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Abstract

Single-event upsets and multiple-bit upsets that are part of single-event effects,
cause bit-flips and hence lead to data corruption. Therefore, devices that are de-
ployed in harsh environments such as in space use fault-tolerant processors or re-
dundancy methods to ensure hardware reliability. Another serious vulnerability is
the introduction of hardware trojans. Besides environmental side-effects, an adver-
sary that has injected a malicious mechanism e.g., in the processor or memory can
trigger unwanted behavior or leak sensitive information. Techniques to prevent or
mitigate hardware trojans are important to ensure hardware security. Proprietary
solutions exist in the market that introduces fault-tolerance or security extensions
to establish this. Openness is important to prevent monopolistic proprietary solu-
tions and create alternative solutions, such as an analogy of what happened in the
world of Operating Systems; Windows NT (proprietary OS and kernel) versus Linux
(open-source kernel). This is where the open RISC-V instruction set architecture
becomes relevant. A novel solution to improve the security and reliability of RISC-V
soft-cores with a low area and latency overhead was introduced in this thesis. The
instruction validator which is the first part of this solution can effectively detect hard-
ware trojans and multiple-bit upsets in the instruction memory by checking instruc-
tion/address pairs using a Bloom filter probabilistic data structure. The second part
of the solution is the proposal of an error correction code instruction memory using
Hamming single-error correction to detect and correct single-event upsets. It has
also been proven that the Hamming decoder improves the detection performance
of the instruction validator. An automation framework was introduced to generate,
simulate and synthesize the instruction validator for different configurations which
presents the designer with different options based on the application requirements.
Besides this automation framework, two BF optimizations were proposed that de-
crease the BF area overhead. The instruction validator and error correction code
instruction memory were successfully tested and integrated with the FreNox RISC-
V core on an FPGA fabric. This resulted in a low area and latency overhead which
makes it suitable to use with embedded RISC-V soft-cores that have strict security
and reliability requirements.
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Chapter 1

Introduction

This chapter represents the introduction and the plan of approach. The first section
Organization discusses where the master thesis took place and who was involved.
The second section Background presents the general topics and ideas that led to
this thesis. The third section Fault/Threat model covers the fault model of single-
event upsets (SEU) and multiple-bit upsets (MBU) and the threat model of HWTs.
What effect do SEUs, MBUs, and HWTs have on a Harvard CPU architecture?
Finally, the thesis outline is discussed.

1.1 Organization

This thesis was executed by Embedded Systems Master’s student ing. Edian B. An-
nink at the University of Twente located in Enschede and Technolution B.V. located
in Gouda. At the University of Twente, the research group Computer Architecture
for Embedded Systems (CAES) is involved which is part of the Faculty of Electrical
Engineering, Mathematics and Computer Science (EEMCS). The thesis was super-
vised by dr. ir. M. Ottavi who is an associate professor at the University of Rome Tor
Vergata and an associate professor in the CAES group at the University of Twente.
The committee consists of the following examiners:

• Dr. ir. M. Ottavi (University of Twente and the University of Rome Tor Vergata)

• ir. E. Molenkamp (University of Twente)

• Dr. ir. A. Menicucci (Delft University of Technology)

The committee consists of the following advisors:

• ir. S. Di Mascio (Delft University of Technology and European Space Agency)

• Dr. ir. G. Furano (European Space Agency)

8



CHAPTER 1. INTRODUCTION 9

• Dr. ir. G. Rauwerda (Technolution B.V.)

• Dr. ir. E. Hakkennes (Technolution B.V.)

Currently, CAES employs 34 people. The research group started with energy
efficiency as the main research area concerning energy-efficient processing and
communication sub-systems for battery-powered embedded systems, such as mo-
bile phones and wireless sensor networks [3]. The research has been extended to
the following two main research areas [3]:

• Efficient architectures and tools for streaming applications

• ICT for energy management in buildings and smart grids

Technolution B.V. currently employs 250 people. Technolution was founded by
four engineers in 1987 who saw more potential in software and electronics than the
current state-of-the-art at the time.

The Technolution team is passionate about technology and works on innovative
products, systems, and technologies for a wide range of clients. They are skilled
in many disciplines (e.g. electronics, embedded hardware/software, programmable
logic, and application software). Besides these skills, they master all aspects of
data chains in almost any context, from data acquisition to access and process
management.

Technolution contributes its expertise to customers in multiple industries, such
as mobility (traffic management and Smart Cities), energy (Smart Grids, energy-
transition projects), high-tech and big science (advanced meteorology equipment),
manufacturing (automation, artificial intelligence, and computer vision) and high as-
surance (preventive security for classified data) [4].

1.2 Background

Moore’s law states that the number of transistors in an integrated circuit (IC) doubles
every 24 months. While this is no longer true [5], this exponential growth resulted
in more transistors per die. ICs became more sophisticated over time and very
large-scale integrated circuits (VLSI) were introduced followed by ultra-large-scale
integrated circuits (ULSI). This increase in capacity resulted in more hardware per
die and an increased complexity which introduced negative side-effects such as
security issues (HWTs) and reliability issues such as single-event upsets (SEUs)
and multiple-bit upsets (MBUs). More hardware per area and smaller noise margins
mean that SEUs and MBUs occur earlier with a smaller charge. A more detailed
explanation will be presented later.
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A well-known hardware security issue is a hardware trojan (HWT) which is a
malicious, intentional modification of a circuit design that results in undesired be-
havior when the circuit is deployed [6]. HWTs can lead to catastrophic system
failures depending on the type of HWT [1]. The first HWT was discovered in a
Syrian radar system. A suspected Syrian nuclear installation in the northeast was
bombed in September 2007. The Syrian radar system didn’t detect this attack. The
Syrian radar consisted of commercially available microprocessors that supposedly
contained a hidden backdoor and temporarily disabled the system. A United States
defense contractor didn’t confirm this specific event but confirmed that European
chip manufacturers built microprocessors containing kill switches. This kill switch
could disable microprocessors remotely when falling into the wrong hands [7]. Ac-
cording to [6], the fabrication of an IC contains many steps in the following sequential
order: specifications, register-transfer level (RTL) design, netlist, physical Design,
fabrication, assembly, and market. The complexity of each step in the fabrication
process makes it difficult to prevent HWTs. Reducing cost and a fast time to market
(TTM) often forces research and development (R&D) departments to buy intellectual
property circuits from other companies which increases the risk of HWTs even fur-
ther [8]. Other important phenomena that affect hardware reliability are SEUs and
MBUs.

SEUs and MBUs are both subsets of Single-Event Effects (SEE) and both cause
a temporary change of memory contents or commands in an instruction stream [9].
SEUs and MBUs in space originate from heavy ions coming from cosmic rays or
high-energy protons coming from solar flares. SEUs and MBUs can also occur from
secondary cosmic rays which can reach the Earth’s surface. A famous example of a
SEU caused by a secondary cosmic ray is the occurrence of a bit-flip in an electronic
voting system in Belgium which resulted in 4096 more votes [10]. MBUs cause two
or more bit-errors per word. According to [9] four types of MBUs exist:

• An incoming particle passing through adjacent cells

• Diffusion of charge to closely spaced junctions upsetting more than one bit

• An ionization cloud overlapping two or more sensitive regions

• Two random particle hits occurring in different bits in the word during a given
time period

SEUs and MBUs often result in data corruption which may lead to system malfunc-
tioning. While radiation hardening leads to fewer SEU and MBU cases in spacecraft,
it is important to find other ways to mitigate or decrease SEUs and MBUs in digital
circuits. Especially systems that can have a big impact on the environment and
human lives such as space, missile, and avionics systems [9].
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1.3 Fault/Threat model

Fault model

It is unlikely that one solution covers all HWTs, SEUs, and MBUs. A fault model and
threat model must be introduced to get an overview of the behavior of HWTs, SEUs,
and MBUs. Consider the Harvard CPU architecture displayed in Figure 1.1.

Figure 1.1: Harvard architecture diagram

An example of a Harvard-based architecture is RISC-V which stands for Re-
duced Instruction Set Computer 5. RISC-V is an open instruction set architecture
(ISA) that was introduced in 2010 by the University of California located in Berkeley.
The RISC-V ISA is also subjective to reliability and security issues. Current security
and reliability problems in RISC-V will be discussed later on as well as the relevance
of RISC-V in this thesis.

Two components in the Harvard architecture can be influenced by SEUs and
MBUs: Instruction memory and data memory. This means that the reliability of the
instruction and data memory cannot be guaranteed in this case.

While the data memory might also be affected by SEUs, MBUs, and HWTs, this
thesis focuses on SEUs, MBUs, and HWTs that occur in the instruction memory.

Threat model

In [1] it is shown that different types of HWTs exist. The presented taxonomy shows
that HWTs can be classified by looking at the insertion phase, abstraction level, ac-
tivation mechanism, effects, and location. As mentioned before, this thesis focuses
on the presence of HWTs in the instruction memory. This is an important scope as
HWTs could also be implemented in other components of the processor. For ex-
ample, an HWT can modify the functionality of the registers or the arithmetic logic
unit (ALU). This means that HWT detection located in the instruction memory can
be bypassed as instructions are changed after the instruction fetch (IF) phase of the
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processor. Figure 1.2 displays the proposed threat model of this type of HWT. This
so-called instruction memory HWT is part of the class (∈) or is not part (/∈) of the
class in each attribute.

Figure 1.2: Instruction memory HWTs classified by the HWT taxonomy [1]

An HWT that resides in instruction memory can be inserted in every phase. A
requirement in the specification phase can be added that simplifies adding HWTs in
a later phase. A possible example is that a third-party memory IP block is used in the
design phase that injects malicious instructions into the instruction memory. Another
example is that a developer can add malicious HDL code that implements an HWT
in the instruction memory. In the worst case, an alternative photomask can be used
to change or replace the instruction memory. If the testing phase is also modified
to prevent the detection of this malicious change, an HWT can be introduced in the
fabrication phase of the IC. The same is the case for assembly and packaging. If the
memory is separated from the processor on a PCB, a malicious memory component
can be used.

The HWT can also be implemented at every abstraction level. This is the case
because the instruction memory can be maliciously modified or replaced on every
level.

This specific HWT also supports every activation mechanism or trigger mecha-
nism. The HWT can be always-on, internally triggered, and externally triggered.

All effects, also called payloads, are supported. The functionality can be changed
such as changing instructions or injecting malicious instructions. Performance can
be downgraded by spamming instructions or repeating instructions. Information can
be leaked by injecting instructions that copy sensitive data to memory addresses
that can be read by the adversary. Denial-of-Service (DoS) is also a possibility, e.g.,
completely disabling the instruction memory. No instructions can be written to the
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instruction memory and reading the instruction memory results in undefined signals
which completely halts the pipeline.

This HWT only resides in the instruction memory and hence the other locations
are not part of the classification.

1.4 Report outline

Chapter 2 Related work discusses the related work. The related work is divided into
state-of-the-art regarding the prevention of SEUs, MBUs, and HWTs in the RISC-V
architecture. This creates a clear gap in current research that ultimately leads to a
discussion and the definition of the objectives of this thesis.

Chapter 3 Theoretical background discusses the theoretical background of the
main techniques that were used in this thesis: Probabilistic data structures and error
correction codes (ECC).

Chapter 4 Design discusses the design proposal to achieve the objectives using
criteria and by weighing different options. This chapter introduces the instruction val-
idator and ECC high-level design and hardware design which checks instruction/ad-
dress pairs. Besides the instruction validator, the automation framework which can
generate the instruction validator using disassembled RISC-V programs is intro-
duced. The ECC instruction memory is also discussed which is implemented in
both software and hardware.

Chapter 5 Simulation discusses the simulations using automated cocotb simu-
lations. A test harness is introduced to simulate both the instruction validator and
ECC separately and combined. Benchmark programs were used and compiled with
the RISC-V toolchain and used in all the simulations. HWT, SEU, and MBU were in-
jected in different simulations to evaluate the instruction validator and ECC efficiency
regarding improving the security and reliability in RISC-V soft-cores.

Chapter 6 Implementation discusses the implementation of the instruction val-
idator. Firstly, the synthesis results of the instruction validator configurations are
discussed. Secondly, an isolated implementation of the instruction validator was cre-
ated to test the instruction validator separately from the RISC-V on an FPGA fabric.
This isolated implementation was tested using a logic analyzer. The implementation
also discusses the synthesis results of different instruction validator configurations
using different hashes, optimizations, and benchmark programs. Finally, the instruc-
tion validator was integrated into the FreNox SoC-e system-on-chip (SoC) with the
FreNox RISC-V soft-core.

Chapter 7 Conclusion and future work conclude the thesis. The main results
of the thesis are discussed and a reflection on the objectives is presented. This
chapter also discusses the future work of this thesis: What can be improved and
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what are the next steps? Possible new research topics can be materialized based
on this future work.



Chapter 2

Related work

This chapter describes the related work and objectives of this thesis. The state-of-
the-art is discussed to be able to conclude the current gap in research that is partially
filled by this thesis. First, the relevance of RISC-V to this thesis is discussed. Sec-
ondly, SEU/MBU correction and detection techniques related to RISC-V and other
architectures are discussed. Thirdly, HWT detection and prevention techniques re-
lated to RISC-V and other architectures are discussed. Finally, the objectives are
discussed based on the current gap in state-of-the-art techniques to mitigate SEUs,
MBUs, and HWTs.

2.1 The relevance of RISC-V

This thesis focuses on the RISC-V open ISA. As mentioned previously, RISC-V
standing for Reduced Instruction Set Computer 5 is an open instruction set archi-
tecture (ISA) that was introduced in 2010 by the University of California, Berkeley.
Later, the RISC-V foundation was founded in 2015 with Technolution being one of
the founding members. The main goal of the RISC-V Foundation is to promote
RISC-V [11]. An open ISA means that companies and academia can create hard-
ware implementations based on this ISA specification without paying royalties or
using proprietary tools. Instead, companies and academia are free to create their
RISC-V core or System-on-Chip (SoC) based on the RISC-V specification and can
contribute to RISC-V itself and the software tools that come with it [12].

The goals behind RISC-V are as follows [13]:

• Must be open and freely available to academia and industry.

• Must be suitable for direct native hardware implementation.

• Must be specified independently of microarchitecture styles or implementation
technology.

15
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• Must be separated into a base integer ISA that can be extended with custom
accelerators and standard extensions.

• Must support the revised 2008 IEEE-754 floating-point standard.

• Must support extensive ISA extensions and specialized variants.

• Must have 32-bit and 64-bit address space variants for applications, operating
system kernels, and hardware implementations.

• Must have support for highly parallel multicore or manycore implementations,
including heterogeneous multiprocessors.

• Must have optional variable-length instructions to both expand available in-
struction encoding space and to support an optional dense instruction encod-
ing for improved performance, static code size, and energy efficiency.

• Must be fully virtualizable to ease hypervisor development.

• Must simplify experiments with new privileged architecture designs.

RISC-V has an unprivileged and privileged specification. According to the spec-
ification [13]: The RISC-V privileged architecture covers all aspects of RISC-V sys-
tems beyond the unprivileged ISA, including privileged instructions as well as ad-
ditional functionality required for running operating systems and attaching external
devices. RISC-V consists of 32- and 64-bit base integer ISA and extensions. By the
time of writing this thesis, RISC-V consists of the following ratified base integer ISA:

• RV32I Version 2.1

• RV64I Version 2.1

RISC-V consists of the following ratified standard extensions that can be used to
extend the base ISA [13]:

• M: Integer Multiplication and Division Version 2.0

• A: Atomic Instructions Version 2.1

• F: Single-Precision Floating-Point Version 2.2

• D: Double-Precision Floating-Point Version 2.2

• Q: Quad-Precision Floating-Point Version 2.2

• C: Compressed Instructions Version 2.0
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The main reason to focus on RISC-V is its openness and RISC-V’s future in indus-
tries that require computer systems that provide high reliability and security such as
the aerospace industry [14].

Like any other ISA, RISC-V is also subject to research that improves its security
and reliability. It has been proven that HWTs, SEUs, and MBUs cause major security
vulnerabilities and reliability issues [6] [9].

2.2 SEU/MBU correction and detection techniques

Recent studies [15]–[17] show that the number of fault-tolerant RISC-V cores that
prevent SEUs and MBUs is still limited. While this is still true, the number of re-
searchers and the industry that is developing fault-tolerance solutions for RISC-V
is growing. The first example of fault-tolerant RISC-V cores is the RISC-V core
protected by Triple Modular Redundancy (TMR) and Hamming codes based on the
unprivileged specification proposed by Santos et al. [16]. A second example is an
addition of ECC-protected memory to the out-of-order Rocket core BOOM by Berke-
ley proposed by Dörflinger et al. [15]. Gaisler Cobham [18] who is known for de-
veloping fault-tolerant processors and fault-tolerant IPs for space recently released
NOEL-V which is their implementation of the RISC-V specification. While this core
currently is not fault-tolerant by design, it will soon get support for fault-tolerance.
Ramos et al. [19] researched the impact of SEUs on multiple soft processors us-
ing SRAM-based FPGA implementations including the lowRISC SoC. SEUs were
introduced using the Soft Error Mitigation (SEM) IP of Xilinx. The conclusion was
that Application Output Mismatches caused by Silent Data Corruptions (SDC) and
Hangs (infinite loop) were the most common faults besides hard faults (exception)
and Architecture Internal Failures which means that the output is correct, but the
internal state of the architecture isn’t. They ultimately claim that fault-tolerant tech-
niques should be applied to lowRISC if it is going to be used in space missions.
A study by A. E. Wilson et al. [20] tested the fault-tolerance of RISC-V soft-cores
on Xilinx SRAM-based FPGAs. They have proven that while reliability is improved
when using TMR, the reliability of the core is still limited by multiple factors including
MBUs affecting two or three TMR domains. Another study by M. Ottavi et al. [21]
investigates a signature-based checker that mitigates SEUs in a complex instruction
set computer (CISC): The Intel 8051 8-bit microcontroller. This checker checks the
control flow integrity by analyzing the signature that is created for every sequence
of instructions before every program branch. This signature is generated by linear
feedback shift registers (LFSR) and is compared with pre-loaded signatures. An
error is raised if the signature doesn’t exist. This checker provided an average of
98.86% coverage, a high level of protection against freezes, and a correlation of
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50% between control flow errors and wrong computations. A comparison will be
presented later which includes this checker.

