeness carries over to the quotient space, we continue by proving
that the Bach spaces are Banach.

Proposition 3.3. If ¢ € C(R), then Vdfz ~ rca(Q)/MﬁO using the isometric isomorphism
T: Vi - rea(Q)/Mgy, f—Tf =M, (105)

and quz is a Banach space.
Proof. 1t is sufficient to show that

1. Mé},o is closed in rca(£2),
2. the sets My ¢ are sets generated from M(?,f, ie. for all pe Mgf it holds that Méff = [u] =
A+ Mg,
If these two hold, then

||f||V¢§2 = Mei]r\/lfff;}f ||lu’||1,Q = Mei]r\/lfng ||lu||rca(ﬂ) = ||[lu]||rca(Q)/M§’0 = ||Terca(Q)/M(?,0' (106)

This implies that | T|| = 1, which implies that Vf is isometrically isomorphic to rca(§2) /M<?,0~ It
then follows from lemma 3.0.1 that Vf is a Banach space.

To show 1., observe that K% is linear and that Mé},o is the kernel of K(? As a consequence, Mﬁo
is a linear subspace of rca(§2). Consider now a sequence of p, € My o such that

-0l caca)

i ——— H (107)

Page 24 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

for some p € rca(Q2). Then for all z € X
Tim [Kb (@) = Kopa(@)] = i [t — 10@)] < [8lloqy T 10— il oy = 0. (108)

Since Kypn(x) = 0 for each 2 € X and n € N, this upper bound implies that |[Kgu(z)| = 0. Hence,
we Mé})o, which implies that Mézo is closed.

To show 2., consider an arbitrary e Mg for an f € V. I v € [u] := p+ Mg, then v = pu+p

for some p € Md?,o and
K¢I/=K¢M+K¢p=f+0= f- (109)

Hence, v € Mds}f Conversely, if v € Mg?’f, then
Ko(v —p) = Kgv — Kyp = f— [= 0. (110)

Hence, v — p € ngo, which implies that v € [u] = p + M(?,o Q.E.D.

We can prove that the Barron spaces are Banach spaces using the fact that the Bach spaces are.

Proposition 3.4. If ¢ is an activation function for which Wy is defined, then Bg is Banach.
Proof. 1f € is a compact set, then it follows from proposition 3.2 and proposition 3.1 that Bf = V.
We have just shown in proposition 3.3 that Vd? is a Banach space. Hence, Bg is Banach too.

If Q is not a compact set, we use a different strategy to prove completeness. We prove that this
strategy works for ¢ € C%!(R). The remaining cases can be done similarly.

Consider the space

réa(Q) — {M € rea(Q) ‘ L 1+ [l + bld]pl(a, b) < oo}. (111)

That r¢a(Q) is a vector space follows directly from that rca(€2) is a vector space. Observe that
for each u € Mézf for f € Bg we have that p € réa(Q?). Following the same arguments as in

proposition 3.3 but replacing rca(§2) with réa(Q) and Vdfz with Bg, tells us that
BY ~ réa(Q)/M,. (112)
So to show that Bg is Banach, it is sufficient to show that réa(2) is complete.

Consider a Cauchy sequence (i,)neny With g, € réa(). (pn)nen form a Cauchy sequence if and only
if the measures v,, given by

dvp(w,b) = (1 + ||Jw|| + |b])dpn (w, b) (113)

form a Cauchy sequence in rca(Q). Since rca(€?) is complete, there must be a v € rca(§2) such that

-1l ca
Uy — Dy, (114)

Page 25 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Since (1 + |Jw]|| + |]) is invertible, finite and well-defined for all (w, b) € Q, it must hold that (i,)nen
(strongly) converges to p € rca(2) given by

1

d b)) = ———d
) = Tl T o

(w, b). (115)

r¢a(§2) must be complete, because the sequence (u,,) was arbitrary. Q.E.D.

3.2 DMore general weight functions

The weight function Wy used in the definition of the Barron norm penalises the measures linearly.
In some cases we might want to weigh the size of the measure in a different way than linearly. We
could adapt the definition of [|-||;, ¢, to

Il = | Wbl) (116)

for u € rea(Q2). However, this still limits the weight functions we can use. A more general way is to
go from measures to probability measures. Since all measures p € rca(€)) have finite total variation,
we can divide a measure p € rca(Q2) by its total variation ||ul],.,q) to get a probability measure
m € P(2). Clearly, the measures p and 7 are zero on the same sets. Hence, the Radon-Nikodym
derivative % must exist. This allows us to split the measure p into a function and a probability
measure. To make this more precise consider the map

1rea — — — i i

Tpp is well-defined for all p € rca(f2), and (a,7) := Tp satisfy
dp(w, b) = a(w, b)dr(w, b) (118)
for all (w, b) € Q. Furthermore, the total variation measure |u| satisfies
d|p)(w,b) = |a(w, b)|dr(w,b). (119)

In eq. (118) 7 is a probability measure, and a can be seen as an associated density. With this
formulation we can write

7l = L W (a(w, b), w, b)dr (w, b). (120)

Since the term a(w,b) corresponds to the size of the measure, we can effectively penalise it by
choosing W. To work with the infinitely wide neural network spaces that use this formulation, we
define the tilde versions of Kg, Mg,f and ./\Q?’W.

Definition 5. Let ¢ be a fized activation function, W : R x Q — R be non-negative and set
f(g : ((Q — R) x rca(Q)) — L*(X,)p), (a,7) — (aj — L a(w,b)p({x|w) + b)dr(w, b))

Mif = {(a,ﬂ) =Tpu ‘ perca(Q), Vee X : f(z) = IN(;ZTPM(;U)}.

Page 26 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

The special case that f(x) = 0 is denoted]\Zf(ﬁo. The space (L{z:v)‘(/,p, H”Lg;fvp) given by

Now = {f ;X - R ‘ 1l < oo}

Iz, = it | Wla(w,b) v bdr(wb)

e
(a,m)eMy’ .

18 called a tilde infinitely wide neural network space. If ./\7;)1 is written, it is meant that W (w) = 1.

Remark. In the definition of the tilde spaces we have used (a,7) = Tpp. Although one could argue
that one should consider all densities a : 2 — R from some LP space with m as measure, this is not
needed. Since the proof for this equivalence is similar to many proofs in this work and the notation
for this all density function version is more cumbersome to write, it will not be used.

If W is absolutely homogeneous in its first argument, the tilde versions match the originals.

Proposition 3.5. Let ¢ be a fized activation function. If W : R x @ — R a non-negative function
which can be written as

W(e,w,b) = |c|W(w,b) (121)
for some non-negative W : Q@ — R for all (¢, (w,b)) € R x Q, then J\~/¢?W ~ Nd?,W.

Proof. Let pe Mgf for f e NVS‘ZW’ then the pair (a,7) = Tpu satisfies

K (a,m) = K§p = f, (122)
and thus
”fHJ\Tjﬁw < JQ W (a(w,b), w, b)dn(w,b) = JQ |a(w, b)|W (w, b)dr(w,b) = JQ W (w, b)d|u|(w, b).
(123)
Taking the infimum of e M q? 7 gives
17l <17y, (124)

Let (a,m) € Mﬁf for f e ./\N/gfw, then the measure p given by
dp(w, b) = a(w, b)dr(w, b) (125)

for all (w,b) € Q satisfies }
K% = K (a,m) = f (126)

and thus
1£llns,, < L W (w, b)dpu(w, b) = L law,)| (w, b)dr(w, b) — L W (a(w, b), w, b)dr(w,b). (127)

Taking the infimum of (a,7) €]\Zfézf gives
e, < Iflge,- (128)

Q.E.D.

Page 27 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

If W is higher order absolutely homogeneous, then we get a nested structure.

Proposition 3.6. Let ¢ be a fired activation function. If Wp : RxQ — R is a non-negative function

which can be written as R
W, (e, w,b) = |e[P W (w,b) (129)

for some non-negative W € L*(Q) for all (¢, (w,b)) € R x Q, then J\N/:?’Wq c J\N/’;)W forallg=p=>1.

Proof. Suppose f € ./\N/(;?Wq, then there must be a pair (a,m) €]\Zfd?f such that f = f(q?(a,w). For
this pair (a,7) we have that

0l) = f la(w, B)PW (w, b)dr(w, b)
-| a(w, P (w, Bdr(w,) + [a(w,b) [PV (uw, b)dr(w,b)
Q,|a(w,b)|<1 Q,]a(w,b)|>1

<f W (w, b)dr (w, b) +J la(w, b)|7W (w, b)dr(w, b)
Q,la(w,b)| Q,|la(w,b)|>1

< Wl peo () + ||quLq(Q,7r,W) < @

Hence, (a,7) € Md?,ﬁ and thus f e Nﬁwp. Q.E.D.
Q= A9 7 7 i
Note that in proposition 3.6 we have N° W, S Nqb,W,, and not N¢7Wq = N, - This is because
there is no single constant C' > 0 such that
. < C ~ 130
£l <Clfls, (130)

for all NQ . If take W to be a constant C' > 0 in proposition 3.6, then we know from Holder’s
mequahty that
lall oy < 0l agcrmy (131)

for all (a,7) € M2(¢, f) for f e wa and 1 < p < ¢q. However,
) q

I llse, < Cllallzno,m (132)

"Wp

The combination of eq. (131) and eq. (132) give the inequality

71, <1155 (133)

after taking the infimum over (a,7) € M®(¢, f). This shows that even in this simple case we do
not have an embedding. If we allow for p’th roots around the intergral in the norm, we see that an
embedding is possible. This case has been considered in [E et al., 2021] for the case that 2 = S4+!
and ¢ = 01. They show that when we consider using the norm

inf a 134
o ol (134

Page 28 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

instead of

inf all? 135
o Nl (135)

that each p > 1 gives the same value for the norm. This result is very specific to absolutely homoge-
neous activation functions. This includes all the higher order ReLU. Hence, for those functions we
can use the p =1, p = 2 or p = o cases, which are typically the most simple cases.

Another result for the Barron spaces with the ReL U activation function is that they have a kind of
£2 norm.

Proposition 3.7. If ¢ = o1, Q = R? and
W:Rx Q= R, (a,w,b) — [af* + (|[w]| +[8])*, (136)

N ~ RO
then N¢>,W ~ B¢.

. “~ Q ~ “ Q .
Proof. We will show that N¢,VT/ >~ N¢,VT/¢ with

Wo(a, w,b) = |a|Wy(w,b). (137)

The proof then follows from proposition 3.5.

Due to the homogeneity of o7 we have that

@) = | atw Doty + Darw.d) = [Dol +pianwn) 3

Q

for all v > 0 for all f € Ng W, If we consider the map
07:Q - Q, (w,b) — (yw,b), (139)

then we have (%,@;7‘(‘) €]\Zfézf whenever (a,m) € M(?,f. The value of v which minimises the
associated norm is the value that minimises the function

2

21+ (ywll +]yd))? (140)

9(7) = 5

for fixed (a,w,b) € R x R? x R. This is achieved for
| lal
SR R L — (141)
[[wl]| + 18]

2
+ ([wl + 1b])*d®%m(w, b) = fﬂ |a(w, b)|([[w]| + [b))dm (w,b). (142)

Therefore,

s, < |
¢, W QO

Taking the infimum over (a,r) € M$ 5 gives

<l 14
I le, < Ilo (143)

a(w,b)

Page 29 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

For the other way around we use a different map

07:Q—-Q, (w,b)—(). (144)

= |

w
’y 3

If (a,m) € Mgf for f e Ng i+ then by similar arguments as before (, é;);:ﬂ') €]\;[gf. Hence,

i, < [Pt 0ol + ey etw.8) = |l b) + (] + p)Rdn(w). (145

Taking the infimum over (a,r) € M$ 5 gives

Ifllge < Mlflla - (146)
¢ Wy * W

Q.E.D.

This result only works when Q = R?. When this is not the case, we run into problems whenever the
minimising probability measure 7 has an associated density a that satisfies

a(w,b) > |lwl| + [b] (147)

for some (w, b) € Q. The push forward maps ©7 are then not guaranteed to map back into €2, which
leads to invalid probability measures.

3.3 Reproducing kernel Hilbert spaces

The tilde formulation with a probability measure 7 € P(Q2) and a density a : @ — R allows us to

establish a link between the reproducing kernel Hilbert spaces.

Definition 6 (Reproducing kernel Hilbert spaces). Let A be some arbitrary set, and let
k:AxA->R (148)

be a symmetric, positive definite function. k is called a kernel, and the Hilbert space H consisting of
functions of the form
fiA—R, @ k(@) (149)

is called a reproducing kernel Hilbert space, RKHS for short.

In order to show the link we will use the kernel trick.

Lemma 3.0.2. [Kernel trick] If u: A — B for an arbitrary set A and a Hilbert space B, then

k(z,y) = Cul@)|u(y)) (150)

is the kernel of a reproducing kernel Hilbert space.

Page 30 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

With this lemma we can construct the reproducing kernel Hilbert spaces of interest.

Proposition 3.8. For a fized probability measure w € P(Q)), a nonzero measurable weight function
W and an activation function ¢ € L*(Q,), the function

k(z,y) = L ¢((alw) + b)p((xlw) + D)W ™ (w, b)dr(w,d) (151)

is the kernel of a reproducing kernel Hilbert space.

Proof. If we consider a fixed probability measure 7 € P(Q), then L?(Q2, 7, W) is a Hilbert Space and
the function

u: X — L*(Q,m, W), x— ((w7 b) — d({x|w)y + bYW (w, b)) (152)

satisfies the requirements for lemma 3.0.2. This means
k(z,y) = (ul@)|uy))L20,w) = L $((alw) + b)d((ylwy +)W (w, b)drm (w, b) (153)
is the kernel of a reproducing kernel Hilbert space. Q.E.D.

We will refer to the map u of proposition 3.8 by kg’/ﬂ, and to the RKHS as ’Hk;v . By definition, for
each function f in the reproducing kernel Hilbert space Hjw , there is an a € L?(Q, 7, W) such that

f(z) = <a|kg’/ﬂ>L2(Q’¢7W) = JQ a(w,b)p({x|w) + b)dr(w,b) (154)

and the corresponding norm is

. . 2
1y = Bl Nollizanwy = iaf) laCw, BFW (w, b)dr(w,b). (155)
At first glance this does not look like the norm of a A/ fvi/ due to the L? norm in the infimum, but
if we take R
W (a,w,b) = |a]*W (w,b), (156)
then we see that
_ = inf 1
g, = it Wl (157)

for all f € /\foﬁ/ This shows that JV;’W is a union of RKHS, and that the norm of f in that space
corresponds to the RKHS that can best represent f. Since the Bach and Barron spaces have

W (a,w,b) = |a|W (w, b) (158)

with their respective weight functions W, they can be seen as L!-like version of a union of RKHS.
Note that this link is not a new result. A similar result has been shown in [E et al., 2021]. The
difference between what was proven before and what is shown here is that we consider other weight
functions than W(w,b) = 1.

Page 31 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

3.4 Activation Functions

Up to this point we have mainly looked at the weight function. We will continue with looking
at the activation function. In other works on Barron spaces the focus was on ReLU. This was
done because ReLLU has the nice property of homogeneity. Activation functions in general do not
have this nice property. In this section we discuss relations between various spaces with different
activation functions. We will start by perturbing the activation function a little, and work our way
up to showing that the Barron space with ReLU as activation function can approximate the most
functions of any activation function in use.

First, we show what happens when the activation function or its input is scaled or translated. We
will do that by proving 4 lemmas in a row.

Lemma 3.0.3 (Consistency — scaling). If ¢(x) = cy(z) for some activation function v and ¢ €
R\{0}, then Ny w is isomorphic to Ny w .

Proof. Take i€ Mg, for f e Ny, and set v = cu, then

Kjv=Kiu=F. (159)
Hence, v € My, y. Furthermore,
£z, < e = | Wbl = el | Wl b)dlul(w.h) = fllila.— (160)

Taking the infimum over v € My 5 gives

7llys,, < lellfle,, (161)
and thus f € ./\/;/,71/[/.
For the reverse direction observe that i (z) = %gﬁ(x) and apply the just proven.

Q.E.D.

Lemma 3.0.4 (Consistency — magnification). Let ¢(x) = (cx) for some activation function ¢ with
0<c<1, and let W be a weight function. If W is sublinear, then Nﬁw — XW' In particular,

NGy = NG
Proof. Take u € Mgf for f e /\/’ﬁw and set v = ©4p along the map
0:0—cQ, (w,b) — (cw,ch), (162)

then
Kv =K =f. (163)

Hence, v € Mgg} Combined with ¢2 < Q we have v € Mq?f.

Page 32 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

If W is sublinear, then
£l < [WD),

_ J W (cw, cb)d]p| (w, b)
Q

(164)
< | Wbl
Q
= [l go-
Taking the infimum over u e M f/} 7 gives
1£llxg,, <Iflxz,, (165)
and thus f e Ny Q.E.D.

Lemma 3.0.5 (Cousistency — translation). Let ¢(x) = (x+¢) for some activation function 1 with
ceR, and set Q; = U x [-C,C] and Q3 = U x [-C + ¢,C + ¢] with U < R? and C > 0, then
Vit~ v

[P

Proof. Take e My s for f € Vy and set v = ©xpu along the map

0:0Q1 — Q, (w,b) — (w,b+c), (166)
then
KPPy =K'= f. (167)
Hence, v € My, y. Furthermore,
1fllyer < ¥llreaan) :J djv|(w,b + c) :f dpl(w, 0) = [l ull;caey)- (168)
k4 Ql 92

Taking the infimum over pu € My ¢ gives
Ifllyer < IFlly0e, (169)
¥ P
and thus f € Vfl.

For the reverse embedding observe that ¢ (z) = ¢(x — ¢) and apply the just proven. Q.E.D.

Lemma 3.0.6 (Consistency — offset). Let ¢ be an activation function such that for some (0,a) €
we have ¢(a) # 0, set Y(x) = ¢ + ¢(x) with c € R and let W be a weight function that is positive
except for possibly at (0,a), then Ny w is isomorphic to Ny w. If W vanishes at (0,a), then the
isomorphism is isometric.

Proof. Take pe My ¢ for f € N&W and set

dv(w,b) = c/;((g))déoya(w,b), (170)

Page 33 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

then
f(x) = L o((alw) + D)dpu(uw,)
= JQ P({x|w)y 4+ b) + edu(w, b)

- f $((xlw) + b)dp + cJ dp(w, b)
Q Q

= Kyute) + P ya)

= X M Zr|w w
— Kyla) + L [otCat) + by o)

— Kyn(a) + Kyv(a)
= Kyl +v)(a).

Hence, p + v € My, ;. Furthermore,
1
H/’LHrca(Q) < EHIJ’HW,Q (171)

where ¢ > 0 is the lower bound of W. This implies that
£l < [Wbl)

< JQ W (w, b)d|p|(w, b) + J-Q W (w, b)d|v|(w, b)

p(82) 500

c———=

Y(a)
f W (1, b)ddo.a (w, b)
Q

:J W(w,b)d|u|(w,b)+f W (w,b)d (w,b)
Q Q

cp($2)
¥(a)

= [Wt D)+ | 2w 0.l
Q

C
< [wwbdlelw.) + W\W(O,)l ety

_ J W (w, b)d| | (w, b) +
Q

¢
< |1+ |=—=|W(0,a) I .
(14 |55 7 0.0) b
Taking the infimum over € My 5 gives

c

g, = (14| 2o W0,) U, (172

and thus f e N$W~

To show that NI?,W — NQW, it is sufficient to observe that ¢(x) = —c+ ¢ (x) and to apply the just
proven. Q.E.D.

