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Abstract 

Background: Endovascular Aneurysm Repair (EVAR) is the predominant choice for elective and acute 

treatment of patients with an infrarenal abdominal aortic aneurysm. Completion digital subtraction 

angiography (cDSA) is performed at the end of an EVAR procedure to evaluate the position and patency 

of the stent-graft, potential endoleaks and blood flow dynamics. Clinical decision-making is based on the 

cDSA. However, the evaluation is based on visual inspection by the surgical team and therefore subjective 

and prone to inter-observer disagreement. In this study, we aim to use deep learning to automatically 

extract imaging-based features, in particular detection of renal and lumbar arteries, as part of the 

development of objective intraoperative image analysis.  

Methods: In chapter 2, we investigated the visibility of lumbar arteries between the pre-operative 

Computed Tomography Angiography (CTA) and cDSA in thirteen patients treated with EVAR.  

In chapter 3, a U-Net was trained for the automatic detection of renal arteries on the cDSA, based on two-

dimensional (2D) feature projections obtained from the cDSA. The performance of the model was 

evaluated using the median localization error and successful cumulative detection rate at different 

distance thresholds and for different combinations of input feature projections.  

In chapter 4, we developed a deep-learning based method, using U-Net, for the automatic identification 

of lumbar arteries on the cDSA, using 2D feature projections extracted from the cDSA. The area under 

the curve of the precision-recall curve (AUCPR) was used to evaluate the performance of the model for 

different combinations of input feature projections. 

Results: Over-projection of lumbar arteries by the aortic lumen on the cDSA occurred in 2% of the cases. 

Invisibility of the lumbar artery on the pre-operative CTA is a good predictor for invisibility on the cDSA, 

while visibility on the pre-operative CTA was a moderate predictor for visibility on the cDSA. 

The median localization error of renal arteries for the different input projection combinations on the cDSA 

were 1.52, 1.52, and 1.65 mm (p=0.853). The successful cumulative detection rate was around 75% for 

all input projection combinations.  

The AUCPR was 0.59, 0.61, 0.62 and 0.67 for the identification of lumbar arteries on the cDSA for the 

different combinations of input feature projections.  

Conclusion: This study has demonstrated the feasibility of using deep learning models for the automatic 

detection and identification of renal and lumbar arteries on the cDSA. These extracted features can serve 

as building blocks for the development of objective intraoperative image analysis during EVAR. 
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1.1 Abdominal Aortic Aneurysm  

An Abdominal Aortic Aneurysm (AAA) is an irreversible localized dilation of the abdominal aorta.1 The 

most common site for an AAA to develop is below the renal arteries, and is called an infrarenal AAA.1 

A dilation of the infrarenal aorta is called an AAA when the diameter of the vessel is 1.5 times the normal 

diameter or when the diameter is ≥ 30 millimetres.1–3 The most important risk factors for the development 

of an AAA are smoking, male sex, age and family history.1 AAA’s are most commonly diagnosed 

incidentally during examination of another pathology as patients with an AAA are usually asymptomatic.1 

According to the European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines, 

elective repair of the AAA should be considered when the diameter equals or exceeds 5.5 cm for men 

and the threshold for elective repair is 5.0 cm for women.2 If the aneurysm is left untreated, the risk of 

rupture grows with an increasing diameter with a mortality rate of 70-80% for ruptured AAA’s.4,5 Elective 

surgical repair of an AAA can be performed with invasive open surgery in which a vascular prosthesis 

replaces the aneurysm or with minimal invasive surgery in which a stent-graft is endovascularly 

implanted into the aneurysm, as shown in Fig. 1.1  

1.2 Endovascular Aneurysm Repair  

Endovascular aneurysm repair (EVAR) has increasingly established itself as the predominant choice for 

elective and acute treatment for patients with an infrarenal AAA, as an alternative to the more invasive 

traditional open repair. 6 In recent years, around 75% of the patients undergoing elective aneurysm repair 

were treated using EVAR in The Netherlands.6 During a minimally invasive EVAR procedure, 

intraluminal access to the aortic aneurysm is realized through a surgical cut down or percutaneous 

puncture to the femoral arteries.1,7 With the use of catheters, guide-wires and stent-graft introducer 

systems, the bifurcated endoprosthesis is placed and deployed inside the aneurysm sac below the renal 

arteries under guidance of intraoperative C-arm fluoroscopy imaging.1,7,8 Proximal sealing of the stent-

graft is achieved by anchoring the stent in the non-aneurysmal aortic wall below the renal arteries using 

radial force of the nitinol stent and inflation balloon catheter.1 The distal end of the stent-graft is sealed 

in the common iliac artery in a similar fashion.1 After deployment and an adequate proximal and distal 

seal of the stent-graft, the AAA is excluded from the systemic blood flow while leaving the aneurysm sac 

in situ rather than replacement of the dilated aorta by a prothesis as in the traditional open surgery.1 The 

aim of aneurysmal sac exclusion from the systemic circulation is the absence of continuous pressure on 

the dilated aortic wall to prevent further growth and possible future rupture.9 

1.3 Advantages and disadvantages of EVAR  

Several randomized controlled trials have been conducted to compare the outcomes of EVAR with open 

AAA repair. The Dutch Randomized Endovascular Aneurysm Management (DREAM) trial and the 

United Kingdom EVAR-1 trial have shown the benefit of EVAR compared to open AAA repair in terms 
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Fig. 1. A: Infrarenal abdominal aortic aneurysm. B: Open repair of an AAA with a vascular prosthesis. C: 

Endovascular aneurysm repair with an inserted stent graft through the femoral arteries. Image from Swerdlow, 

et al.10 

 

of 30-day mortality.8,11 Furthermore, endovascular repair demonstrated significant shorter duration of the 

surgical procedure, less blood loss and a shorter stay on the intensive care and medium care unit as well 

as shorter total hospitalization.8 The advantage of EVAR in terms of short-term survival, however, 

disappeared within two years after surgery and long-term follow-up of 12-15 years showed no significant 

difference in overall survival between patients treated with endovascular and open repair.12,13 