2.3 HWT detection and prevention techniques

The development of defense mechanisms against Hardware Trojans is relatively
lagging behind according to a recent survey on RISC-V security regarding hard-
ware and architecture [22]. This survey features multiple proposals that try to detect
HWTs in RISC-V. Linscott et al. [23] focus on HWTs that are introduced in the fabri-
cation process of silicon. The proposal is to mitigate HWTs by mapping the security-
critical portions of a processor design to a one-time programmable, LUT-free fabric.
This results in an area overhead of 27% when using the Rocket BOOM RISC-V
core. Takahashi et al. [24] propose two detection methods based on machine learn-
ing and side-channel analysis. The methods were successful in detecting HWTs in
PicoRV and Freedom RISC-V cores. The third proposal by Bolat et al. [25] intro-
duces a protection architecture to detect HWTs in the instruction and data memory
in RISC-V using a Bloom filter (BF). Hoque et al. [26] introduce a new HWT class
that targets SRAM arrays. They conclude that these HWTs can evade industry-
standard post-manufacturing testing. A study by A. Palumbo et al. [27] introduces
a protection architecture like the architecture proposed by Bolat et al. [25]. This
checker fragments instruction/address pairs into multiple data chunks. So for ex-
ample fragmenting a 64-bit instruction/address pair into four 16-bit vectors that can
serve as 16-bit addresses to a bit array. The instruction/address pairs that are stored
in the instruction memory are stored in these bit arrays. When instructions are being
fetched, the checker determines if each address corresponding to the fragmented
instruction/address pair is ’1’ in their respective bit array.

A general idea besides the mentioned checkers would be to introduce a CRC-
based checker that functions as a checksum for the instruction memory. This how-
ever causes several issues. The first issue is that the checksum can only be checked
after all the instructions are fetched by the processor. A solution would be to pre-
load the instruction memory and calculate and validate the checksum, initially and
after every fetched instruction. This proves the continuous integrity of the instruc-
tion memory. However, this still doesn’t solve the first issue and results in a large
overhead in terms of latency.

The number of HWT, SEU, and MBU countermeasures in RISC-V is still limited
and results in a large overhead in terms of area and latency according to recent
studies and surveys. A lot of work must yet be done to ensure that RISC-V-based
ASICs and softcores are fault-tolerant and resistant to HWTs. As RISC-V is becom-
ing an industry standard and even the standard in future aerospace systems [14]
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this must become the norm. The paper from Di Mascio et al. [28] focuses on the
future of space systems and how RISC-V can fit in with current systems. Besides
that, they portray the importance of alternatives to current monopolistic proprietary
architectures in aerospace in which RISC-V plays an important role.

2.4 Objectives

To conclude, the current techniques that are used to mitigate SEUs, MBUs, and
HWTs are still limited and result in large overhead in terms of area and latency.
The objective of this thesis is to materialize a multi-purpose solution that mitigates
SEUs, MBUs, and HWTs in the instruction memory of an embedded RISC-V core
considering the proposed fault and threat model. Another goal is to achieve an
overhead that is as low as possible in terms of area and latency.

Redundancy techniques can be divided into the following two categories that are
relevant for the proposed problem: Hardware redundancy and information redun-
dancy.

Hardware redundancy techniques to mitigate SEUs and MBUs such as dual
modular redundancy and triple modular redundancy need double or triple the amount
of hardware which results in large area overhead and high manufacturing cost. Error
correction codes (ECC) that mitigate SEUs in RISC-V cores do not result in a large
area overhead as mentioned previously.

Information redundancy adds information to the original data to be able to detect
and possibly correct single- and/or multiple-bit errors. Multiple checkers that check
instruction/address pairs of the sequence of instructions were discussed earlier and
can be categorized as information redundant solutions. These checkers result in the
lowest amount of area overhead with the introduction of a small amount of latency
or ideally no latency at all and will be evaluated and compared next.

First, let’s consider the signature-based checker introduced by M. Ottavi et al.
[21]. While the signature-based checker’s goal was to mitigate SEUs, its effec-
tiveness against HWTs will also be evaluated to be able to compare this checker
against checkers that mitigate HWTs. The signature-based checker is only able to
check the program flow by analyzing a sequence of addresses pointing to instruc-
tions that are fetched from the instruction memory. This means that instructions
can still be injected. The checker only verifies the signature when a conditional in-
struction is fetched. This means that its possible to inject instructions that are not
conditional until the watchdog is triggered. It can be concluded that this checker is
not resilient against HWTs. To improve the detection of HWTs and SEUs, a copy
of the instruction/address pairs must be stored in a redundant memory and every
instruction/address pair must be evaluated when fetched by the core.
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Secondly, two checkers were introduced by Bolat et al. [25] and A. Palumbo et
al. [27] that store instruction/address pairs using different methods. The checker
introduced by Bolat et al. introduces a checker that stores a compressed copy of
the instruction memory in a BF probabilistic data structure and checks the instruc-
tion/address pair with every instruction fetch. The checker introduced by A. Palumbo
et al. uses fragmentation and multiple data chunks to store instruction/address pairs.
This checker was able to detect all instructions injected by an HWT outside of the le-
gal program memory space. However, an HWT that changes instructions during the
IF phase, was detected with a false positive rate of 0.4% until 3.91%. This checker
consumes a smaller number of lookup tables (LUTs) (0.49% vs 5.83%/10.19%) and
flip-flops (FFs) (0.31% vs 0.85%/0.90%) than the BF-based checker.

However, it must be noted that this checker consumes significantly more Block
RAM (BRAM) (208 vs 32 and 64 kbit) than the BF-based checker. The reason
for this significant difference is that the BF-based checker compresses the instruc-
tion/address pairs while the fragmentation checker allocates a fixed memory size to
store instruction/address pairs.

While considering the mentioned redundancy techniques, the following main re-
search question proposes a multi-purpose solution to mitigate SEUs, MBUs, and
HWTs:

How can HWTs and MBUs be detected and SEUs be detected and corrected in
the instruction memory of an embedded RISC-V core using redundant memory in
combination with ECC and instruction/address hashing?

To find a solution that answers this main question, multiple sub-questions were for-
mulated:

• What ECC implementation is the most effective in detecting/correcting SEUs
and results in the lowest amount of overhead in terms of area and latency as
possible while taking the used probabilistic data structure into account?

• What is the most effective way to store the hashed instruction/address pairs to
be able to detect HWTs and MBUs while creating as less overhead in terms of
area and latency as possible?

• What information redundancy configuration using ECC and hashed instruc-
tion/address pairs creates the least amount of overhead in terms of area and
latency while being able to detect HWTs and MBUs and detect/correct SEUs?



Chapter 3

Theoretical background

This chapter covers the theoretical background of the thesis. To know how HWTs
can be detected and SEUs/MBUs can be detected and possibly corrected, relevant
ECC techniques and probabilistic data structures must be researched. First, prob-
abilistic data structures will be analyzed and finally, error correction codes will be
discussed.

3.1 Probabilistic data-structures

Hashed instruction/address pairs can be generated by a hash function. The idea
behind hashed instruction/address pairs is to create a lossy redundant database that
holds these hashes which function as identifiers of instruction/address pairs. This
database can be used to check if the instruction/address pair that is fetched in the
IF phase either contains faults (SEUs or MBUs) or is an instruction triggered by an
HWT. Checking if an element is part of a dataset is also known as the membership
problem [29].

Among all the probabilistic data structures the following most common data struc-
tures and their variants will be analyzed:

• Bloom filter

• Quotient filter

• Cuckoo filter

Besides that, a concluding summary will be presented that concludes which prob-
abilistic data structure would be the most fitting to use in the context of checking
instruction/address pairs.

21
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3.1.1 Bloom filter

The Bloom filter (BF), introduced by Howard Bloom in 1970 [30], is the most used
data structure that solves the previously mentioned membership problem.

The BF has been invented as a space-efficient probabilistic data structure. This
means that this BF can determine if an element is part of the dataset using a much
smaller area than other conventional methods such as hash tables or linked lists.
This makes it very suitable for embedded applications as resources are often limited.

The BF is represented by a bit array. The classical BF only supports insertion
and testing. This means that elements can only be inserted and can be tested if
they are present in the BF. Before the elements are added to the BF, each element
is hashed using multiple hash functions. To insert the element, all bit positions in
the bit array that match the hash outputs (modulo the bit array size) are set to 1. To
check if an element is in the BF, all bit position that corresponds to the hash outputs
(modulo the bit array size) of that element are checked if they are 1. Figure 3.1
displays a visual example of a BF. This BF has a bit array size of 16 and uses three
hash functions. In this case, element x is hashed three times using different hash
functions and is inserted in the bit array by changing the pointed bit array positions to
1. These positions can again be checked to check if element x is present in the BF.
The modulo operation is used to stay within bounds as hash functions often output
a decimal number that is higher than the bit array size.

Figure 3.1: BF example

The trade-off of this technique is that the BF introduces a small percentage of
errors increasing with the number of elements in the filter, also known as the false
positive probability (FPP) (i.e. the BF returns that an element is part of the set while
it was not inserted). Therefore it’s important that the number of hash functions used
and the length of the BF are big enough for the expected number of elements that
will be added.
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Equations 3.1, 3.2 and 3.3 specify the how to compute the FPP ϵ, the optimal
total bit array size m based on the FPP and the number of elements and the optimal
number of hash functions k based on the total bit array size and number of elements
[29]:

ϵ ≈
(
1− e−

kn
m

)k

(3.1)

m = −n ln (ϵ)

ln (2)2
(3.2)

k =
m

n
ln (2) (3.3)

Counting Bloom filter

The counting Bloom filter introduced by L. Fan et al. in 2000 [31] is a modification
of the Bloom filter introducing an array of counters per bit instead of just an array of
bits like the Bloom filter. Using counters introduces the possibility to delete elements.
This comes however with the important condition that the element must exist in the
dataset. This means that it might be necessary to test if the element is present
before deleting it. The negative side-effect of using counters instead of single bits is
that a lot more space is needed that holds the counter bits. Another problem is that
the counters can overflow if the number of assigned bits per counter is too small.
This can be prevented by picking a large enough counter, e.g. 4 bits per counter.

A wide range of other variants of the Bloom filter exists. For example, the buffered
Bloom filter (BBF) proposed by M. Canim et al. [32] which uses a buffer space in
RAM to decrease I/O to and from storage. Another variant is the forest-structured
Bloom filter (FBF) proposed by G. Lu et al. [33] which also uses a combination of
RAM and flash memory, mainly to improve the lookup performance on flash storage.
Many other Bloom filters exist that serve one optimization purpose or serve multiple
purposes in one implementation [34].

3.1.2 Quotient filter

An alternative probabilistic data structure to the BF and its variants is the Quotient
filter (QF) introduced by M. Bender et al. in 2012 [35].

The QF stores a p-bit fingerprint f for each element. It is called the Quotient
filter as it uses Donald Knuth’s quotienting. The least significant bits (LSB) of the
fingerprint are used as the remainder fr = f mod 2r and the q = p − r most sig-
nificant bits (MSB) are used to construct the quotient fq = ⌊ f

2r
⌋. The fingerprint is

stored by storing fr into bucket T [fq]. The fingerprint can be restored as follows:
f = fq2

r + fr [35].
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The Quotient filter offers comparable performance to the Bloom filter in terms
of space and time, but with better data locality. The Quotient filter offers multiple
advantages over the classic Bloom filter such as cache friendliness, in-order hash
traversal, resizing, merging, and deletion [35]. Multiple variants of the Quotient filter
are:

• Quotient filter (QF) - Designed to run on RAM

• Buffered quotient filter (BQF) - Designed to run on flash memory

• Cascade filter (CCF) - Designed to run on flash memory

To compare the Bloom filter and the Quotient filter, in-RAM and SSD experiments
were conducted by M. Bender et al. It is important to note that QF can only be
filled for 75% to remain efficient. This was also reflected in the experiments. The
in-RAM experiments in [35] showed that QFs outperform BFS by factors of 1.3× to
2.5×, depending on the false-positive rates. For uniform random lookups, BFs are
1.4×-1.6× faster. For successful lookups, there was no clear winner.

The SSD experiments in [35] showed that when using a RAM-to-filter ratio of 1:4,
both BQF and CCF insert at least 4 times faster than other data structures and that
BQF is at least twice as fast for lookups as the BFs. In fact, on successful lookups,
it runs roughly 11 times better than EBF and BBF.

3.1.3 Cuckoo filter

The Cuckoo filter proposed by B. Fan et al. in 2014 [36] also stores fingerprints like
the QF. First, a fingerprint f of the element is created. The primary bucket location
is derived by hashing the element. Relocation is essential for Cuckoo hashing. The
Cuckoo filter only stores fingerprints and there is no way to restore the original ele-
ments and re-hash them to find their new bucket in the hash table. The solution is to
use ”Partial-key Cuckoo hashing”. The Cuckoo filter computes two candidate buck-
ets h1(x) = hash(x) and h2(x) = h1(x)⊕hash(f). If the candidates are occupied, an
alternate location is computed as displayed in eq. 3.4 using the current element’s
index i and fingerprint f [36].

j = i⊕ hash(f) (3.4)

The Cuckoo filter does lookup and deletion by checking the two candidate buckets.
If and only if the element x was previously inserted, a copy of the fingerprint f can
be removed.

The following paragraphs evaluate the performance of the CF compared to the
other probabilistic data structures.
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False-positive rate ϵ w.r.t. bits per element

The QF uses extra meta-bits to navigate through the data structure which leads to
10-25% more memory than the space-efficient BF while achieving the same false-
positive rate [36]. This means that the BF can achieve a lower false-positive rate
while using the same amount of memory.

The semi-sort CF and CF both can achieve a higher false-positive rate than the
considered BF implementations while using fewer bits per item for low false-positive
rate applications. The semi-sort CF uses fewer bits per item when ϵ ≤ 3% and the CF
when ϵ ≤ 0.39% (see Figure 4.2 when using 2 candidate buckets and 4 fingerprints
per bucket. The CF implementations even achieve a higher space-efficiency than
the d-left Counting Bloom filter which uses a similar approach as the CF.

Another research conducted by P. Reviriego et al. [37] compares the false pos-
itive rate w.r.t. table occupancy of both the Bloom filter and Cuckoo filter. They
conclude that while the false positive rate of the Cuckoo filter increases linearly, the
Bloom filter increases more steeply and still performs better when the table occu-
pancy is lower than 80%, 85%, and 90% corresponding to fingerprint sizes 12, 15,
and 18. This corresponds to a false positive rate range of 0.2% - 0.003%.

The performance of the Cuckoo filter compared to the previously mentioned prob-
abilistic data structures was evaluated by B. Fan et al. by the means of a benchmark.
Multiple aspects were evaluated that will be discussed onwards. The benchmarks
were executed on a general-purpose CPU: The Intel Xeon L5640 running at 2.27
GHz with 12MB L3 cache and 32 GB RAM [36].

Space efficiency and construction speed

It has been proven by experiments that the semi-sort CF was able to contain the
highest number of elements while using the lowest number of bits per element. The
semi-sort CF also consisted of the lowest false positive rate compared to the other
probabilistic data structures. The blocked BF however had the highest construction
speed as the blocked BF operates on a single cache line for each query [36].

Insertion

BFs have a constant insertion rate as the length of the filter is fixed and the bit
array is overwritten with the hashed element. This is why the BFs have a constant
insertion rate. The CF and semi-sort CF both decrease in insertion performance as
the occupancy increases. This has to do with the characteristic that more elements
in the CF result in more relocations of buckets to insert elements in their designated
positions [36].
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Testing/Lookup

The CF has a slightly higher throughput on existing elements lookup than the blocked
BF. The CFs remain constant on lookups regardless of the occupancy as the same
number of elements are checked on every query. The CF was outperformed by the
blocked BF when checking for items that do not exist in the dataset. The BF out-
performed the semi-sort CF in the same test. However, the CF outperformed the
blocked BF and the semi-sort CF outperformed the BF when checking for items that
do exist in the dataset [36]. This means that based on the application, the CF or the
blocked BF is the best choice when lookup performance is key.

Deletion

The CF provided the highest deletion throughput. The QF and counting BF per-
formed similarly with a low occupancy but diverged with increased occupancy. The
QF performed better than the semi-sort CF until ≈ 45% of the filter was filled with
elements and the throughput declined significantly. The CF is the clear winner in
this case [36].

3.1.4 Concluding summary

This thesis focuses on embedded RISC-V cores. Embedded systems often run one
dedicated program for a certain process or system. This means that the instruction
memory layout remains static. This is an important factor to compare the different
probabilistic data structures and conclude which probabilistic data structures would
be the best candidate for checking instruction/address pairs for this type of applica-
tion.

Table 3.1 shows a table containing a general overview of the performance per
property of every probabilistic data structure. As mostly existing instructions/pairs
will be tested apart from corrupt or injected instructions part of instruction/address
pairs, only the testing of existing elements is considered in the table.

Properties
Filter Space efficiency Construction speed Insertion Testing (existing elements) Deletion
BF ++ + + ++ n.a.
Counting BF – – + – + +
Blocked BF – ++ ++ ++ n.a.
CF ++ + + ++ ++
semi-sort CF ++ – – – –
QF – – – – – – – – – –

Table 3.1: Performance comparison
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The most important factor in embedded systems is space efficiency. Resources
in terms of area and power are often scarce and must be compensated by algorithms
or data structures that are designed for embedded systems. When looking at the
table the most space-efficient data structures are the Cuckoo filter, the semi-sort
Cuckoo filter, and the Bloom filter.

As mentioned before, it is assumed that the instruction memory doesn’t change
during runtime. This means that the insertion of instruction/address pairs in the
probabilistic data structure only must be done once. This is similar to loading the
instructions in instruction memory before the first instruction is fetched and executed.
This fact makes the construction speed and insertion less important as inserting the
elements can be done before implementation.