Page 34 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Lemmas 3.0.3 till 3.0.6 show that basic operations on the activation functions do one of two things.
Offsetting and scaling doesn’t change what functions are in the spaces, but changes the norms with
a certain factor. Magnification and translation change the underlying parameter space, but do not
change the norms. These agree with the intuition of what would happen.

Secondly, we show what happens when an activation function can be constructed using the contin-
uous version of a span of another activation function.

Lemma 3.0.7. If there exists a y € rca(U) with U = R? such that ¢(x) = §, ¥ (wz + B)dy(w, B),
then Vd)Ql — Vdfb with

Qg—{(ww,wb—i—/ﬁ)‘ (w,b)te,(w,B)eU}. (173)

Proof. Let ue My ¢ for f € By. This means that
fa) = L o((alw) + b)dpu(w, b)
- f b ((xlwy + b) + B)dy(w, B)du(w, b)
0, JR2
- f P((elwwy + wb + B)dy(w, B)du(w, b)
0, JR2
- j | UlCal) + wb+)@) (1),)

_ L W((aw) + b)dv(w, b)

where v = ©4(y ® p) is the pushforward along the map

0:Q; xR? - Qy, ((w,b), (w,B)) — (ww,wb +). (174)
Hence,
||f‘ Vi < HVHrca(Q) < H’}/Hrca(Rz)Hlu’Hrca(Q)' <175)
Taking the infimum over p1 € My ¢ gives
Hf“Vw < ||7Hrca(]R2)Hf||V¢‘ (176)
Q.E.D.

Thirdly, we show that the Barron spaces with any sufficiently smooth activation function embed into
Barron space for ReLU. The smoothness condition includes most of the activation functions used in
practice.

Theorem 3.1. If ¢ € C*(R), then Bfg — B(S,dﬂ,

Proof. We will show that his is true by showing that there exists an {25 such that
By — B, (177)

Page 35 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

and then we can use proposition 3.2 to finish the proof.

To prove eq. (177) recall that X' is compact and thus bounded. This means that there exists a
constant Cr > 0 such that

[Kz|w) + b] < Cr(1 + |Jw|| + |b]) V(z, (w,b)) € X x Q. (178)
Since ¢ € C(R), we have by theorem 4.1 that for given (w,b) € Q

Cr(1+[|wll+16])

P({xlwy+b) = ¢(0)+51¢(0)(<zlw>+b)+L *(t) <0(<wlw>+bt)0(<z|w>b+t)>dt
(179)

for all z € X. After the change of coordinate 0y, yu = t with 6,5 = (1 + ||w|| + |b]), this becomes

Cr 52¢(9w,bu)

d({x|w)+b) = ¢(0)+0¢(0) (<x|w>+b)+f0 <J(<m|w>+b—9w,bu)—o(<m| —w>—b+9w,bu)) du.

ew,b
(180)
Using lemma 3.0.6 we can take ¢(0) = 0 without loss of generality. Next, define
% = {aaw a0~ ust) | (00 € .t 0. Cnloxe e (1,13, (181)

and observe that €y € . Let e My ¢ for f e B4, and consider the maps

@1 - QQa (wab) = (—’LU, _b)
0% : 0y x [0,C]) — Qq, (w,b),u) — (w,b— Oy pu) (182)
63 : Ql X [070] - QQa ((wab)7u) = (7w7 7b + ew,bu)'

Use these maps to construct the measures

v1 = 09(0)u
Vo = —8¢(0)@71¢u
2
ns((w9) 1) = AP 3 2) (), (183)
Vy = @3%1/3
Vs = —(9:;&1/37

where) is the Lebesgue measure on [0, C]. For the first two measures, v; and vg, we have

f o ((lw) + b)d(vy + v2)(w,b) = f 26(0)((alw) + b)du(w, b). (184)
Q Q
For the last two measures, v4 and vs, we have

Cr 92 u
fa(<x|w>+b)du4(w,b): J f %a(mwwb—aw,bu)dudu(w,b) (185)
Q QJo w,b

and

Cr 52 u
J o({z|lw)y + b)dvs(w,b) = — f J %U(@d—z@ — b+ Oy pu)dudp(w, b). (186)
Q QJOo w,b

Page 36 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Hence, the measure
V=V +UVy+Vs+ U5

satisfies

f(x) = j H((alw) + b)dpu(w, b) = j o ((elw) + B)du(w, b).

Furthermore, for v and 15

1l ., = Ivellw, 0, = 0" Ol o, < 19lca@ lelw, o,

and for v4 and vy

Cr
AT e |
QJo

Cr
<llesqe [| ol + 1o = B dudul (.

82¢(9w,bu)

0., (lwll + [b = 0w pul)dud| u|(w, b)

Cr
<lolengey || ol 101+ 0 pul)dual ol
1
= Illeagey | Calholl + o) + 5CHl6u oldlud)

1
< max{Cr, 5O o2y Il 0

Combined this becomes

5

1
It < W, < D3 Wil 0, < 2(1+ max(Cr, 563 6l il o,

i=1,i#3

Taking the infimum over p € M(? 7 gives
L
[fllg2e < 2| 1+ max{Ch, icR} ||¢HCZ(]R)HJC“B§}'

This means that f € B2, and that eq. (177) holds.

Proposition 3.2 implies that
B, (92) — By (SH1).

By transitivity of embeddings eq. (177) and eq. (192) show together that.

By(Q) < B, (S*).

(187)

(188)

(189)

(190)

(191)

(192)

(193)

Q.E.D.

Lastly, we show that there exists an ordering of the Barron spaces with the higher-order ReLLU
activation functions. This result is distinct from theorem 3.1, since in general the higher order

ReLU are smooth enough but not bounded.
Theorem 3.2. If a = 8 > 1 with o, 8 € N, then Bf,za — B, (S4+1) for all Q < RI+L,

Page 37 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Proof. Proposition 3.2 states that

B — B (194)
for all e N and Q € R+, If we can show that
BE B2 (195)
for some < R41, then
d+1
B — B (196)

follows by alternatingly applying eq. (194) and eq. (195). Hence, to prove the statement it is sufficient
to prove that eq. (195) holds.

By the assumptions on X’ there exists a closed ball Bg(0) of radius R > 0 around the origin such
that X < Bg(0) for sufficiently large R. Set C' := 1 + R, and

Q—{(mb—t)’(w,b)eSd“,te[O,C’]}. (197)
Observe that .
o) = (3+1) [osty-vdt WyeRr:pl <C. (198)
0
and that
|[{zlw)y+b <C VYrelX (199)

for given (w,b) € S¥*1. Furthermore, recall that
og(cx) = Pog(r) Ve=0,zeR (200)

by the homogeneity of o. All this together means that for p € MEZJ: 5 with f € Bir::l and for all
z € X we have that

f(z) = Ldﬂ op+1({z|w) + b)dp(w,b)
C
- sz(ﬂ + 1)JO op((x|w) + b — t)dtdu(w, b)
C
= Ldﬂ L op((x|w) + b — t)dtd((8 + 1)) (w, b)
— J[O S og({zlwy +b—t)dA® (8 + 1)) (¢, (w,b))

= fQ og({z|w) + b)dv(w, b)

where X is the Lebesque measure on [0,C] and v := 4 (A ® (8 + 1)p) is the pushforward of the
product measure A® (8 + 1)u along the map

0: [0,0] xS 5 Q, (t (w,b))— (w,b—1t). (201)

Observe that

1l goass < f (lwll, + [b])Pdu(aw, b)
oB+1 o)

Page 38 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

C
@) || ol 1ot a0,

C
<G+ [l b o)

C
- (ﬁH)JsmL (1 + £)%dtd| | (w, b)

B (1+0)*+ -1
G)

~(avera-1) [aulw
- (@0 1)l

Taking the infimum over u e M gt 7 gives

OB+41,
I7lag, < ((1 Loy 1)|| g (202)
Equation (202) shows that eq. (194) holds. Q.E.D.

Theorem 3.1 can be seen as a stronger version of theorem 1 in [Li et al., 2020], and theorem 3.2 an
extension thereof. The authors show that shallow neural networks with an activation function that
satisfies

JR 1026()|(1 + J2])de < o0 (203)

can be approximated well by a shallow neural network with ReLU as activation function. This
requires that the second derivative exists, is bounded and decays fast enough. Theorem 3.1 and
theorem 3.2 show that fast enough decay is not needed and in some cases boundedness isn’t either.
The benefit of their method is that they are able to compute the Rademacher complexity for the
class with activation function ¢ very easily.

In conclusion, we see that the Barron spaces belonging to almost all activation functions ¢ in use,
regardless of their parameter space {2, embed in the Barron space with ReLLU activation function on
the unit ball.

3.5 Duality theorems

A (pre)dual of a vector space can help us find alternative formulations of problems, and may help
us get a deeper understanding of the vector space itself. In this section we determine the dual and
predual of V¢Q. Both rely on the concept of the annihilator.

Definition 7 (Annihilator). The annihilator of a closed subset U of a Banach space Z with dual
Z* is given by

Ul={z*eZ*

VzeU:2%(z) = 0}. (204)

Page 39 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

3.5.1 Predual

Since Vf is a quotient space of rca(€)) we can determine the predual using the following lemma.

Lemma 3.2.1. Let V be a Banach space and U some closed subset of V', then

VUt = U*. (205)

Proof. Define
T:V¥/UL - U*, [f]— (v - Tip(v) = f@)). (206)

T is linear by linearity of the functions in V*/U~*. To show T is well defined, let [f] = [f'] € V*/U*.
Then f — f' € U*. Hence, for all v e U

Tify(v) = Tip(v) = T gy (v) = (f = f)(v) = 0. (207)

We prove that ||T'|| = 1. For the smaller or equal, let f € U*. For every extension g of f to V*, we
have

{51l = i0f,llg + hllys = inf sup|(g + k))| > inf sup|(F +K)(o)| = sup | F@)] = [l

veV velU
(208)
However,
(Tt = I Ti s = 1F e (209)
Combined this gives
HT[g]HU* < llgllly# e (210)

For greater or equal, let f € U*. By Hahn Banach there exists a g € V* such that for all ue U

flu) = g(u) (211)
as well as
£l = llgllys- (212)
Then
gl e < llglvs = 11F s (213)
HT[f]HU* = ||f||U*
Combined this gives
HT[Q]HU* = HT[f]HU* = HfHU* = ||[9]||v*/Ui- (214)
Q.E.D.

Lemma, 3.2.1 shows us that we can identify the predual of Vy with U if we can identify M, 420 with
the annihilator of U.

Page 40 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Lemma 3.2.2. If Q is a compact set, then the annihilator of
Cfca(ﬂ)(?() = {f e C(N) ‘ Jverca(X): f(w,b) = f o({x|w) + b)dl/(ac)} (215)
x

is Més),o for ¢ € C(R).

Proof. The annihilator of C’fm(m (X) is given by

(o) = { € rea(@ >1er @) [S bdutwn <o) 10

We will show that (C’TW(Q)(X))J— = MXO by showing inclusions. Observe that for p € rca(f2) and
v € rca(X) by Fubini

f f o((zlw) + b)du(w, b)dv(z J f d({z|w) + b)dv(z)du(w, b), (217)
which will be used in both directions of the proof.

First, we prove the right inclusion. Suppose p € (Cfca(m(X)) then for all f € Cma(Q (X) it holds
that

JQ F(w,b)dp(w,b) = 0. (218)
For each of these f there exists a v € rca(X) such that
flwh) = [oaluy + biv(a). (219)
Hence,
0= | | otcaluy+ Davta)dutw.b) = | [olcalw)+dnwbyiv@). (20

For this to hold for all v, it must be that

JQ o(z|w) + b)dp(w,b) = 0. (221)
This implies that p € Mq?,@'
For the left inclusion, let u € MXO. This implies that

JQ o({x|w) + b)du(w,b) = 0. (222)

For each f € C’ Q)(X) there exists a v € rca(X) such that

flw,b) = L H((elw) + b)dv (). (223)

Page 41 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

By Fubini
L f(w, b)dp(w, b) = L L (el +b)du () dps(w, b) = L L &((elw)+b)dpu(w, b)dw(x) = 0. (224)
This implies that u € (Cfca(g)(X))L. Q.E.D.

Theorem 3.3 (Bach predual). If Q is a compact set, then a predual of V(;) is C’fm(m(X).

Proof. In proposition 3.3 it was proven that
VQ? ~ rca(Q)/Md?’O. (225)

The combination of lemma 3.2.2 and lemma 3.2.1 gives

rea(Q)/ Mgy = (CL.,) (X))*. (226)

Combined this becomes
V2 = (CF o) (X)), (227)
This implies that C7 o (X) is a predual of V. Q.E.D.

Consider a set of points z; € X. C,,?ca(g)

these points. The Bach functions are dual functions of those. It is unclear what the implication of
this is.

(X) can be seen as all continuous functions created from

3.5.2 Dual

For the dual we use another lemma associated to quotient spaces.

Lemma 3.3.1. Let V' be a Banach space, V* its dual and U some closed linear subspace of V', then

(V/U)* = U™ (228)
Proof. Let f € U*, and define

T UL S (VU [([v] o Ty([o]) = f(v)> (229)

for all v € Z. Since f € V*, f is linear and so is T¢. To see that T is well defined, suppose that
[v] = [v']. This means that v — v’ € U and

0=Tf([v—2T) = f(v) = F(). (230)
Therefore, f(v) = f(v').

Page 42 of 103

3 INFINITELY WIDE NEURAL NETWORK SPACES

Finally, we prove that ||T'|| = 1. For the smaller or equal, let [v] € V//U such that [|[v][|}; ; < 1. Fix

an € > 0, f € U, and recall that for all u € U we have that f(u) = 0. There exists a y € U such
that ||v —y||y <1+ €. Observe that

Ty ([zD] = [f @) = [f(z) = fW)| = [f@=y)| < [[fllvxllz = ylly <[flly1+e). (231)
Hence,

HTfH(v/U)*

IT|| = sup <l+e (232)

revt I llv«

Since € was arbitrary, || T < 1.

For the larger or equal, let [v] € V/U such that ||v|,, < 1. By Hahn-Banach there exists a function
f € V*such that f(U) = {0}, f(v) =1 and | f|| y« < 1. Observe that

Ty ([oD = [f(v)] = 1. (233)
Hence, |T]| = 1. Q.E.D.
Theorem 3.4 (Bach dual). Let Q be compact, and let
Ty : V= rea(Q)/M, f— MY

T« (rea(Q)/ME))* — (ViH*, f* — (g — f*(T29>) (234)

Ty : (MZ)* — (rea(Q)/M2y)*, f ([v] Ty (]) = f<v>).

The dual of Vy is isometrically isomorphic to (MQO)J‘ using the map

Ty (Mgo)™ — (Vi))*, [Ta(T7). (235)

Proof. Since rca(2)/ M$0 satisfies the requirements for lemma 3.3.1, it follows that 75 is the isomet-
*

ric isomorphism between (rca(Q) /MgO and (Mg ()*. Hence, to show that T is the isometric

isomophism between (V¢§2)* and (M(;%O)L, it is sufficient to show that 77 is an isometric isomophism

between (VQ?)* and (rca(Q)Mdgo)*.

In proposition 3.3 it was established that 77 is the isometric isomorphism between V(z? and rea(Q2)/M (?,0.
*

T is the adjoint of T, and thus it is an isometric isomorphism between (V¢Q)* and (rca(Q) / Mﬁo
by the properties of adjoints [Rudin, 2006]. Q.E.D.

The annihilator of MXO is a subset of the dual of rca(Q2). This dual space, rca(2)*, is not a nice
space. It is unclear whether (M gO)L is a nice space, and what the implications are if it is.

Page 43 of 103

4 TAYLOR AND RELU

4 Taylor and Relu

In this section we will show that the Barron spaces with (higher order) ReLU are strongly linked
to Taylor expansions and in particular the integral remainder. We will show that this is true for
certain functions from R — R, but the strategy used does not generalise to functions from R% — R.
However, applying the 1-dimensional Taylor on the exponential allows us to do an expansion for
certain functions from R? — R in the Fourier domain.

4.1 Single variable functions

In proposition 4.1 we have the conditions for the Taylor expansions of functions from R — R and
the resulting shape of the expansion.

Proposition 4.1. Let k€ Z, and let f : R — R be a k times differentiable function on a € R and
0% f be absolutely continuous on the closed interval between a and x, then f(x) can be represented
equivalently as

kA a) T A(k+1)
f) =32 J;() o —ayi+ f %@; — 1), (236)
Zi7) .

a

Proof. First note that 0(™+1) f exists for all m < k as an L'([a, 2]) function, since 0™ f is absolutely
continuous on the closed interval between a and x. The proof follows by induction.

Base case: Suppose k = 0. According to the fundamental theorem of Calculus

f(x) = f(a) + J o' f(t)dt. (237)
This shows that the base case satisfies the required equation.

Induction step: Assume k € Z and k > 0 and that the statement is true for £ — 1. This means that

k=1 ~;
0'f(a) A0 k-1
= —a) — 2
f(2) ;} A (x —a) +L (k—l)!(x)P dt (238)
holds. Integration by parts on the integral gives
v k() ko1, _ O°f(a) N i) K
—t t = — ——=(z —t)"dt. 2
L(k—lﬂ(x Pt = St + [w0t (239)
Substitution of eq. (239) into eq. (238) gives
- 7' (a) S 0]
flx) = Z 1 (x —a) + f — L (x —t)kar. (240)
= o k!
This shows that the expansion holds for k£ as well, and thus for all k € Z_ . Q.E.D.

Page 44 of 103

4 TAYLOR AND RELU

To link the Taylor expansion to ReLU we take a look at the integral form of the remainder. Using
the identity

¥ = op(z) + (=Dkop(—z) VoeR? (241)
we can write the remainder as
f %(ag —t)Fdt = fc % (ak(x —t) + (=DFop(—z + t))dt. (242)

Although this introduces the higher order ReLU, the limits of integration are dependent on x. For
it to be written as a Barron function, we need the limits of integration to be independent of z. A
slightly different approach gives us lemma 4.0.1. The idea is to construct a pair of higher order
ReLU such that their integral over [0, z] matches the original integral, and extend the integral to a
fixed endpoint with the integrand zero on the extension.

Lemma 4.0.1. Let k€ Z,, z,¢ > 0 such that |z| < c and f € L'([—c,c]), then

f(z)t f(u)du — J oz —) () + (— 1) Lo (—2 — u) f(—u)du. (243)

0 0

Proof. Depending on the sign of z we can write the left hand side equivalently as

JZ(Z —)t fu)du = {(_1)k_1 fo(=2 = lcuf(-u)du —c <

z
0 SS(Z —u)* 1o f(u)du 0<z< (244)

where the term (—1)*~! restores the sign for even k. Since both representations are zero in the
domain of the other, we can add them to obtain

r(z)k () du — Jc(z)T f(u) 4 (—1)F s —)T f(—u)du. (245)

0 0

Note that

(z —)l ,oy = on(z —),
(—z—u)* o, = Jz(—z —u). (246)

Substitution finishes the proof. Q.E.D.

The Taylor remainder can be written as a shallow neural network using lemma 4.0.1.

Theorem 4.1. Let k€ Zy, ce Ry, f: R — R be a k times differentiable function on [—c,c], and
% f be absolutely continuous on [—c,c|, then f(z) can be represented equivalently as

il AN

k} 7 C
f@) = 3 s & o - 006 50 + (1) an(oa - 00 - (240
i=0
for all x,a € [—c¢,c].