Despite its advantage in short-term survival and similar long-term overall survival compared to open 

repair, EVAR is associated with a significant higher number of secondary interventions during follow-

up.12–14 Reintervention rates were 16.7 percentage points higher for patients treated with EVAR after 

twelve years of randomization.13 Endoleaks are the most commonly encountered complications following 

EVAR, followed by other endograft-related complications such as stent-graft migrations and endograft 

limb occlusion and these are all indications for reinterventions.9,12,14,15 Endoleaks are defined as persistent 

blood flow into the aneurysm sac after exclusion from the systemic circulation by stent-graft 

deployment.9,15  

1.4 Types of Endoleaks  

Endoleaks can be classified into five types, according to the underlying origin of the inflow of blood into 

the aneurysm sac, as illustrated in Fig. 2.9,16 Endoleaks of any type occur in about one third of the patients 

treated with EVAR.17 Type I endoleaks result from an incomplete circumferential seal and apposition 
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between the stent-graft and the arterial wall. Type I endoleaks can be subdivided according to the sealing 

zone location, either at the proximal end of the stent-graft (type Ia) or the distal end in the iliac arteries 

(type Ib).15,18 The insufficient seal leads to direct aortic inflow of blood into the peri graft cavity and 

exposes the aneurysm sac to high systemic pressures, requiring urgent treatment to prevent aneurysm sac 

expansion and possible rupture.18–20 Type I endoleaks as a result of suboptimal device selection and 

incomplete dilation of the stent-graft, which has insufficient radial force into the native aortic wall, are 

usually visible intraoperatively15,20 Furthermore, challenging anatomy such as severe supra-renal neck 

angulations, existence of intraluminal thrombus and a short sealing zone in the non-aneurysmal proximal 

aortic neck are associated with a higher risk of type I endoleak development.21 Later onset of type I 

endoleaks may occur after alteration in the aortic morphology after disease progression, aneurysm sac 

growth due to a type II endoleak or aneurysm sac shrinkage.15,20,22 Several endovascular options exist for 

treatment of type 1 endoleaks, such as further balloon-dilation of the stent-graft, placement of a bare metal 

stent or the use of endovascular staples to achieve apposition of the stent-graft fabric to the aortic wall.2 

Type II endoleaks are a retrograde flow of blood from an excluded aortic side branch into the aneurysm 

sac after deployment of the stent-graft.20 Typical sources of retrograde flow into the aneurysm sac are the 

inferior mesenteric artery, lumbar arteries and the median sacral artery.20,23 Simple type II endoleaks 

consist of a single aortic branch as the source, complex type II endoleaks include multiple involved aortic 

side branches.23 Type II endoleaks are the most common type of endoleak and occur in 20-25% of the 

patients and make up around 75% of all endoleaks detected in a sub-analysis of the patient cohort that 

participated in the OVER-trial.17,24 Type II endoleaks can further be classified into early- and late-onset 

in which the early-onset endoleaks can be subclassified into transient and persistent endoleaks. Transient 

endoleaks spontaneously thrombose within 6 months after treatment and persistent endoleaks last over 6 

months.25 Persistent type II endoleaks may lead to aneurysm sac expansion over time, however, there is 

an ongoing scientific debate on the best clinical and therapeutic management on patients with persistent 

endoleaks that lead to sac enlargement.26 The European Society for Vascular Surgery (ESVS) 

recommends reintervention if the expansion of the aneurysm sac diameter exceeds 10 millimetres during 

follow-up.2 Common treatment of type 2 endoleaks are transarterial and translumbar embolization of the 

aneurysm sac and arteries that cause the endoleak.2  

Type III endoleaks occur after disconnection of the stent-graft components or a defect of the graft’s 

covering fabric material and may have an early or late onset.20,27 Deployment of stent-graft components 

with insufficient overlap, migration and material fatigue are the underlying mechanism of type III 

endoleaks.2,27 The estimated frequency of a type III endoleak in long-term follow-up is 1-3%, however, 

these numbers also include older generation stent-grafts and type III endoleaks are less frequently seen 

in newer generation stent-grafts.2,27 Urgent management of type III endoleaks, primarily by endovascular 

means using relining of the stent-graft, is required due to its high pressure nature and common association 

with aneurysm sac expansion and possible rupture.2,20 
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Fig. 2. Illustration of different types of endoleaks. Image from 

of UpToDate 2022.28 

 

Type IV endoleaks are defined as leakage of blood into the aneurysmal sac due to the porosity of the 

stent-graft’s covering fabric.2 Advancements in stent-graft materials have made this type of endoleak very 

rare and does not require reintervention.2,29 Type V endoleaks are described as aneurysm sac expansion 

without direct evidence of leakage, also described as endotension.20 

1.5 Management of type 2 Endoleaks  

The clinical significance and therapeutic management of type 2 endoleaks remains controversial as their 

natural aetiology is still a poorly understood topic.26,30 Part of the type 2 endoleaks resolve spontaneously, 

however, persistent type 2 endoleaks have been associated with aneurysm sac enlargement, need for 

reintervention and conversion to open repair.25,30 A study by Lo et al. demonstrated a significantly higher 

rate of reinventions in patients with a persistent type 2 endoleak compared to patients without an endoleak 

or a transient endoleak, but there was no difference between the groups in terms of rupture and survival.31 

Type 2 endoleaks are however associated with an increased risk of aneurysm-related mortality.26 The 

current ESVS guidelines recommend reintervention for type 2 endoleaks in case of aneurysm sac diameter 

expansion exceeding 10 millimetres during follow-up.2 

As mentioned previously, aneurysm sac expansion is associated with a higher rate of reintervention.31 In 

contrast, aneurysm shrinkage is considered a sign of true success of aneurysm sac exclusion from the 



13 

 

systemic blood circulation after EVAR. A meta-analysis by Antoniou et al. demonstrated that patients 

with aneurysm sac shrinkage have significantly better outcomes than patients with a stable or expanding 

aneurysm sac following EVAR.32 Furthermore, patients with a shrinking AAA one year after EVAR have 

a better long-term survival.33 Early prognostic knowledge on the risk of sac expansion or shrinkage based 

on imaging-based parameters may help classify treated patients into a high and low-risk group. This can 

lead to a personalized follow-up and possibly earlier treatment to prevent adverse outcomes. 