Testing if an instruction/address pair exists is evident to check for HWTs, MBUs,
and possibly SEUs. This must be checked as fast as possible to minimize the dam-
age or faults that HWTs, MBUs, and SEUs introduce. The checking procedure must
not influence the achievable clock speed of the core and must not influence the
core at all. The blocked BF and the Cuckoo filter are the fastest in terms of testing
them for existing elements. The Bloom filter isn’t fast in software implementations
as multiple hash functions must be computed before the element can be tested in
the bit-array. However, hardware implementations can benefit from parallelism and
the hashes can be computed concurrently while introducing slightly more area and
power as shown in the study of A. Bolat et al. [25].

The deletion of instruction/address pairs is unnecessary as it is assumed that the
same instruction/address pairs are used throughout the whole lifetime of the embed-
ded system. The probabilistic data structure must however be easily reconfigurable
to be able to change the instruction/address pairs, e.g. when the program has been
modified.

To conclude, when taking all previously mentioned factors into account, the most
suitable probabilistic data structure would be the Cuckoo filter or the Bloom filter.
They both have the best space efficiency and testing performance. Both filters will
be analyzed and compared in more detail in the chapter 4: Design which discusses
the proposed design.

3.2 Error correction codes

As mentioned previously, bit-flips in memory can be caused by SEUs and MBUs.
So-called ”Error Correction Codes” (ECC) exist that can detect and correct single or
multiple bit-flips. This section evaluates several ECC techniques that are suitable for
use with embedded RISC-V cores. Small descriptions of each ECC will be provided.
The section will be concluded with a comparison that compares the different ECCs.
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3.2.1 Hamming SEC/SEC-DED codes

The first error correction code was invented by Richard Hamming at Bell Labs in
1950 [38]. The Bell Telephone Laboratories’ Model 5 Relay Computers consisted
of 8900 relays. Two to three relays failed per day [38]. This was a problem as the
computers ran programs overnight and were unable to recover the errors on their
own which required user intervention. This led to the Hamming error correction
codes that can detect and correct errors without any user intervention. Hamming
introduced two variants of his error correction code called the single error correction
(SEC) codes which detect and correct one single-bit in a n-bit codeword. Hamming
also introduced a variant that can correct and detect a single-bit error and can detect
if a double-bit error occurred called single error-correcting + double error detecting
codes (SEC-DED). Both variants will be discussed in more detail.

Single Error Correcting codes (SEC)

As mentioned previously, parity bits are used to check if the codeword contains
errors. The algorithm uses so-called parity checks to check the data and the parity
bits for errors. Hamming uses a parity bit to check a group of bits. The sum of data
bits m and parity bits k equal the n-bit codeword (eq. 3.5).

n = m+ k (3.5)

The maximum number of data bits can be calculated using the number of parity bits
that are used as displayed in eq. 3.6 [38].

m ≤ 2k − k − 1 (3.6)

Substituting eq. 3.5 into eq. 3.6 results in the equation displayed in eq. 3.7 which
represents the maximum n-bit codeword.

n ≤ 2k − 1 (3.7)

Let’s consider the following example: When using 3 parity bits, the codeword is
≤ 23 − 1 = 7 bits. The number of data bits are ≤ 23 − 3− 1 = 4 bits. Which can also
be written as Hamming(7, 4).

The parity bit has positions that are part of the set {2x|x ∈ N, 0 ≤ x ≤ (k−1)} [38].
This position is used to check the parity of groups of data bits that are ’1’ in the
select position. For example in Hamming(7, 4), the three parity bits have positions
{1, 2, 4} which means that 3 parity checks are executed as displayed in Figure 3.2.
The positions correspond to 1, 10, 100 in binary. This means that the parity bit on
position 1 checks positions 1, 3, 5, and 7 as their bits are 1 on the first position. For
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position 2, positions 2, 3, 6, and 7 are checked as their second bit is 1. Finally, for
position 3, positions 4, 5, 6, and 7 are checked.

Figure 3.2: Hamming(7, 4) SEC

Single Error Correcting + Double Error Detecting codes (SEC-DED)

A double-bit error can be detected but can’t be corrected. Remember that the parity
bits started at position 1. A double-bit error is corrected by using position 0 of the
bit-array as block parity bit and doing an extra parity-check that checks the complete
block as displayed in Figure 3.3. So Hamming(8, 4) uses a total of 8 bits when using
SEC-DED instead of 7 bits that were used for SEC.

Figure 3.3: Hamming(8, 4) SEC-DED

3.2.2 Hsiao SEC-DED codes

Optimization of the Hamming SEC-DED codes was introduced by M. Y. Hsiao in
1970 [39]. This optimization uses the same relation between the number of parity
bits and data bits with computer memory in mind. First, a small coding theory in-
troduction is given before presenting this optimization. The G-matrix also called the
generator matrix, maps the data into a space that contains the codewords denoted
as G = [Ik|P ] where Ik is the k × k matrix and P is the k × (n − k) matrix. The
H -matrix also called the parity-check matrix can be denoted as H = [−P T |In−k].
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G is a k × n matrix while H is a (n− k)× n matrix [40]. With Hsiao codes, H must
meet the following requirements [39]:

• There are no all-0 columns

• Every column is distinct

• Every column contains an odd number of 1’s which implies an odd weight

This leads to the fact that the parity-check matrix consists of less 1’s than conven-
tional Hamming codes which implies faster decoding as was proven by experiments
in a study by G. Tshagharyan et al. [41]. A trade-off can be observed from this study
between Hsiao and Hamming codes which is based on the size of the codeword
that is used. Hsiao became more effective in terms of logic levels and area from a
codeword size of 72 bits consisting of 64 data bits and 8 parity bits. This means that
Hamming(8, 4) remains more effective than Hsiao, e.g. when checking every 4-bit
to be able to correct more than one bit-flip in a 16-bit word.

3.2.3 Bose–Chaudhuri–Hocquenghem (BCH) codes

BCH codes were invented by Bose, Ray-Chaudhuri, and Hocquenghem and were
published in 1959 and 1960 [42] [43]. BCH codes are cyclic codes that are gener-
ated using polynomials over Galois fields. This is different compared to Hamming
and Hsiao which are generated using vectors. BCH codes can be binary and non-
binary by nature. This background will only focus on binary BCH codes.

Binary BCH codes are defined as follows [40]:

1. Determine the smallest m such that GF (2m) has a primitive n-th root of unity
β.

2. Select a non-negative integer b. Frequently, b = 1.

3. Write down a list of 2t consecutive powers of β:

βb, βb+1, ..., βb+2t−1

Determine the minimal polynomial with respect to GF (2m) of each of these
powers of β. Because of conjugacy, frequently these minimal polynomials are
not distinct.

4. The generator polynomial g(x ) is the least common multiple (LCM) of these
minimal polynomials. The code is a (n, n − deg(g(x ))) cyclic code.
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A BCH code is called narrow sense when b = 1. When n = 2m − 1 implies that the
BCH code is primitive.

BCH codes can be generated that not only support single-error correction but can
correct multiple errors which are different from SEC-DED codes which only support
single-error correction.

For example, m = 3 =⇒ n = 23 − 1 = 7. Let β be a root of the primitive
narrow-sense polynomial x3 + x + 1 in GF (2 3 ). To construct a binary single-error
correcting BCH codes (t = 1) implies that the consecutive powers are β, β2. The
minimal polynomials of GF (2 3 ) w.r.t. GF (2 ) are equal (m1(x) = m2(x) = x3+x+1).
This implies that g(x) = M1(x) = x3 + x + 1. This is a 3rd-degree polynomial which
implies that this is a (7, 4) code.

BCH codes can theoretically correct many more errors than just one. These
codes can be constructed with t being equal to the number of error corrections.
This results in more consecutive powers. A comparison will be presented in the
conclusion that displays the results of BCH codes that correct more than one error.

Messages can be encoded by first creating a polynomial of the message m which
is smaller or equal to n−deg(g(x )). E.g. to encode 1010 in a (7, 4) code, the data bits
can be transformed into a polynomial over GF (2 ) called p(x). The corresponding
polynomial is p(x) = x + x3. The codeword can be constructed by multiplying p(x)

with g(x). Codeword c(x) = p(x)g(x) = x6 + x3 + x2 + x which is equal to binary
1001110.

A parallel BCH double-error correction (DEC) and DEC with triple-error correc-
tion decoder (DEC-TED) was introduced by R. Naseer et al. [44]. This decoder over-
comes the multi-cycle decoding latency introduced by conventional BCH decoders.
This allows for BCH codes that support multi-error correction and multi-error detec-
tion to be used in memory applications. While this proposal introduces performance
improvements for mainly the decoder, the area grows significantly. This makes it
less suitable for embedded systems that have strict area requirements.

A technique introduced by P. Reviriego et al. [45] allows for DEC using BCH with
reduced power consumption by dynamically power gating the decoder. Experiments
showed that up to 43% of the power consumption and up to 40% of the area could
be reduced. While a reduction in the area could be achieved, the BCH decoder still
consumes significantly more area and power than a Hamming implementation [44].

3.2.4 Concluding summary

This thesis focuses on embedded RISC-V cores. Currently, the most common
embedded RISC-V soft-cores use the 32-bit Base Integer Instruction Set called
RV32I [2]. This architecture uses 32-bit instructions. Table 3.2 displays a com-
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parison of the different ECC with a 32-bit data word size.

ECC Type Codeword (bit) Code rate

Hamming
SED 33 96.9%
SEC 38 84.2%

SEC-DED 39 82.1%
Hsiao SEC-DED 39 82.1%

BCH

SEC 38 84.2%
SEC-DED 39 82.1%

DEC 44 72.7%
DEC-TED 45 71.7%

TEC 50 64%
TEC-QED 51 62.7%

Table 3.2: ECC comparison for 32-bit data word

As mentioned previously, BCH encoders and decoders use more area than Ham-
ming or Hsiao implementations which makes them less suitable for embedded sys-
tems that have strict area requirements. The comparison between Hsiao and Ham-
ming depends on the double-error detection requirement. Now that the theoretical
background is established, the criteria and design can be discussed. Based on
these criteria and this theoretical background, a suitable ECC can be selected.



Chapter 4

Design

This chapter presents the design that introduces criteria and multi-level designs for
the defined objectives and sub-objectives. Section 4.1 discusses the criteria of the
design. Section 4.2 introduces the instruction validator design. Section 4.3 intro-
duces the ECC instruction memory design.

Figure 4.1: Proposed solution in a Harvard architecture

Figure 4.1 displays a high-level overview of the proposed solution. First, all the
instructions are pre-loaded into the ECC instruction memory with their respective
parity bits. Secondly, the instruction/address pairs are mapped onto their respec-
tive hashes generated by the hash function(s) and are also pre-loaded in memory.
Finally, the processor starts fetching, decoding, and executing instructions and the
instruction validator concurrently tests every instruction/address pair. After every
instruction fetch, it must be checked if the instruction/address pair present on the
bus is an element of the set of instructions that were initially loaded into the ECC
instruction memory. If the instruction/address pair is not an element of the set, this
can have the following causes:

• The instruction is either injected or manipulated by an HWT

• The instruction was manipulated by an MBU and hence couldn’t be corrected
by the Hamming SEC code

33
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4.1 Criteria

Criterion Description Goal

ECC
Error-correction code that will be
used for the instruction memory

Hamming SEC

Maximum area overhead of ECC and
instruction validator

Maximum area overhead of ECC and instruction validator
compared to the RISC-V core, instruction memory and
data memory expressed as percentage

35%

Instruction validator latency overhead Instruction validator affects the pipeline critical path False

Probabilistic data-structure
Probabilistic data-structure that will
be used to validate instructions

BF

ISA
Instruction set architecture that the
design must comply with.

RISC-V

ISA base
ISA base that the design must comply
with.

Base Integer Instruction Set
RV32I - Version 2.1

ISA extension(s)
ISA extension(s) that the design must comply
with.

Multiplication and Division
RV32M - Version 2.0

RISC-V core
The softcore that will be used in conjuction
with the design

FreNox RISC-V core

SoC The SoC that will be used FreNox SoC-e

Table 4.1: Design criteria

Table 4.1 displays the criteria of the design.
The instruction validator validates all the instruction/address pairs and checks

for MBUs on top of the single-error correction and detection that the ECC instruc-
tion memory is handling. This means that detecting double errors using Hamming
SEC-DED is redundant and using SEC has the same effect and results in less area
overhead.

Hamming ECC adds check bits to correct and detect bit errors. Those check bits
introduce an area overhead. A criterion was added that limits the overhead that the
instruction validator and Hamming SEC introduce.

The instruction validator must not influence the timing of the RISC-V core. Check-
ing the instruction/address pairs before decoding and executing them makes them
part of the critical path which is unacceptable. The processor must not be dependent
on this checking mechanism to prevent an increasing critical path.

The probabilistic data structure that will be used depends mainly on the false
positive rate (FPR) as both filters perform well as mentioned previously. The FPR
must be as low as possible to prevent instruction/address pairs from being marked
as positive while being negative. As mentioned previously, the BF and CF are very
similar in performance for low FPRs.

The performance of the probabilistic data structure performs the best when im-
plemented in hardware is another significant factor. Most BF and CF implementa-
tions are software-based. The feasibility of using a BF hardware implementation in
a RISC-V pipeline has been proven by Bolat et al. [25]. While this is the case, the
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CF hardware implementation must be evaluated to be certain which filter is the most
suitable to use while meeting the application criteria.

As the focus of this thesis is embedded RISC-V cores, area overhead is an im-
portant criterion. It was previously mentioned in the theoretical background, that the
BF false positive probability curve is lower than the CF FPP curve for a growing ta-
ble occupancy. This means that in practice, the BF has a better FPR with a growing
table occupancy. While this is true, the CF consumes less memory than the BF with
a maximum table occupancy of 95% and an FPP ≤ 0.39%. The CF and BF can
both be evaluated by plotting the theoretical overhead compared to the instruction
memory when varying the FPP. Figure 4.2 displays the amount of area overhead for
the CF and BF compared to the instruction memory (IM) for multiple configurations.
The CF starts using fewer bits per item than the BF at an FPP threshold of 0.39%.
This threshold corresponds to an overhead of 35.98% without using ECC, 30.30%
when using a Hamming(38, 32) SEC code, and 29.52% when using a Hamming(39,
32) SEC-DED code (see Table 3.2). An FPP threshold of 0.39% results in a large
overhead of up to 35.98%. It must be concluded that for this project, the Cuckoo
filter is at a disadvantage. To conclude, the BF was used as an FPP this small is
outside of the scope of this project and results in an overhead that is unacceptable
when considering strict memory requirements.

Figure 4.2: CF and BF area overhead compared to IM

The ISA that will be used is RISC-V for the reasons mentioned in Chapter 2:
Related work.

The RISC-V ISA has different bases and extensions. For this design the Base
Integer Instruction Set Version 2.1 with the Standard Extension for Integer Multipli-
cation and Division - Version 2.0 will be the minimum criterion as the combination of
this base and extension is often used in embedded RISC-V cores.

The instruction validator must be implemented with a RISC-V core to prove its
effectiveness. The Technolution FreNox RISC-V core will be used for this purpose.
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The FreNox SoC-e will be used to provide peripherals to the FreNox RISC-V core
which is instantiated by this SoC.

Now an overview of the design is introduced and criteria are established, the
next section focuses on the detailed designs of the instruction validator and ECC
instruction memory.

4.2 Instruction validator

Figure 4.3 displays the instruction validator design using the BF. The first step is
to hash the instruction/address pair using a non-cryptographic hash function. The
second step is testing the instruction/address hashes in the BF. As proposed in the
study by Bolat et al. [25], each hash function can have its own memory element that
consists of a part of the total BF bit array. This separation allows for concurrently
reading all the memory elements instead of reading the memory elements sequen-
tially. A NAND gate can be connected to all outputs of the memory elements. This
gate becomes high when one of the memory elements tests negative when testing
instruction/address pairs.

Figure 4.3: High-level hardware design of the instruction validator and ECC instruc-
tion memory with the RISC-V core
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4.2.1 Non-cryptographic hash functions

Hash functions in general are functions that map and generally compress n-bits to
an often smaller fixed amount of bits, commonly powers of two. The big advantage
of non-cryptographic hash functions is that they are significantly faster than cryp-
tographic hash functions as they do not need strict randomness properties. How-
ever, a non-cryptographic hash must not have a bias toward certain groups of bits
and must have a sufficient uniform distribution to prevent hash collisions. Hash
collisions occur when two elements output the same hash. This is problematic as
each hashed element must have its own unique hash. Non-cryptographic are not
collision-resistant like cryptographic hash functions are. This means that it’s easier
for attackers to find collisions in non-cryptographic hash functions which can lead
to malicious activities such as digital signatures that appear to be legitimate but are
forged [29].

This project mainly focuses on non-cryptographic hashes to achieve minimal la-
tency and area overhead. Cryptographic hashes need solid randomization proper-
ties and hence are often complex in terms of mathematical operations and often
consist of multiple stages which result in multiple cycles per hash computation. This
leads to a larger area and latency overhead.

Latency overhead must be minimized as checking the instruction/address pairs
should not take multiple pipeline cycles to prevent major damage caused by faults
or HWTs. For this reason, hash techniques that are used in network-based FPGA
applications become relevant. Two studies from R. Dobai et al. show that while CRC
is not designed as a hash function, it is often used in hardware applications. A CRC-
based implementation was used for a hardware implementation on an FPGA that
allows for fast lookups in dynamic packet filtering [46] [47] which is comparable to a
fast lookup of instruction/address pairs concurrently to a RISC-V pipeline. Another
study from M. J. Lyons et al. [48] evaluates the design of a BF for ultra-low-power
systems by proposing a hardware accelerator for compressed BFs. In this hardware
accelerator, the Multiply and Shift hash is used which was originally introduced by
Dietzfelbinger et al. [49]. The MultiplyShift hash is a universal hashing scheme and
can be computed as displayed in eq. 4.1.

ha(x) =

⌈
ax mod 2k

2k−l

⌉
, for 0 ≤ x, a < 2k (4.1)

Variable a is a random k-bit odd integer and l denotes the number of output bits [50].
E.g. when hashing a 64-bit instruction/address pair as 32-bit, x denotes the 64-bit
instruction/address pair and a is a random odd integer and are both within the range
0 ≤ a < 264. The modulo and division are powers of two and can be computed
efficiently in hardware. The modulo limits the overflow of the multiplication. The
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division can be written as a right shift as displayed in eq. 4.2 which shows the
equation of hashing 64-bit instruction/address pairs resulting in a 32-bit output.

ha(x) =
⌈
(ax mod 264) >> 32

⌉
(4.2)

Avalanche effect analysis

The Avalanche effect first introduced by Horst Feistel [51] is a desired property that
a hash function must comply with to be considered a hash function that consists
of good randomization. The Avalanche effect states that when one input bit is
changed, half the output bits should change. MurmurHash3, MultiplyShift, CRC-
32C(astagnoli), and CRC-32 were analyzed using 10 million randomly generated
64-bit numbers. MurmurHash3 is a fast non-cryptographic hash function that was
invented by Austin Appleby [52]. It is used in many popular software applications
such as Elasticsearch [53], the Apache Commons Codec, [54] and PHP [55].