Proof. According to proposition 4.1 we can write f(x) as

k 5it(a) x A(k+1)
fl@)=)] ¢ J;()(x —a)’ +J aT,f(t)(x —t)kdt. (248)
= !

a

Page 45 of 103

4 TAYLOR AND RELU

The integral can be written as

T o F(t) k I (k+1) k-1 (k+1)
T(x —t)¥dt = Pl oz —1t)0 f@)+ (=) op(—x —1t)0 f(=t)dt (249)
a : +JO
according to lemma 4.0.1. Substitution finishes the proof. Q.E.D.

Corollary 4.1.1. Letce R, f: R — R be a differentiable function on [—c,c], and o' f be absolutely
continuous on [—c,c], then f(x) can be represented equivalently as

C

£@) = f(@) + 300 @(—a) + 5 | ole =00~ o(-z - 0P f(-t)de (250

0

for all x,a € [—c¢,c].

Corollary 4.1.1 shows that a shallow neural network with ReLLU as activation function approximating
a 1D function can be interpreted as a first order Taylor expansion with an approximation of the
remainder.

4.2 Multivariate functions

When dealing with shallow neural networks though, we are interested in functions from R? — R not
just R — R. In this section we will repeat the steps from the previous section for d > 1 to show that
similar results do not hold for multivariate functions in the time domain: The Taylor expansion can
be formulated for functions from C*(R? R), but the remainder cannot be written as an infinitely
wide neural network.

Proposition 4.2. Let k€ Z,, f : R — R be a k times differentiable function on some ball B,
centered at a € R? and 0% f be Lipschitz continuous on Bg, then f(x) can be represented equivalently
as

k

flz) = Z iaaf(a)(x—a)a—l— 2 k;l(x—a)af (1 —t)*0%f(a + t(z — a))dt, (251)

laj=0 |al=k+1 0

where we have used the multi-index notation for a.

Proof. Consider u(t) = a+t(x —a) and set g(t) = f(u(t)). u(t) parametrizes the line between a and
x. Observe that g(0) = f(a) and g(1) = f(z). Now we apply lemma 4.0.1 to g and get

ko 1 A(k+1)
fl@)=g(1) =] ¢ “3'(0) +L d k'g(t)u —t)kdt. (252)
i=0 :

The derivatives of g at t for j < k+ 1, which exist (as L' function for k4 1) by virtue of 0) f being
Lipschitz continuous, are given by

ajg(t) _ o’ fa(g(t))

Page 46 of 103

4 TAYLOR AND RELU

& fla+t(z —a))

otd
-y <J>0O‘f(a + itz —a))(z —)"
ja=5 %
Since L/ L)
J J:
- = L - 2
7! (a) jlal !’ (253)
substitution of the derivatives of g into f finishes the proof. Q.E.D.

In the univariate case we used lemma 4.0.1 to rewrite the integral form of the remainder to the form
of a shallow neural network. This heavily relied on the fact that the 0¥ f(¢) term was independent
of z. In the multivariate case we have 0% f(a + t(z — a)) instead. This is dependent on z, and thus
lemma 4.0.1 cannot be used to rewrite the integral form of the remainder to the form of a shallow
neural network. It is unclear whether there is another way to write the remainder as an infinitely
wide neural network.

4.3 Fourier Expansion

In the time domain it is not clear how the remainder can be written as an infinitely wide neural
network. However, it is possible to do so in the frequency domain. Recall that the inverse Fourier
transform of f:R% — R is given by

fla) = | o feyae (254)

when f € LY(RY) and f e L'(R?), and that multiplying with ¢ in the Fourier domain is equal to
taking a derivative in the time domain. Proposition 4.1 gives the Taylor expansion for real valued
functions. It is clear that this can be extended to complex valued functions, thus we can Taylor
the exponential, even if the inputs are complex valued. This would suggest that, under smoothness
assumptions of f(x), the expression

S

fRd (e“w - ZOZ<$|5>k>f(£)d£ (255)

k=

exists, is finite, and can be approximated by integral(s) over (higher order) ReLUs. To make sure
that all the Fourier terms are well-defined we require that f € %] 1

Definition 8. (Spectral Space) Let s € N. The spectral space (F, ||||g[51> is given

it = {1 R R [0 < 0}
(256)

Iz = |1+ Dl | F©)] .

Futhermore, set

Il = [el Fe0)] . (257)

Page 47 of 103

4 TAYLOR AND RELU

To simplify the notation we mostly omit the £* subscript from the norm.

Remark. Since R is finite dimensional, it does not matter which p = 1 we use for the (P in the
norm for which functions are in yf’l. Since we have several inner products between r € X and
&€ € R? in the integrals of this section, it is convenient to take p = 1 for the ¢P norm inside the
spectral space definition.

In section 6.2 we discuss what kind of functions are included in %# IS 1

We start by taking the Taylor expansion of the exponential in the inverse Fourier transform of
eq. (254).

Lemma 4.1.1. Let s € N, then there exists an R > 0 such that

) s ik & ,L's+1
el = 3 S ale)t +

k=0 "

for every (x,€) € X x R?,

llgn, r) .
L 0o (@l — we™ + (~1)* Loy (— (ale) — we du (258)

s!

Proof. Since X is bounded, there is a closed ball B of radius R such that X < B. Using Holder we
have, for each z € X and ¢ € R?, that

(K2 < Nl g 1€l 2 < RIE] - (259)
Hence, according to theorem 4.1 with ¢ = R||{||; and a = 0, we have that

-fo i ,L's+1

R lell, R _ _
G- rAe f 0u(@le) —we™ + (1) ou(— (le) — we Mdu (260)

for z € [—¢,]. Q.E.D.

After taking the inverse Fourier transform of the polynomial part Y, _, ’k—k, <x\£>k, the polynomial
part of the Taylor expansion in the time domain is retrieved.

Lemma 4.1.2. Let se N and f € 3'4’[5’1 be sufficiently smooth, then

S .k .
[X Get o f@e = 3 50 sw)a” (261)
K k=0 ™ 1Bl<s

with B a multi-indez.

Proof. The Fourier derivation identity in multi-index notation is given by

IP1EP f(e) = B F(€). (262)

Furthermore, the k-th power of the inner product of z with y in multi-index notation is given by

(aly)* = (i Inyn>k = > <z)xay°‘. (263)

n=1 || =k

Page 48 of 103

4 TAYLOR AND RELU

This means that for a fixed k

i* 5 R —
F @0 7@ = el fo - g 3 (Derwori© - X SFHOe o

|| =k || =k
Summing this over k from 0 to s and then taking the inverse Fourier transform gives the sought

expression. Q.E.D.

The main theorem follows.

Theorem 4.2. Fix s € N. If f is s times continuously differentiable on the ball B < X of radius R
and f € ﬁfﬂ’l, then there exists a measure u such that

r) = =" os({z|w w,
)= T GOS0 [ool + Bt (265)

for all x € B.

Proof. f can be expressed using its inverse Fourier transform as
f@) = | e (e (266)
Rd

Using lemma 4.1.1 this becomes

g5+ len, r . N
9= [, 2 ot fou S [T lo-ien st - Glo—e e

(267)
The first term on the right can be rewritten using lemma 4.1.2 such that
jst+1 [[3(Ppss L . N
f@) = 3 5100+ S [T ol —we + (<1 oy (= Gale) — we duf(€)ds.
1Bl<s
(268)

Call the second term on the right f . To remove the dependence on £ from the integral bounds of
the inner integral of f, apply the change of coordinate

u = [|€][t te[0,R].
As a result of this change the term corresponding to the bias depends on £.

is+1

~ R . . ~
Fla) = [l | ol = Ieloeet + (1o (= Gole) = lehtre 1V arfe)de (269

s!

Removing this using the homogeneity of o results in

t)etlelt 4 (—1)s= 1o, (— <x

Z's+1

B R
F@y =5 | e |

s!

§> — t)e et f (&) de.

1€l
(270)

os({ |

Page 49 of 103

4 TAYLOR AND RELU

Now the left hand side is real whilst the right hand side is complex. This means the imaginary part
of the right hand side must be zero. To retrieve the format of the real part of the right hand side

first rewrite f such that

f(&)de = @ dF(¢)

(271)

where F' is a signed measure encoding the magnitude of é , and 0(&) is the corresponding argument.
After substitution observe that the real part is determined by the power of s.

Z's+1 1 R
| e ol
. Rd 0

In particular,

Feo SR 2 (o (o)
fa §g (-1 5 L2 (o ((af)

When f is split into two parts

—t) cos ([[€][t + 6(¢)) +
— t)sin ([[¢]lE +0(£)) +

)t IEN+0() ()51 (—

—t)emiENt=0©) grap (€)
(272)

< ’%>) cos (—I€]lt + 0(&)))dtdF(g) s odd,
<) -0

sin (—|| €[]t + 6(¢)))dtdF(f) s even.

Jee §3 (-1 F K=o <<x\ &) —1)co (H§||t+9())dtdF (€)
fay = 4 e fr(-n i, <x\ > cos (—[[€][t + 6(€))dtdF () s odd
xr) = s+1
fiu o (=157 L < \ > sm<||s||t+e<))dtdF (€)
+S]Rd X(?(_ = HEH H < ’\|§||>) sin (—[[€][t + 6(£))dtdF(§) s even
it is clear that the measures defined by
) 1) o COS(HEHtJr@()dtdF(¢) s odd
d’“(g’t)_{()% L sm(||,g||t+e(dtdF(£) s even
dn(ent) = (—1) 7 L™ cos (—|[¢][t + 0())dtdF(§) s odd
’ (— 1)%' s1n(—||§||t+9(£))dtdF() seven
allow for f to be written as
L os({ x t)dpi(€,t) + . O t)dusa(&,t). (273)
By axial symmetry
Os t)dﬂz(fvt) = t)dl@(_&t)v (274)
R< JO RrRd Jo
and thus
t)du(w,b) (275)
Re Jo
for
dpu(§,t) = dpa (€, 1) + dpz (=, t). (276)

Page 50 of 103

4 TAYLOR AND RELU

Finally, let v be the pushforward of u along the map © given by
£

@:Rd X [OaR]_)SdX [07R]7 (gat)'_)(mﬂf)a (277)
then
~ R
f(z) = f J os({z|w) + b)dv(w, b). (278)
s¢ Jo
Substituting f back into f gives the sought expression. Q.E.D.

The measure p of theorem 4.2 satisfies

2
e < 17l vss (279)
and thus
. . . 1+ R)*
[oo = [Gl o) = [enrdutos) <255 g
B’ S [0,R] 54x[0,R] s
(280)

This means that f , which represents the remainder of the Taylor series in the frequency domain, is
a Barron function. Note that f only approximates the remainder accurately on the specific ball of
radius R. The upper bound for the Barron norm scales exponentially in s with base R. So there is
a hefty pay off between the upper bound of the Barron norm and the radius of the ball on which
the function is properly approximated.

On page 4 of [Klusowski and Barron, 2018] Barron and Klusowski discuss a similar result under
stronger assumptions. They too show state f can be written as a Barron function when f e %51
and that f — f is then a polynomial of order s. There are a few notable differences between what
Barron and Klusowski have proven and what is proven here. Barron and Klusowski take Ry = 1,
formally prove their results for s = 2 and s = 3, and state that

4]l casaxog) < I llgaein (281)

for s € N. Since the norm they are interested in does not depend on Ry, it was sufficient to consider
the case Ry = 1. The Barron norm does depend on the size of the weights and biases. Hence, the
distinction between values of Ry becomes more important. Setting Ry = 1 gives a nearly identical
parameter space), though. The most notable difference is the lack of the term % in the norm

bound of p. It is unclear where this distinction comes from.

A second paper discussing similar results is [Parhi and Nowak, 2021]. Parhi and Nowak state in [Parhi
and Nowak, 2021,theorem 23] a similar result, derived using a very different method. Their method
requires that f satisfies some growth condition instead of having finite .#%! norm. It is unknown
whether this growth is implied by the smoothness requirements or vice versa. Another difference is
that their f — f is a generic polynomial instead of the Taylor expansion of f near zero. Parhi and
Nowak show that the shallow neural network with m parameters estimating f can be interpreted
as the m best hyperplanes in Fourier space to estimate f . Hence, the y from theorem 4.2 can be
interpreted as giving weights to hyperplanes in Fourier spaces, and f,, approximating the Taylor
remainder is the best approximation using m Fourier hyperplanes.

Page 51 of 103

4 TAYLOR AND RELU

4.4 FError bound and Approximation Theorem

In this section the bound for the remainder from theorem 4.2 will be derived. First, we provide a
bound for the approximation error in the form of a direct approximation theorem, then we bound
the Rademacher complexity, and finally we combine them to formulate a bound for the remainder.

Recall that up to this point we have used two formulations for the Bach and Barron spaces; the
formulation with which we introduced them in which the functions take the form

@) = KZu(o) = | olGoluw) + Dydutu.b) (282)
and the tilde formulation in which the function take the form
@) = RE(a.m)(@) = | alw.b)olCaluy + Dr(w.b). (283)

To prove an error bound we use a third formulation. In this formulation the density a is added to
7 as a third parameter, i.e. we now consider function of the form

f(z) = K9n(z) = f ((xw) + b)dr(a, w, b). (284)
Rx 2
The right hand side of eq. (284) is an expectation of ¢({z|w) + b) with (a,w,b) ~ 7. A finite
approximation of this would be
1 m
fru(z) = — > aid((alwiy + b) (285)

i=1

with (a;,w;,b;) ~ ™. This is a shallow neural network with m neurons in the hidden layer, just
with a factor % in front. The prefactor does not limit the shallow neural networks we can consider,
since for m € N the prefactor % can simply be combined with a; into a new a;. Approximating an
expectation with an empirical average is a Monte Carlo process. These processes have the property
that the error between the expectation and the empirical average scales with the inverse of the
number of samples. Hence, we expect that the error between a Barron function and the best shallow
neural network approximating it scales with % Before we show that this is indeed the case, we will
make it more rigorous that the formulations of eq. (283) and eq. (284) are equivalent for the cases
we are considering.

Definition 9. Let ¢ be a fized activation function, W : R x Q — R non-negative and set
KPR x Q) — L*(X,p), m— (m > L ap({zlw) + b)dr(a,w, b))
M3, = {w e P(R x Q) ‘ Vee X : f(z) = Kf;w(x)}.
The special case that f(x) = 0 is denoted MJ,. The space (N3, ||||A7(§)7W) given by
N = {530 =8| Iy, <=}

Page 52 of 103

4 TAYLOR AND RELU

||f||j\7$W = well%lf 0 W(a,w,b)dr(w,b)

1s called a bar infinitely wide neural network space. Ifﬂfgl is written, it is meant that W(a,w,b) = 1
for all (a,(w,b)) e R x .

Proposition 4.3. Let ¢ be a fized activation function and W : R x Q@ — R a non-zero function
which can be written as

W (e, w,b) = |c|W(w,b) (286)
- ; ; . Ve R Vit
for some non-negative weight function W : QQ — R, then ./\/'¢7W o~ N(;s,vi/'
Proof. Consider the two maps
Tp : P(R x Q) — <(Q — R) x IP(Q)), T (f adz) (a),) (287)
R

and
T" - ((Q —R) x P(Q)) - PR x Q), (a,7) — 5, Q. (288)

The first map, Tp, splits the probability measure 7 € P(R x §2) into a measure w € P(Q2) and a integral
which depends (w,b). The second map, Tp, combines the density a and the probability measure 7
into a single product measure d, ® m by concentrating the density a using a Dirac measure.

If (a,7) € M(?f for f e./\?gfw, then

RE;TP(CL,) = J
RxQ

co((zlw) + b)d(6, ®) (¢, w, b) = J a(w, b)p((z|w) + b)dm(w,b) = f(z). (289)
Q
Hence, TF (a,7) € Mq?f. It follows that
I fllge < f W (e, w,b)d(6, ® 7)(c,w,b) = J W (a(w,b), w,b)dr(w,b). (290)
¢ W RxQ Q
Taking the infimum over (a,7) € Mg s gives

£, <Iflgs, (291)

On the other hand, if 7 € M§; for f e N;?W, then
KJTew = JQ J% ad7 Y (a)p((x|w) + b)dm(w, b)
= J J ag({xlw) + b)dﬁ(w’b) (a)dm(w,b)
Q JR
- f f ad((alw) + b)dr Y (a)dr(w, b) (292)
R JQ

- Jﬂm ag((wlw) + b)dr(a, w, b)
= f(z)

Page 53 of 103

4 TAYLOR AND RELU

by Fubini. Hence, Tp7 €]\;[(?f It follows that

1Lz, < [W] adn® (@),)an(u,b)

- JQ J]R adn*(a)

W (w, b)dn(w,b)

(293)
< f J |a|W (w, b)dx Y (a)dn (w, b)
o Jr
:J W(a,w,b)dﬁ‘(a,w,b).
Q
Taking the infimum over 7 €]\7[(;2 7 gives
Iz, < Ifllge, - (294)
Q.E.D.

Now that we have shown that the formulations of eq. (283) and eq. (284) are indeed equivalent, we
can provide an approximation theorem for the Barron spaces with higher order ReLU as activation
function. This proof follows a similar structure to that of theorem 5 in [E et al., 2021].

Theorem 4.3 (Direct Approximation Theorem). For every f € B?ﬂ and every m € N there exists

a shallow neural network .

1
Fm(@) = — > aid((alwi) + by) (295)
i=1
such that
2 N1

1f = Fmllzex,py < Bmax(l, RE)ZE (296)

as well as
Hfm||8¢ < 2||f||3 (297)

Proof. From proposition 3.2 it follows that it is sufficient to prove the statement for {2 = S+ From
proposition 3.5 and proposition 4.3 it follows that f € B?Q if and only if f € N(?W with ¢ = o, and

W(a,w,b) = |a|W,, (w,b). (298)

Suppose f € /_/'(;IW. There must be at least one m € P(R x Q) such that

fla) = KJ7(z) = JRXQ o({xjw) + b)dw(a,w,b). (299)
Let .
@) = = 3% b (ol + b) (300)

Page 54 of 103

4 TAYLOR AND RELU

with (a;, w;, b;) € m. From the linearity of the expectation it follows that

Ex[fm(z ZE [a1p({z|wi) + b1] = f(x).

Therefore, by the definition of the variance

Er[(fm(z — f(x)])Q] = Ex[(fm(z - Eﬂ[fm(x)])Z]
= V;?r fm

1 m
= V;M‘ po. 2; a;ip((z|w;) + b;)

1 m
3 Z:l Var a;¢(Cz|wi) + bi)

l Var a1d({xlwr) + by)

N

o | ottty + bPdn(a,w.b)
Q

N

1 e
o | el il +) dnta.w.b)
Q

N

1 o N
%maX(LHxII2)f jaf*(J[wll + [b])** dr(a, w, b)
Q

N

1
L max(1, Hxn”*)f laf2dre(a, w, b).
m Q

(301)

—J o({x|w) + b)2dr(a,w,b) — (JQ ap({x|w)y + b)dw(a,w,b)>2

Without the squares in the integral, the integral term would the bar version of the Barron semi-norm

of m. From Cauchy Schwartz it follows that

J|a| dr(a, w, b) (J |a|d7rawb)>.