Several studies have been conducted to investigate possible imaging-based predictive factors associated 

with aneurysm sac behaviour after diagnosis of a type 2 endoleak. Azofra et al. investigated imaging-

based features on the first post-operative CTA for the prediction of aneurysm sac enlargement. They 

found that the craniocaudal length and the nidus volume of the endoleak were significantly associated 

with aneurysm sac growth.26 These results are in line with the results of Demehri et al. who concluded 

that the endoleak cavity volume was a predictive factor for aneurysm sac growth.9 The complexity of the 

type II endoleak and the diameter of the largest connected artery to the aneurysm sac on the first post-

operative CTA within 30 days were predictive indicators for aneurysm sac growth in a study by Müller-

Wille et al.23  

The number of patent lumbar arteries on the pre-operative CTA has been identified as a risk factor for 

the occurrence of a type 2 endoleak after EVAR but also as a predictive factor for the persistence of a 

type II endoleak after EVAR.34,35 Besides the relationship between the persistence of a type II endoleak 

with the number of patent lumbar arteries, Seike et al. also demonstrated a significant relationship 

between aneurysm sac enlargement and the number of patent lumbar arteries.35 In their study, they report 

that patients with four or more lumbar arteries on the pre-operative CTA should be considered as a high-

risk group for sac enlargement after EVAR.35 

1.6 Workflow in the hybrid operating room  

In the Amsterdam University Medical Centers, patients with an infrarenal AAA are treated in a Philips 

Azurion FlexMove 7 C20 Hybrid Operating Room (Philips Healthcare, Best, The Netherlands). During 

the procedure, fluoroscopic imaging is used for navigational purposes and correct placement and precise 

deployment of the endoprosthesis inside the aneurysm sac. Digital subtraction angiography (DSA) is a 

fluoroscopic imaging technique used for the visualization of blood vessels and plays an important role 

during the EVAR procedure. In this technique, a series of images is recorded during the injection of a 

contrast-agent. Subsequently, a pre-contrast-injection image is digitally subtracted from the post-injection 

series resulting in a series of images solely showing the contrast-filled blood vessels. DSA provides high-

quality images with high temporal and spatial resolutions and the ability to represent the dynamics of the 

injected contrast.36,37  
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Fig. 3. Images from a completion DSA series recorded at the end of an EVAR procedure. The red arrows indicate 

the renal arteries, the orange arrows indicate the lumbar arteries, and the orange box outlines a type 2 endoleak.  

 

DSA is utilized during the procedure to precisely place and deploy the stent-graft below the renal arteries 

and proximal to the internal iliac artery. Furthermore, DSA is used to assess the stent-graft position, 

ensure patency of the stent-graft and arteries and it also remains the gold standard for the detection and 

classification of endoleaks at the end of the EVAR procedure by means of a completion angiogram.2,36 

During a completion angiogram, also known as a completion DSA (cDSA), contrast-agent is injected 

through a diagnostic catheter such as a pigtail, which is placed proximally to the top of the stent-graft and 

renal arteries. The obtained images are visually inspected by the surgical team on the aforementioned 

aspects. An example of a cDSA series is shown in Fig. 3. 

In a study performed by Smorenburg et al. (to be published), the final completion angiograms of 102 

EVAR procedures were retrospectively analysed by two vascular surgeons and two interventional 

radiologists. The vascular surgeons and interventional radiologists independently scored the final 

completion angiogram on the presence and classification of endoleaks. The scoring of the vascular 

surgeons, interventional radiologists and the surgical team that performed the procedure were individually 

compared with each other. Results of the individual comparisons showed an interobserver agreement’s 
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Cohen’s Kappa score ranging from 0.302 to 0.561 on the detection of endoleaks on the final completion 

angiograms, excluding possible disagreement on the classification if two specialists agreed on the 

existence of an endoleak. From the study by Smorenburg et al., we can conclude that detection and 

classification of endoleaks on a completion angiogram is far from trivial and has large variability among 

the observers.  

1.7 Rationale for the current study  

Clinical decision-making during EVAR procedures is dependent on the subjective visual inspection of 

the completion angiogram by the surgical team. As Smorenburg et al. has demonstrated, this subjective 

evaluation can lead to a reduced inter-observer agreement, potentially influencing the decision-making 

and outcome of the procedure. While this study only evaluated the inter-observer agreement with regards 

to endoleaks, other aspects such as stent-graft position are also evaluated by visual inspection and thus 

prone to individual interpretation by the surgical team members as well. 

Automatic objective analysis of the completion angiogram can help to detect regions of interest that need 

further inspection and reduce the inter-observer variability amongst the surgical team members. Early 

and intraoperative objective evaluation of the completion angiogram can aid in management of possible 

encountered problems within the same procedure, therefore preventing a potential reintervention.  

The vascular research group in the Amsterdam University Medical Centers focuses on the automatic 

intraoperative evaluation of the completion angiogram using deep learning. Deep learning is able to 

objectively analyse the intraoperative images based on previously acquired data and can assist the surgical 

team during decision-making and reduce inter-observer disagreement. Furthermore, the use of deep 

learning for the analysis has no additional burden to the surgical team during the intervention.  