The output Hamming distances of all the hash functions are plotted together
with a normal distribution in Figure 4.4. It can be observed that MurmurHash3 and
MultiplyShift indeed meets the Avalanche property as the Hamming distances match
the normal distribution. The CRC class functions weren’t designed to be used as
functions. However, it can be observed that CRC-32C and CRC-32 both roughly
match the normal distribution while CRC-32C has a mean that is closer to 50% of
32-bit: 16-bit. CRC-32C uses a different generator polynomial
x32+x28+x27+x26+x25+x23+x22+x20+x19+x18+x14+x13+x11+x10+x9+x8+x6+1

than CRC-32 which uses generator polynomial
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + 1.

Figure 4.4: Hamming distance and normal distribution of four hash functions

The difference between these hash functions will be evaluated further in a soft-
ware implementation of the instruction validator to be able to observe the distribution
in the bit arrays and hence what effect the hash functions have on the FPR when
using a BF.
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4.2.2 Instruction validator abstraction

This subsection focuses on the software implementation of the instruction validator
using the four previously mentioned hash functions. A software abstraction can be
used to evaluate the performance of the hash functions together with the BF used by
the instruction validator and to get a feeling for the BF and hash function parameters.

With modular programming in mind, a BF Python class was written. This same
class is used throughout all Python scripts that use or analyze the instruction valida-
tor.

This BF class consists of the following methods:

• def __init__(self, items_count, fp_prob, selecthash, optimization, crcinit=0xF)

• def checkcollisions(self)

• def insert(self, present)

• def test(self, listabsent)

• def info(self)

and the following class methods:

• def crc32(self, crc, p, len)

• def crc32c(self, crc, p, len)

• def multiplyshift(self, init, key, l)

• def get_randomkeys(self, keys)

• def get_fpp(self, n, m, k)

• def get_size(self, n, p)

• def get_hash_count(self, m, n)

• def get_optimal_mk(self, n, p)

The __init__() method initializes the class. The method parameters are used
to initialize the class with all necessary parameters to construct the probabilistic data
structure. The selecthash integer selects the same hashes that were used in the
Avalanche effect analysis: mmh3.hash(), crc32c(), crc32() or multiplyshift().
The items_count integer represents the number of elements n that will be added to
the BF with desired false positive probability fp_prob. The optimization integer is
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used to disable memory optimization, use m-k optimization, or round the individual
bit array size to the nearest higher power of two. If the hardware optimization is set
to 0, the total bit array size m is computed using get_size(). Based on the total
bit array size, the number of hash functions k is computed using get_hash_count().
If the optimization is set to 1, the optimal m and k are computed using the opti-
mization algorithm get_optimal_mk(). This algorithm is explained in more detail in
subsection 4.2.3: Hardware design. Setting the optimization to 2 results in round-
ing the single bit array sizes to the nearest higher power of two. The idea behind
this optimization is to prevent the use of the modulo operation and just use a part
of the LSBs. This significantly reduces the hardware that is needed for the mod-
ulo operation while staying within the address space of the individual memory el-
ements. This will also be explained in more detail in subsection 4.2.3: Hardware
design. The multiplyshift() hash is initialized with k separate random keys using
the get_randomkeys() method. The get_randomkeys() method returns random odd
keys from 0 to 264 − 1 as required by the MultiplyShift hash (eq. 4.1).

The checkcollisions() method prints the number of hash collisions that oc-
curred per individual bit array.

The insert() method inserts the 64-bit elements into the separate bit arrays by
using one of the four hash functions. The hash output modulo the individual bit array
sizes result in the bit array position that is changed to ’1’ as displayed in Figure 3.1.

The test() method tests if the element is present in the BF. The listabsent

parameter contains a list of elements that were not inserted in the BF. This list is
used to track the number of false positives that occur when testing elements, i.e. to
compute the FPR. An example of a false positive is an element part of listabsent
which is flagged as present in the BF.

The info() prints information about the BF object such as the set FPP ϵ, the
theoretical FPP (eq. 3.1) based on n (the number of added elements), m (the total
bit array size) and k (the number of hash functions) and the hash that is used.

Another Python script was created which creates multiple BF objects and runs
simulations based on the high-level design displayed in Figure 4.3. To test if the
FPP is respected, a n-amount of random 64-bit elements is inserted into the BF. A
n-amount of elements is tested that were inserted in the filter to check if the ele-
ment may exist in the BF. Another n-amount of elements that are different from the
inserted elements are tested. There are two possibilities: the element is not present
in the BF or a false positive occurs. The number of false positives is counted and
divided by n to determine the FPR. The performance of the BF with every hash func-
tion was measured by taking the mean FPR over 1000 runs. An FPP of 0.01 was
chosen and a varying number of elements amounting to different powers of two were
inserted starting from 128 elements until 2048 elements. The results are displayed
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in Table 4.2.

Properties
n Hash Mean hash collisions m Mean FPR k

128

MH3

0

1226

0.0097890625

7

CRC-32C 0.0098828125
CRC-32 0.010515625

MultiplyShift 0.0096328125

256

MH3

2453

0.01014453125
CRC-32C 0.0106484375
CRC-32 0.01051953125

MultiplyShift 0.010109375

512

MH3

4907

0.010328125
CRC-32C 0.010091796875
CRC-32 0.01012890625

MultiplyShift 0.01029296875

1024

MH3

9815

0.0100205078125
CRC-32C 0.0103291015625
CRC-32 0.010068359375

MultiplyShift 0.001 0.010025390625

2048

MH3 0.002

19630

0.01007568359375
CRC-32C 0 0.0102548828125
CRC-32 0.007 0.01022509765625

MultiplyShift 0.003 0.0101064453125

Table 4.2: Testing elements in a BF executing 1000 runs using different hash func-
tions.

From this table, it can be observed that the mean FPR is very close to the de-
fined value and most of the time even below it which proves that the hash outputs
have a good distribution. Hash collisions start appearing at 1024 elements for the
MultiplyShift hash. The average lowest amount of hash collisions occur when using
CRC-32C. This is surprising as CRC-32C is not designed as a hash function as men-
tioned before. The MultiplyShift hash also performs very well in terms of FPR and
hash collisions compared to the other hash functions. These results show that the
CRC class functions and MultiplyShift hash are indeed suitable non-cryptographic
hash functions for this type of application.

It must be noted that the FPR depends on the elements that were inserted and
tested. This was observed when executing multiple runs after inserting and testing
random 64-bit elements, hence results were evaluated by taking the average over
multiple runs. To evaluate the instruction validator with instruction/address pairs
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originating from RISC-V binaries, the to-be-executed program assembly consisting
of the instruction/address pairs must be extracted and models must be used that de-
scribe different HWTs. HWT models and the introduction of real instruction/address
pairs parsed from disassembled RISC-V programs will be discussed in section 5:
Simulation.

4.2.3 Hardware design

Two different hardware designs are proposed. Figure 4.5 displays the hardware
design of the instruction validator based on the CRC-32C hash. Figure 4.6 displays
the instruction validator hardware design based on the MultiplyShift hash.

Figure 4.5: Instruction validator with CRC-32C hash

Figure 4.6: Instruction validator with MultiplyShift hash

The instruction validator has the following inputs and outputs:
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• Input: Clock (clk)

• Input: Reset (reset)

• Input: 32-bit address (addr)

• Input: 32-bit instruction (instr)

• Output: Illegal instruction bit (illegal)

It is important to note that the blue block in both figures is duplicated k times. This
is done to describe hashes with their corresponding memory elements in parallel as
described in the high-level design displayed in Figure 4.3.

To take the one clock cycle latency of fetching the instruction from the instruction
memory into account, a register addr_buf is used to store the address. This register
can be concatenated with the respective instruction as the hash key.

The CRC-32C block contains a hash function based on CRC-32C. This hash ac-
cepts two inputs: A key and an initialization value. The key accepts 64-bit inputs and
hence the address and instruction inputs must be concatenated. The initialization
value is a 32-bit vector and is shifted k times to the left. This enables a good output
distribution amongst the different individual hash functions. This number k portrays
the number of hash functions each consisting of their own memory elements with
their respective bit arrays. This block contains a clocked process that implements a
linear-feedback shift register (LFSR) with the CRC-32C generator polynomial. Each
bit array size is the ceiling of the total size divided by the number of hash func-
tions. This bit array size is used to compute the modulo on the negated hash output.
The modulo is computed to stay within the individual bit array address space and is
assigned to the output.

The MultiplyShift block uses a clocked process. The MultiplyShift hardware can
be very elegantly described. The hash has two inputs: A 64-bit key and a 64-bit vec-
tor ”init” which can be any odd 64-bit vector. The key and init vectors are multiplied
while ignoring the overflow as multiplying both numbers without ignoring overflow
results in a 128-bit vector. The MultiplyShift comes with two variants: Instant mul-
tiplication or pipelined. The instant variant uses only one register that stores the
hash output and takes one clock cycle. The pipelined version uses more registers
to relax the timing which takes two clock cycles. Instead of shifting the hash output
as displayed in eq. 4.2, the hash output is sliced and assigned to the output.

As the modulo operation is expensive to realize in hardware in terms of latency
and area, the best scenario is the modulo being a power of two. When this is the
case, the modulo can be computed by picking the LSBs instead of using adders
which significantly reduces overhead in terms of area and latency. This modulo
is dependent on the total bit array size divided by the number of hash functions.
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Ideally, the total bit array fits perfectly in all the separate RAM. This can be achieved
by choosing an optimal m and k while respecting the FPP.

The get_optimal_mk() method of the BF class is used to compute the optimal
m and k. This method implements the algorithm displayed in Algorithm 1.

Algorithm 1 m and k optimization with m
k

being a power of two

Require: ϵ ≤ 1

Require: n ≤ 232

kopt ← 0

mopt ←∞
ϵopt ← 0

while k ≤ 7 do
while x ≤ 18 do

p←
(
1− e−

k·n
k·2x

)k

if p < (ϵ · 1.05) ∧ k · 2x < mopt then
kopt ← k

mopt ← k · 2x

ϵopt ← p

end if
end while

end while

This algorithm computes the most optimal number of hash functions and bit array
size with m

k
being a power of two based on specified n and ϵ. The minimum in this

optimization is the lowest total bit array size while p is lower than ϵ · 1.05 which
represents allowing a 5% deviation. The constraints for k and 2x = m can be set
accordingly which are 7 and 18 in this case. Variables kopt, mopt and ϵopt hold the
most optimal k, m and ϵ after executing this algorithm.

After the hash output with the respective modulo is computed, one byte can be
fetched from the RAM. The address that stores the check bit can be determined by
shifting the bit three positions to the right. After the byte is fetched, the check bit
position can be determined by again taking the modulo over the check bit position.
E.g., when bit 42 of 128 bits needs to be checked, the corresponding address when
using one byte per address is 42 >> 3 = 5, and the bit-position of this byte in
the corresponding byte is 42 mod 8 = 2 which are the three LSBs of the binary
representation of 42. The hash output is stored in a register to use in the next clock
cycle when the byte is fetched from the RAM.

Fetching the instruction from the instruction memory and fetching the respec-
tive bit array positions from RAM results in a two-clock cycle latency. Calculating
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the hashes results in one clock cycle latency. To prevent an incorrect illegal signal
caused by this latency, a 3- or 4-bit shift register is used. The 4-bit shift register
is only used when using the pipelined MultiplyShift hash implementation. After the
reset, the shift register input becomes high and eventually, the illegal register is en-
abled. Figure 4.7 displays the pipeline with a three-clock cycle latency and Figure
4.8 displays the pipeline when using the pipelined MultiplyShift hash which results
in a latency of four clock cycles.

Figure 4.7: Pipeline with a latency of three clock cycles

Figure 4.8: Pipeline with a latency of four clock cycles

Each hash function and its corresponding memory element output if the check
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bit is indeed high. They are all connected to one NAND gate which becomes high
if one of the check bits is low. This implies that the instruction/address pair is illegal
and the value is propagated to the illegal register.

4.2.4 Reconfigurable hardware

The instruction validator has many parameters that can be tweaked as mentioned
previously in the instruction validator software abstraction. It is for example impor-
tant to be able to tweak the FPP, specify the number of elements that need to be
added, and the ability to preload the bit arrays in the separate RAM based on the
instruction/address pairs. Doing this manually is a tedious task and can be auto-
mated. Therefore a Python script was developed which generates all the hardware
descriptions needed for the simulation and implementation. The same BF class was
reused in this script which proves that the software abstraction is not only useful
for doing quick simulations but this abstraction can also be used to again specify a
part of the hardware behavior. Another benefit is the quick reconfiguration of the in-
struction validator. This script is also very useful when simulating multiple instruction
validator configurations and analyzing synthesis results for different configurations
which will be discussed later.

The following VHDL component files are generated by the script:

• The instruction validator itself

• Different RAM elements which store the BF bit arrays

• Instruction ROM

• Hash based on CRC-32C or MultiplyShift

• Test harness which instantiates all components mentioned above and is used
as top-level in cocotb simulations

The hardware description that must be generated can be dynamically described
based on all the parameters that can be tweaked in the software abstraction. The
following parameters can be defined as system arguments for the generator script:

• Parse assembly? (y/n) (default=y)

• Program filename (default = primenumbers)

• Desired false positive probability 0.0 - 1.0 (default = 0.05)

• Modulo optimization mode (0 = none, 1 = m-k optimization, 2 = rounding) (de-
fault = 0)
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• Number of instructions (default = 128)

• Select hash (0 = CRC-32C, 1 = MultiplyShift, 2 = MultiplyShiftPipelined) (de-
fault = 0)

• CRC initialization (default = 0xF)

The reason why the parameters are used as system arguments is to make it possible
to use this script in build tools. The parameters can be specified in e.g. a Makefile
and the generator script can be called with make. Input validation is used to ensure
that the right parameters are selected and are within limits.

The generator script can generate 64-bit instruction/address pairs based on ran-
dom instructions. To extend the generator script and analyze the instruction validator
with RISC-V programs, a method was created that can generate a file with 64-bit in-
struction/address pairs per line based on a disassembled RISC-V executable. First,
the source code is compiled into a binary. The next step is to disassemble this binary
using elf-objdump. The instruction/address pairs are extracted from the assembly
and are written to a file in a 64-bit binary format which can be read by the generator
script.

Many configurations can be generated depending on the used program, a hash
function (CRC-32C, MultiplyShift, or MultiplyShiftPipelined), and the used optimiza-
tion (no optimization, m-k optimization or rounding). To simplify simulating and syn-
thesizing the different configurations, every VHDL file belonging to that configuration
has its own entity. The entity has the format component_program_hash#_optimization#.
The hash and optimization parameters are represented as numbers matching the
mentioned system argument options. To give an example, the instruction validator
generated for the Rijndael AES benchmark program using the MultiplyShift hash
and m-k optimization has the following entity: instruction_validator_aes_1_1.

The generator script also has an option to preload the instruction ROM with Ham-
ming(38, 32) encoded instructions instead of 32-bit instructions. This is important
to simulate the instruction validator with an ECC instruction ROM. This Hamming
encoder implementation will be discussed in more detail in the next section.

Figure 4.9: One VHDL generation execution

Figure 4.9 displays the flow of one generation execution. The user can specify
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to use random instruction or parse real programs. As mentioned before, all enti-
ties have a specific format to distinguish the program/hash/optimization configura-
tion. Simulation-specific files such as the test harnesses will be written to the pysim
folder. This is done for structural reasons to separate the files needed for synthe-
sis and additional files needed for simulation purposes. The script also generates
Makefile.pysim which contains variables that specify all the test cases per con-
figuration. This Makefile can later be included in the cocotb automation flow which
automatically executes all test cases and writes the results to LaTeX format. This will
be explained in more detail in chapter 5: Simulation. To automate synthesis, .tcl
files are generated per configuration that can be used to automate the synthesis of
all generated configurations. This .tcl file contains all necessary dependencies to
synthesize every configuration. This automation was used in chapter 6: Implemen-
tation to synthesize all different configurations.

4.3 ECC instruction memory

As mentioned previously, Hamming SEC can be used to encode and decode 32-
bit instructions. Using 5 parity bits, the number of data bits must be less or equal
to 26 ≤ 25 − 5 − 1 (see eq. 3.6). This means that 6 parity bits must be used
(57 ≤ 26 − 6 − 1) denoted as a Hamming(38, 32) code. The Hamming encoding
was developed as part of the Python generator script for simulation purposes. A
Hamming SEC encoder method was implemented that works for every data size.
This encoder works on the following basic steps that follow the Hamming principles:

• Write parity bit positions to list

• Write data bit positions to list

• Construct the codeword using the data/parity bit positions and instruction bits

• Write parity bits to codeword based on corresponding data bit groups using an
XOR reduction function (see Figure 3.2)

As the instruction memory hardware description is generated and pre-loaded
with the codewords resulting from the Python Hamming encoding, the Hamming
decoder was developed in VHDL. This Hamming decoder consists of the following
steps:

• Computing syndrome bits of the codeword and constructing syndrome bit vec-
tor

• Comparing syndrome bit vector to parity bit vector
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• Syndrome bit vector different than syndrome bit vector =⇒ flipping bit on
position (parity bit vector ⊕ syndrome bit vector).

• Slicing codeword to return data bits only

Figure 4.10 displays a complete overview of the Hamming encoding/decoding
flow.