Hence, after taking the infimum over w € Mg ; we get

Flixe

Er[(fm(z = f(2)])*] < max(L, |l **) ——=*.

m

2
L1

Using Fubini we get
ETF[Hfm - f”i?(;np] = $~p[[fm()_ ()]]
|

£ %o
< Eap[max(L, ||]**) —2]

113
= Eqp[max(L, ||o]**)]——=

2
IIfHN;{V.V

< max(1, RAY)

Page 55 of 103

(302)

(303)

(304)

4 TAYLOR AND RELU

At the same time we have, again by linearity of the expectation, that
Enlllfull g 1 = I fllge (305)

Both eq. (296) and eq. (297) are bounds of an expectation. We are interested in bounds for the
terms inside the expectations. To show that there exists at least one f,, that achieves both bounds
(up to a constant) simultaneously, we use Markov’s inequality. Define two events

) o Hf||12\7§W
6 = {11 = Tl < 3max(t,)22 | (306)
and
&2 = {Iinllsg,, <2flp, | (307)
By Markov’s inequality
Eﬂ' - 2 2
P(El) _1 7[@(_‘51) >1- [Hf meLQ()g,p)] Sz
) £ %e 3
«@ W
3max{l, R{} — (308)
Eallfmlige 1 4
P(&)=1-P(—&)>1— ——— 2% > —
2[| fll e 2
»,W
Therefore, the odds of these events happening simultaneously are
2 1
P& n&E)=P&)+P(&E)-1= §+§—1>0. (309)

Since this probability is strictly positive and Bf}a ~ N;)W, there must be at least one f,,, of the form
of eq. (295) that satisfies both eq. (296) and eq. (297). Q.E.D.

Remark. The proof of theorem 4.3 bounds E, . ,[max(1, 2]1>*)] by max(1, R2). Since p has finite
second moment, this bound is not tight. However, in practice you are more likely to know Ry than
the second moment of p.

Theorem 4.3 provides a bound for the approximation error. Although we didn’t need to go the extra
mile to prove that f,, satisfies eq. (297) for a bound for this error, this bound will be useful later
on when computing the bound for the estimation error. To bound the estimation error we need to
compute a bound for the Rademacher complexity.

Proposition 4.4. If

1 m
Broom = { € BE, | Wl = - Dl + 10 < Q. (310
i=1
then
21 2 2
Rad B, g.m < aQ(l + Ry)max{l, Ry '} M. (311)

n

Page 56 of 103

4 TAYLOR AND RELU

Proof. From proposition 3.2 it follows that it is sufficient to prove the statement for Q = S?+1.

By definition of the Rademacher complexity we get

[S]
1
Rad Bng7m = }ES,\,pn |S|EX[; Su;)Q Z kam(xk)]
m€DLs, k=1
Hf7n“5.m<Q

[S] m
1
S|EX[, s;lé)g Z Xk Z a;oq({xk|w;)y + bl)]
m oo k=1 i=1

[frmll g <Q

= Egopn

S|
1
< QESNPW,]EX[sup Z Xk0a ({xk|u) + v)]
ST L g+ ol<1 /24

On the interval [—1, 1] we have that o, is a-Lipschitz. Since

o)+l _ |
max{l, Ry}

we have

K
1
QIESNPV,LEX[sup Z XkOa((Tr|u) + U)]
S| e+t 24

|S|
1 <xk|u>+v
_ 1. R2\Eo._ n—F a\ o Pl
Qmax{l, R }Es p 9] X[|u||s‘:1|5<1kz_:1XkJ (max{l,Rx})

E
1 (glu) +v

< 1, R Eg. pn —E maxi{l. Ry}
aQmax{l, B3 }Es~p 1 X[||u|s-];15|<1k_1 Fmax(l, R}

by lemma 26.9 of [Shalev-Shwartz and Ben-David, 2014] and homogeneity of o,. Lastly,
||

1 <xk\u>+v
1, RY}Egpn —E max{l, Rx}
aQmaxil, Ry}Es~, S| X[Iullsflgﬂk:lemaX{l’RX}

15|
1
= aQmax{l, Ry '}JEg.» |S|IEX[sup 2 Xk ((xpuy + v)]

o

|S|
_ 1
= a@ max{l, RS 1}ESNP7L|S|IEX[sup 2 Xk(< (J:lk)

lull+lvl<1 =1

2log (2(d + 1))

< aQ(1 + Ry) max{l, Ry}

n
2log (2d + 2
= aQ(1 + Ry) max{1, R%} #
by lemma 26.11 of [Shalev-Shwartz and Ben-David, 2014]. Q.E.D.

Page 57 of 103

4 TAYLOR AND RELU

Armed with a bound for the approximation error and a bound for the Rademacher complexity, we
can compute an upper bound for the error between a Barron function and the best shallow neural
network with m neurons optimised over a set of n samples approximating it.

Theorem 4.4. For every f € Bffa and every m € N there exists a shallow neural network

m

(@) = D7 aid((xlwi) + by) (312)

i=1

that minimizes

3=

Z(f(xi) - fm,s(xi))2

such that for every § > 0 with probability at least 1 — o

o 1 [2log(2d + 2 [2]og (2/6
||f o fm,S”i}(X’p) < 3max{1,R§(' 1}Hf||?3”a <maX{1,R){}m + 160{(1 + R){) % =+ Gmax{l,RX} ’rf/))

over the sets of n data points x; sampled from p.

Proof. From proposition 3.2 it follows that it is sufficient to prove the statement for Q = S%+1.

From proposition 2.1 and proposition 2.3 it follows that with probability at least 1 — § over the sets
of n data points from p the bound
2 2 2log(2/0)
1f = fimnslie) < NF = FnllT2(ae) + AL Rad B, +2M — (313)
holds, where f,, minimises ||f_meiQ(X7p), fm,s minimises L 3" | (f(2;) — fnn(2))?, L is the
Lipschitz constant of £ and M is the biggest value for £. From theorem 4.3 we know that there is
an f,, such that

2

e 1113

Hf_fm’ <3 <
L2(X,p) m

|7 <211 A g, -

Q
BZ,

Hence, it is possible to restrict the space from Bf}a to

BO'OC,Q,W = {fm € Bg'za

1 m
1l = 2 laal(lwill + o) < Q}, (314)
i=1

with @ = 2| f[|ge without losing fim. Recall that for f € Bffa

|f(@)] < max{1, R*}||f||5e - (315)
With this restriction we have
2 1 I£15
17 = Fmlitace < |17 = Fuf o, <3502

Page 58 of 103

4 TAYLOR AND RELU

M= max (f- fm)? < max{1, R**}Q + ||f|[3a_ +2QII/llsg,) = 9max{L, R**}||f|3a
m€Bsy,Q,m <

2log2(d + 1
Rad By, o.m < 20||f|lse (1 + Rx) max{1l, RS} %

and for fou, Gm € Bo,.q.m(Q) that
(@) = F@)? = Gu(@) = F@)2| = | (@) = F@) + Gun(@) = F@)]|(Frn(@) = F@)) = (Ga() ~ (@)
— |Fun(@) + () — 2f (0 Hfm — (@)
< 2max{1, R}Q + ||flsg)| fn(®) = Gn (@)
< 6max{1, R}|llsg, |7n (&) = ()|

= L| fn(@) = g @)

)

where L = 6 max{1, R*}||f|[ge . Thus, with probability at least 1 — ¢ over the sets of n data points
from X sampled according to p

2
HI

Flsg 21log 2(d + 1
||f_fm,n||i2(x7p) 3max{1 RQO(} So —|—480[||f|‘59 (1+RX)H1aX{1 RQa 1} M

n

2log(2/6
+18max{1,R2°‘}||f|\%gz 2108(2/9)

Factoring out common terms finishes the proof. Q.E.D.

Corollary 4.4.1. Suppose fs is the order s remainder of f from theorem 4.2, then for every m € N
there exists a shallow neural network

(@) = D7 aid((xlwi) + by) (316)
i=1
that minimises "
1 -
=~ > (Falwi) = fn,s(0))? (317)
i=1
such that for every § > 0 with probability at least 1 — 0
o—1q (1+ Rx)*
I - < t2max(t, /Y
1 2log(2d + 2 2log (2/6
<max{1,RX} 1651+ Ry 2RICAED) 6 a1, Ba) Og(”)
m n n
(318)
over the sets of n data points x; sampled from p.
In both theorem 4.4 and corollary 4.4.1 we see that we have bounds of the form
1 1
< O(— —). 319
(—+4/2) (319)

Page 59 of 103

5 NUMERICS

1

This bound has just one term explicitly depending on d, and both % and 4/ are independent of

d. This suggest that the Barron spaces with higher order ReLU do not suffer from the curse of
dimensionality. However, just like before we also have that there is a hefty pay off between the
upper bound and the radius of the ball on which we try to estimate the Barron function.

5 Numerics

We started this work with a discussion of various errors. Later, in section 4.3 we showed that the
remainder of a Taylor expansion can be written using a Barron function, and provided an error
bound. In this section we compare this bound to what can be realised in practice. The function
whose remainder we are going to estimate is the function

fi i R>R, 2 e 3% (320)

This function is (up to a constant) the one dimensional Gaussian with mean 0 and standard deviation
1. This makes its Fourier transform easy to compute, and in section 5.1 we show that f; € f;’l.
It is also a smooth function, which means that it satisfies the requirements of theorem 4.2. In
section 5.1 we also compute the upper bound analytically. In section 5.2 we describe the experiment
based on this upper bound. Afterwards, the results of the experiment are presented and discussed
in section 5.3.

The code for the experiment can be found on github/TJHeeringa/thesis.

5.1 Error bounds

It is clear that f, is smooth and decays to zero at infinity. This means that f, € C*(R?). It is not
immediately clear that f, € %] "1 To show this we need the Gamma function I given by

I'(z) = fooo t*~te~tdt (321)

for all z € C with positive real part. This I' function satisfies
I'(n+1)=n! (322)
for all n € N.
Proposition 5.1. The Fourier transform of f, is given by
Ja(§) = Vame 3¢,

and its F51 norm as function of s is

s+1 S+].
1yl g = 25 VORT (222,

Page 60 of 103

https://github.com/TJHeeringa/thesis

5 NUMERICS

Proof. The Fourier transform of f, is given by

AGE f flx)ei€de = f)
R R
Taking the derivative with respect to £ gives

R
Using integration by parts results in

def,(6) = ¢ f b et ge — ¢ (€)

R

The general solution to this ODE is

for some ¢ € R. Since

it must be that ¢ = v/27, and thus
fg(f) =V 27767%&2-

Observe that fg is a again a scaled Gaussian with zero mean. Since ’ fg(g)’|§ |* is an even function

of £ and the interval of integration is symmetric about zero, this means

follen = |

Let ¢ = %52, then

Fofieras =2 | s - 2o | e bed

o0
s+1 _ s—1
Hfg”g?s,l =272 \/ﬂfo e CC 2 dC

Recall that

0

Fk+1) = f yFe Vdy,
0

which leads to

s+ 1

s+1
1ol o = 2% VAT (22,

Q.E.D.

Since f, is smooth, we can Taylor it.

Page 61 of 103

5 NUMERICS

Proposition 5.2. The Taylor remainder of order s for fy is given by

l%J Y2k
(323)
k |
= 2 k
Proof. Recall that
Dk
Y
eY = Z I
|
= k!
for all y € R. Hence,
0 1,.2\k © Y2k
—1g2 (—32%)
fQ(x) =ec 2 = Z k' Z Qkk‘
k=0 k=0
This can be written as a Taylor series up to order s by splitting on the z° term.
l%J Y2k i 1)k g2k
k | k |
= 2 k! 2 k!
_V_J
remainder
Hence, the remainder of f; to order s, which we denote fs7 is given by
l%J Y2k
k |
= 2 k
Q.E.D.

Since f, € C{°(R) and, according to proposition 5.1, f, € F*! for all s € N, it follows that f,
satisfies the conditions for theorem 4.2 for all s and all closed balls of finite radius. The associated
upper bound of corollary 4.4.1 consists of three terms. These are given by

Em(s; R) := 12max{1, R% }(1:])%) ||ny;+11

1 2s+1
Ean(s; R) := 192s max{1, RQS_l}(Jr(f,/Q\/ 2l0g(2d + 2))|| [% es1a

(1 R
Esn(s; R) := T2 max{l,RzS + X «/210g /O fIoerrn
< Em(s; R)f—l—c‘,'dn(s R)—

‘ ‘L%‘v P f x/ﬁ

where we recall that fs is the remainder of the Taylor expansion of order s, f,, g is the best shallow
neural network with m neurons in the hidden layer for the n samples in S, d is the dimension, s is
the order of the Taylor expansion, R is the radius of the closed ball, and 1 — ¢ is the probability that

such that

+ Esn(s; R)—= (324)

Page 62 of 103

5 NUMERICS

the bound is satisfied. To investigate how these bounds behave for increases s, we compute them
for several radii. Suppose § = 0.01, then for R = 1 and R = 3 these terms become

gm(& 3) = 1271—25;;2);))23 (F(S -;— 2))2 gm(s7]_) = 1271'2(?:';_22 (1—,(3;2)>2
Ean(s;3) = 1927“%2?;3_1 2log(4) (F(S . 2))2 Ean(s;1) =1927s 2(::;3 2log(4)<F(S ; 2))2
R 2 35+5 s 2
Esn(s;3) = 7271'2(:)3 2log (200)((;2)) Esn(s;l) = 727TW 21og (200) <F(72L2)> 7
(325)

where we have that proposition 5.1 tells us that

o s+1.\°
ol = 272 (TCED)

These terms have been plotted against s in fig. 2. At first the terms exponential in s increase
faster, causing the error terms to increase. Later, the factorial takes over, causing the error terms
to decrease. For higher R it takes the factorial longer to take over. The point where the factorial is
sufficiently large to push the error below the error at s = 1, is the first s for which the solid line in
below the dashed line. If these terms represented the true error instead of an upper bound thereof,
then taking a higher order ReLU with an s between s = 1 and the crossover point would give worse
results than just using a higher order ReLU with s = 1. When R = 1, this would be for values of
sef{2,...,12}.

5.2 Methodology

The bound of eq. (324) is a worst case bound. It is therefore unlikely that we achieve the bound,
and we will likely stay well below it. This means that an experiment to see if we quantitatively
match the behaviour does not make much sense However, eq. (324) is an affine function of = when
n is fixed, and it is an affine function of % when m is fixed. This is qualitative behav10ur we can

test. We will now describe a numerical experiment to do so.

5.2.0.1 Data set

Theorem 4.2 says that we there is a Barron function describing the remainder of f, that is valid
up to a closed ball of radius R. f, satisfies f,(0) = 1 and f,(3) ~ 10~*. This means f, is close to
zero outside the interval [—3,3]. At the same time fig. 1 suggests that we need a very high s to get
an upper bound below that of s = 1 when R = 3. On the other hand, we need only s = 13 when
R = 1. Hence, we will execute our experiment twice; once for R = 1 and once for R = 3. For each
experiment we will take a closed ball By of radius R around the origin as the domain on which we
approximate (the remainder of) f,. We will sample « € By uniformly.

Since f, is smooth and f; € F#; > for all s € N, we could estimate the remainder for any s € N. We
till take s = 10. This is the number of colours supported by default by Matplotlib. It is possible to

Page 63 of 103

5 NUMERICS

1055

1057 4

1049 4

1041 4

1033 4

1025 4

1017 4

109 4

2 4 6 8 o 12 14 16 0 20 40 60 80 100
S S

Figure 2: The solid lines are the terms of eq. (325) plotted against s. On the left the three terms

corresponding to R = 1 have been plotted, whereas on the the right the three terms corresponding

to R = 3. The dashed lines are placed at the values of the bounds for s = 1. When the solid line

goes under the dashed line of the same colour, s is high enough to decrease the corresponding bound

belong its size for s = 1. On the left this happens at s = 13, the location of the green dashdot line.

On the right this does not happen within the plot.

increase the number of colours by defining a custom colour palette. However, plotting more than 10
lines on a plot, makes the plots hard to read. At the same time, s = 10 should be large enough to
uncover the pattern.

Neural networks have the universal approximation property, so we can also directly estimate the
function instead of estimating the remainder. Note that for these we have no explicit bound for the
higher order ReLU.

With this we construct the data sets as (z, fs) tuples and (z, fy) tuples for the remainder and full
approximation experiments.

5.2.0.2 Training strategy

The data sets consist of labelled tuples, so we can train using supervised learning. We will use a
shallow neural network with m neurons in the hidden layer for estimation. The order s of the shallow
neural network will be the same as the order of the Taylor expansion for the (z, fs) data set. We
will vary the order from s = 1 to s = 10 for the set (z, f;). Since the available computation power
is limited, we will vary m with n fixed at n = 500 from m = 100 to m = 1000 and vary n with m
fixed at m = 500 from n = 100 to n = 1000. We will train the neural networks for 500 epochs with
the Adam optimiser and batch size 32.

Page 64 of 103

5 NUMERICS

H overparametrized ‘ underparametrized

Epochs 500 500
Batch size 32 32
Optimizer Adam Adam

Table 1: Parameters used in the numerical tests of this section.

5.2.0.3 Computing the bound

After training we will have 200 neural networks for each R. Each of these neural networks is a
function f,,, s : R — R. Since we know the function f; and the remainder f, on the entire domain,
we can compute both

Hfg_fm,S”i’z(BR,p) (326)

and
2

fs_fm,S‘

L2(Br,p) (827)
using numerical integration. Note that this numerical integration introduces a small numerical error.
This numerical error should be small enough to not distort the results. We will use the integration
method ‘scipy.quad’. This method gives back the value of the integral and a bound for the made
numerical error, which we can use to verify whether the errors are indeed small. We run ‘scipy.quad’
with the option ‘epsabs=1le-6‘ except for when we estimate eq. (326) on R = 1. This lowers the
absolute error tolerance from the default of 1.98e-8 to le-6. This increases the speed but lowers
the accuracy of ‘scipy.quad’. Based on an initial test with Riemann sums, lowering the accuracy by
setting the option ‘epsabs=1e-6’ does not impact the results of most cases. The exception to this is
when we estimate eq. (327) on R = 1. Hence, in that case we still use the default settings.

5.3 Results

We will now discuss the results of the experiments.

First, we take a look at the losses during training when trying to approximate f,. The losses are
plotted in fig. 3. In (a) and (b) we see the losses for the underparametrized case. We see in both
that the loss goes down relatively smoothly and then turns noisy. This is seen more often in training
using stochastic methods, and is due to the order that the data arrives in. The general pattern
is that higher order ReLU with lower s achieve a lower loss than the those with higher s. In (a)
this pattern does not hold for the lower s; there the order from bottom to top in later epochs is
s=4,s =1,s = 3,s = 2. When we plot several of the final networks from the underparametrized
case with radius R = 3 in fig. 4, we see that the networks with s larger struggle more with fitting
the edges. A possible explanation is that a small change in a parameter leads to way bigger changes
due to the high powers involved for higher s. This means that the tolerances on good parameters
are lower, and suitable parameters may not be found at all. When we go to the overparametrized
cases in (c) and (d), we see far less noisy behaviour at the end. This is expected. Since we are in the
overparametrized regime, we should be able to find the parameters that drive the error to zero. This
is best exemplified by s = 1 in (c). It does not have to go directly to zero, because the training can

Page 65 of 103

5 NUMERICS

get into local optima. This is best exemplified by s = 10, which jumps from local optimum to local
optimum but continues trending to zero. In (d) we still expect the loss to go to zero, but except for
s = 1 most seem to have gotten stuck in a local minimum.