This thesis focuses on the automatic detection of renal arteries and lumbar arteries. The automatic 

detection of these arteries can aid in several objective analytical tools for the completion angiogram. The 

automatic detection of the renal arteries can be used for stent-graft deployment evaluation and 

classification of transient and persistent type 2 endoleaks, according to Mursalin et al.25 The detection 

and localization of lumbar arteries can furthermore be used for classification of type 2 endoleaks, as these 

arteries, along with the inferior mesenteric artery, account for the majority of the type 2 endoleaks.38 

The overall aim of this study is to automatically extract imaging-based features, focussing on arteries, 

from the completion angiogram with a convolutional neural network that can be used for the objective 

intraoperative analyse of the final completion angiogram at the end of an EVAR procedure. In chapter 2, 

the objective is to compare the visibility of lumbar arteries on the pre-operative CTA and completion 

angiogram and to investigate a possible correlation between the visibility of lumbar arteries between the 

two imaging modalities. In chapter 3 and 4, the objective is to develop deep-learning based methods for 

automatic detection of renal arteries and identification of lumbar arteries on final completion angiogram.  
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2.1 Introduction 

Endovascular aneurysm repair (EVAR) has beneficial peri-operative outcomes for the treatment of 

infrarenal abdominal aortic aneurysms compared to conventional open surgical repair.8,39 Despite these 

early benefits, the endovascular surgical approach shows more aneurysm-related complications with an 

indication for reintervention, such as endoleaks.40 Type 2 endoleaks are the most frequently encountered 

type of endoleak and are a result of retrograde flow of blood into the aneurysm sac from the inferior 

mesenteric artery and lumbar arteries.17 Ward et al. has demonstrated that an increased number of patent 

lumbar arteries on the pre-operative CTA is associated with an increased risk of a type 2 endoleak.38  

Pre-operative planning of an EVAR procedure and inspection of the patient’s anatomy is performed on 

3-dimensional Computed Tomography Angiography (CTA) scans. CTA imaging enables the vascular 

surgeon to view the patient’s anatomy, in particular contrast-filled arteries, in different planes. These 

different planes allow the surgeon to pre-operatively examine the presence and course of arteries rather 

than in a single plane. Preoperatively, CTA imaging is also analysed in terms of the number of lumbar 

arteries as this is associated with an increased risk of a type 2 endoleak.38 

In contrast to pre-operative CTA imaging, intraoperative imaging in the hybrid operating room is 

predominantly performed in 2D, thus visualizing the patient’s vascular anatomy in a single projection 

plane. In comparison with multiplane imaging, single plane imaging is prone to over-projection of 

contrast-filled arteries making it more difficult to visualize arteries and distinguish them from each other. 

This also counts for the acquisition of the completion digital subtraction angiography (cDSA) at the end 

of the procedure which is used to inspect the stent-graft’s position, patency of the stent-graft’s lumen and 

also to check for possible endoleaks. This evaluation, however, is still performed by visual inspection and 

thus prone to interobserver variability. 

At the Amsterdam University Medical Centers, research focuses on the development of automatic 

objective intraoperative analysis tools for the evaluation of the completion angiograms using deep 

learning, such as detection and classification of endoleaks. As part of this research, we also aim to develop 

a deep-learning based method for the automatic detection of lumbar arteries on the completion angiogram. 

Due to the correlation between the number of lumbar arteries and type 2 endoleaks, the automatic 

detection of these arteries in proximity of an endoleaks on the completion angiogram can aid in the 

automatic classification of endoleaks.  

To date, no previous studies have investigated a possible correlation between the visibility of the lumbar 

arteries on the pre-operative CTA and completion angiogram. For the reliability of an automatic method 

for detection of lumbar arteries, it is important to investigate the visibility of these lumbar arteries on the 

completion angiogram as they need to be visible in the single projection plane to be detected. However, 

the single projection plane acquisition of the completion angiogram can lead to reduced visibility of the 

lumbar arteries due to over-projection. This can result in reduced detection of patent lumbar arteries by 
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the automatic deep learning-based method and therefore limit the reliability of eventual endoleak 

classification.  

In this retrospective sub-analysis, we sought to compare the visibility, and investigate whether there is a 

correlation, between the lumbar arteries on the pre-operative CTA and the intraoperative cDSA images 

of patients treated with EVAR. We hypothesize that over-projection may lead to a reduced number of 

visible lumbar arteries detected on the cDSA compared to the pre-operative CTA.  

2.2 Methods 

In this retrospective sub-analysis, thirteen patients with an infrarenal AAA were included. The included 

patients were treated using EVAR in a Philips Azurion FlexMove 7 C20 Hybrid Operating Room (Philips 

Healthcare, Best, The Netherlands) in the Amsterdam University Medical Centers, location VUmc, 

between April 2017 and August 2019. The average aneurysm diameter was 61 ± 9 millimetre and all 

patients received a bifurcated endoprosthesis. Two patients additionally received an iliac branch device 

for an iliac aneurysm. The pre-operative CTA and cDSA imaging were retrospectively collected from a 

prospectively maintained database. Analyses of the images was performed in RadiAnt, a freely available 

PACS DICOM viewer for medical images (Medixant, Poznan, Poland). 

First, the pre-operative CTA of all patients was analyzed for the visibility of lumbar arteries on the 

vertebral levels L1 to L5. To this end, the pre-operative CTA was evaluated in the axial, saggital and 

coronal planes to identify and follow the course of the lumbar arteries. The different planes for two lumbar 

arteries are illustrated in Fig. 4. The lumbar arteries on the pre-operative CTA were scored as visible 

reaching the aorta (visible), visible but not reaching the aorta (partly visible) or invisible by a single 

examiner. The lumbar arteries that were scored as partly visible were distally visible but were not visible 

near the origin at the aorta due to a lack of contrast-agent.    