Figure 4.10: ECC flow

It must be noted that this flow is used for simulation purposes only. For the
implementation with FreNox, Hamming encoder and decoder IPs provided by Xilinx
were instantiated.

4.4 Concluding summary

To conclude, in this chapter the design criteria, instruction validator hardware de-
sign and software abstraction, generator script, and ECC instruction memory design
were introduced.

In section 4.1, the design criteria were introduced. Based on the overhead of
the CF and BF compared to the IM, the BF was chosen. As the instruction validator
is able to detect MBUs, Hamming SEC-DED is redundant and Hamming SEC suf-
fices. The minimum RISC-V standard that the design must comply with is RV32IM.
The instruction validator and ECC must be integrated with the FreNox SoC-e which
instantiates the FreNox RISC-V core.

In section 4.2, the instruction validator design was introduced. The instruction
validator instantiates separate hash and memory elements to be able to concur-
rently read all bit positions in the bit array. In subsection 4.2.1, an introduction
to non-cryptographic hash functions was presented as well as an Avalanche ef-
fect analysis which analyzes them in more depth. From this analysis, it could be
observed that the MultiplyShift meets the Avalanche property while the CRC class
functions roughly match the normal distribution with CRC-32C having a better mean.
In subsection 4.2.2, a software abstraction of the instruction validator was created.
This software abstraction was used to analyze the BF performance with the intro-
duced non-cryptographic hash functions. All hash functions stayed below or close
to the defined false positive probability. In subsection 4.2.3, two hardware designs
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instantiating the MultiplyShift hash and CRC-32C hash were introduced. Both hard-
ware designs were analyzed in-depth and their latency and area overhead were
considered. To minimize area overhead and respect strict memory requirements,
the m-k optimization algorithm was introduced. In subsection 4.2.4, the generator
script was introduced. This generator script uses the instruction validator software
abstraction to generate all the hardware descriptions of all the needed components
to simulate and synthesize the instruction validator. Also, a parser was developed
which parses instruction/address pairs from disassembled RISC-V programs which
can be used as input for this generator script.

In section 4.3, the ECC instruction memory design was introduced for simulation
purposes. The Hamming SEC encoding was developed in Python and is part of
the generator script. As the generator script also generates the instruction memory
for simulation purposes, the Hamming decoding had to be described in VHDL. In
the implementation, the Xilinx ECC IP was used to provide Hamming encoding and
decoding.



Chapter 5

Simulation

This chapter focuses on simulating the hardware design. The instruction validator
was simulated using multiple test cases. The test cases can be categorized into
three categories:

1. Testing without injecting faults

2. Testing while injecting SEUs and MBUs

3. Testing while triggering different types of HWTs

The VHDL generation and testing were unified and automated to make the VHDL
generation and testing flow easier and faster. The first step is to generate all VHDL
files of all specified program/hash/optimization configurations. As mentioned before,
the generator script also enables the user to use randomly generated 64-bit instruc-
tion/address pairs. However, it must be noted that for all test cases in this chapter,
only disassembled benchmark programs were used. The used programs and their
details are discussed later.

Figure 5.1: Generating all program/hash/optimization configurations

Figure 5.1 displays the automation flow of generating all different configurations
as preparation for simulation and implementation (remember the tcl generation).
This flow is written in a Makefile and can be executed by executing make. The first
step is to set the RISC-V toolchain environment variables as they are not present in
the default PATH. A list of programs can be specified which are automatically built.
Before the Python generation script can be executed, a Python3 virtual environment
must be installed. The Python package installer pip is used to install the packages
needed by the BF class that is imported in the generator script. The next option is

51
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to generate all configurations. This is done by iterating through all programs and
calling the generator script with all different program, hash, and optimization system
arguments. The last step is to run RDL. This is not part of the simulation but is used
to generate the register files used for the isolated instruction validator test setup
which is discussed in detail in chapter 6: Implementation.

Figure 5.2 displays the simulation setup. The Python module COroutine based
COsimulation TestBench cocotb was used to automate the simulation using the test
cases discussed below [56].

Figure 5.2: Cocotb simulation setup

The test harness which is also generated by the generator script instantiates the
components generated by the Python generator script, the Hamming decoder, and
saboteurs. The saboteurs can be triggered from cocotb and can trigger different
faults such as single/multiple bit-flips and can also trigger HWTs. No saboteur is
introduced between the PC and the test harness components as this is outside of
the scope of this thesis. However, while HWTs that directly manipulate the PC are
not considered in this thesis, the PC can also be manipulated by HWTs that inject
branch instructions which are discussed later. The pc signal is initialized to the initial
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address of the parsed RISC-V program or zero when using random instruction/ad-
dress pairs and is incremented with one each clock cycle. This way, the memory
layout is respected by the generated instruction memory which contains a 38-bit
codeword per address. The next sections discuss the test cases in depth.

Figure 5.3: Testing all program/hash/optimization configurations

Figure 5.3 displays the automation flow of executing all test cases that are men-
tioned in the next sections. Again this automation was written in a Makefile. The
first step is to import the generated VHDL files which are in the directory where the
generator script is located and the pysim sub-directory. The random seed can be set
in the Makefile that is adopted by all the test cases. The next step is to import the
Makefile.pysim which includes all the test case specifications denoted as variables.
An example of a test specification is displayed in Listing 5.1.

Listing 5.1: Test case specification
MODULE := instruction_validator_tc_nofaults_aes_0_0

MODULES := $(MODULES) $(MODULE)
$(MODULE)PY_MODULE := instruction_validator_tc_nofaults

$(MODULE)TESTCASE := main

$(MODULE)TOPLEVEL := testharness_aes_0_0

$(MODULE)RUN_TIME := 100000 ns

$(MODULE)SIM_ARGS :=

$(MODULE)DO_GUI_BEFORE := log -rec *

$(MODULE)DO_GUI_AFTER := add wave *

Each test case has its own module name and specifies multiple parameters such as
the test harness top level that was generated by the generator script. The maximum
run time is also specified.

The last step is to run all the tests present in Makefile.pysim. To simplify the
flow even further, the results are generated in categorized files in LaTeX table format
and were inserted in this document.

All the tests discussed in the next sections were executed using instruction/ad-
dress pairs from the following benchmark programs:

• Rijndael AES

• Blowfish

• Dijkstra
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• FFT

• Patricia

• SHA

• Quicksort

The mentioned benchmarks are programs based on common algorithms provided
by MiBench: A free, commercially representative embedded benchmark suite [57].
The Rijndael AES benchmark belongs is part of the security category. The MiBench
security category represents different algorithms for data encryption/decryption and
hashing. Blowfish and SHA are both part of the MiBench network and security
categories. Dijkstra and Patricia belong to the MiBench network category. The
MiBench network category represents algorithms that are used in embedded sys-
tems found in network equipment such as switches and routers. FFT belongs to the
MiBench telecom category which includes telecommunication algorithms used in
wireless equipment. QSort is part of the MiBench automotive and industrial control
category which represents embedded control systems.

5.1 No faults

The first step was to test the instruction validator without injecting faults. The ex-
pected behavior should be that when only legal instructions are fetched, the instruc-
tion validator should not trigger the illegal signal as false negatives are not possible.
A cocotb test case class was created for this category to test the instruction validator
without injecting faults.

The test executes multiple asynchronous Python methods which check the in-
struction validator while incrementing the program counter. All the test cases are
initialized with a 100MHz clock generator. An asynchronous method async def pc()

is used to increment the program counter (PC) at every rising edge of the clock.
Another asynchronous method called async def checkillegal() asserts the illegal

signal to remain low which is expected behavior without injecting faults. The illegal
register must be enabled by the instr_valid signal as displayed in Figures 4.5 and
4.6. This means that it’s important to make sure that the instr_valid signal is high
at every address change. This is checked using the async def checkvalid() method.
The methods are called in async def test_001_No_Faults(). All tests passed with all
different program/hash/optimization configurations. Listing 5.2 displays the result of
one of the test cases.
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************************************************************************************************

** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **

************************************************************************************************

** instruction_validator_tc_nofaults.main PASS 18516.01 6.06 3055.53 **

************************************************************************************************

** TESTS=1 PASS=1 FAIL=0 SKIP=0 18516.01 6.07 3049.48 **

************************************************************************************************

Listing 5.2: No faults test case result of Rijndael AES using the CRC-32C hash
without optimization

5.2 Injecting faults

The next test case introduces faults in the instruction memory. As mentioned pre-
viously, single- and multiple-bit errors can occur in the instruction memory. The
saboteur positioned between the instruction memory and Hamming decoder was
used to emulate those faults in the instruction memory. Multiple tests were written
to test the instruction validator and ECC instruction memory.

The instruction ROM and bit arrays are filled with instruction/address pairs from
programs compiled with the FreNOX RISC-V toolchain. It must be noted that the
programs aren’t executed like on a real RISC-V core. The PC is just incrementing
i.e. jumps are fetched but the PC isn’t influenced by them. This doesn’t influence
the functional testing of the instruction validator as jumps in the program jump to
instruction/address pairs that are legal. This was proven in the implementation with
FreNox in Chapter 6. The reason for using real instruction/address pairs from disas-
sembled programs is to fill the bit arrays with real instruction/address pairs instead
of randomly generated instruction/address pairs which result in more realistic results
in terms of false positives.

The first test async def test_1_Single_Bit_Error_ECC_Test() injects single-bit faults
(SEUs) in all instruction codewords. Again, an asynchronous method async def pc()

is used to increment the program counter at every rising edge of the clock. Figure
5.4 displays the simulation flow that was used to flip bits in the codeword.

Figure 5.4: Flipping single bits in the 38-bit codeword

This index is used as input to the saboteur which randomly picks and flips one
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of the 38 bits per codeword. An enable signal triggers the flipping of bits. Single-bit
faults are corrected by the Hamming SEC decoder. Hence, the expected behavior
is that no illegal instructions are detected by the instruction validator. The async def

checkecc() method contains two asserts: The first assert checks this behavior and
the second assert was used to make sure that all instruction codewords are flipped.
Like the no faults test, all tests passed with different program/hash/optimization con-
figurations which proves that the Hamming SEC decoder passed the test.

The saboteur in the second test async def test_2_Double_Bit_Errors_Test() and
third test async def test_3_Triple_Bit_Errors_Test() introduces double- and triple-bit
errors (MBUs). This test uses an enable signal to trigger the multiple-bit errors in
the saboteur with cocotb together with a class method in the test case that flips bits.
The method which inputs the codeword from the instruction memory is displayed in
Figure 5.5.

Figure 5.5: Flow of method that introduces MBUs

The async def checkiv() spawns the async def checkfp() method when a new in-
struction is output by the instruction memory and triggers MBUs using the def

flipbits() class method. The async def checkfp() method checks the illegal signal
after four or five clock cycles depending on the used hash and increments a counter
when the illegal signal is low which implies a false positive. The end of the test case
contains an assert to make sure that the FPR is below the set FPP.

Table 5.1 and 5.2 display the double- and triple-bit error CRC-32C test results for
every benchmark with a set FPP of 0.05, without m and k optimizations, with a fixed
random seed of 10110010597110 and an initial CRC value of 0xF. The initial value
is shifted three times per hash. So if the first CRC hash has an initial value of 0xF,
the second hash has an initial value of 0x78, the third hash 0x3C0, etc.

Table 5.4, 5.5, 5.6 and 5.7 display the double- and triple-bit error MultiplyShift
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test results for every benchmark, again with a set FPP of 0.05 when doing both
optimizations and with a fixed random seed of 10110010597110.

The benchmark column denotes the used benchmark program in the test. The
number of instructions/elements is denoted by n. The total bit array size is denoted
by m. The amount of hash functions is denoted by k. The FPP column denotes the
calculated FPP based on the determined n, m, and k parameters defined in the BF
class. Remember that the optimizations ensure that the hash output can be sliced,
hence every individual bit array size is a power of two. The FPR denotes the false
positive rate: An instruction/address pair that is illegal but is marked as legal by the
BF. The result denotes if the test passed or failed. Every FPR must stay under the
FPP (0.05) with a deviation of 10% to pass the test. A small FPR deviation of 10%
is allowed to take the small FPR error into account when computing m and k. The
following tests contain an averaged FPR over 10 runs.

Benchmark n m k FPP FPR Result
aes 6171 38480 5 0.051018 0.052115 PASS
blowfish 24710 154075 5 0.051026 0.05106 PASS
dijkstra 451 2815 5 0.050857 0.052328 PASS
fft 26004 162140 5 0.051029 0.049862 PASS
patricia 765 4770 5 0.051027 0.04915 PASS
sha 627 3910 5 0.051007 0.053748 PASS
qsort 333 2080 5 0.050736 0.054655 PASS

Table 5.1: Double-bit errors test case results of 10 runs with ϵ = 0.05 without opti-
mization using CRC-32C

Benchmark n m k FPP FPR Result
aes 6171 38480 5 0.051018 0.050267 PASS
blowfish 24710 154075 5 0.051026 0.051238 PASS
dijkstra 451 2815 5 0.050857 0.050554 PASS
fft 26004 162140 5 0.051029 0.051315 PASS
patricia 765 4770 5 0.051027 0.053464 PASS
sha 627 3910 5 0.051007 0.054864 PASS
qsort 333 2080 5 0.050736 0.061261 FAIL

Table 5.2: Triple-bit errors test case results of 10 runs with ϵ = 0.05 without opti-
mization using CRC-32C

When comparing the double- and triple-bit error CRC-32C tests displayed in Ta-
ble 5.1 and 5.2, it can be observed that the FPR is generally higher when introducing
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triple-bit errors. Further research was done to explain this behavior. Observing the
simulation waves resulted in an interesting finding. The Hamming decoder has a
positive side-effect on the instruction validator. The introduced faults sometimes re-
sult in parity mismatches which lead to the Hamming SEC decoder correcting the
wrong bits and unintentionally adding an extra fault to the instruction. This behavior
has a positive effect on the FPR which implies that the combination of ECC and the
instruction validator improves the detection performance. The triple-bit error FPR
is sometimes higher than the FPR with double-bit errors. The reason is that the
parity is correct more often with triple-bit errors than double-bit errors. Hence, faults
are added to the double-bit error instructions which result in a better FPR. Also, the
positions of the bit-flips by the Hamming encoder are more distributed over the in-
struction than triple-bit errors which are clusters of triple-bit errors. Let’s consider
the example in Table 5.3 taken from one of the tests. The red-colored bits denote
the bits that are affected by the fault which is a triple-bit error in this case. The blue
bits denote the extra fault that is introduced by the Hamming decoder. Remember
that the codeword contains both parity and data bits. The Hamming decoder data
bits are eventually output and checked by the instruction validator. In this case, the
blue bit in the Hamming decoder is a data bit as displayed in the data bit column
and hence this instruction contains an extra fault and is less likely to be marked as
a false positive.

Output Codeword Data bits
Instruction ROM 11111101011000100001001101100010010110 11111110110001000010010110000011
Saboteur 11111101011000100001010001100010010110 11111110110001000010100110000011
Hamming decoder 11111101011000100001010011100010010110 11111110110001000010101110000011

Table 5.3: Hamming decoder introducing an extra fault

This effect was proven by bypassing the Hamming decoder and running all the
tests again. Those respective test results are displayed in Table A.1, A.2, A.3, A.4,
A.5 and A.6 which clearly shows a higher overall FPR and a significantly increased
amount of failed tests. This proves that using Hamming ECC results in a lower
overall FPR and hence better detection of illegal instruction/address pairs.

It can be observed in Table 5.2 that the Quicksort benchmark failed. There could
be two possible explanations: The sample size is too small which leads to a less
precise FPR as a false positive has a higher effect on the FPR. This seems a pos-
sible explanation as the benchmark that failed has the lowest amount of instructions
denoted by n. Another explanation could be that the instructions with faults and their
respective addresses are similar for this specific random seed to the instruction/ad-
dress pairs that were initially added to the BF. This could lead to more false positives
as the hash function maps those instruction/address pairs to existing elements. It
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must however be noted that this test passed when using different combinations of
initial values and shifts per hash.

Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.033949 PASS
blowfish 24710 163840 5 0.041647 0.04208 PASS
dijkstra 451 3072 3 0.045209 0.043237 PASS
fft 26004 163840 5 0.049319 0.0485 PASS
patricia 765 5120 5 0.04036 0.039216 PASS
sha 627 4096 4 0.043962 0.042424 PASS
qsort 333 2048 4 0.052274 0.052553 PASS

Table 5.4: Double-bit errors test case results of 10 runs with ϵ = 0.05 and m-k opti-
mization using the MultiplyShift hash

Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.034776 PASS
blowfish 24710 163840 5 0.041647 0.041056 PASS
dijkstra 451 3072 3 0.045209 0.04878 PASS
fft 26004 163840 5 0.049319 0.049392 PASS
patricia 765 5120 5 0.04036 0.037647 PASS
sha 627 4096 4 0.043962 0.044338 PASS
qsort 333 2048 4 0.052274 0.053153 PASS

Table 5.5: Triple-bit errors test case results of 10 runs with ϵ = 0.05 and m-k opti-
mization using the MultiplyShift hash

All the MultiplyShift double- and triple-bit error tests using m-k optimization (see
Algorithm 1) passed. The results are displayed in Table 5.4 and 5.5. An interesting
observation when looking at the CRC-32C and rounding optimization test results is
that the total bit array size is significantly lower than the total bit array sizes of the
rounding optimization. Also, the total bit array size is approximately like the original
total bit array sizes as displayed in the CRC-32C test results. This proves that the
m-k optimization has a positive effect on the area overhead while respecting the
FPP in this case.
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Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.033949 PASS
blowfish 24710 163840 5 0.041647 0.04208 PASS
dijkstra 451 5120 5 0.005737 0.003991 PASS
fft 26004 163840 5 0.049319 0.0485 PASS
patricia 765 5120 5 0.04036 0.039216 PASS
sha 627 5120 5 0.02013 0.021372 PASS
qsort 333 2560 5 0.024995 0.026126 PASS

Table 5.6: Double-bit errors test case results of 10 runs with ϵ = 0.05 and rounding
optimization using the MultiplyShift hash

Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.034776 PASS
blowfish 24710 163840 5 0.041647 0.041056 PASS
dijkstra 451 5120 5 0.005737 0.007095 PASS
fft 26004 163840 5 0.049319 0.049392 PASS
patricia 765 5120 5 0.04036 0.037647 PASS
sha 627 5120 5 0.02013 0.021053 PASS
qsort 333 2560 5 0.024995 0.022523 PASS

Table 5.7: Triple-bit errors test case results of 10 runs with ϵ = 0.05 and rounding
optimization using the MultiplyShift hash

All the MultiplyShift double- and triple-bit error tests while using rounding opti-
mization passed. The results are displayed in Table 5.6 and 5.7. The CRC-32C
double- and triple-bit error test results display the original total bit array sizes. When
comparing the results with CRC-32C, it can be observed that using the rounding
optimization results in a higher total bit array size. This has to do with the fact that
the rounding optimization rounds the individual bit array sizes to the nearest higher
power of two. This leads to a much lower FPP and hence a lower FPR. The dis-
advantage is that this optimization results in a higher area overhead in some cases
(m-k sometimes chooses the same parameters) as proven in the synthesis results
presented in Chapter 6: Implementation. However, the advantage is that this round-
ing optimization ensures that the set FPP isn’t violated which is reflected in the test
results and FPR.