Second, we take a look at the losses during training when trying to approximate the remainder.
These losses are plotted in fig. 5. In the cases (a) and (c), where the radius R = 1, we see almost a
complete reversal of the order s. Previously, we had that the higher powers of s were higher but now
the this trend has largely reversed. This has to do with what is being estimated. When R = 1 it does
not take many Taylor terms to go to approximately zero. This means that whilst the network with
s = 1 still has to fit f,, the network for s = 10 has to approximate something that is already almost
zero. In both (a) and (c) we see that there are different loss levels at which the neural networks
settle. The higher of these two levels is the level of the final loss value for s = 1. This shows that the
networks with higher order ReLU s small can capture the higher order terms of f, roughly as well
as the network with s = 1, and the networks with higher order ReLU s large can capture the higher
order terms better than that. Since these networks with s large struggled in (a) and (c) of fig. 3 to
approximate f,, one could deduce from this that the networks with higher order ReLU s struggle
to capture the polynomial part with order less than s. A new experiment should be conducted to
investigate whether this is indeed true. In the cases (b) and (d), where R = 3, we again see roughly
two levels to which the losses converge. The losses for s = 1 and s = 2 are very similar to what
they are in (b) and (d) of fig. 3, whereas all the other losses are more concentrated on a single loss
level than before. Similar to before, we can attribute the lower final losses to the neural networks
not having to approximate the lower order polynomial terms of the Taylor expansion of f,, and the
higher losses in the R = 3 case compared to the R = 1 case to the number of Taylor terms required
for the remainder to vanish on the interval.

Third and last, we plot eq. (326) and eq. (327) for the networks we have trained. These are plotted
in fig. 6 and fig. 7 respectively. In these plots two things stand out. The first is that the actual loss
values are orders of magnitude lower than the corresponding bounds from eq. (326) and eq. (327).
This shows that the bound we have derived is not a tight bound. The second is that there is no real
trend when we increase m or n, even though we expect that the bound decreases inversely with m
and inversely with the square root of n from corollary 4.4.1. This suggests that the chosen m and
n are large enough that the trained networks with the same s approximate f, or the remainder fs
with a similar error. Finally, note that the computed errors are above or around the set absolute
error tolerance for ‘scipy.quad’. This shows that the error to numerical integration indeed did not
change the results.

In summary, the bound in eq. (324) suggests that either you need a higher order ReLU with high
enough order s or the ReLU itself to get the best results. The bound suggests that the order s for
which the higher order ReLU outperforms the ReLU is dependent on the radius R. The previous
simulations show that this does not happen in practice. Although this is just a single example and
an even example with d = 1, it strongly suggests that ReLLU will outperform the higher ReLLU even
when functions are smooth.

Page 66 of 103

Loss

10°1 4

103 4

10-5 4

10-7 4

5 NUMERICS

n nu nu nu nunununnon

L | | 1 R 1}

S HE O 00N VA WN

100 200 300 400 500

(a) Underparametrized with radius 1

LI | | |y | e
H©0ONOUAWNR

w L ounnonuon

100 200 300 400 500
Epochs

(c¢) Overparametrized with radius 1

1071 4

1072 4

1073 4

Loss

10—1 .

1072 4

Loss

10—4 .

10—5 4

§g~w
M\ (l Wty

1073 4

Wu LR VAN At A
| s At S LR
b i o R
e et gl
— s=3 | 1 J 'm, {‘\ 'h{h
—_— =4 U | |
— Rl o
— 5=6 ‘ |
— 5=7
— s=8
—— §=9
— 5=10
0 100 200 300 400 500
Epochs
(b) Underparametrized with radius 3
b
\\MNW
e
— s=1 \
— s=2
— s=3
— 5=4
— s=5 ‘
— W)
— s=8
—— s=9
— s=10
0 100 200 300 400 500
Epochs

(d) Overparametrized with radius 3

Figure 3: Training losses during training of f; using a shallow neural network with m = 500 hidden
neurons, higher order ReLLU of order s as activation function, and in the under- and overparametrized
regimes n = 200 and n = 800 respectively. On the left this is done with radius R = 1, and on the

right with radius R = 3.

Page 67 of 103

5 NUMERICS

1.0 A 1.0 A
0.8 0.8 A
0.6 0.6 1
0.4+ 0.4 1
024 0.2 1
0.0 A 0.0 A
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(a) Shallow neural network with higher order ReLU s =1 (b) Shallow neural network with higher order ReLU s = 4
1.0 1.04
0.8 0.8
0.6 1 0.6
0.4 0.4 1
021 021
0.0 0.0 A
3) 21 0] > 3 3) 21 0] > 3
(c) Shallow neural network with higher order ReLU s =7 (d) Shallow neural network with higher order ReLU s = 10

Figure 4: Shallow neural networks from fig. 3 (b) compared with f;. The neural networks are
indicated with blue, and f;, with orange.

Page 68 of 103

Loss

5 NUMERICS

— s=1 — s=1
1071 A — s=2 10 — 5=2
— s=3 — s=3
— =4 — =4
1073 - 5=2 - 5=2
—_— = —_— =
— s=7 1072 4 — s=7
—— s=8 — s=8
1073 — s=9 8 — s=9
4 4110 = — s=10
5 10744
1077 4
107° 4 1076
0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs
(a) Underparametrized with radius 1 (b) Underparametrized with radius 3
10° | 10 4
— s=1
— 5=2
—_— =3 100 4
102 A — s=4
— s=5 10-1 4
— s=6
— =T &
10-4 - —— 5=8 " 10724 o
— s=9 8 —5=2 l
— s=10 = o] — o=3 NMv-r-w.n“
wi 1072 4 = '0‘\“*
_ -.vf A/
06 — s5=4 W
107" 1 — =
4 104] s=5
; — s=6
— s=7
-8 | 1054 — s=8
10 — s=9
—— s=10
T T T T T T 10_6- T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500
Epochs Epochs

(c) Overparametrized with radius 1 (d) Overparametrized with radius 3

Figure 5: Training losses during training of the remainder f, using a shallow neural network with
m = 500 hidden neurons, higher order ReLLU of order s as activation function, and in the under- and
overparametrized regimes n = 200 and n = 800 respectively. On the left this is done with radius
R =1, and on the right with radius R = 3.

Page 69 of 103

1073 4

1074 4

1075 4

1076 4

10-7 4

1074 4

10—5 4

1076 4

1077

5 NUMERICS

w L nnnnon
L | | | | | | | |

H O oo NOLA WNKE

o

400 600 800 1000

N
oA
o

(a) L? norm with m = fixed with radius R = 1

L {1 A 1}

H O oo~NOUSsE WN -

o

4
X
r
%
n v ounnnon

200 400 600 800 1000
m

(¢) L? norm with n = fixed with radius R = 1

101 4

1072 4

1073 4

1075 4

10—1 4

1072 4

1073 4

1074 4

10-5 4

w L nnnnon
L | | | | | | | A

1T P OO ~NOUL B WN -

200 400 600 800 1000
n

(b) L? norm with m = fixed with radius R = 3

LI | | | | | | | A
H O 0o NO LA WNKE

0w L ounnonon

400 600 800 1000
m

N
o 4
o

(d) L? norm with n = fixed with radius R = 3

Figure 6: The L? norm of eq. (326) with a fixed number of neurons m with a varying number of
samples n on top, and a varying number of neurons m with a fixed number of samples n below.
The radius used is R = 1 on the left and R = 3 on the right. The L? norm is plotted against 1/m
when varying the number of neurons m, and it is plotted against 1/4/n when varying the number of
samples n. In both cases this is done in accordance with the quantitative behaviour of eq. (324).

Page 70 of 103

1075 4

1076 4

10-7 4

10-8 4

1079 4

10710 4

10711

10712

1075 4

1076 4

10-7 4

1078 4

1079 4

1010

5 NUMERICS

v unnunnonon

H O o NO VLA WNRE

400 600 800 1000
n

N
oA
o

(a) L? norm with m = fixed with radius R = 1

w L nnnnnon
L | | | | | | 1 A

4 2 O 00 NOU B WNH

800 1000

N
o
o
B
o4
o
o
[=}
o

m

(¢) L? norm with n = fixed with radius R = 1

1072 4

1073 4

1074 4

1075 4

1072 4

1073 4

1073 5

w v nnnnon
L | | | | | | | A

H O oOoO~NOULEAE WNRE

400 600 800 1000

N
oA
o

(b) L? norm with m = fixed with radius R = 3

H O 00N UEAE WNRE

o

w v nnonon

400 600 800 1000
m

N
o 4
o

(d) L? norm with n = fixed with radius R = 3

Figure 7: The L? norm of eq. (327) with a fixed number of neurons m with a varying number of
samples n on top, and a varying number of neurons m with a fixed number of samples n below.
The radius used is R = 1 on the left and R = 3 on the right. The L? norm is plotted against 1/m
when varying the number of neurons m, and it is plotted against 1/4/n when varying the number of
samples n. In both cases this is done in accordance with the quantitative behaviour of eq. (324).

Page 71 of 103

6 THE BIG PICTURE

6 The Big Picture

In section 3 of this work we discussed relations between Barron spaces. In section 4 we introduced
the Fourier based space .#;] 'L In this section we will take the various embeddings and inclusions for
and between these spaces, and represent them in a couple of figures.

6.1 Bach and Barron

We will start with the embeddings and inclusions for and between Barron spaces. These are rep-
resented in fig. 8. We have discussed part of these relations in section 3, and another part of the
relations has been proven by other authors. We will now give a proof for the remaining relations.

Q
B¢

Q

B} ——————— 0.1

Figure 8: Relation between the various Fourier based spaces for s,p € N with s > p, and ¢ € C2.
Arrows represent inclusions. The relation between B,_ and B, follows from theorem 3.2, the relation
between By and B, from theorem 3.1, the relation between B, and By from [Caragea et al., 2020;
lemma 7.1], and the relation between By and C%! as well as the relation between By, and C%! from
proposition 6.1.

We will first prove that Barron functions are Lipschitz. For the ReLU this was already shown in
[E and Wojtowytsch, 2020b; theorem 3.3]. For the other activation functions this was not shown in
other works, but from the proof that we will give now it is clear that the Barron norm was chosen
such that Barron functions are guaranteed to be Lipschitz.

Proposition 6.1. Let ¢ be an L-Lipschitz activation function and f € Bg, then f is L||f||82-
Lipschitz.

Proof. Let z,y € X and € My s, then
)= 100] = | [o(Calw) + 0= o(atw) + Diu(an 1)

< f [o({z|w) +b) — ¢({ylw) + b)|dp(w, b)
Q

Page 72 of 103

6 THE BIG PICTURE

< [LIty +) - (o) + Dldut. b
Q
- [2l = swldutw.b)

Q
<um—wanMMMww>
<uu—w£ﬂwwwwmwwy

Taking the infimum over yu € My s gives

[f (@) = FW)I < LI £, = =yl (328)

Q.E.D.

It might be tempting to add the inclusion of .# 12 1 into B to fig. 8. After all, we have shown
in section 4.3 that on balls of finite radius R we can find, for each function f € # 12 ’1, a measure
w € rea(2) such that

ﬂ@:fWH-Z]Wﬂmﬂ+f o (Celw) + b)dps(w, b) (320)

|OL‘=1 Sd+1X[O,R]
with « a multi-index and p satisfying

el saixp0,m) < 201+ B[l 52 (330)

Since |a| = 1, at most 1 component of a will be 1 and the rest will be 0. That means that z® = z;
for some i depending on «. Similarly, ¢*f(0) = 7;f(0). Hence, when we define the measures

po = f(0)do,1 (331)
and
i = 0:f(0)de; 0 (332)

for i € {1,...,d} with e; € R% a vector with only a 1 on the ith component and zeroes elsewhere, we
can combine g, p; and p into a single measure

d
v=jio+ Y i+ p (333)
i=1
with
HVHWU,Sde[O,R] < (334)
such that
f=Kv (335)

on that specific ball of radius R. Unfortunately, functions f € .# 12 "1 do not have to be compactly
supported, so we cannot choose R big enough and construct v like above. It might be possible to
construct a localised version of % IQ ! such that this does work. This will be further discussed in
section 8.

Page 73 of 103

6 THE BIG PICTURE

6.2 Fourier based spaces

We have talked a fair bit about the Fourier based space .Z} 1 In this section we will discuss the
smoothness properties of that space. In particular, we will look at inclusions and embeddings with
respect to the Sobolev spaces WP* and HP and the continuous differentiable functions C*. These
inclusions and embeddings are represented in fig. 9. We will now prove the relations that have not
been proven before, and end with a discussion about the Fourier space version of the Sobolev spaces
and its relation to ﬂ;’l.

H(U) ——— H2(U) ———— HI(U)

Ws+d,1 BN W2+d’1 N W1+d,1
N N N
F g g
Cs s Co

rHs+t SN fH2+t - s le+t

Figure 9: Relation between the Fourier based spaces %] ’1, the continuous spaces C® and the Sobolev
spaces H*, H**' and W**t%! for s,t € N with ¢t > d/2. All spaces are over R% except for the
Sobolev spaces H*(U), where U is a compact subset of R?. Arrows represent inclusions. The
inclusions of Sobolev spaces into other Sobolev spaces follow directly from their definition. The
same holds for the continuously differentiable functions and .Z;"" itself. The relation between .7 ;"'
and H**! follows from proposition 6.2, the relation between f;’l and W*t%1 from proposition 6.3,
the relation between 7] 1 and C§ from proposition 6.4, and the relation between .7} 1 and wetd!
from proposition 6.5

We will start with the inclusions and embeddings into %] 'L These are given in the following two
propositions. The first shows us the number of L? weak derivatives that is sufficient for a function
to be in 7"

Proposition 6.2. Let s€ N and t > d/2, then

H Y (RY) — 7" (336)

Proof. Let f e H*Tt. We will show that

| a el <. (337)

This is sufficient since
L+ [IE1° < (L+ (1) < 2°(1 + [I€11) (338)

implies that || f|| 1.1 is equal to eq. (337) up to a constant.
I

Page 74 of 103

6 THE BIG PICTURE

By Cauchy Schwartz and Plancherel’s theorem we obtain

| aemifens = |+ lemnifern + 1) o + e

< (Lo remaiora) ([i)

= ([e 2er - eifora+ e [)

N

+ €l
s 1
= ([2er + erifora s+ 1) [)
R + €]l
R s+t ok 1
oo) L et
([L1ror Seae) ([riam
Since f € H"t the first factor is finite. The second factor satisfies
1 »© pd=l
——dr <o 339
Jw T J T4 (359
for some 0 < C' < o by the condition on t. Therefore, f € Z%! and
pon < 2°H (f) ohe- 340
1915 i LU (310)

Q.E.D.

The second shows us the number of L' weak derivatives that is sufficient for a function to be in
9.871
.
Proposition 6.3. Let s € N, then
Wetdl(RY) s g2t (341)

Proof. This proof relies on [Kolyada, 1997; theorem A]. It states that the inequality

[ner=|7@]ds < 3 1D lusca (342)

lee|=r

holds for f € W™, where « is an multi-index. Hence, for f € W"*%! we have

J.

Since Wetdl < Wr+dl for all 0 < r < s,

©lde< Y} 1D Fllpsgay: (343)
|al=r+d

1l < 2° f 1+ el)

F©)de < 21 lyeran ey (344)

for f e We+dl, Q.E.D.

Page 75 of 103

6 THE BIG PICTURE

Next up are the inclusions and embeddings of .Z; ! into other spaces. These are given in the following
two propositions. The first tells us about the minimal smoothness f € .#} 1 must have.

Proposition 6.4. Let s € N, then

TPt C3(RY). (345)
Proof. Let |a| < s, and f € %#; . With this we have that £ — §O‘f(§) e L', because
J efiofie< [1e1"|Fas
® 346)
= 1l 1o (

S fllzpr < oo

If 21, € R? is a sequence such that z;, — = € R%, then by continuity of z — e®

e ei<w|€>’ ~0 (347)
k—o0
for all ¢ € R?. At the same time
oialER> _ ei<m\s>‘ <2 (348)

for all £ € R%. Hence, by the dominated convergence theorem

e“@Rl&) _ il ge = 0

lim
k—o0

e

50‘]‘(5) el ge — J- € f(Z<‘”|5>d§‘ < hm

(349)
This shows that = — SRd '3 f (f)ei@@df is continuous. To show that f decays properly, we use
that the compactly supported smooth functions C*(R%) are dense in W*P(R) for all k > 0 and
1 < p < 0 [Tao, 2009; lemma 23]. For fixed z € R? with ||z, > R > 0 there must be a component
x; of x such that z; > R. Hence, for all § € C*(RY) we have that

fRd a(©)e 1<””'5>d5'

0010 - ’<ff€>df]

g |’ 6510 ag
(350)
< f 0491l
lo;(a(¢ >>HLW)
="~ <
R
Taking the limit of R to infinity gives
lim J g(g)ei<x€>d§’ = 0. (351)
R— | Jpa

Since § € C*(RY) is arbitrary and C*(R9) is dense in L'(R?), it must also hold that z
§pa €4 F(£)e @I d¢ vanishes at infinity.

Page 76 of 103

6 THE BIG PICTURE

= (o, fo‘f(f)ei@‘@df is continuous and vanishes at infinity and & — fo‘f(f) e L', so we have

0 fla) = o [FOeods — | e fleeioas (352)
R4 Rd
for all z € R, This implies that f € C§(R?) and that
@) = |o [frepeoa
R L
_ P APLEIIIP]
e
fRds f©) 5’ .
<| el o @0
< [fll 5
for all 2 € R?. Since = and « are arbitrary,
I1£] Cs(R?) < ||f||911
Q.E.D.
The combinations of proposition 6.2 and proposition 6.3 with proposition 6.4 give
H Y (RY) Z71 — C5(RY) (354)
and
WerhL(RY) — Fpt < C(RY) (355)
respectively. On the other hand, the Sobolev embedding states that
wetdlRY) — O (RY) (356)
and
HH(RY) = WH2RY) - O™ (RY) — C5(RY) (357)

when ¢t — d/2 € [0,1] [“Sobolev inequality”, 2021; Visintin, 2017]. Hence, the combinations of
proposition 6.3 and proposition 6.2 with proposition 6.4 can be seen as a proof for the special cases
of the Sobolev embeddings theorem on R? using .% i 1 as an intermediate space.

The second shows us the number of L? weak derivatives that is necessary for a function to be in
F7 ! Proposition 6.5 is an adaptation of lemma 2 and the surrounding text from [Siegel and Xu,
2021]. The notation has been changed to align with this work, and has been altered to prove an
embedding instead of just an upper bound. This proof relies on the Schwartz functions S(R?). These
are given by

S(RY) = {f e C*(R%,C) l Vo, e N2 | fll, < 00}7
! (358)
1 fllas = SuRg ’xaaﬁf(x)’

A Schwartz function f € S(R?) can be thought of as a function for which all of its derivatives vanish
faster than any reciprocal power of z.

Page 77 of 103

6 THE BIG PICTURE

Proposition 6.5 (Adaptation of [Siegel and Xu, 2021; lemma 2]). Let s € N and be U < R? a
compact set, then F;' < H*(U).

Proof. The norm of .Z; tisa polynomial weighted L' norm in Fourier space. The Schwartz functions
are dense in this space. At the same time, Schwartz functions are also in H*(U); This means that
it is sufficient to proof that

1l iz 20y < ClLF Nl g (359)

for all Schwartz functions.

Let xx be the characteristic function of X and « be a multi-index with |o| < s, then

1D Pl = It D Fllpaquay = [t « D, (360)
An application of Young’s inequality for convolutions and Plancherel’s theorem gives
e D], gy < Wl | D7,) = Il [D7), o = 10|27,
(361)
Using the Fourier differentiation identity and eq. (346) we see that the right most term satisfies
Dof — |le=f < fll g 362
157 gy = N, gy < 17155 (362)

Hence, after summing over all the multi-indices o with || < s

ey = 20 1D Fliaey < O 121 £l = Ol Lo (363)

||=0 ee|=0

for some finite C' > 0. Q.E.D.