Secondly, a maximum intensity projection (MaxIP) of the pre-operative CTA was made along the coronal 

direction to reconstruct a partly comparable image of the expected image on the cDSA during surgery. 

The MaxIP of the CTA is used to identify the location and course of the lumbar artery in the same coronal 

projection on the cDSA, as shown in Fig. 5. The renal arteries on the cDSA and the MaxIP are used as a 

reference for identification of the lumbar arteries at the same vertebral level on both image modalities. 

Using the set-up as demonstrated in Fig. 5, the lumbar arteries on the cDSA were scored as visible, over-

projected by contrast-agent in the aortic lumen, undistinguishable from other contrast-agent filled blood 

vessels at the expected location of a lumbar artery or invisible. In the analysis, the pre-operative CTA 

was considered as the gold standard, and the visibility of the lumbar arteries on the cDSA was compared 

to the pre-operative CTA. 
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Fig. 4. Illustration of lumbar arteries indicated by the blue arrows at the vertebral levels L3 and L4 viewed on the 

coronal plane (large image), axial plane (upper circles) and sagittal plane (lower circles).  

 

 

Fig. 5. Stills from the cDSA (left and right image) and the reconstructed MaxIP of the pre-operative CTA (middle) 

used for the identification of the lumbar artery’s course and vertebral level. The red arrows indicate two lumbar 

arteries at levels L2 and L3. The blue arrows indicate the renal arteries that were used to determine the vertebral 

levels. 
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  Completion DSA 

  Visible Undistinguishable* 
Over-

projected 
Invisible Total 
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Visible 55 13 2 26 96 

Partly visible 0 2 0 2 4 

Invisible 0 3 0 27 30 

Total 55 18 2 55 130 

Table 1. Scoring of the lumbar arteries on the cDSA compared to the pre-operative CTA. The pre-operative CTA is 

considered as the gold standard for presence of a lumbar artery. *Lumbar arteries were scored as undistinguishable 

if there was contrast-agent visible at the location of an expected lumbar artery but clear contours of the artery could 

not be identified. 

2.3 Results 

A total of 96 lumbar arteries were scored as visible on the pre-operative CTA image, from a total of 130 

lumbar arteries that could theoretically be detected (10 lumbar arteries per patient, 13 patients). Table 1 

shows the scoring of the lumbar arteries on the cDSA compared to the pre-operative CTA. If a lumbar 

artery was scored visible on the pre-operative CTA, the same lumbar artery was visible on the cDSA in 

57% (55/96) of the cases and invisible in 27% (26/96). 14% (13/96) of the lumbar arteries scored as 

visible on the pre-operative CTA could not be clearly identified as lumbar arteries on the cDSA meaning 

that contrast-filled arteries were visible on the expected lumbar artery’s location but a clear contour of 

the lumbar artery could not be defined. Two of the 96 (2%) of the lumbar arteries visible on the pre-

operative CTA were over projected by the aortic lumen on the cDSA.  

In contrast, if a lumbar artery was not visible on the pre-operative CTA, the same lumbar artery was also 

not visible on the cDSA in 90% (27/30) of the cases and was undistinguishable as a lumbar artery from 

other arteries in 3/30 (10%) of the cases. For the lumbar arteries that were scored as partly visible on the 

pre-operative CTA, two (50%) were scored as undistinguishable and two (50%) were scored as invisible 

on the cDSA.  

Overall, the visibility of a lumbar artery on the pre-operative CTA has a moderate predictive value for 

the visibility of the same lumbar artery on the cDSA. However, if the lumbar artery is not visible on the 

pre-operative CTA, it has a good predictive value for the same lumbar artery to be invisible on the cDSA. 

Furthermore, there were only two cases of complete over projection of the lumbar artery by the contrast-

filled aortic lumen. 

2.4 Discussion 

In this sub-analysis, we have demonstrated the correlation between the visibility or invisibility of a lumbar 

artery on the cDSA compared with the pre-operative CTA. The most valuable findings are that over-

projection only occurs in a very few cases and that invisibility of the lumbar artery on the pre-operative 

CTA has a good predictive value for the invisibility of the same lumbar artery on the cDSA while the 
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visibility of a lumbar artery on the pre-operative CTA has a moderate predictive value for the visibility 

of the same lumbar artery on the cDSA.  

The large number of invisible lumbar arteries on the cDSA compared to the pre-operative CTA could 

partly be explained by the presence of the stent-graft in the aorta at the time of the cDSA acquisition. In 

a healthy situation, the lumbar artery is supplied with blood directly from the aorta. During the pre-

operative CTA, a quick and direct inflow of the contrast-agent into the lumbar arteries from the aorta is 

possible. The deployment of a stent-graft removes a direct connection between the aorta and the lumbar 

arteries, inhibiting fast and direct inflow of contrast-agent into the lumbar arteries from the aorta. In case 

of a placed stent-graft, the visibility of the contrast-filled lumbar arteries on the cDSA depends on 

collateral connections, for example through the hypogastric arteries or uncovered proximal lumbar 

arteries and intercostal arteries. The time before the contrast-agent reaches the lumbar arteries through 

collateral connections may exceed the recording time of the cDSA, therefore leading to invisiblity on the 

cDSA. Additionally, the collaterals also need to be sufficiently patent to allow contrast-agent inflow. 

Another reason for the invisibility of the lumbar arteries on cDSA compared to the pre-operative CTA is 

that the contrast-agent may be diluted before reaching the lumbar arteries through the collaterals. 

Furthermore, the placement of the pigtail catheter and the settings for contrast injection on the cDSA also 

influences the flow of contrast-agent, while a reduced heart function may be another underlying cause for 

insufficient inflow through collaterals towards the lumbar arteries. 