It can be concluded that when comparing the CRC-32C and MultiplyShift results
for both optimizations using MultiplyShift results in a better overall FPR. This is even
the case when using m-k optimization which approximates the CRC-32C param-
eters. While CRC-32C doesn’t perform much worse than MultiplyShift, it can be
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observed that MultiplyShift clearly performs better for these specific benchmarks.
It must be noted that relaxing the FPP deviation of the m-k optimization can be

very useful for certain applications. E.g., increasing the FPP deviation might be a
suitable approach for embedded systems that have very strict memory or power
requirements and can suffice with a higher FPR than the set FPP.

Another interesting observation is that all tests failed when combining the CRC-
32C hash with the m-k optimization algorithm. The reason for the failing test was
the explosive FPR. An additional investigation was performed on the CRC-32C hash
to find the cause of this problem. Remember that the m-k optimization results in a
power of two modulo. Besides checking the Avalanche effect, the single output bits
were analyzed when again changing one bit in the hash input. Again, generating 10
million random 64-bit pairs and changing one bit in the input resulted in Figure 5.6.

Figure 5.6: Hamming distance of single output bits

The most optimal result would be that the Hamming distance of each output bit
is exactly or approximately half the number of samples. It can be observed that
output bits of MurmurHash3 and MultiplyShift have a very even Hamming distance
distribution. The CRC-32C and CRC-32 hashes have a less even distribution. While
the CRC-32C and CRC-32 can be used as a hash as proven in the Avalanche test,
they are weaker than strong hashes like MurmurHash3 and MultiplyShift. Too much
information is lost when ignoring a part of the CRC output bits or when slicing single
CRC output bits.

Instruction/address pairs that are not part of the bit arrays result in a significant
amount of hash collisions with existing instruction/address pairs when using a mod-
ulo power of two which in turn results in a high FPR. This is the case when using
a power of two as modulo which results in a part of the bits being ignored. Picking
individual output bits is an alternative method to picking a modulo with a power of
two but results in the same information loss and hence an FPR which by far doesn’t
meet the set FPP.

The inconsistency in the single output bits can be observed in more detail in
Figure 5.7 and 5.8. Each sample set consists of 128 random 64-bit words. Again,
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one bit is changed in one of the words in the pair and the Hamming distance of the
output of both words in the pair is compared.

Figure 5.7: Sample set #1 Figure 5.8: Sample set #2

To conclude, the complete output of the CRC-class hashes must be used to get
a distribution that is performing well enough to achieve FPRs that meet the set FPP.

5.3 Triggering HWTs

The saboteur connected to the output of the Hamming decoder displayed in Figure
5.2 was used to trigger HWTs. Two test cases were written that trigger HWTs in the
instruction memory. The following HWTs can be activated by an adversary which
can lead to malicious program execution, accessing illegal memory locations, data
corruption, and unexpected behavior in the program output or flow:

• async def test_1_HWT_Injecting(): HWT that injects instructions

• async def test_2_HWT_Modifying(): HWT that modifies instructions

The following subsections discuss hose test cases in more detail. Both test cases
adapt the same flow displayed in Figure 5.9.
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Figure 5.9: Cocotb flow of HWT test cases

This flow consists of two loops: Sequences and runs. The sequence denotes
the number of injected/affected instructions per HWT. The runs denote the number
of different timed HWT attacks.

A run is initialized by executing async def pc() which asynchronously starts the
PC and by executing async def reset() which resets all the components in the test
harness. Again, the instr_valid signal is checked by executing async def checkvalid

(). Every HWT can be triggered once or multiple times at a random interval in the
simulation using a set probability. For every injected instruction it is checked and
logged if the instruction validator detected this instruction/address pair using async

def checkillegal(). The sequence loop is terminated when all HWT attacks are
detected. The test results are printed after every sequence.

The first test case focuses on HWTs that inject instructions and is discussed in
the next subsection.

5.3.1 Injecting HWT

For this type of HWT, it is assumed that the attacker has access to the instruction
memory. As discussed previously in the HWT taxonomy, this type of HWT can be
inserted in every phase. Injecting instructions can lead to malicious program execu-
tion as injected instructions can jump to instruction memory locations that contain
malicious instructions that were inserted by the adversary. It’s also possible that
those malicious instructions can access illegal parts of the data memory that con-
tains sensitive data. Injected instructions can also lead to data corruption and can
influence the program output or flow that is supposed to be executed. Malicious
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instructions can alter data in registers and affect the program’s integrity. It’s also
possible to inject branches that compromise the program flow.

This test case injects random 32-bit instructions and overrides the to-be-executed
instructions. The PC isn’t influenced by this instruction and just keeps incrementing
as usual. A probability of 0.1 is used to trigger HWTs randomly in a run for a spec-
ified amount of instructions denoted by the sequence. This resulted in the results
displayed in Table 5.8 using 1000 runs and using the CRC-32C hash. The results
using the MultiplyShift hash with the m-k and rounding optimization are displayed
in Table 5.9 and 5.10. The Dijkstra benchmark was used consisting of 121 instruc-
tions with an FPP of 0.05 and a fixed random seed of 10110010597110. Like the
fault injection results, the m-k optimization in combination with the MultiplyShift hash
was also used in this test as this optimization approximates the m and k parame-
ters used by the CRC-32C hash. This makes for a better comparison between the
MultiplyShift and CRC-32C hashes.

Looking at the results show that the attack becomes fully detected at four in-
structions per attack for the CRC-32C hash and five for the MultiplyShift hash using
m-k optimization. The MultiplyShift hash with rounding optimization can detect all
HWT attacks at three instructions per attack. This is expected as the FPP is signif-
icantly lower than the set FPP when using the rounding optimization as discussed
previously in the fault injection tests. It can also be observed that the CRC-32C
hash and MultiplyShift hash perform very similarly. Another observation is that the
MultiplyShift hash can detect the HWT inject attacks slightly better with a growing
sequence length than CRC-32C when looking at the ratio. It could also be observed
that the number of undetected attacks was declining with an increasing sequence.
The reason for this behavior is the product of probabilities. With an FPP of 0.05,
the probability of two instructions being undetected by the instruction validator is
0.05 ·0.05 = 0.0025, for three instructions 0.05 ·0.05 ·0.05 = 0.000125, etc. This means
that with a higher sequence, the detection becomes significantly better. HWTs often
consist of multiple instructions. This means that the more sophisticated the attack,
the more capable the instruction validator becomes to detect them.

Sequence length Undetected Nr. of attacks Undetected ratio
1 504 9950 0.050653
2 59 9981 0.005911
3 2 10058 0.000199
4 0 10049 0.0

Table 5.8: Results of injecting HWT test case using CRC-32C
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Sequence length Undetected Nr. of attacks Undetected ratio
1 506 9950 0.050854
2 52 9981 0.00521
3 1 10058 0.0001
4 1 10049 0.0001
5 0 9848 0.0

Table 5.9: Results of the injecting HWT test case using MultiplyShift and the m-k
optimization

Sequence length Undetected Nr. of attacks Undetected ratio
1 115 9950 0.011558
2 33 9981 0.003306
3 0 10058 0.0

Table 5.10: Results of the injecting HWT test case using MultiplyShift and the round-
ing optimization

5.3.2 Modifying HWT

This test case focuses on HWTs that modify legal instructions. A possible HWT that
modifies instructions is an HWT that triggers an AND operation on the instruction
and a 32-bit mask that sets all the fields to zero except for the opcode field and the
funct3 field (see Figure 5.10).

Figure 5.10: RV32I instruction types [2]

The opcode field is set to ”0010011” which is the opcode for an immediate add
(ADDI) instruction. The funct3 field is set to ”111” which denotes the ADDI instruc-
tion. The idea behind this attack is to skip instructions by overwriting them with this
mask. Table 5.11 displays the results of modifying instructions varying from one to
three instructions using the CRC-32C and using a fixed random seed of 28061997.
Table 5.12 and 5.13 display the results of this HWT using the MultiplyShift hash
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with m-k and rounding optimization. The CRC-32C and MultiplyShift can both de-
tect all HWT attacks at three instructions per attack. Again, the MultiplyShift hash
can detect HWT attacks slightly better with sequence length one than the CRC-32C
hash. It can also be observed that the CRC-32C detection becomes better than
MultiplyShift with a growing sequence length like with the injecting HWT test case.
Again, the rounding optimization results in a significantly better detection for the
reasons mentioned in the HWT injection attack tests.

Sequence length Undetected Nr. of attacks Undetected ratio
1 522 9992 0.052242
2 39 9881 0.003947
3 0 9936 0.0

Table 5.11: Results of modifying HWT test case using CRC-32C

Sequence length Undetected Nr. of attacks Undetected ratio
1 378 9971 0.03791
2 72 10053 0.007162
3 0 9947 0.0

Table 5.12: Results of the modifying HWT test case using MultiplyShift and the m-k
optimization

Sequence length Undetected Nr. of attacks Undetected ratio
1 169 9918 0.01704
2 19 10024 0.001895
3 0 10069 0.0

Table 5.13: Results of the modifying HWT test case using MultiplyShift and the
rounding optimization

5.4 Concluding summary

To conclude, a test harness, automation flow, and multiple test cases were intro-
duced to simulate the instruction validator and ECC instruction memory. An au-
tomation flow was used to simulate all different hash/optimization/program configu-
rations for different test cases. Each hash/optimization/program configuration was
tested without injecting faults and while injecting single-bit errors (SEUs), double-
and triple-bit errors (MBUs), and HWTs.
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Section 5.1 discussed the no faults simulation. This test case verified the correct
functioning of the ECC instruction memory and instruction validator. Running the
test resulted in all program/hash/optimization configurations passing the test.

Section 5.2 discussed the simulation when injecting single-, double- and triple-bit
errors. Multiple cocotb methods were developed to test the instruction validator and
Hamming decoder. All single-bit errors were successfully detected and corrected by
the Hamming decoder. When injecting double- and triple-bit errors, the FPR of all
configurations using the MultiplyShift hash stayed below the set FPP with a small
deviation while one test failed when using the CRC-32C hash. However, the test
did pass when using a different combination of initial values and shifts per individ-
ual hash function. Observing the simulation waves in more detail resulted in an
interesting finding. Introducing MBUs results in the Hamming decoder occasionally
miscorrecting bits which results in a better overall FPR for the instruction validator.
This effect was proven by running all the MBU simulations without the Hamming
decoder. This resulted in an overall higher FPR and hence more failed tests. An-
other interesting observation was when applying a modulo with a power of two on
the CRC-32C hash output to decrease area overhead, all tests failed. An additional
analysis was executed on the CRC-32C hash by looking at single output bits. This
resulted in the conclusion that the complete hash output of CRC-32C must be used
to get a strong distribution.

Section 5.3 discussed injecting two types of HWTs. A flow was developed that
dynamically injects these two types using a set probability. The injecting HWT attack
discussed in subsection 5.3.1 became fully detected with a sequence length of four
instructions with the CRC-32C hash. The MultiplyShift with m-k optimization which
approximates the performance of CRC-32C detected all HWT attacks at a sequence
length of five instructions. The MultiplyShift with rounding optimization was able to
detect all HWT attacks at a sequence length of three instructions. However, this was
the case as the rounding optimization increased the total bit array sizes which results
in a better FPR. The modifying HWT attack discussed in subsection 5.3.2 became
fully detected at an instruction sequence length of three for all hash/optimization
configurations.



Chapter 6

Implementation

This chapter discusses the implementation of the instruction validator and ECC in-
struction memory. Firstly, the synthesis results of the instruction validator configu-
rations are discussed. Secondly, the implementation is discussed which is divided
into two parts: An isolated implementation and an implementation with the FreNox
RISC-V core and FreNox SoC-e. The isolated implementation discusses the imple-
mentation of the instruction validator with some peripherals in an isolated test envi-
ronment. The instruction validator was tested on an FPGA fabric before integrating
it with the FreNox SoC-e and FreNox RISC-V core. The implementation with FreNox
discusses the implementation of the instruction validator and ECC instruction mem-
ory on an FPGA fabric with the FreNox SoC-e which instantiates the FreNox RISC-V
core.

6.1 Synthesis results

Synthesizing all the different instruction validator configurations and benchmark pro-
grams with a 100MHz clock constraint for the Arty A7-100T containing the Xilinx
Artix-7 XC7A100TCSG324-1 FPGA resulted in the synthesis results displayed in
Table 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7. The RTL and synthesis schematics of
an instruction validator configuration are displayed in Figure B.2 and B.3. A small
Python script was developed to parse all the synthesis results from the Vivado work
folder using regex. The first notable observation is the CRC-32C hash failing the
timing requirements, even with post-route physical optimization. All synthesis re-
sults consist of a negative slack. Doing further research on why this was the case
resulted in interesting observations. When looking at the report and the schematic
(displayed in Appendix B.1) of the path with the worst slack, it can be concluded that
the modulo operation results in a long path of carry- and LUT-blocks which results
in a large amount of slack which doesn’t meet the timing requirement of 10 ns. This

68
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proves that a modulo operation in hardware can be very expensive in terms of time
overhead.

Looking at the general differences between the hashes shows that the CRC-32C
hash does use significantly more LUTs and FFs than the MultiplyShift hash. This
makes sense as the modulo operation takes many LUTs and FFs when looking at
the utilization reports. Another observation is that the MultiplyShift hash consumes
significantly less dynamic and static power than the CRC-32C hash. When look-
ing at the amount of BRAMs shows that all hash/optimization combinations roughly
consume the same amount of BRAMs. This is the case because roughly they have
the same bit array sizes. The simulation results showed a big difference in the Di-
jkstra benchmark between MultiplyShift rounding and m-k. This is also reflected in
the number of consumed BRAMs. As already discussed, the MultiplyShift hash of-
fers many improvements over the CRC-32C hash in terms of power consumption,
slack, LUTs, and FFs. A notable difference is the amount of consumed digital signal
processing (DSP) blocks. The DSP blocks are used for the MultiplyShift multiplica-
tions. It must be noted however that the used FPGA offers a maximum of 240 DSP
blocks. This means that with a large program such as Blowfish, with a text section
of 103460 bytes, the maximum DSP utilization percentage is 12.5 % which leaves a
very reasonable 87.5 % for other hardware. However, when looking at smaller-sized
programs, the lowest amount of DSP blocks is 9 which results in a utilization per-
centage of just 3.75%. When comparing the MultiplyShift and MultiplyShiftPipelined,
it can be observed that MultiplyShiftPipelined has an overall better worst negative
slack (WNS) and consumes fewer DSP blocks. While the MultiplyShiftPipelined has
an effect on some configurations in terms of the amount of DSP blocks and a higher
WNS when looking at large programs the amount of DSP blocks is equal to the
MultiplyShift variant. The reason for this behavior was studied and resulted in an
interesting finding. The design rule check reports mention that DSP blocks are also
pipelined by the synthesis tool to meet the timing requirements. A possible recom-
mendation to improve the design further is to create more multiplier pipeline stages.
This is out of the scope for this project as the latency is minimized to only three
clock cycles and the timing requirements are met. However, when strict area re-
quirements must be met and a higher latency is acceptable, more multiplier pipeline
stages would be a good solution and improvement to the current design.
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Hash Optimization Dynamic P (W) Static P (W) WNS (ns) LUTs FFs BRAMs DSP blocks
CRC-32C - 0.066 0.091 -5.133 1501 113 2.5 0
MultiplyShift m-k 0.033 0.091 0.941 84 39 2.5 29
MultiplyShift rounding 0.033 0.091 0.941 84 39 2.5 29
MultiplyShiftPipelined m-k 0.033 0.091 2.511 66 22 2.5 30
MultiplyShiftPipelined rounding 0.033 0.091 2.511 66 22 2.5 30

Table 6.1: Rijndael AES synthesis results with 100MHz constraint, all configura-
tions, and ϵ = 0.05

Hash Optimization Dynamic P (W) Static P (W) WNS (ns) LUTs FFs BRAMs DSP blocks
CRC-32C - 0.078 0.092 -5.489 1545 113 5 0
MultiplyShift m-k 0.040 0.091 0.513 76 21 5 30
MultiplyShift rounding 0.040 0.091 0.513 76 21 5 30
MultiplyShiftPipelined m-k 0.040 0.091 2.613 76 22 5 30
MultiplyShiftPipelined rounding 0.040 0.091 2.613 76 22 5 30

Table 6.2: Blowfish synthesis results with 100MHz constraint, all configurations, and
ϵ = 0.05

Hash Optimization Dynamic P (W) Static P (W) WNS (ns) LUTs FFs BRAMs DSP blocks
CRC-32C - 0.086 0.092 -5.256 1865 113 2.5 0
MultiplyShift m-k 0.017 0.091 3.109 154 65 1.5 10
MultiplyShift rounding 0.028 0.091 2.284 256 123 2.5 18
MultiplyShiftPipelined m-k 0.016 0.091 2.391 170 72 1.5 9
MultiplyShiftPipelined rounding 0.026 0.091 2.525 272 94 2.5 15

Table 6.3: Dijkstra synthesis results with 100MHz constraint, all configurations, and
ϵ = 0.05