We have now proven all the relations of fig. 9. We will finish this section with an observation between
the Fourier version of Sobolev spaces and .%#; "1 The Fourier version of Sobolev spaces are given by

WeP(RY) = {u e 5*(RY)

ety < oo}

lullnes = || (04 197120 (364)

\%

Lr(R?)

where v indicates the inverse Fourier transform and S*(R?) is the space of tempered distributions,
the dual space of the Schwartz functions S(R?). For s € N and 1 < p < o we have that

WP (RY) =~ WP(RY), (365)

see [Grafakos, 2014b; section 1.3.1] for more information. When we take p = 2, then by Plancherel’s

theorem y

: 366
L) (366)

= [+ w17ya

HU”Wsz(Rd) = H ((1 + ||||2)e/2a)

L2(R)

Page 78 of 103

6 THE BIG PICTURE

Since
(L+ |72 < 2921+ [lgl)® < 232 (1 + |1]*)*/2, (367)

eq. (366) can be seen as an L? version of || f|| Fot- Sadly, it is not clear how we could learn more

about .Z;"" from this due to two things. Firstly,
WoLRY) 2 W (RY), (368)

since & — (1 + ||€]*)*/2 is not a Fourier multiplier for p = 1 [Grafakos, 2014a; section 6.2.3 and
in particular theorem 6.2.7]. This means that if we can establish a link from .Z;"' to W*P(R9), it
does not tell us much about the more interesting space W*?(R%). Secondly, Plancherel’s theorem
requires p = 2. This means that for p # 2, we have an additional inverse Fourier transform in the
norm. The Hausdorff-Young inequality can be used to get rid of this inverse Fourier transform. It
states that

|4

poey < W logeey (369)

for % + % =1,pe[1,2] and f € LP(RY). In this form we cannot get 3’7]5 out, since ¢ = 2 and we
need ¢ = 1. However, if we take p = 1 and f € LP (R?), then by symmetry we get

_ 7 <|7

(370)

L (RY)

|

L*(R) ’ L1(RY)
Replacing f with (1 + ||£]|)*f and subsequently using eq. (367), allows us to write

[llwrsce = [1F llyirs.co

-[[(s weer))
<oe|(a+rf)

—

<22\ (L +|1)=f

L% (R4)

Lo (R4)

L*(R4)

This is already implied by proposition 6.4. Hence, although the Hausdorff-Young inequality gets rid
of the inverse Fourier transform, it does not provide us with new information. It is unknown to the
author whether there are other Fourier theorems that could get rid of the additional inverse Fourier
transform in the norm.

Page 79 of 103

7 DEEP LEARNING AND CONTROL

7 Deep Learning and Control

In the previous sections we have taken a look at Bach and Barron spaces. These are infinitely wide
shallow neural networks. However, in practice we don’t use shallow neural networks; we use deep
neural networks instead. These deep neural networks consists of several shallow networks, with
proper input and output sizes, put back to back. This process makes it so that deep neural networks
can approximate more functions than shallow neural networks. These deep neural networks are
starting to be used in more and more fields of research. One of these research areas is that of
control. In the following sections we will take a closer look at the interplay between deep learning
and control. We will demonstrate that this interplay goes both ways.

7.1 Deep Learning in Control

In control the goal is to steer a physical system, typically called a plant, into a certain configuration or
to follow a certain trajectory through space. This configuration or trajectory is called the reference.
To achieve this a control signal is added to the system. The control is added, so that a certain
cost functional that includes the reference, is minimised and, at the same time, no constraints are
broken. These constraints include limitations on the size of the control signal as well as infeasible
or undesirable configurations and trajectories. Each of the branches of control theory deals with
one or more aspects of this minimisation problem. In optimal control the goal is to find an optimal
solution, in robust control the goal is to find a good enough control signal that is still close to optimal
and satisfies the constraints when there is some noise or disturbance, and in systems identification
the goal is to find a model and parameters that properly approximate the behaviour of the plant.
Solution strategies have been determined for many problems. At one point or another, many of
these strategies involve approximating a function or model. Difficulties arise when these functions
or models are highly non-linear or high dimensional. In these cases finding a proper approximation
can become a time intensive and computationally expensive task. These difficult to approximate
functions and models can be approximated efficiently using deep learning methods.

We will now take a specific problem to exemplify how this works in practice. We will describe the
problem using a model-based method and a model-free method. We will solve the problem using
these methods from a control perspective and identify the parts in which learning methods as a
function approximation tool would be most useful. In particular, we consider the problem of flying a
large number of drones autonomously from the ground to a particular configuration in the sky. The
route they will fly will not be clear of obstacles and there will be wind, but they will be aware of
the terrain. We want these drones to fly to their desired location without bumping into each other,
without crashing and without taking an unnecessarily long route. This is a high dimensional and
non-linear problem, which is actively being researched due to its highly complex nature and its high
societal relevance. [Batra et al., 2021] includes videos that demonstrate what we want the drones
to do visually. In section 7.1.1 we will discuss how to solve it using the model-based method called
model adaptive control, and in section 7.1.2 we will discuss how to solve it using the model-free
method called approximate dynamic programming. The main points of both of these sections are
highlighted in section 7.1.3.

Page 80 of 103

7 DEEP LEARNING AND CONTROL

7.1.1 Model adaptive control

In model adaptive control the controller is designed based on a nominal model of the plant, and
the controller is changed in each time step to handle previous disturbances as well as minimise the
effect of predicted disturbances. To solve a problem it is typically broken into pieces. For the drone
swarm it means that we consider the following pieces:

1. A single drone without friction,
2. a drone with drag,
3. a drone with ground effect,

4. several drones with downwash.

In section 7.1.1.1 till 7.1.1.4 we discuss these 4 cases. We assume that there is a suitable low level
controller in place that ensures the rotors of the drone spin in such a way that the desired forces
and torques of the controllers we will discuss is achieved. We will also assume reference trajectories
are given, so we only have to design the controller.

7.1.1.1 Single drone — frictionless

If the drone is high enough above the ground and there is no air resistance aside from the resistance
that allows the rotors to keep the drone up, then we can write a model for its equations of motion.
Let

z; = (pr, vy, Ry, wp) € R? x R? x SO(3) x R? (371)

be the state vector with the position, velocity, orientation and angular velocities of the drone, then
the equations of motion are given by

O1pt = Uy mowy = mg + Rtuf

(372)
OtRy = Rlw]x Jow = Jw X w +uj

where m is the mass, J is the inertia matrix, [-]x is the skew symmetric mapping of the cross
product, g = [0,0, —g]T is the gravity vector, and u{ and u] are the forces and torques due to the
rotors of the drone respectively [Shi et al., 2019]. The general robotics dynamics model is given by

M (q:)07qr + C(ar, 0:q:)0rq + G(qt) — Blgqe)ur = 0, (373)

with ¢; the generalised coordinates, M the inertial matrix, C' the certifugal and Coriolis effects, G
the gravitational terms, and B the attenuation matrix. Equation (372) can be written as eq. (373)
by taking

a=(pe 6)7
wa) - (3 9)

Page 81 of 103

7 DEEP LEARNING AND CONTROL

Clq, duqt) = (8 J[(?ﬂx)
G(q) = (mg O)T

B(q:) = <1§t ?)

with I the identity matrix and 6; representing the Euler angles. The suitable controller is then given
by

u, = Bt (M(Qt)afpt + C(qr, 0¢qr) 0rqe + G(Qt))» (374)

with BT the Moore-Penrose pseudoinverse of B. If there is a disturbance d(g;, d;¢;), then the general
robotics dynamics model is given by

M(qt)ﬁfqt + C(CIu atQt)atqt + G((]t) - B(Qt)ut = d(Qt, atQt)~ (375)

If one has a good estimate cZ(qt, 0+qt) of the disturbance d(g¢, d:q:), then a suitable controller is given
by

Uy = Bf (M(qt)ﬁfpt + C(qta atQt)atQt + G(Qt) - Cz(Qt» atQt))' (376)

7.1.1.2 Single drone — drag

In the presence of ambient wind and air resistance the state space equations of eq. (372) get an
additional term
Otpr = vt méwy = mg + Ryul + d’ (24, 0y, c4)

(377)
Oy = Rlw]x Jowy = Jw x w +uy +d" (x4, Opxe, 1)

where df and d” describe the forces and torques, respectively, of the wind with speed ¢; and the air
resistance. d/ and d” can be interpreted as a disturbance d(g;, 0:q;). Hence, to get rid of its effect
on the drone we need a good estimators d’ and d” of df and d” respectively. The drag force is a
nonlinear function of the speed of the drone relative to the wind and physical properties of the drone
like the area of the drone exposed to the wind. This drag can be modelled using fluid dynamics,

chac,&xmi:cfv—Ci?
(@1, v o) = f (00 = c0)) -

d" (4, Oy,)i =] (v — ¢):)?

for i € {0,1,2}. This approach will require fitting the six parameters c{ and c]. These values can be
found by placing the drone in a wind tunnel. In practice the wind speed will be unknown, though.
This will require an estimate of ¢;. One way to solve this is using an adaptive control law. In this
the parameters of the controller are changed based on the response of the drone to the control signal.
This is done e.g. by comparing the expected behaviour of the drone based on the controller with
the actual behaviour and estimating what ¢; must have been. The controller can then be adapted to
take into account the effect of what ¢; was and update the control law to take into account possible
future values of ¢;. We will not go deeper into what a good adaptive control law would be for this
problem, since this is not related to how deep learning is involved in control.

Page 82 of 103

7 DEEP LEARNING AND CONTROL

The performance of the adaptive control law does rely on whether d’ and d7 are good models for
the physics behind the problem. The equations of eq. (378) can be argued to not be good models.
The clf and ¢] will only be a good fit for certain ranges, since they are dependent on v; and ¢; too.
Furthermore, dlf and d] are not necessarily quadratic. To find good models d’ and cZT, we can use
neural networks.

Neural networks n/ and n” can made to find a good approximation of d/ and d” by finding parameters

6f and ©7 such that
nf(ft, O, Ct; @f) ~ df(ft, Or ¢, Ct)

T r T (379)
n (I’ta atmtv Ct; @) ~x d (It, 8tl’t, Ct)
by minimizing

min 3 (0 (w5, i ci;07) — df? (380)

o =1

and .
rréiTn (n7 (2, yi, ¢;07) — df)? (381)

i=1

for m data points (z;, s, ¢;), d] and d{ representing (¢, 0y, ¢t), df (¢, dyay, ¢;) and d7 (x4, Oye, c4)
collected at different times. Since neural networks are universal approximators, they will be able to
estimate df and d” accurately.

To use the neural network in practice, knowledge of z;, d;x¢, and ¢; is required. x; and d;z; are
known, but ¢ is not. This means that to use the neural networks nf and n” in their current form
requires measuring or estimating ¢;. It is also possible to change the form of the neural network.
Instead of finding neural networks of the form nf (x, d;z¢, c; ©F), it also possible to look for neural
networks of the form 7/ (z, d;74; ©f) minimizing

minmin Y (7f (z;,y::07) ©a — clf)2 (382)

ef aceR iz

and .
minmin Y (A7 (z;,9:;07) ©a — df)?, (383)

©7 aeR ia

where ® means pointwise multiplication. The inner minimisation problems of equations 382 and
383 are least squares for fixed ©F and ©7 respectively. Hence, once the neural network parameters
© are determined based on collected data points, an adaptive control law can be determined that
uses least squares to set a/ and a” such that

Czf(il?t, 01y, ¢p) = ﬁf(xivyi; o) Oal ~ df(mtvatﬂfuct%

) (384)
d" (w4, Ot c0) = 0 (24, y5;,07) © a” ~ d" (x4, 0py, Ct).

For the proof and a possible adaptive control law see [O’Connell et al., 2021].

7.1.1.3 Single drone — ground effect

The drone has to fly over terrain and has to avoid obstacles. When it gets close to the ground or
an obstacle, its flight characteristics change. The proximity changes how air flows pull or push the

Page 83 of 103

7 DEEP LEARNING AND CONTROL

drone in a certain direction. This requires a different disturbance model than that from section
7.1.1.2.

In section 7.1.1.2 the main challenge was the fact that ¢; is unknown. In this case we know z; and
the surrounding map. However, there is no good estimate available for the effect of certain terrain
on the drone. Only for some terrain is it possible to write an equation that describes the interaction
between the drone and the terrain [Kan et al., 2019]. This means that we should not expect to be
able to manually find a good model for the varying effects the shape, textures and proximity of the
terrain and obstacles have on the drone. On the other hand, we can find a good approximation of
the disturbance using a neural network, since x;, d;x; and the terrain are assumed to be known.

The terrain will be known to the drone in the form of a mesh map. This mesh map will include many
points. Although neural networks can be used to approximate any function, it still takes time to
evaluate that function. This means that trying to approximate a function that takes the entire mesh
together with z; and Jzx+ as input might be to slow to evaluate. Instead of trying to approximate a
function that takes the entire mesh, it may be more useful to only consider the mesh points within
a certain distance from the drone as input.

7.1.1.4 Drone swarm — downwash

When two or more drones fly close to each other, they disturb each other. This effect is similar to
the ground effect but in the opposite direction. If a drone flies close to the ground, it gains some
lift. If the drone flies below another drone, it is pushed down [at Caltech, 2020]. This is highly
dependent on the proximity, size, and motion of the drones. It is hard to find a good model for this
disturbance [Modeling of aerodynamic disturbances for proximity flight of multi-rotors]. Since the
drones are able to communicate their respective x; and d;x¢ to each other and can be made aware
of their respective specs, it is again possible to find a good approximation of the disturbance using
a neural network.

7.1.2 Approximate dynamic programming

In the previous section we looked at model adaptive control; control based on physics, reliant on
suitable models for processes, with control laws that could adapt to instantaneous and exogenous
information. In this section we will look at a model free method called approximate dynamic
programming, in the machine learning community known by the name reinforcement learning. In
this method an actor takes actions at each time step and observes the environment afterwards and
gains a reward from its action. This reward does not have to be positive. In our example the drone
represents the actor, the movement of the drone is an action and the reward it receives is, among
others, the battery power it used to perform the action. In the method the actor wants to get the
maximal reward at each time step. This means that for each observation o; of the environment it
will take the available action a; that gives the highest reward r;. The actor learns what actions to
take based on a value function

Q:O xA—-NR (385)

Page 84 of 103

7 DEEP LEARNING AND CONTROL

where O is the set of all observations of the environment, 2 is the set of all possible actions, and R
is the set of rewards. If the environment is observed to be in state o;, then the best action for the
actor to take is

al = argmax Q(oy,a). (386)

ae

We want to find a Q with suitable properties such that the actor takes desirable actions. This
is done by constructing rewards smartly, and then iteratively updating the map @ based on new
experiences in the form of observation-action-reward triples (o¢, at,r:) € O x A x RR. The way that
Q@ is updated differs between the solving methods. In all but the simplest of cases £ x 2l is too large
to iterate. Hence, solving methods typically revolve around sampling or pruning O x 2 in a way
that the estimated @ is close to the real Q.

Remark. We talk about observation of the state of the environment o; and mot about the state of
the environment. This is because the actor typically is not able to observe the entire environment
but just a fraction of it.

A reason for not using approximate dynamic programming, outside of PID control, is that £ x 2 is
too large, and the methods available are not strong enough to give good results. By approximating
(@) with a neural network it becomes possible to use approximate dynamic programming in almost
every control problem outside of system identification problems. To exemplify how this works in a
control setting, we will again use the example of the drone swarm.

7.1.2.1 Observations and Actions

Let us start by defining the observation set £ and the actions set 2. Recall that the drone has a
state xy = (p¢, vg, Ry, wi) and its controller gives u; = (uf, u]). From this it follows that

2l = U = {possible controls u;} < R® x R>. (387)

For the observation set note that the drone is able to observe its own state x;, but it also receives
information about the states of the surrounding drones and terrain. Hence,

N
o= (]R?’ x R® x SO(3) x Rg) x ® (388)
where & is the set of all terrain meshes.
The size of 2 is limited, since the forces and torques that the drone can deliver are bounded.
Futhermore, the 6 parameters are determined by how fast the 4 motors can spin. Hence, 4 parameters
would also be sufficient. Since we need to take the argmin over all the actions, it is needed to discretize

2. If the discretization is fine enough, then this will not noticeably degrade performance.

The size of 9 is too big for practical purposes when N gets too large. One way of shrinking O is by
considering only the closest K drones with K « N in an observation. Then £ becomes

K+1
o= (]R3 x R? x SO(3) x R3) X B, (389)

Page 85 of 103

7 DEEP LEARNING AND CONTROL

7.1.2.2 Rewards

Recall that we want these drones to fly to their desired location without bumping into each other,
without crashing and without taking an unnecessarily long route. We need to design rewards in
such a way that this is achieved. One way of doing this is by setting the reward r; to

(loc) (col) (rel) (terrain)

. c (pow)
Tt = ClocTy + CeolTy + CreiTy + CterrainTy + CpowT

: (390)

where rt(loc) is the reward for the drones proximity to the desired location, rtml

its relative location to the other drones, rt(t”mm) is the reward for its interaction with the terrain,

rt(pow)

) is the reward for

is the reward for using less battery power, and cjoc, Crel, Cterrain @0d Cpoyy are coefficients to
balance the influences of the rewards on the total reward.

The drone is flying through Euclidian space, so a natural way to measure the distance between the
drone and its target is the £2 norm. This means that the reward

rt(loc) _ H _ (target)

02

where pimrget) is the target at time ¢, incentivizes to get close to the target. This reward is linear
with the distance. It is possible to raise the norm to some higher power to reward the drone for
flying closer.

Although the drone should fly to its target directly, it should not crash whilst doing so. Hence, all
crashes should be penalised. A suitable reward for this is

(392)

t

T(COI)_ —1 crashed,
0 otherwise.

Flying too close to other drones may not directly lead to crashes, but it should be disincentivized,
because the downwash and changes in ¢; may require the drone to make impossible manoeuvres.
However, only the drones that are close are relevant. This means that the reward should vanish
when the other drones are far enough away. This motivates a reward of the form

i]

Py — Dt

: |
i =~ Y max{l- 0L (393)

Jj#Lg=1 drop—of f

where p¥ is the position of drone k at time ¢ and dg;il;_o 7r > 0 representing the distance after which

we deem the influence of the other drone irrelevant.

Flying too close to the ground is not much different from flying too close to other drones. However,
we might want to promote staying far away from the ground in general. Hence,

1Pt — gillee
(rel)
drop—of f

terrain
i)

—max max{l — ,0}, (394)

where g; are the mesh points of the local terrain known by the drones.

Page 86 of 103

7 DEEP LEARNING AND CONTROL

We have assigned rewards for each task of the drone, but the drone is not yet incentivized to be
gentle with its battery and motors. One way of achieving this is by penalizing high controls, i.e.

7 = —efl|uf |, - erlluflle (395)
where c; and ¢, determine the relative contribution of the forces and torques respectively.

Note that these are not the only ways to design rewards for the drone. For example when setting
a value for rﬁral) we set a radially symmetric reward. The drones affect each other differently
horizontally and vertically, so it might be valuable to design a reward that is different in different
directions. Also observe that it is possible to instruct the drone to hover near an object with these
rewards. If the drones should hover near a ball hanging from a ceiling, then the target p(**79¢%) can
be set to the center of the ball and the relative sizes of ¢joe, Ceor and Cierrain Will ensure that the

reward is maximized for hovering near the ball.

7.1.2.3 Learning @

In essence what we have done so far is constructing the state, actions and rewards of a Markov
decision process, albeit using different symbols and different terminology. We have seen that the
observation set O is large, and this means that the value function @ cannot be computed using
classical method used for Markov decision processes. However, () can be approximated sufficiently
well by using deep learning methods. We will discuss how to approximate Q) using deep) learning.