The invisibility of the lumbar artery on the pre-operative CTA seems to be a good predictor for the 

invisibility of the same lumbar artery on the cDSA. The exact correlation remains speculative, but may 

be due to the occlusion of a lumbar artery due to thrombosis at the time of the pre-operative CTA which 

does not resolve before the intervention. Therefore, the lumbar artery will not be visible on the cDSA. 

Information obtained from this sub-analysis can be useful for the development of a deep learning-based 

method for the automatic detection and classification of endoleaks on a cDSA. An important finding in 

this sub-analysis regarding the development of the model is that complete over projection of the lumbar 

artery only occurs in a few percent of the cases. This reduces the chance of missed lumbar arteries by the 

model as a result of over projection. The good predictive value for the invisibility of a lumbar artery on 

the cDSA based on the invisibility on pre-operative CTA could be used as a form of prior information. 

Incorporation of this information may be of value for the automatic classification of endoleaks.  

2.5 Conclusion 

In conclusion, over-projection of the lumbar arteries on the cDSA occurs in a few percent of the cases 

based on this analysis. Furthermore, the pre-operative CTA can be considered as a valuable predictor of 

the invisibility of a lumbar artery on the cDSA. Information regarding the visibility of lumbar arteries on 

pre-operative CTA could be of added value in a deep learning based model for the automatic classification 

of endoleaks.    
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Chapter  3 

Deep learning-based detection of renal artery ostia on 

completion digital subtraction angiographies during 

Endovascular Aneurysm Repair 
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3.1 Introduction 

Endovascular Aneurysm Repair (EVAR) is the preferred treatment of choice for infrarenal abdominal 

aortic aneurysms (AAA). In the Netherlands, nearly 80% of all patients that are treated electively for an 

intact infrarenal AAA and 40% of patients with a ruptured AAA undergo EVAR.41 Compared to the 

conventional open surgical repair, the endovascular approach has proven its benefit in the early post-

operative phase with less peri-operative mortality, reduced severe complications, less blood loss, and a 

shorter stay in the intensive care unit and total hospital stay.8 On the other side, EVAR is significantly 

related to a higher rate of reintervention.12 

The high rate of secondary interventions after initial treatment with EVAR remains the Achilles heel of 

the endovascular approach and endoleaks account for the majority of the complications that arise after 

placement of the stent-graft.12 Acquisition of the completion angiogram, using digital subtraction 

angiography, is done at the end of an EVAR procedure to evaluate the position and patency of the stent-

graft and visualize endoleaks. Clinical decision-making on whether or not further surgical treatment is 

warranted is based on visual inspection of the completion angiogram.  

Even though the completion angiogram plays a crucial role in clinical decision-making, the analysis of 

the angiogram is performed by visual inspection by the surgeon and thus subjective. Very little research 

has been performed comparing the decision-making of individual surgeons, despite a study by 

Smorenburg et al. who have analysed the inter-observer agreement for the detection of endoleaks among 

surgeons. The moderate to fair inter-observer agreement in this study suggests room for the introduction 

of objective analytical tools for endoleak detection, but potentially also for other aspects such as stent-

graft deployment accuracy. 

In light of the transition towards an objective analysis of the completion angiogram, we propose to use 

deep learning techniques. In this study, we propose to automatically localize the renal artery ostia on the 

images of the completion angiogram. Renal artery ostia can be used in different manners for the objective 

analysis of the completion angiograms, as it is an important landmark for stent-graft deployment and may 

therefore aid in objective analysis of the stent-graft position. Furthermore, a study by Mursalin et al. has 

demonstrated that the appearance time of the endoleak cavity in relation to the appearance of the renal 

artery on the completion angiogram is a predictor of persistence for early on-set type 2 endoleaks.25 

Lastly, the renal artery ostia appearance can serve as a standardized reference point for further analysis 

of the completion angiogram. The aim of this study is to automatically localize the renal artery ostia using 

a deep learning model and investigate the influence of additional input channels on the performance of 

the network. The hypothesis is that the deep learning network is capable of correctly detecting the renal 

artery ostia on the cDSA and that additional input channels increase the performance of the network. 
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3.2 Methods 

3.2.1 Proposed pipeline  

In this study, we aim to automatically detect the origin of the renal arteries on a completion digital 

subtraction angiography acquired at the end of an EVAR procedure. For localization of renal artery ostia, 

we optimize a Convolutional Neural Network with a U-Net42 architecture that takes 2D projections of the 

cDSA series as input data and returns a prediction heatmap that represents the proximity of a given pixel 

to the renal artery origin’s location. Subsequently, the location of each renal artery origin is found by 

extracting the pixel coordinates of the two highest activation sites on the prediction heatmap returned by 

the network.43 In this study, we also investigate the effect of using a single 2D MinIP projection or 

multiple 2D projections obtained from the 2D + time cDSA as input on the performance of the network.  

3.2.2 Data  

To develop our methods, we used a data set consisting of completion digital subtraction angiographies 

(cDSA) of patients that were treated for an infrarenal abdominal aortic aneurysm using EVAR. All cDSAs 

were acquired using a Philips Azurion FlexMove 7 C20 hybrid operating room (Philips Healthcare, Best, 

The Netherlands) in the Amsterdam University Medical Centers, location VUmc, between April 2017 

and April 2020. Images were retrospectively extracted from a prospectively maintained database with the 

approval of the local medical ethical review committee.  

A multiphase acquisition protocol was used for the acquisition of the cDSAs: during the first phase, 

images are acquired at a frame rate of 3 frames per second (fps) for 6 seconds, during the second phase, 

images are acquired at 1 fps for 5 seconds and images are acquired at 0.5 fps during the third phase for 

the rest of the recording. Contrast-agent was automatically injected by the hybrid operating room system 

with a typical volume of 15 to 20 mL at a rate of 20 to 25 mL per second. The amount of contrast and 

length of the recording was determined by the surgeon in charge. A purposely induced apnoea was used 

to minimalize visceral and stent-graft motion during the recording of all series.  