Hash Optimization Dynamic P (W) Static P (W) WNS (ns) LUTs FFs BRAMs DSP blocks
CRC-32C - 0.080 0.092 -5.146 1632 113 5 0
MultiplyShift m-k 0.040 0.091 0.672 76 21 5 30
MultiplyShift rounding 0.040 0.091 0.672 76 21 5 30
MultiplyShiftPipelined m-k 0.040 0.091 2.613 76 22 5 30
MultiplyShiftPipelined rounding 0.040 0.091 2.613 76 22 5 30

Table 6.4: FFT synthesis results with 100MHz constraint, all configurations and ϵ =

0.05

Hash Optimization Dynamic P (W) Static P (W) WNS (ns) LUTs FFs BRAMs DSP blocks
CRC-32C - 0.072 0.091 -3.293 1572 113 2.5 0
MultiplyShift m-k 0.028 0.091 1.751 267 105 2.5 17
MultiplyShift rounding 0.028 0.091 1.751 267 105 2.5 17
MultiplyShiftPipelined m-k 0.026 0.091 2.608 278 94 2.5 15
MultiplyShiftPipelined rounding 0.026 0.091 2.608 278 94 2.5 15

Table 6.5: Patricia synthesis results with 100MHz constraint, all configurations and
ϵ = 0.05
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Hash Optimization Dynamic P (W) Static P (W) WNS (ns) LUTs FFs BRAMs DSP blocks
CRC-32C - 0.063 0.084 -1.841 1401 153 0 0
MultiplyShift m-k 0.016 0.084 3.771 191 157 0 12
MultiplyShift rounding 0.020 0.084 2.990 239 193 0 15
MultiplyShiftPipelined m-k 0.017 0.084 3.168 190 165 0 12
MultiplyShiftPipelined rounding 0.021 0.084 3.058 237 201 0 15

Table 6.6: Quicksort synthesis results with 100MHz constraint, all configurations,
and ϵ = 0.05

Hash Optimization Dynamic P (W) Static P (W) WNS (ns) LUTs FFs BRAMs DSP blocks
CRC-32C - 0.103 0.092 -4.451 2166 113 2.5 0
MultiplyShift m-k 0.023 0.091 3.384 183 112 2 15
MultiplyShift rounding 0.028 0.091 2.405 238 123 2.5 18
MultiplyShiftPipelined m-k 0.021 0.091 2.744 196 82 2 12
MultiplyShiftPipelined rounding 0.025 0.091 2.403 249 93 2.5 15

Table 6.7: SHA synthesis results with 100MHz constraint, all configurations, and
ϵ = 0.05

Table 6.8 displays the synthesis results of the instruction validator and the check-
ers introduced in [25] and [27]. The Sudoku Solver program synthesis results from
[25] and [27] are displayed in the table. The Sudoku Solver program consists of 475
instructions which is similar to the number of instructions in the Dijkstra program
which consists of 451 instructions. It can be observed that the amount of LUTs is
higher than the proposal in [25] while being significantly lower than the proposal
in [27]. The amount of FFs is higher than both proposals which are consumed by
the instruction validator hash functions. The BRAM size is slightly bigger than [27]
while being significantly lower than [25]. This has to do with the fact that the pro-
posal in [25] allocates a fixed amount of memory to store instruction/address pairs.
The Fmax is between the proposal in [25] and [27]. The biggest difference between
the instruction validator and both proposals is the amount of DSP blocks.

Checker LUTs FFs BRAM size (kbit) Fmax (MHz) DSP Blocks
MultiplyShift with m-k 268 127 90 175 18
MultiplyShiftPipelined with m-k 272 94 90 175 15
Proposal in [25] 1539 89 64 106 0
Proposal in [27] 75 31 208 275 0

Table 6.8: Comparing synthesis results to other checkers with Dijkstra and ϵ = 0.01

6.2 Isolated implementation

This section discusses the isolated implementation. The first subsection Test setup
discusses the isolated instruction validator test setup on an FPGA. Finally, the sec-
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ond subsection Test results discuss the results of the isolated test setup and discuss
how the tests were executed.

6.2.1 Test setup

Figure 6.1 displays the diagram of the isolated implementation.

Figure 6.1: Isolated implementation diagram

The isolated implementation was again synthesized for the Digilent Arty A7-100T
board which uses a Xilinx Artix-7 XC7A100TCSG324-1 FPGA [58]. The implemen-
tation consists of several peripherals to drive and verify the design-under-test (DUT).
Technolution developed their own language called RDL standing for Register De-
scription Language. RDL is a language to describe registers and specify the bus
structure for different targets including FPGAs. The enable register is a control reg-
ister that was described using RDL and was used to enable the PC and instruction
RAM using the AXI4-lite bus. The AXI4-lite bus layout is displayed in Figure 6.2. The
serial master is used to execute read and write operations on the AXI4-lite bus using
UART. This was used to read and write to and from the registers and the dual-port
RAM (DPRAM). The maximum value of the PC was limited in hardware to prevent
going out of bounds in the instruction RAM address space. The reset input of the
instruction validator was connected to the negated signal of the enable register. This
was important as the instruction RAM initially doesn’t contain any instructions and
this results in a run of illegal instructions. The idea was to be able to dynamically
write and read instructions from and to the instruction RAM and to enable the PC
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and DUT. The ability to change instructions after synthesis made it easy to test if
the instruction validator triggers the illegal signal when illegal instructions/address
pairs are present. The instruction validator is connected to the instruction RAM, the
enable register, the FPGA clock, and the illegal signal is connected to the counter
register. The counter register is another register that is described using RDL. This
counter register increments its content by 1 when the input signal is high at every
rising edge of the clock. Hence, this register can be used to count the number of
illegal instructions in one run. The reset button on the Arty 7 board can be used to
reset the registers to do another test run.

Figure 6.2: Isolated implementation bus layout diagram

6.2.2 Test results

The test setup displayed in Figure 6.1 was driven using another tool developed by
Technolution called Pyte. Pyte is a Python-based tool that is used to interface with
numerous types of embedded systems using different protocols such as I2C, UART,
and Ethernet. To test the isolated implementation the so-called pysciimaster was
used. This is a class that can interface with the AXI4-lite bus using the UART serial
master over UART. Using UART was the most convenient protocol to use as the
Digilent Arty A7 consists of USB-JTAG (which also provides the board’s power) and
USB-UART circuitry which means that JTAG, UART, and the board’s power can be
transported using a micro-USB cable. The first step before the instruction could be
tested on hardware was to add nets to the ILA debugging core. ILA stands for Inte-
grated Logic Analyzer and is an in-system debugger provided by Xilinx Vivado to test
and debug hardware. The following signals were added to analyze the instruction
validator:

• Address coming from The PC

• Instruction coming from instruction RAM

• Illegal output signal from the instruction validator
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• PC enable signal that triggers the PC and instruction validator

The design could be synthesized after the nets corresponding to the mentioned
signals were added. The instruction validator components were generated using
the qsort program, the MultiplyShift hash, rounding optimization, and an FPP of
0.05. This resulted in the synthesis schematic displayed in Appendix B.4. The
bitstream and ltx file containing the debug nets were also generated as a product
of synthesis.

After synthesizing the design, the FPGA was programmed with the bitstream
and the ltx file needed for ILA was loaded in Vivado Lab Edition. As mentioned
earlier, Pyte was used to interface with the UART serial master that controls all the
peripherals using the AXI4-lite bus. First, Pyte was configured using the right UART
port and baud rate. A small test class was written which can drive the peripherals,
e.g., enabling the PC and reading/writing to and from the instruction RAM. The class
initialization is used to open the serial monitor with the port and baud rate. A list
containing instructions from the disassembled qsort program was also read and
imported. This instruction list was generated by the generator script. The instruction
list is used by four Pyte class test methods that have the following basic functionality:

• async def write_instructions(): Writing the instructions to the instruction RAM
and enabling the PC using the enable_pc register.

• async def write_faults(): Introducing faults in all instructions and writing the
instructions to the instruction RAM and enabling the PC using the enable_pc

register.

• async def write_beginfault(): Introducing a fault in the first instructions and
writing the remaining instructions to the instruction RAM and enabling the PC
using the enable_pc register.

• async def write_endfault(): Introducing a fault in the last instructions and writ-
ing the remaining instructions to the instruction RAM and enabling the PC us-
ing the enable_pc register.

Figure 6.3: Isolated implementation test flow

The test flow that was used to test the instruction validator as displayed in Figure
6.3. This flow was used to test the instruction validator with the previously mentioned
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methods. All tests were executed successfully and the behavior exactly matched the
expected behavior. The different tests are discussed in detail below.

Executing the async def write_instructions() method resulted in the instr_illegal

signal remaining low while fetching all the instructions from the instruction RAM as
displayed in Figure 6.4. This was also reflected when reading the counter register
which was 0. It can be observed that the enable_pc is triggered which is also indi-
cated by the ”T” cursor. The PC starts incrementing and the instructions are fetched
from the instruction RAM. This is the case for every following test.

Figure 6.4: Fetching legal instructions

Executing the async def write_faults() method resulted in the instr_illegal

signal remaining high most of the time with some false positives. This is displayed
in Figure 6.5 and the false positives can be recognized by the notches.

Figure 6.5: Fetching illegal instructions

Executing the async def write_beginfault() method resulted in the instr_illegal

being high for one clock cycle as displayed in Figure 6.6. When looking at the
zoomed-in waves in Figure 6.7 it can be observed that the instr_illegal becomes
high with a latency of three clock cycles.

Figure 6.6: Fetching one illegal instruction from the first address
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Figure 6.7: Illegal signal zoomed in

Executing the async def write_endfault() method resulted in the instr_illegal

staying high as displayed in Figure 6.8. This is the case as the last instruction was
fetched from the instruction RAM which resulted in the illegal instruction/address pair
remaining unchanged, hence staying high. Another observation is the illegal signal
becoming high with a latency of three clock cycles when looking at the zoomed-in
waves in Figure 6.9.

Figure 6.8: Fetching one illegal instruction from the first address

Figure 6.9: Illegal signal zoomed in
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6.3 Integration with FreNox

Figure 6.10: FreNox hardware overview

Figure 6.10 displays the hardware overview of the FreNox implementation. The im-
plementation contains the FreNox SoC-e layer which instantiates the FreNox RISC-V
core, peripherals (such as a platform-level interrupt controller (PLIC), and a real-time
clock (RTC)), the instruction validator, ECC instruction memory, and data memory.
The FreNox wrapper instantiates the FreNox SoC-e, a mixed-mode clock manager
(MMCM), reset generator, and the UART serial master. The MMCM and reset gen-
erator provide the main clock and reset signals for all components. The FreNox
wrapper is connected to several peripherals on the Arty board such as LEDs, a re-
set button, a USB-UART interface, and Pmod connector pins which serve as a sec-
ondary UART interface. The instruction validator illegal signal is connected to LED
4. The Hamming decoder single-bit error is connected to LED 5 and the double-bit
error signal is connected to LED 6.

Xilinx provides BRAM IPs with ECC mode. This IP however comes with some
disadvantages. The first disadvantage is portability. The Xilinx Artix-7 series FPGA
supports ECC mode in BRAMs. However, this might be different for other FPGA
series or brands. Another disadvantage is the fact that ECC is only supported in
simple dual-port mode. This means that one DPRAM port is a dedicated write port
and the other port is a dedicated read port. In that case, the instruction memory
could only be written by the UART serial master and read by the FreNox RISC-V
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core. This is a big disadvantage as the memory contents can’t be verified using the
UART serial master. Because of this, separate Hamming encoders and decoders
IPs were used. While Hamming SEC is sufficient and results in an improved area
overhead, Hamming SEC-DED was used for this implementation as the Xilinx ECC
IP was used which only supports Hamming SEC-DED and Hsiao [59].

The design displayed in Figure 6.10 was synthesized. The FreNox SoC-e was
synthesized with the RV32IM standard. An amount of 20480 kbyte was allocated to
the FreNox SoC-e instruction memory and 16384 kbyte to the data memory. The
instruction validator didn’t have any impact on the maximum frequency of FreNox.
This was however different for the ECC encoding/decoding. At the time of writing
this thesis, the FreNox RISC-V core was not yet optimized for latency in the pipeline.
This means that the ECC decoding is part of the instruction fetch and hence in-
creases the critical path slack of the pipeline. The frequency had to be decreased
to meet the timing requirements. Synthesizing this design with a clock frequency
of 80 MHz resulted in a WNS of 0.009 ns. This means that adding the ECC en-
coding/decoding resulted in a frequency decrease of 20% compared to the FreNox
SoC-e implementation without fault-tolerance and HWT mitigation which met timing
requirements at 100 MHz.

The instruction validator was generated with the QuickSort program using the
MultiplyShift hash and rounding optimization and an FPP of 0.05. The QuickSort
program was compiled with the -march=rv32im parameter which selects the RISC-
V base and extension and the -O0 parameter which disables compiler optimizations.
The QuickSort program repeatedly sorts an array generated by a Python script with
1000 random numbers between 0 and 1 million in an infinite while loop. This re-
sulted in a text section size of 10276 bytes and a data section of 1076 bytes. The
instruction validator was generated using MultiplyShift with m-k optimization. The
instruction validator generator script reported 1460 instructions (n), a total bit array
size of 10240 (m) and 5 hash functions (k). Table 6.9 displays the synthesis results
of the FreNox RISC-V core, the ECC encoder/encoder, and the instruction valida-
tor configured with the QuickSort program. The power report showed that the total
dynamic power consumption of the FreNox SoC-e was 0.078W. It can be observed
that when looking at the dynamic power consumption, the ECC encoder/decoder
and the instruction validator approximately consume half the power compared to the
other components and FreNox SoC-e. This mainly has to do with the power that is
consumed by the DSP blocks and the constant ECC decoding. The area overhead
in terms of LUTs and FFs is low when looking at both overheads. While the LUT and
FF area overhead is low, the BRAM and DSP block area overhead are large com-
pared to the other components in the table and FreNox SoC-e overall. The BRAM
area overhead of 38.9% has to do with the fact that each individual RAM element
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is synthesized as BRAM. While one individual RAM element holds just 2 kbit, the
RAM element is synthesized as half a BRAM which holds 18 kbit. All the RAM el-
ements together result in a BRAM consumption of 2.5. The same was observed
with the single BRAM that the FreNox RISC-V core is consuming which stores the
core’s register file with a size of 1024 bit. The precise area overhead of the in-
struction validator and Hamming SEC with the register file and the data memory is

10240+6·1460
32·1460+1024+8608

= 33.7%. The DSP block area overhead is acceptable as FreNox
only consumes four DSP blocks which together just consume 8% of the available
DSP blocks. The DSP block area overhead is also acceptable for the other reasons
discussed previously in the instruction validator synthesis results.

Component Dynamic P (W) LUTs FFs BRAMs DSP blocks
FreNox RISC-V core 0.012 2363 1654 1 4
Instruction memory 0.019 0 0 4 (and 1 BRAM for check bits) 0
Data memory 0.013 38 0 4 0
ECC encoder (Hamming SEC-DED) < 0.001 20 0 0 0
ECC decoder (Hamming SEC-DED) 0.009 97 0 0 0
Instruction validator 0.019 322 75 2.5 15
Overhead1 63.6% 18.3% 4.5% 38.9% 375%
Overhead2 56% 11.2% 2.9% 38.9% 375%

Table 6.9: Synthesis results of FreNox SoC-e

1Overhead of the instruction validator, ECC encoder/decoder and ECC check bits compared to
the FreNox RISC-V core and the instruction/data memory

2Overhead of the instruction validator, ECC encoder/decoder and ECC check bits compared to
the components in the table and other components part of the FreNox SoC-e
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6.3.1 FreNox fault-injection setup

Figure 6.11 displays the hardware overview of introducing fault injection in the FreNox
SoC-e. The saboteur can inject single-, double- or triple-bit errors in the codeword
that are fetched from the instruction memory. The position where the bit error is
injected changes every cycle and is determined by a pseudorandom number gener-
ator (PRNG) based on a 16-bit LFSR using the same polynomial that CRC-16 uses.
This LFSR output is sliced to a 6-bit output. As the codeword is 39-bit, the LFSR
output must be limited to stay within the limits of the codeword size. If the LFSR
output is higher than 39, the output is decreased using subtraction to stay within
limits. Besides the saboteur and the PRNG, counter, pulse, and control registers
were described using RDL. The counter registers were used to track the number of
illegal flags by the instruction validator. This will be used to verify that the instruction
validator doesn’t flag any instruction/address pairs after program execution when no
faults are injected and when single-bit faults are injected. The control registers were
used to trigger a sequence of single-, double- or triple-bit errors that are injected by
the saboteur. The pulse registers were used to trigger single-, double- or triple-bit
errors for the duration of one clock cycle.

Figure 6.11: FreNox fault-injection with saboteur and PRNG

Figure 6.12 displays the test setup that was used to trigger and monitor fault-
injection in FreNox. As mentioned previously, the LEDs are connected to the in-
struction validator and the Hamming decoder to get immediate feedback. The reset
button was used to reset the FreNox SoC-e including all registers. The FreNox UART
was connected to the test computer using a USB-TTL adapter. Linux screen was
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used as a serial monitor. The UART serial master was connected to the computer
using a micro-USB cable as the Arty has an onboard USB-UART chip. The pysci-
imaster of Pyte was again used like with the isolated test setup to read/write to and
from the registers, upload/verify the program contents on the instruction memory,
change instructions in the instruction memory and upload program data to the data
memory. The same micro-USB cable was also connected to the USB-JTAG of the
Arty board. JTAG was used to program the FPGA with the synthesized design dis-
played in Figure 6.10 and to use the internal logic analyzer (ILA) that captures the
internal signals in the FPGA.

Figure 6.12: FreNox test setup

6.3.2 Testing without introducing faults and HWTs

First, the QuickSort program was uploaded to the FreNox SoC-e and the FreNox
RISC-V core was enabled. After the core was enabled, the program output could be
checked in the serial monitor connected to the UART of the FreNox RISC-V core.
The illegal signal counter register was checked to verify the instruction validator func-
tionality. This counter register resulted in 0 after executing the QuickSort program
on FreNox. This means that the instruction validator successfully passed this test.