The core of deep @ learning is a simple value function update based on the Bellman equation. First,
Q is a neural network initialised with arbitrary weights and biases. Then, given an observation of
the current environment o;, a chosen action a;, a reward r;, and an observation of the environment
in the next step, the update is given by

Q" (o, a¢) = (1 — oa)Q"ld(ot7 a) + a(rt + 7 max QOld(otH, a)) (396)

where a € (0,1) is a parameter determining the relative importance of the current value of Q!¢ and
the just gained reward, and v € [0, 1) is a factor that determines the relative importance of potential
future rewards compared to immediate rewards.

Equation (396) is implemented in a neural network by setting the loss of the network to

(00 Qo) — Qo)) (307)

and the learning rate to a. The architecture of the network is fixed in the input and output
dimensions. The input dimension is determined by the shape of o, and the output dimension is
determined by the size of 2. The remaining architecture can be chosen arbitrarily.

Data of the form (o, at, ¢, 0441) are needed to train the neural network. These can be found by

flying a drone or by simulating a drone flying. The choice for which is used depends on the problem.
In this case flying a drone gives physically accurate data, but there is a risk of crashing a precious

Page 87 of 103

7 DEEP LEARNING AND CONTROL

drone. Simulating is safer, but requires computing power and simulation software capable of giving
physically accurate data. Although @ learning does not require models for how physical processes
work, the simulation software does require them.

7.1.3 Model-based and model-free control with deep learning

In the previous two subsections we showed how deep learning influences control by means of an
example using model adaptive control and approximate dynamic programming. Model adaptive
control is a model-based method and approximate dynamic programming is a model-free method.
We have shown that deep learning comes in a different form in both methods.

In model adaptive control the controller is designed with some parameters that can be changed
based on real time information. The design of the controller and the associated parameters depend
on models of the physical processes involved. If there is no model for a process, then a model has to
be fitted to the process. If the fit gives a nice or simple function or the effect of the process is small,
then it can be handled in the design process. However, classical control methods struggle with high
dimensional and highly nonlinear processes. By approximating the effects of those processes with a
neural network, model adaptive control methods can be extended to cover more problems.

In approximate dynamic programming the control problem is cast as a Markov decision process.
Instead of modelling physical processes and fitting parameters for those processes, an observation
set O, action set 2 and rewards functions are defined for which the relative importance of the various
rewards is determined by setting coefficients manually. The action set 2 for control problems can
be approximated by a small enough number of elements, but the observation sets O are typically
too large to compute the value function). This means that it was not often used as a method for
solving control problems. This has become a feasible solving method by approximating the value
function @ with a neural network.

In both model adaptive control and approximate dynamic programming we have seen that learning
methods are used as good function approximators to either improve existing methods or make
previously impractical methods possible.

7.2 Control in Deep Learning

In the previous section we have seen how control uses deep learning. To see how deep learning in
turn is being influenced by control theory, we consider an optimisation problem. This optimisation
problem is one of the optimisation problems in the class called Neural ODEs. These Neural ODE
optimisation problems are generalisations of the underlying optimisation problem when trying to
find the right parameters for residual neural networks.

Page 88 of 103

7 DEEP LEARNING AND CONTROL

The optimisation problem we will consider is

T

. 1 2
pet (O a2 T 2oy aL lotellcagey ot

308
2v2a(2) = Ky (a(0)), R
ZO(Z‘) =,
with Q € R%*? and T > 0. Recall that Kf; was given by
KE srea(s) = 2.8, o (o [olde +0)iu(a,n)), (399)
Q

for some pointwise applied, monotonically increasing function ¢ € C%*(R). Note that although the
optimisation problem is phrased using min, we are interested in knowing whether there exists a
solution, how big the L? term is, and what the optimal 4 is. In this work we will take some small
steps in that direction.

In section 7.2.1 we discuss what these residual neural networks are, and how their generalisation
leads to eq. (398). The procedure used shows that residual neural networks can be seen as space
and time discretizations of control problems. Then, in section 7.2.2 we use control techniques in the
form of the Hamiltonian equations to compute necessary conditions for optimality. Finally, we will
take a look at what kind of functions can be approximated with vanishing L? term in section 7.2.3.

7.2.1 ResNets, and how they generalize to Neural ODEs

Neural ODEs find their origin in the infinite depth limit of the residual neural networks, ResNet for
short. Until now we have mostly dealt with shallow neural networks, i.e. functions of the form

my

fm(@) = Y. cig(As + by) (400)

i=1

with m, ¢;, A;, and b; integers, scalars, matrices and vectors respectfully of appropriate dimensions.
Deep neural networks are L shallow neural networks, L € N and L > 1, stuck back to back such that
the output of one is used as the input of the next, i.e. functions of the form

mi

2a) =) cio(Ajx + b))
o (401)
2 (z) = Z oA () +bf) Lefl,..,L—1}
i=1

with my, cf, Af, and b¢ integers, scalars, matrices and vectors respectfully of appropriate dimensions.
Many more functions can be approximated by doing these concatenations of shallow neural networks.
The parameters cf , Af, and bf in the deep neural networks are updated using a form of gradient
descent. That involves taking the gradient of z;, with respect to some parameter. The chain rule tells
us that many terms need to be multiplied for some of these gradients. Multiplying many numbers

can lead to vanishingly small numbers or humongously large numbers. This means that gradient

Page 89 of 103

7 DEEP LEARNING AND CONTROL

descent may cause sometimes parameters to stay the same or to blow up. These are undesirable
things to happen. By using ResNets instead of the deep neural networks of eq. (401), these vanishing
gradients can be avoided. ResNets do this by adding an additional term, i.e. they are functions of
the form
my
r) =z + Z ctp(Alz + b))

i=1

e (402)
() = 2 (@) +) (Al (2) + b)) fe{l,...L—1}
i=1
with my, ¢f, Af , and bf integers, scalars, matrices and vectors respectfully of appropriate dimensions.
Adding z¢(z) to 2/*!(z) causes the gradients to always have a term that is at most one multiplication
of factors. This term is unlikely to vanish compared to the terms that have many multiplications of
factors. The ResNet is thus a more stable version of the deep neural networks of eq. (401).

In the deep neural networks of eq. (401) and the ResNet the superscript ¢ represents the layers. By
treating the layers as a time discretization eq. (402) can be seen as the Euler discretization of the
ODE

zo(z) =z
b(@) = 3 (e b((A)e (@) + (b)) (403)
1=1

with my, (¢;)t, (A;):, and (b;): now integer, scalar, matrix and vector valued functions of time
respectfully. ODEs of the form given in eq. (403) are called Neural ODESs.

Recall that to get the infinite width limit of the shallow neural network we replaced the sum of
eq. (400) with an integral and moved ¢; into the measure u € rca(€2) over which is integrated.
Neural ODEs still have the sum structure, but parameters now vary in time. This means the
measure should also be time varying. Hence, we can write the infinite width limit of eq. (403) as

zo(z) =
Oua(@) = | 64 (a) +)du(AD) = Kpu((o)

with e LY([0,T],rca(2)). Equation (404) is the state space equation used in eq. (398).

(404)

We still need to show why we minimise over what we minimise in eq. (398). Recall that the Barron
norm was given by

o= inf | Wy(A,b)d|u|(A,b), 405
g = nt, || ol pnl 4,0 (405)

where Wy represents the weights given to A and b and Mg? ¢ 1s the set of all measures u such that
Kg,u = f. The L? relaxation of eq. (405) is

1 2
inf SIf Wy (A, b)d| | (A, b
ST = 2+ [WA B4,

(406)
z(x) = Kgu(x)
When we replace the z = Kt of eq. (406) by eq. (404), we need to change the weight term
| waandiian (407)
Q

Page 90 of 103

7 DEEP LEARNING AND CONTROL

such that time is properly taking into account. One way to do this is simply by integrating, i.e. by
changing eq. (407) to

T
||] Wt byl a, vy (408)
0 Jo
Adapting eq. (406) with eq. (404) and eq. (408) gives

1
min -

T
2
- W, (A, b)d| | (A, b)dt,
;nEC([O,T],rca(Q))2Hf zT||L2(”’Rd)+aJo L (4, b)dle](A,5)

Orze(x) = K(?Mt(zt(f))v

zo(z) = .

(409)

If we take the Bach version of W, i.e. remove W, from eq. (409) and replace it with W : (A,b) — 1,
then we get eq. (398).

7.2.2 Hamiltonian Equations

The procedure of section 7.2.1 shows that ResNets, and by extension the deep neural networks of
eq. (401), are in fact space and time discretizations of an optimal control problem. This brings us
the question: If we apply ideas from control theory to eq. (398), can we learn something new about
ResNets? In this section we investigate this question by looking at the Hamiltonian equations. To
simplify the notation, we omit the super- and subscript from K%, i.e. we write K instead of K (?

The Hamiltonian for eq. (398) is given by

H (e, ze,) = {pe| Ky Zt>L2(p) + QHNtHTCG(Q)- (410)
The Hamiltonian equations,
atzt = aptH(Mtvztapt)a Zo(l') =2,
1
atpt = _ath<,ut7Ztapt)) pr = aZT§

0= aMtH(,uthtapt))

describe the first order optimality conditions for eq. (398). For u; and z; to be optimal solutions
there must be a p; such that p;, pu; and z; together solve eq. (411). We will now compute the
derivatives of eq. (411) to see what these optimality conditions imply.

If = ZT||2L2(p)a (411)

Proposition 7.1. Let

K':rea(Q) — L*(p,RY), p— (m — L 0p(Az + b)Adu(A, b))7 (412)

K* : D(p.RY) x L*(p,RY) — C(Q), (A,5) > (<g7 W | Ga@lotant) + b dp<x>), (413)

then the Hamiltonian equations for eq. (398) can be represented as

Orzt = Kpg oz, 20(z) = 2,
ipr = —<pt|K/,ut © Zt>L2(p’Rd) , pr=2z2r—f (414)
-1
sgufp} = —K*(p,z0) poae.

Page 91 of 103

7 DEEP LEARNING AND CONTROL

Proof. To show that eq. (414) is equal to eq. (411) we have to compute 4 derivatives.

The first is immediate,
Op H (11, 26, pt) = Kpie © 2. (415)

The second follows from an application of the chain rule and the fact that p; as well as p; do not
directly depend on z,

%Hﬂm%md=@(QMKMO%M%»+%MMwm)
= (Pe| 0z, (Kt © 20)) 12
_ <pt 0 [4(0) + D)4, b>>
Q

L2
() (416)

_ <pt L 0., $(Az () + b)dpue (A, b)>

L2(p)

- <pt L 0¢(Azi(x) + b) Adpiy (A, b)>

L2(p)
= <Pt|K,Mt © Zt>L2(p) .
The third follows from the Fréchet derivative of the L? norm,
1 2
ZT§||f_ZT||L2(p) =zr — f. (417)
For the fourth and last we need three intermediate results first. These are that by Fubini

<K,LL © h|g>L2(p,Rd) = <K*(g7 h’)llu’>'r*ca(ﬂ) (418)

for all u € rca(Q)) and f,g € L?(p,R?), that there must be a function sgn{u;} € L'(u) with
|sgn{p:}| =1 p a.e. such that

0

dlp| = sgn{pdp (419)
since |p| « p, and that
a,U« <g|p’>rca(ﬂ =49 (420)

for all p € rea() and g € L' (i) since

rca(2)

‘<g|/1“ + V>rca(Q - <g|/1‘>rca(ﬂ) - <a# <g|ﬂ>rca(Q’V>

=0. (421)
191, -ca (=0 120 ca)
With these we can write
O H (p1e5 26, 0t) = 0O, <<ptKHt o Zt>L2(p,Rd) + a||ﬂt||rca(9)>
= aﬂt <<K* (ptv Zt)llu’t>rca(ﬂ) + a”p’t'lrca(ﬂ)) eq. (418) (422)
= K* (e, 20) + a0y |tel] ager eq. (419)
= K*(pt, 2t) + asgn{u}. eq. (420)
Substituting equations 415 till 422 into eq. (411) gives eq. (414). Q.E.D.

Page 92 of 103

7 DEEP LEARNING AND CONTROL

The third equation of eq. (414) is an interesting result. Since

sen{uc}l =1 g ae., (423)

it must hold that
supp p: S {(A,b) e ‘ |K*(pt, 2¢) (A, b)| = a}. (424)

Additionally, the function K*p; is a continuous function. This means it is limited in how fast it
changes sign, and by extension how fast p; can. Combined with eq. (424) this implies that the sets
supp (u¢)+ and supp (u¢)—, the sets where p; takes positive and negative values respectively, must
be separated by a non-zero distance. It, however, does not tell us what that non-zero distance is.
By construction of K and K* we can provide an estimate. For that recall that a lipschitz function
on g on {2 satisfies

l9(4,0) = g(A.b)| < Lip(g)]|(4,0) - (A.). (425)

If we know how far g(A,b) must be from g(A,b) and we know Lip(g), then we have a lower bound
on H(A, b) — (fl, 5) . We will now use this idea to compute an estimate for the minimal distance

between the sets supp (u:)+ and supp (pt)—.
Proposition 7.2. For p, z; and p; satisfying eq. (414) it must hold that

2¢

e[, = GAD] | (4.0) € supp (o, (A5 € supp) | = 20—

(426)

Proof. From eq. (424) it follows that
K*(pr, 20)(A, b) = ta (427)
for (A, b) € supp (u¢)+. Hence,
% = Ja — (<)
= [K* (e, 20)(A,0) = K*(pr,20) (A,5)] - eq. (427) (428)

< Lip(K*(py, Zt))H(Av b) = (4, E)H

for all (A,b) € supp (ue)+, (A, b) € supp (jue)—. If Lip(K*(py, z) is finite, then eq. (428) can be
rewritten to 9
< - o
A,b) — A,bH),—. 429
4.0 -0 > gy 29)
Taking the infimum on the left hand side of eq. (429) over all (A, b) € supp (1), (A, b) € supp (p)—
gives eq. (426).

What remains to show is that Lip(K™*(p¢, 2¢)) is indeed finite. For that observe that
K* (A4 0) = K00 (39)] = | [otz + 0 dote) = [(ot + 1), o)
X X

= UX (pe(x)|p(Azi () + b))y — <Pt($)‘¢(/~12t(w) + I;)>€2 dp(z)

Page 93 of 103

7 DEEP LEARNING AND CONTROL

02

= UX <pt($)‘(/5(Azt(x) +b) — ¢(Az(z) + B)> dp(x)

< | [(m@lotaza) + b - o(da(@) +B)),,|dota)
<[In@le

< Lip(9) L} e ()] 2

d(Az(x) +b) — ¢(Az(z) + D)

(@)

(Az(@) +8) = (Aze(2) +D)|| ,dp()

= Lip(¢) JX [pe ()2

(4= Az(a) + (0= b)| o)

< Lip(e) | (@)l 1 + 2l sdo(o) | (4 = D) + 6 =5)

02

< Lip(0) (I e + 1+ 200)| (4 =)+ 0=

02

for all (A,b), (A,b) € Q. Both p, and z are L?(p, R%) functions and ¢ € C%'(Q) thus Lipschitz, so
Lip(K*(p¢, z:)) must be finite. Q.E.D.

Proposition 7.2 shows that the distance between the supports of (u:)— and (u:)4 scales explicitly
linearly with a. Unfortunately, Lip(K*p;) implicitly depends on «, so the usefulness of this bound
is debatable.

7.2.3 Functions that can be approximated

In most of this work we have looked at the Barron space, and what kind of properties the functions
in that space have. One of the ways that we have done so is by looking at embeddings into other
spaces. In this section we will do the same for the Neural ODE of eq. (404).

Consider the set of functions
D@Qﬁg = {f ‘ Jue LN[0,T],rca()) : 27 = f,20(x) = x, 02 = Kf;,ut ozt}. (430)

This set represents the set of all functions that can be made using the Neural ODE. A natural
question to start with is the question: Is this a vector space? The answer is unknown to the author.
Due to the highly nonlinear and recursive nature of the ODE, it is generally not possible to get
[+ g€ ODE by summing the two measures p and v associated to some f,g e ODE. It is therefore
not clear how to show that ¢; f + cog € ODE when f,g € ODE and ¢y, ¢ € R.

Although we have not been able to show whether OD& can be made into a vector space, we can
show two inclusions. The first shows that the functions in D@Gg must be Lipschitz, just like the
Barron functions.

Proposition 7.3. If $ € C%Y(R) is an activation function, then

ODE; < CON(X). (431)

Page 94 of 103

7 DEEP LEARNING AND CONTROL

Proof. Consider a function f € OD€. There must be z € C*([0,T], L?(p,R?)) such that 27 = f.
This z satisfies

o)~ il = | [K (o)) ds — f Ky (2) ds

/2

t t
< [[[KEmeatonds - | KEnateo)| ds
o 0 e (432)
< [1K) ~ K uaen(a) | s
0
t
< f Lip(Kf;us)st(x) — 25(x)|| j2ds proposition 6.1
0
for all t € [0,T]. An application of Gronwall’s inequality gives
l2e(2) = 26() 2 < 20(2) = 20(y)|pelo WPERIE = ||z — | pelo LipUEIIEe, (433)

Equation (433) implies that z; is Lipschitz for all ¢ € [0, T]. In particular, zz is Lipschitz and, by
extention, f. Q.E.D.

The second inclusion is the other way around. We show that certain affine functions can be approx-
imated using a Neural ODE.

Proposition 7.4. If Q, P € L'([0,T]), then f € ODE where

T
flz) = e~ Pads (:17 + J ek PTdTQsds). (434)

0

Proof. From proposition 3.4 it follows that there exists measures v,y € rca(Q2) such that

Kv(x) =1,
K~vy(z) = .
Combined with the assumption on @) and P, we get that u, = Qv — P,y satisfies
T T T
||:U’tHrca(Q)dt < ||V||'rca(Q) |Qt|dt + HryHrca(Q) |Pt|dt (435)
0 0 0
Hence, € L*([0,T],7ca(Q)). Inserting p into eq. (404) gives
Orzt(w) = —Ppzi () + Qs (436)
Solving eq. (436) for z:(x) gives
t
z(x) = ¢ o Pods (ac + J ek PTdTQSdS). (437)
0
From the combination of eq. (434) and eq. (437), it follows that zp = f. Therefore, f € ODE.

Q.E.D.
Corollary 7.0.1. x — ax +be ODE€ for alla >0 and b e R.

What other functions there are in O € remains unknown, and in particular the question whether
B¢ < ODEY remains elusive.

Page 95 of 103

8 FUTURE WORK AND OPEN QUESTIONS

8 Future work and Open Questions

In this document we have furthered the understanding of Bach and Barron spaces, in particular for
the higher order ReLLU. However, questions remain. In this section some questions are discussed
and, if applicable, conjectures are formulated. The questions are numbered and indented for clarity.
After each question there is a small discussion of that question.

1. Let ¢ and ¥ be two activation functions such that ¢ is the derivative of ¥. Does that mean
that the Barron space with activation function ¢ embeds in the one with activation function

W7

In section 3.4 we have discussed Barron spaces for various activation functions, mainly whether
they embed into ReLLU. The activation functions that we have considered are not an exhaustive list.
Suppose, for example, that ¢ = 0y for some activation functions 1 and ¢. Recall that this means

that h
S0 =ty LR =)

lim W (438)

This hints at the possibility of approximating the effect of a neuron with activation function ¢ up
to arbitrary accuracy by using two neurons with activation function . In section 3.1 it is shown
that Barron space is complete, indicating that the sequences of pairs of neurons that approximate
¢ stay inside the Barron space. On the other hand, it must hold that

KSu(x) = lim % (ngm +h)— K,i}u(a;)) (439)

If the factor within brackets goes to zero superlinearly in h, then it might be that the embedding of
the Barron space with ¢ into the Barron space with ¢ holds. This clearly puts a limit on which
this would work for. It is unknown to the author for which activation functions this process would
yield an embedding.