For the automatic localization of the renal artery ostia, a total of 95 cDSAs were extracted from the 

database. Patients with a single visible renal artery on the cDSA were excluded from this study. The 

dimensions of the cDSAs used for this study had isotropic and anisotropic dimensions ranging from 790 

x 1024 to 1904 x 1904 pixels with isotropic pixel sizes ranging from 0.154 x 0.154 mm2 to 0.370 x 0.370 

mm2. The cDSA series contained 16 to 31 images per series.  

3.2.3 Image transformations  

While the cDSA series can be considered as a 2D + time array consisting of 2D images with the time 

component as the third dimension, we propose to use a 2D approach for the automatic localization of the 

origins of the renal arteries. This implies that the 2D + time cDSA array is reduced to a single 2D 

projection, which is then used as the input for the convolutional neural network. The rationale for 

approaching the renal artery ostia as a 2D localization problem consists of multiple arguments.  
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Fig. 6. Top: Images from the completion digital subtraction angiography. Bottom left: 2D Minimum intensity 

projection (MinIP) illustrating the complete vessel tree. Bottom middle: 2D Time to Peak (TTP) projection 

illustrating the time from the beginning of the cDSA to the highest density of contrast-agent during the cDSA. 

Red indicates an early high density of contrast-agent and green indicates a late high density of contrast-agent. 

Bottom right: 2D stent segmentation predicted by the in-house developed automatic segmentation method 

(Appendix A). 

 

First, there is an expected inconsistency in the localization of renal artery ostia in the different single 2D 

frames of the cDSA. Localization of the renal arteries in a series of 2D frames may lead to different 

coordinates of the renal artery ostia for different frames, which is undesirable in a network from which 

we desire a single coordinate per renal artery ostium as the outcome. Transformation of the cDSA series 

into a 2D projection removes this possible inconsistency as the prediction is made on a single image only.  

Secondly, by using 2D projections, the renal artery ostium is always visible in the projection, as opposed 

to using the complete DSA series. In the complete cDSA, the renal artery ostia are not visible throughout 

the complete series. By reducing the cDSA series into a single 2D projection, the contrast-agent in the 
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renal artery ostium is always visible. This means that the network does not have to distinguish between 

frames that do or do not visualize the renal artery ostia.  

Reduction and representation of a cDSA series as a single 2D image was achieved by applying a minimum 

intensity projection (MinIP) along the temporal axis. This way, the projection captures the presence of 

the contrast-agent throughout the complete series, visualizing the entire vessel tree in a single frame. As 

we consider the localization of the renal artery as a 2D localization problem by reducing the cDSA into 

single 2D projections, we assume that there was no movement of the arteries during recording of the 

cDSA as a result of the purposely induced apnoea. The MinIP projection serves as the main input of the 

network and is illustrated in Fig. 6. 

The consequence of a single MinIP projection of the cDSA series is the loss of temporal information 

regarding the flow of contrast-agent in the arteries during recording. As this information may be useful 

for identification and discrimination between target arteries, a Time To Peak (TTP) projection is created 

to compensate for this loss of temporal information regarding the flow of contrast-agent through the 

arteries. Every pixel in this 2D projection represents the time in seconds between the start of the cDSA 

and the highest density of contrast-agent for that individual pixel during recording of the cDSA. This is 

illustrated in Fig. 6.  

The segmentation mask of the stent-graft on the cDSA is added as a third input image to network. The 

segmentation mask is obtained from an in-house developed deep learning-based automatic segmentation 

method, see Appendix A. The rationale behind using the segmentation mask as an input for the network 

is that the annotation of the stent-graft may provide spatial information for localization of the renal 

arteries. The renal arteries are always located in the proximity of the proximal end of the stent-graft, 

depending on an infrarenal or suprarenal fixation.  

3.2.4 Data annotation  

In accordance with previous studies regarding landmark localization, we propose to automatically 

localize the origins of the renal arteries based on heatmap regression.43,44 To this end, data annotation of 

the cDSAs follows a two-step approach to create the ground truth heatmaps. In the first step, the pixel 

coordinates of the origins of the renal arteries were annotated. Secondly, heatmaps with the dimensions 

of the corresponding cDSA are created with a Gaussian function representing the location of the renal 

artery ostia based on the previously annotated coordinates. 

The first step of data annotation was performed in MeVisLab45, a freely available framework for medical 

image processing. Digital imaging and communications in medicine (DICOM) images of the cDSAs are 

loaded into a custom-made frame work for data annotation in the software. The x,y-coordinates of the 

left and right renal artery are annotated on a single frame in the cDSA series. The coordinates are
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Fig. 7. Left: Ground truth heatmap with Gaussian functions on the location of the annotated ground truth renal 

artery ostia coordinates (red dots). Right: Gaussian functions projected onto a frame of the cDSA.  

 

converted from world to pixel coordinates and exported as XML-files for further development of the 

ground truth heatmaps. 

In the second step of the data annotation, the pixel coordinates are loaded together with the corresponding 

DICOM cDSA series of the same patient. The coordinates of the origin of the renal arteries are extracted 

from the XML-file and split into the right and left renal artery, based on the x- and y-coordinates. An 

array with the corresponding dimensions of the cDSA is created and the pixel with the locations of the 

renal artery ostia are marked. A Gaussian filter was applied to obtain a 2D heatmap with a Gaussian 

function on the location of the renal arteries’ origins. The final ground truth heatmap is shown in Fig. 7. 