6.3.3 Introducing a sequence of faults

After testing without introducing faults, the instruction validator and ECC were tested
by introducing a sequence of faults. The strategy from the previous subsection was
re-used. However, instead of enabling the core directly, first, the control register that
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enables single-bit errors was enabled. This resulted in LED 5 turning on. Again
reading the illegal signal counter register resulted in 0 as displayed in Figure 6.13.
This means that all single-bit faults were successfully corrected by the Hamming
decoder. Figure 6.14 shows a screenshot of ILA when injecting single-bit errors. It
can be observed that the single-bit error in the figure is corrected by the Hamming
decoder and the instruction validator illegal signal stays low.

Figure 6.13: Instruction validator counter register value after executing program

Figure 6.14: FreNox single-bit error injection

For the injection of double-bit errors, the same steps were followed but now the
double-bit control register was enabled which resulted in LED 6 turning on. This
resulted in the ILA screenshot displayed in Figure 6.15. It can be observed that
the double-bit error isn’t corrected by the Hamming decoder but the data bits on the
input are forwarded to the output. This was the case because a Hamming SEC-DED
decoder instead of a SEC decoder was used in the implementation. Studying the
Xilinx ECC IP showed that the input is forwarded to the output when a double-bit
error is detected. Next, triple-bit errors were introduced to prove the same effect that
was observed in the simulation. If the Hamming decoder can’t detect the error, the
Hamming decoder should occasionally miscorrect bits which leads to a lower FPR
for the instruction validator.

Figure 6.15: FreNox double-bit error injection

Figure 6.16 displays triple-bit error injection in FreNox. It can be observed that
indeed the same effect was observed as in the simulation. The Hamming SEC-DED
decoder couldn’t detect triple-bit errors and miscorrected bits which resulted in four-
bit errors. This failure of detecting triple-bit errors could also be observed by looking
at the waves alternating between ecc_sbit_err and ecc_dbit_err.
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Figure 6.16: FreNox triple-bit error injection

Injecting double- and triple-bit errors resulted in an interesting observation in
FreNox. When injecting errors, the FreNox jumped to the trap entry located at ad-
dress 0x3a. The expected behavior would be that the trap entry is executed and
jumps to the trap handler at address 0x64. However, this didn’t happen. Instead,
the FreNox got stuck in an infinite loop from address 0x3a to 0x40 when injecting
a sequence of double- and triple-bit errors as displayed in Figure 6.17 and in some
cases from address 0x3a to 0x3f as displayed in Figure 6.18. A sequence of 13
double-bit errors (displayed in Figure 6.19) lead to this behavior. This means that
FreNox got stuck in an unrecoverable state, even after disabling the fault injection.
This is an example where the instruction validator becomes relevant. The instruction
validator can detect MBUs and hence can detect this unrecoverable error and trigger
a mechanism that prevents the FreNox from hanging and crashing. This mechanism
that handles these errors was however not part of the scope of this thesis. This the-
sis only focused on the detection and correction of SEUs and the detection of MBUs
and HWTs. Error handling is part of the future work which is discussed in Chapter
7: Conclusion and future work.

Figure 6.17: FreNox trap entry infinite loop

Figure 6.18: FreNox trap entry infinite loop remains after disabling fault-injection

Figure 6.19: FreNox trap entry infinite loop after injecting a sequence of double-bit
errors
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6.3.4 Introducing single-event faults

After introducing a sequence of faults, single-event double- and triple-bit errors were
injected using the pulse registers. Injecting both single-event double-bit and single-
event triple-bit errors resulted in two different observations:

• The FreNox RISC-V core kept executing the QuickSort program

• An exception was raised by the trap handler and the FreNox RISC-V core was
halted

As discussed previously, undetected faults while the processor is executing pro-
grams can lead to many different kinds of problems. This can for example lead to
silent data corruption (SDC). The instruction validator again proves its usefulness by
providing the ability to prevent these issues.

The second observation resulted in the program raising exceptions using a trap
handler. First, the trap entry located at address 0x3a was called as displayed in
Figure 6.20. The trap entry eventually jumped to the trap handler located at address
0x2e8 as displayed in Figure 6.21. Again, the instruction validator was able to detect
this MBU which was a double-bit error in this case.

Figure 6.20: Double- and triple-bit errors trap entry

Figure 6.21: Double- and triple-bit errors trap handling

6.3.5 Introducing HWTs

The last step was injecting an HWT in FreNox. An interesting HWT attack was
analyzed by studying the QuickSort assembly. Listing 6.1 displays a small part of
the assembly of the QuickSort main function. The instruction at address 0x127c
would be an interesting instruction to manipulate with an HWT. This jump and link
instruction jumps to address 0x10b8 to execute the QuickSort algorithm. Let’s con-
sider the modifying HWT from the simulation chapter. This HWT overwrites the
instruction with a mask to prevent the core from going into a trap state but causes



CHAPTER 6. IMPLEMENTATION 85

damage by skipping instructions. This mask 0x7013 was used to overwrite instruc-
tion 0xe3dff0ef. This resulted in the malfunctioning of the QuickSort program. The
attack was successful and the numbers were still unsorted as displayed in the serial
monitor screenshot in Figure 6.22. Figure 6.23 displays the ILA waves of the HWT
which was also successfully detected by the instruction validator.

Listing 6.1: Part of the QuickSort assembly main function
800011 e4 <main >:

.

.

80001270: 00070613 mv a2,a4

80001274: 00000593 li a1 ,0

80001278: 00078513 mv a0,a5

8000127c: e3dff0ef jal ra ,800010 b8 <quickSort >

80001280: 800027 b7 lui a5 ,0 x80002

80001284: 86078513 addi a0,a5 , -1952 # 80001860 <_fstac..

80001288: ab5ff0ef jal ra ,80000 d3c <UART_puts >

Figure 6.22: Hardware Trojan resulting in QuickSort malfunctioning

Figure 6.23: Hardware Trojan waves

6.4 Concluding summary

To conclude, this chapter presented the instruction validator synthesis results, im-
plementation in an isolated test setup, and integration with the FreNox SoC-e and
ECC instruction memory.

Section 6.1 discussed the instruction validator synthesis results of all program/hash/op-
timization configurations. The most notable observation was CRC-32C failing the
timing requirements because the modulo operation resulted in too large a slack.
The configurations using the MultiplyShift and MultiplyShiftPipelined resulted in the
lowest area, power, and latency overhead while consuming DSP blocks. Comparing
the synthesis results with the first proposal showed that the instruction validator con-
sumes fewer LUTs, FFs, and BRAMs and achieves a higher maximum frequency.
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Comparing the synthesis results to the second proposal showed that while using
more LUTs and FFs and achieving a lower maximum frequency, fewer BRAMs were
consumed.

Section 6.2 discussed the isolated implementation of the instruction validator.
Peripherals were added and the instruction validator was tested and analyzed on an
FPGA fabric using the internal logic analyzer and Pyte. An instruction memory, PC,
registers, and a serial master were added. The instruction memory and PC were
used as inputs to the instruction validator. The serial master was used to read/write
to and from the registers that enabled the PC and the instruction validator. A counter
register was used to count the number of illegal flags. Multiple tests were executed
and analyzed using the internal logic analyzer. All tests proved that the behavior
matched the expected behavior as defined in the hardware design.

Section 6.3 discussed the integration of the instruction validator with the FreNox
SoC-e and ECC instruction memory. The FreNox SoC-e was synthesized with a
separate Hamming SEC-DED encoder/decoder and the instruction validator was
configured with the MultiplyShift hash and m-k optimization. The Hamming decoder
being part of the pipeline critical path resulted in a frequency of 80 MHz, equal to
a decrease of 20%. The instruction validator didn’t introduce any latency overhead.
Compared to all components instantiated by the FreNox SoC-e, the instruction val-
idator and Hamming encoder/decoder introduced a power overhead of 56%, a LUT
overhead of 11.2%, and a FF overhead of 2.9%. The area overhead resulted in
33.7% including the 6 check bits introduced by Hamming SEC encoding. A DSP
block overhead of 375% was introduced which is acceptable as this makes up for just
7.9% of the available DSP blocks with the 4 DSP blocks consumed by the FreNox
RISC-V core. Finally, the same tests that were introduced in the simulation were
executed with FreNox. This again proved the functionality and advantages of both
the ECC instruction memory and the instruction validator. All single-bit errors were
detected and corrected by the Hamming decoder. Introducing double- and triple-bit
faults resulted in hangs and crashes in the FreNox RISC-V core which was suc-
cessfully detected by the instruction validator. An HWT attack was introduced based
on the modifying HWT that overwrote a jump and link instruction. This resulted
in the program bypassing a subroutine and failing its main task. While this attack
only consisted of one instruction, it was also successfully detected by the instruction
validator.
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Conclusion and future work

This chapter concludes this thesis. The results are discussed and a reflection on
the objectives is discussed. The future work discusses possible improvements and
further development of the techniques that were introduced in this thesis.

7.1 Conclusion

This thesis introduced a novel solution that can detect HWTs, SEUs, and MBUs in
the instruction memory of an embedded RISC-V core. HWTs and MBUs can be de-
tected by checking instruction/address pairs using to so-called instruction validator
which uses a BF probabilistic data structure. To detect and correct SEUs, an ECC
instruction memory using Hamming SEC was proposed.

With the detection capabilities of the instruction validator in mind and after exten-
sively researching different ECC techniques, the Hamming SEC ECC implementa-
tion has been proven as the most effective technique to correct SEUs. It has been
proven that Hamming SEC-DED is redundant and results in a higher area overhead.
To conclude, Hamming SEC proved to provide the best performance in terms of area
and latency overhead.

Extensive research was carried out to find the most effective way to store the
hashed instruction/address pairs in hardware. Different probabilistic data structures
were thoroughly analyzed, both theoretically and practically by analyzing their re-
spective area and latency overhead. It has been proven that while the CF is a good
BF contestant, the BF has an overall better area overhead and has been proven to
have a low latency overhead.

Combining both the instruction validator and ECC proved the effectiveness of
correcting and detecting SEUs and detecting MBUs and HWTs. Besides this, it has
also been proven that Hamming SEC has a positive side-effect on the instruction
validator which leads to better overall detection of HWTs and MBUs.

87
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Using the MultiplyShift hash in the instruction validator resulted in the best overall
FPR results when detecting MBUs and HWTs. The MultiplyShift hash also showed
to have the best area and latency overhead compared to CRC-32C. The pipelined
MultiplyShift introduces one extra clock latency while resulting in an improved WNS
and some cases a lower amount of DSP blocks. Two different optimizations were
introduced. The rounding optimization results in the best FPR while often using
more area than optimal. This is the reason why an m-k optimization algorithm was
introduced which approximates the most optimal bit array size and amount of hash
functions while respecting the FPR with a small deviation. To conclude, different
options were introduced to improve the area or latency overhead and it’s up to the
designer to determine the best setup based on the application requirements.

Introducing single- and multiple-bit errors in FreNox proved the importance of
combining ECC with the instruction validator to prevent hangs, crashes, SDC, and
HWT attacks. The instruction validator and ECC introduced a total area overhead of
33.7% compared to the FreNox SoC-e. The instruction validator didn’t introduce any
latency overhead. The Hamming decoder increased the critical path of the pipeline
which lead to a 20% decrease in the maximum frequency from 100 MHz to 80 MHz.

Besides introducing the instruction validator design, an automation framework
was developed in this thesis which was used to generate the hardware descriptions
of all possible instruction validator configurations discussed in this thesis. Apart
from generating hardware descriptions, this framework was also used to automate
all the instruction validator cocotb simulations and generate Vivado tcl files which
were used to synthesize the different configurations.

To summarize, a novel solution to improve the security and reliability of RISC-V
soft-cores with a low area and latency overhead was introduced in this thesis. It
has been proven that this so-called instruction validator can effectively detect HWTs
and MBUs in the instruction memory by checking instruction/address pairs using
a BF probabilistic data structure. ECC instruction memory using Hamming SEC
was proposed to detect and correct SEUs which also besides error correction has
proved to improve the detection performance of the instruction validator. An automa-
tion framework was developed to generate, simulate and synthesize the instruction
validator for different configurations which presents the designer with different op-
tions based on the application requirements. Besides this automation framework,
two BF optimizations were proposed that decrease the BF area overhead. To con-
clude, the instruction validator and ECC were successfully tested and integrated in
the FreNox SoC-e with the FreNox RISC-V core on the Digilent Arty A7-100T devel-
opment board using the Xilinx Artix-7 XC7A100TCSG324-1 FPGA. Integrating the
instruction validator and ECC led to an area overhead of 33.7%. The introduction of
ECC also resulted in a maximum frequency reduction of 20%.
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This proves that the instruction validator and ECC instruction memory are suit-
able to use for embedded RISC-V soft-cores with strict security and reliability re-
quirements.

7.2 Future work

7.2.1 Handling the illegal signal

The instruction validator flags illegal instruction/address pairs with a certain FPP
using the illegal signal. This thesis only focused on analyzing this signal and not
how to handle it. Handling this illegal signal in the RISC-V core can lead to many
different research questions and error handling techniques that implement the ECC
instruction memory and instruction validator.

7.2.2 Further research on the effect of Hamming decoding on
the instruction validator

As discussed in the simulation with Hamming SEC decoding and in the implementa-
tion with Hamming SEC-DED decoding, the decoder introduces an extra bit error if
the MBU can’t be detected (Hamming SEC double-bit errors or more and SEC-DED,
triple-bit errors or more). This leads to a better FPR as instructions that contain this
extra bit error are more likely to be detected by the instruction validator. It would be
interesting to research this behavior in more depth. An interesting approach would
be to analyze the FPR and area overhead trade-off between Hamming SEC and
Hamming SEC-DED using different FPPs.

7.2.3 Adding multiplier stages for high-performance embedded
systems

While the instruction validator using MultiplyShift and MultiplyShitPipelined met the
timing requirements, it would be interesting to research further performance im-
provements. A possible way to achieve this would be to add multiplier stages. This
could lead to a higher maximum frequency with the cost of some latency.

7.2.4 Researching the effectiveness of this proposal in ASICs

This thesis focused on integrating the instruction validator with the FreNox RISC-
V softcore and FreNox SoC-e on an FPGA fabric. The MultiplyShift hash uses
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DSP blocks while using fewer LUTs and FFs. This may however be a disadvan-
tage for application-specific integrated circuits (ASICs) as multipliers take a signifi-
cant amount of area in ASICs. It might be interesting to research this and possible
design modifications to optimize the instruction validator for use in ASICs.
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Appendix A

Injecting faults without Hamming
decoder

Benchmark n m k FPP FPR Result
aes 6171 38480 5 0.051018 0.089127 FAIL
blowfish 24710 154075 5 0.051026 0.088588 FAIL
dijkstra 451 2815 5 0.050857 0.101996 FAIL
fft 26004 162140 5 0.051029 0.088756 FAIL
patricia 765 4770 5 0.051027 0.091503 FAIL
sha 627 3910 5 0.051007 0.106858 FAIL
qsort 333 2080 5 0.050736 0.117117 FAIL

Table A.1: Double-bit errors test case results of 10 runs with ϵ = 0.05 without opti-
mization and Hamming decoder using CRC-32C

Benchmark n m k FPP FPR Result
aes 6171 38480 5 0.051018 0.078418 FAIL
blowfish 24710 154075 5 0.051026 0.076482 FAIL
dijkstra 451 2815 5 0.050857 0.071796 FAIL
fft 26004 162140 5 0.051029 0.076001 FAIL
patricia 765 4770 5 0.051027 0.075033 FAIL
sha 627 3910 5 0.051007 0.073716 FAIL
qsort 333 2080 5 0.050736 0.086787 FAIL

Table A.2: Triple-bit errors test case results of 10 runs with ϵ = 0.05 without opti-
mization and Hamming decoder using CRC-32C
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Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.069033 FAIL
blowfish 24710 163840 5 0.041647 0.080089 FAIL
dijkstra 451 3072 3 0.045209 0.110865 FAIL
fft 26004 163840 5 0.049319 0.08641 FAIL
patricia 765 5120 5 0.04036 0.082353 FAIL
sha 627 4096 4 0.043962 0.094099 FAIL
qsort 333 2048 4 0.052274 0.096096 FAIL

Table A.3: Double-bit errors test case results of 10 runs with ϵ = 0.05 and m-k
optimization using the MultiplyShift hash and without Hamming decoder

Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.059268 FAIL
blowfish 24710 163840 5 0.041647 0.06706 FAIL
dijkstra 451 3072 3 0.045209 0.072461 FAIL
fft 26004 163840 5 0.049319 0.073846 FAIL
patricia 765 5120 5 0.04036 0.06732 FAIL
sha 627 4096 4 0.043962 0.062807 FAIL
qsort 333 2048 4 0.052274 0.078919 FAIL

Table A.4: Triple-bit errors test case results of 10 runs with ϵ = 0.05 and m-k opti-
mization using the MultiplyShift hash and without Hamming decoder

Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.069033 FAIL
blowfish 24710 163840 5 0.041647 0.080089 FAIL
dijkstra 451 5120 5 0.005737 0.04878 PASS
fft 26004 163840 5 0.049319 0.08641 FAIL
patricia 765 5120 5 0.04036 0.082353 FAIL
sha 627 5120 5 0.02013 0.073365 FAIL
qsort 333 2560 5 0.024995 0.066066 FAIL

Table A.5: Double-bit errors test case results of 10 runs with ϵ = 0.05 and rounding
optimization using the MultiplyShift hash and without Hamming decoder
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Benchmark n m k FPP FPR Result
aes 6171 40960 5 0.0415 0.059268 FAIL
blowfish 24710 163840 5 0.041647 0.06706 FAIL
dijkstra 451 5120 5 0.005737 0.032062 PASS
fft 26004 163840 5 0.049319 0.073846 FAIL
patricia 765 5120 5 0.04036 0.06732 FAIL
sha 627 5120 5 0.02013 0.044817 PASS
qsort 333 2560 5 0.024995 0.05033 PASS

Table A.6: Triple-bit errors test case results of 10 runs with ϵ = 0.05 and rounding
optimization using the MultiplyShift hash and without Hamming decoder
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Diagrams

B.1 Negative slack diagram
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B.2 Instruction validator schematic
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B.3 Instruction validator synthesized
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B.4 Instruction validator debug
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