2. How much larger is a direct sum of Barron spaces with activation functions ¢; compared to
the Barron spaces with activation functions ¢;7

So far we have only considered Barron spaces with a single activation function. Each of these Barron
spaces represents a set of functions. If we have two activation functions ¢;, then it is possible that
both associated Barron spaces can approximate the same function f. Activation functions work
on different scales. Hence, it might be possible that both the associated Barron norms are quite
large. At the same time it is possible that a linear combination of functions f; € Bf;i can be used to
represent f, i.e.

f(z) = cfi(z) + cafa(x) (440)

for ¢; € R, with much lower Barron norm, i.e.

el fills, +eellfells,, <Ifls, - (441)

Page 96 of 103

8 FUTURE WORK AND OPEN QUESTIONS

Furthermore, we can always choose ¢y, cs, f1, fo such that
Cl”leBg + el fallge < ||fHBQ (442)
1 2 i

for all f € Bg,. This combined suggests that this space of linear combination of function f; € By,
contains more functions than each By, and the total norm is lower. This is captured in the following
proposition.

Proposition 8.1. Let ¢; be activation functions, then

5 — B (443)
as well as

B = OB (444)
Proof. Follows directly from the definition of the direct sum @,. Q.E.D.

Although it might be interesting to know what kind of functions are in @, By, \ U, Bg,, i.e. the set
of functions that can be described by several activation functions but not with only one activation
function, it would be more interesting to know how large the various errors of this space are. The
author’s guess is that the projection, approximation, and estimation errors will be similar or lower,
but that the worst case training error is higher. The projection error is thought to be smaller,
because the direct sum space contains more functions. The approximation and estimation errors are
thought to be similar, because a similar construction as for the original Barron spaces can be used
to bound them. The training error is thought to be larger, because the activation functions work on
different scales possibly leading to more vanishing or exploding gradients.

3. Is it possible to formulate error bounds when the loss functional is changed from the L?(X, p)
norm to the Sobolev norm H*(X, p)?

In this work we have considered the L? loss. This does not include a term for the derivatives. In
physical processes derivatives can be highly important. This means that we ideally also have a bound
on how well we can approximate the derivatives. For the approximation error we can find inspiration
in the works of Siegel and Xu. In [Siegel and Xu, 2021] the authors discuss the Sobolev loss H*,
which does include derivatives albeit weak derivatives. In theorem 2 of their work they prove that,
given sufficiently smooth and fast enough decaying activation functions, functions f € %} L1 can
locally be efficiently approximated in H® by finite width shallow neural networks. In the proof of
this theorem they explicitly construct a probability measure A such that f € .#; 11 can be written
as an expectation over A. This strongly suggests that it is possible to construct, for each f € .Z} +L1
a measure p with

HMHTCG(]Rd+1) < C||f||yls+11 (445)

for some C > 0 such that f = Kd?”' We make this more rigorous in the following conjecture.

Page 97 of 103

8 FUTURE WORK AND OPEN QUESTIONS

Conjecture 8.1 (Adaptation of [Siegel and Xu, 2021; theorem 2 and corollary 1]). Consider an
activation function ¢ € W% (R) that is non-zero and satisfies the decay condition

0¥ p(1)] < Cp(L+ [t]) 7 (446)
for 0 <k < s and somep > 1 and Cp > 0, then
s R d+1
Fi S VR (447)

and
17l

vm
for f e EISHJ. If ¢ does not satisfy the decay condition but a linear combination ¢ of mg € N
elements does, then instead

1f = Fmll oy <C (448)

R(/H»l Rd+1

FiM S VET SV (449)

and

1£ly,
Jm

L = fonll s () < Cv/mo (450)

s+1,1
for fe % .

On page 18 of [Siegel and Xu, 2021] a table is given that shows that the higher-order ReLU satisfies
the conditions of conjecture 8.1. This means that conjecture 8.1 implies in particular that %} 1o,
B?S, and thus fig. 10 too. Furthermore, conjecture 8.1 shows a bound for the approximation error.

To provide a bound akin to that of theorem 4.4, it remains to be shown what the Rademacher
complexity is and what the bounds for a direct approximation theorem are.

y}s-‘rl,l Lg}t-‘y—l,l yIQ,l

N\ N\ N\
B3, B; B

Figure 10: The relationship between Bffk and L?Ikﬂ’l for k € {s,t,1} with 1 <t < s. Valid if
conjecture 8.1 holds. Arrows represent embeddings.

4. The authors of [Caragea et al., 2020] consider a space Br s(U). How does this space relate to
915’1 and the Barron spaces Bg?

In this work we have discussed various properties of the space .Z; 1 This function space places
different restrictions on the functions in it. One of these restrictions is that the function must be
defined over all or R?. However, often we are only interested in local properties. For example in the
Fourier expansion of theorem 4.2 we are focus on the remainder of the Taylor expansion. This is a
local property, but we use .#; 1. One way to describe a local version of functions from .Z; s to
consider

FILU) = {f U—>R ' 1l #1 0y < OO}’
(451)

15700 = {lals; | g€ 74 Vo e U s oto) = £(0)}

Page 98 of 103

8 FUTURE WORK AND OPEN QUESTIONS

for some U < R%. This can be interpreted as: if f € ﬂ}s’l(U), then f must be able to be expanded
to a function g € F} 1. The norm of f is then determined by the smallest extension g. Clearly,
Ft < Z9(U). However, Z7'(U) ¢ F'", since it is possible to have functions f : R? — R that
are not in .#;"" but have an extension such that they are in .%Z;""(U). It is unclear whether in the
propositions and theorems of this work .%;"! can be replaced by .#;"'(X) without any issue. In
particular, theorem 4.2 would be more powerful. We conjecture that this is possible.

Conjecture 8.2. If f € 7V (X), then there exists an R > 0 and a measure pu € rca(S? x [0, R])
such that for all x € X

1Bl<s 77
with))
f(x) = K(,SS X[O’R],u(a:) (453)
and Ly
|7 gotxom < 2 M lzeniaw): (454)

Note that we did not include the smoothness requirement of theorem 4.2 in conjecture 8.2, since we
have shown in proposition 6.4 that %} g already sufficiently smooth.

It is also possible to write .Z;"' (X) more as a Barron space. For this we use section 7 of [Caragea
et al., 2020]. The authors discuss the space

Br,s(U) = {f :U—R] IF R - C: f(x) = fRd eI IP(©)ldg, fRd@ + € F(§)de < oo},

1y, =t [1+ €1 IF©lde | P R~ C measurabie, (o) = [e ().

(455)
This formulation is a different way of writing .#; o (X). However, it helps us to write it as a Barron
space. Namely, we can combine F(£)d¢ into a single complex valued measure 7 € rca(R%, C) such
that

F(§)d = dvy(§). (456)

Then, we can split the complex measure v into into a complex part and a real part
dy(6) = €O dv (¢) (457)

with 6 : R? — R and v € rca(R?). Finally, for each pair (f,v) we can find a measure p € rca(R?+1!)
such that

J 6i(<z|£>+b)d‘u(€7b) :J 6i<z|£>6i9(£)dy(§). (458)
Rd+1 R4

Combining eq. (455) till eq. (458) and relabelling £ as w gives

BzU) = {f :U—->R ’ 1Lz 0y < Oo}’
(459)

||f||8}5 = imf{.[Rd1 (1+ JJw])*d|p(w,b)]| ‘ pe rea(RYY), f(x) = JR ei(<“|w>+b)d,u(w,b)}.

d+1

Page 99 of 103

8 FUTURE WORK AND OPEN QUESTIONS

Bz s can be seen as a version of N, QW where the activation function ¢, the domain 2 and weight
function W are given by

b el
Q0= Rd+1
W (w,b) = (1 + [lw]])®
respectfully. Note that this at most shows that
1 (U) ~ Bro(U) € Bz s(U) (460)
for all U < RY. The reverse should be provable.

Conjecture 8.3. Let se N. For all U < R¢

FNU) ~ Bro(U) ~ Bz .(U). (461)

In section 7 of [Caragea et al., 2020] the authors also prove some relationships between some Barron
spaces and Br s. These are shown in fig. 11. Recall that in section 6.1 we argued that 912’1 does

d d
not embed in B *[0.R] g0 any R > 0, but that some local version of 912’1 may embed in By [0.R],
If conjecture 8.3 holds, then the authors have shown that a similar statement is indeed true.

Bz 2(X) — Bz 1(X)
XN

RA+1 RATL
Bo BH

Figure 11: Representations of relations between some Barron spaces and Bzs,: as proven by the
authors in [Caragea et al., 2020]. Arrows represent embeddings. The arrow with a red cross implies
that no such embedding can exist.

5. Is it possible to construct an inverse of the operator K7

In [Parhi and Nowak, 2021] the authors discuss a similar result as theorem 4.2. They state that any
function f € Fg11 with

fs_{f;Rd—wR

esssup |f(@)|(1 +)' . Fuf € rea(s % R) (162)
zeRd

where R, is a particular operator that we will discuss in a bit, can be represented as a (infinitely wide)
shallow neural network using a higher order ReLU combined with a polynomial. More precisely, let
P, be the set of polynomials of order at most m, p; € P, be a basis of P,, and ¢; € P¥ be dual
elements such that

1 =7,

463
0 ¢+#7. (463)

<pi|qj‘>L2(1Rd) = fRd pi(7)gj(v)dr = {

Page 100 of 103

8 FUTURE WORK AND OPEN QUESTIONS

For every f € F,y1 there exists a measure p € rca(S? x R) and a polynomial & of degree at most s
such that for all € R¢

ﬂ@:h@ﬂJ;mmaxmmmmwm (464)
with

ko, (1,8)) = oy (Calw) + b) — E:Z% ‘[y)os((ylw) + b)dy (465)

Note that the biggest difference between eq. (464) and eq. (236) is that eq. (464) uses the kernel k;
whereas eq. (236) only has os((z|w) 4+ b). To prove their claim the authors use that

Ryi1h =0 (466)

and that
O () T (=1)%6(w,p)

Ryp104((lw) —b) = 5 (467)
This allows them to show that
Reos | Kl b)dutw,h) = g (468)
SexR
Hence, it makes sense to call
R9+1 B ks('a (w7 b))d:u(wv b) (469)
S xR
the right inverse of Rsy1. Recall that Ké} was given by
K s || ou(Cluy + b)dutu,b), (470)
Q

for the higher order ReLU o,. The similarity between eq. (469) and eq. (470) suggests that we can
alter Rs11 to get a left inverse for K. How to do this is unclear to the author.

Page 101 of 103

REFERENCES

References

at Caltech, A. R. a. C. (2020). Neural-Swarm2: Planning and Control of Heterogeneous Multirotor
Swarms using Learned Interactions. https://www.youtube.com/watch?v=Y02juH6BDxo

Bach, F. (2017). Breaking the Curse of Dimensionality with Convex Neural Networks. Journal of Machine Learning Rese
18(19), 1-53. http://jmlr.org/papers/v18/14-546.html

Barron, A. (1993). Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information Theory, 39(3), 930-945. https://doi.org/10.1109 /18.
256500

Batra, S., Huang, Z., Petrenko, A., Kumar, T., Molchanov, A., & Sukhatme, G. S. (2021). RL
Quadrotor Swarms, CoRL 2021. Retrieved April 17, 2022, from https://sites.google.com/
view /swarm-rl

Caragea, A., Petersen, P., & Voigtlaender, F. (2020). Neural network approximation and esti-
mation of classifiers with classification boundary in a Barron class [arXiv: 2011.09363].
arXiv:2011.09363 [math, stat]. Retrieved April 22, 2021, from http://arxiv.org/abs/2011.
09363

E, W., Ma, C., Wojtowytsch, S., & Wu, L. (2020). Towards a Mathematical Understanding of Neural
Network-Based Machine Learning: What we know and what we don’t [arXiv: 2009.10713].
arXiv:2009.10713 [cs, math, stat]. Retrieved April 15, 2021, from http://arxiv.org/abs/
2009.10713

E, W., Ma, C.; & Wu, L. (2021). The Barron Space and the Flow-induced Function Spaces for Neural
Network Models [arXiv: 1906.08039]. arXiv:1906.08039 [cs, math, stat]. Retrieved May 13,
2021, from http://arxiv.org/abs/1906.08039

E, W., & Wojtowytsch, S. (2020a). Kolmogorov Width Decay and Poor Approximators in Machine
Learning: Shallow Neural Networks, Random Feature Models and Neural Tangent Kernels
[arXiv: 2005.10807]. arXiv:2005.10807 [cs, math, stat]. Retrieved June 10, 2021, from http:
//arxiv.org/abs/2005.10807

E, W., & Wojtowytsch, S. (2020b). Representation formulas and pointwise properties for Barron
functions [arXiv: 2006.05982]. arXiv:2006.05982 [cs, math, stat]. Retrieved April 15, 2021,
from http://arxiv.org/abs/2006.05982

Grafakos, L. (2014a). Classical Fourier Analysis (Vol. 249). Springer New York. https://doi.org/10.
1007/978-1-4939-1194-3

Grafakos, L. (2014b). Modern Fourier Analysis (Vol. 250). Springer New York. https://doi.org/10.
1007/978-1-4939-1230-8

Kan, X., Thomas, J., Teng, H., Tanner, H. G., Kumar, V., & Karydis, K. (2019). Analysis of Ground
Effect for Small-Scale UAVs in Forward Flight. IEEE Robotics and Automation Letters,
4(4), 3860-3867. https://doi.org/10.1109/LRA.2019.2929993

Klusowski, J. M., & Barron, A. R. (2018). Risk Bounds for High-dimensional Ridge Function Combi-
nations Including Neural Networks [arXiv: 1607.01434]. arXiv:1607.01434 [math, stat]. Re-
trieved April 19, 2021, from http://arxiv.org/abs/1607.01434

Kolyada, V. 1. (1997). Estimates of Fourier transforms in Sobolev spaces. Studia Mathematica,
1(125), 67-74. Retrieved February 17, 2022, from https:/ /www.infona.pl/ /resource /
bwmetal.element.bwnjournal-article-smv125i1p67bwm

Li, Z., Ma, C., & Wu, L. (2020). Complexity Measures for Neural Networks with General Acti-
vation Functions Using Path-based Norms [arXiv: 2009.06132]. arXiv:2009.06132 [cs, stat].
Retrieved June 24, 2021, from http://arxiv.org/abs/2009.06132

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning. MIT Press.

Page 102 of 103

https://www.youtube.com/watch?v=Y02juH6BDxo
http://jmlr.org/papers/v18/14-546.html
https://doi.org/10.1109/18.256500
https://doi.org/10.1109/18.256500
https://sites.google.com/view/swarm-rl
https://sites.google.com/view/swarm-rl
http://arxiv.org/abs/2011.09363
http://arxiv.org/abs/2011.09363
http://arxiv.org/abs/2009.10713
http://arxiv.org/abs/2009.10713
http://arxiv.org/abs/1906.08039
http://arxiv.org/abs/2005.10807
http://arxiv.org/abs/2005.10807
http://arxiv.org/abs/2006.05982
https://doi.org/10.1007/978-1-4939-1194-3
https://doi.org/10.1007/978-1-4939-1194-3
https://doi.org/10.1007/978-1-4939-1230-8
https://doi.org/10.1007/978-1-4939-1230-8
https://doi.org/10.1109/LRA.2019.2929993
http://arxiv.org/abs/1607.01434
https://www.infona.pl//resource/bwmeta1.element.bwnjournal-article-smv125i1p67bwm
https://www.infona.pl//resource/bwmeta1.element.bwnjournal-article-smv125i1p67bwm
http://arxiv.org/abs/2009.06132

REFERENCES

O’Connell, M., Shi, G., Shi, X., & Chung, S.-J. (2021). Meta-Learning-Based Robust Adaptive Flight
Control Under Uncertain Wind Conditions [arXiv: 2103.01932]. arXiv:2103.01932 [cs, eess].
Retrieved April 17, 2022, from http://arxiv.org/abs/2103.01932

Parhi, R., & Nowak, R. D. (2021). Banach Space Representer Theorems for Neural Networks
and Ridge Splines. Journal of Machine Learning Research, 22(43), 1-40. http://jmlr.org/
papers/v22/20-583.html

Rudin, W. (2006). Functional analysis (2. ed) [OCLC: 711823671]. Tata McGraw Hill Education.

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press. https://doi.org/10.1017/CBO9781107298019

Shi, G., Shi, X., O’Connell, M., Yu, R., Azizzadenesheli, K., Anandkumar, A., Yue, Y., & Chung,
S.-J. (2019). Neural Lander: Stable Drone Landing Control using Learned Dynamics [arXiv:
1811.08027]. 2019 International Conference on Robotics and Automation (ICRA), 9784-9790.
https://doi.org/10.1109/ICRA.2019.8794351

Siegel, J. W., & Xu, J. (2021). Approximation Rates for Neural Networks with General Activation
Functions [arXiv: 1904.02311]. arXiv:1904.02311 [cs, math]. Retrieved April 15, 2021, from
http://arxiv.org/abs/1904.02311

Sobolev inequality [Page Version ID: 1059603306]. (2021). Retrieved February 19, 2022, from https:
/ /en.wikipedia.org/w /index.php?title=Sobolev_inequality&oldid=1059603306

Tao, T. (2009). 245C, Notes 4: Sobolev spaces. Retrieved February 18, 2022, from https://terrytao.
wordpress.com/2009/04/30/245¢c-notes-4-sobolev-spaces/

Visintin, A. (2017). Notes on Sobolev Spaces. Retrieved February 19, 2022, from https://www.
science.unitn.it/~visintin/Sobolev2017.pdf

Wolf, M. M. (2018). Mathematical Foundations of Supervised Learning — lecture notes. https: //www-
mb.ma.tum.de/foswiki/pub/M5/Allgemeines /MA4801_2016S /ML _notes_main.pdf

Page 103 of 103

http://arxiv.org/abs/2103.01932
http://jmlr.org/papers/v22/20-583.html
http://jmlr.org/papers/v22/20-583.html
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1109/ICRA.2019.8794351
http://arxiv.org/abs/1904.02311
https://en.wikipedia.org/w/index.php?title=Sobolev_inequality&oldid=1059603306
https://en.wikipedia.org/w/index.php?title=Sobolev_inequality&oldid=1059603306
https://terrytao.wordpress.com/2009/04/30/245c-notes-4-sobolev-spaces/
https://terrytao.wordpress.com/2009/04/30/245c-notes-4-sobolev-spaces/
https://www.science.unitn.it/~visintin/Sobolev2017.pdf
https://www.science.unitn.it/~visintin/Sobolev2017.pdf
https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MA4801_2016S/ML_notes_main.pdf
https://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MA4801_2016S/ML_notes_main.pdf

	Introduction
	Related work
	Our contribution
	Structure of this work
	Notation and used concepts

	Framework for Estimating functions using Neural Networks
	Problem Description
	Error Bounds

	Infinitely Wide Neural Network Spaces
	Completeness
	More general weight functions
	Reproducing kernel Hilbert spaces
	Activation Functions
	Duality theorems
	Predual
	Dual

	Taylor and Relu
	Single variable functions
	Multivariate functions
	Fourier Expansion
	Error bound and Approximation Theorem

	Numerics
	Error bounds
	Methodology
	Results

	The Big Picture
	Bach and Barron
	Fourier based spaces

	Deep Learning and Control
	Deep Learning in Control
	Model adaptive control
	Approximate dynamic programming
	Model-based and model-free control with deep learning

	Control in Deep Learning
	ResNets, and how they generalize to Neural ODEs
	Hamiltonian Equations
	Functions that can be approximated

	Future work and Open Questions