3.2.5 Convolutional neural network  

A two-dimensional convolutional neural network (CNN) with a U-Net architecture was trained to 

automatically predict the location of the origins of the renal arteries from the 2D projections of the 

cDSA.42 Whereas a U-Net is commonly used for segmentation, the network is used for regression in this 

study. The output of the network consists of a single linear output layer, called the prediction heatmap, 

which illustrates the proximity of a each pixel to the predicted renal artery ostium. As a general pre-

processing step, the original cDSA series and ground truth activation maps were resampled to a spacing 

of 0.4 x 0.4 mm2 using bilinear interpolation. Pixel values were rescaled to values between and 0 and 1 

and this was performed in a channel-wise manner in the experiments with multiple input projections.  
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The database consisted of cDSA series with isotropic and anisotropic proportions and varying dimensions 

in the x-, and y-direction as they were not recorded in a standardized manner regarding these properties. 

Following this, the obtained 2D projections are also of different dimensions in the x-, and y-direction. 

Therefore, the network was trained in a patch-based manner. Image patches with dimensions 512 x 512 

pixels were randomly extracted from the 2D projections to train the U-Net. The training images were 

augmented before patch extraction to create synthetic data to increase the generalizability of the network 

and partly compensate for the limited number of cDSAs used in this study. The applied data augmentation 

consisted of horizontal flipping with a probability of 50% and a random rotation around the image center 

with a maximum deviation of ± 0.25 radians. 

A hyperparameter search was performed to find the optimal learning rate and batch size for the network. 

The final U-Net was optimized for 2500 epochs by minimizing a mean squared error (MSE) loss using 

an Adam optimizer with a learning rate of 0.0005, dropout rate of 0.2 and batch size of 32. During training, 

the learning rate was reduced by a factor 10 after 1500 and 2000 epochs. The test images are processed 

entirely with the original dimensions by the patch-based trained network using a sliding window 

inference.  

The network was implemented using the Pytorch-based framework MONAI46 and run on a workstation 

with a NVIDIA GeForce RTX 3090 Graphics Card with 24 GB of memory. 

3.2.6 Experiments and evaluation of network performance  

The 2D U-Net was trained to predict the location of the renal artery ostia based on a single input consisting 

of the 2D MinIP projection, a double input comprising the MinIP projection accompanied by the TTP 

projection, and with a triple input in which the stent segmentation was added to the double input. The 

effect of the additional input channels on the baseline performance of the single MinIP projection input 

was evaluated.  

For evaluation of the U-Net performance, a nine-fold cross-validation was performed. The database 

consisting of 95 cDSAs was split into nine folds, each consisting of ten or eleven cDSAs. In nine cycles, 

eight folds are used as the training set, and the ninth fold is used as a test set to evaluate the performance 

of the U-Net. During every consecutive cycle, another fold is used as the test set, as illustrated in Fig. 8. 

The results of the nine cycles are combined to obtain the overall performance of the network.  

The performance of the network was evaluated based on the Euclidean distance between the predicted 

x,y-coordinates of the renal arteries and the ground truth x,y-coordinates. A prediction heatmap was 

returned by the U-Net illustrating the prediction of the location of the origin of the renal arteries. To 

obtain the predicted x,y-coordinates of the renal artery ostia, the x,y-coordinates of the two highest 

activations in the heatmap were selected. A pre-specified minimum distance between the two highest 

activations was incorporated to avoid two x,y-coordinates that were anatomically unrealistically close to 

each other. The Euclidean distances between the predicted x,y-coordinates and annotated ground truth 
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x,y-coordinates of the left and right renal artery were calculated separately and converted into millimetres 

based on the pixel spacing. 

3.2.7 Statistics 

The performance and the effect of the number of input channels on the performance of the network was 

evaluated by comparing Euclidean distance of the localization error and the successful detection rate. The 

Euclidean distances of the localization error between the prediction and ground truth were reported as the 

mean with standard deviation or median with interquartile ranges, depending on the normality of the data. 

The normality of the data was tested using a Shapiro-Wilk test. A one-way ANOVA or Kruskal-Wallis 

test is used, depending on the normality of the data, to evaluate the difference in localization error between 

the different input projections. A Student’s t-test or Mann-Whitney U test is used to evaluate differences 

in localization error between the left and renal artery for the same input projections, depending on the 

normality of the data. Following the example of Noothout et al., we also evaluated the cumulative 

successful detection rate of the renal arteries based on different thresholds.47 Statistical analysis was 

performed using GraphPad Prism version 9.1.0. 

 

 

Fig. 8. Illustration of the nine-fold cross-validation for evaluation of the renal artery ostia detection network’s 

performance. 
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3.3 Results  

A cross-validation of the U-Net was performed to evaluate the performance of the network for the fully 

automatic detection of renal artery ostia based on different combinations of 2D feature projections 

obtained from cDSA’s. The predicted x,y-coordinates of the origins of the renal arteries were retrieved 

from the two maximum activations in the prediction heatmap output of the network. Subsequently, the 

Euclidean distances between the predicted and ground truth coordinates were calculated in millimetres. 

Visual results of the prediction of the renal artery ostia by the trained U-Net are shown in Fig. 9 and Fig. 

10.  

 

 

 

Fig. 9. Qualitative results of the localization prediction of the U-Net with the MinIP projection as a single input. 

The red dot represents the predicted right renal artery location, the blue dot represents the left renal artery 

location and the green dots are the ground truth locations of the renal arteries. The heatmap predicted by the U-

Net from which the locations were predicted are shown on the left. 
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Fig. 10. Qualitative results of suboptimal localization predictions of the U-Net with the MinIP projection as a 

single input. The red dot represents the predicted right renal artery location, the blue dot represents the left renal 

artery location and the green dots are the ground truth locations of the renal arteries. The heatmap predicted by 

the U-Net from which the locations were predicted are shown on the left. Note the major outlier of the right renal 

artery indicated by the red arrow. 



 

Fig. 11. Boxplots illustrating the distribution of the Euclidean distances between the predicted and ground truth coordinates for the single, double and triple input and divided 

into right renal artery (RA), left renal artery and both renal arteries. The colored arrows indicate the major outliers on the cDSA of the same patient in different experiments. 

 



 
Fig. 12. Zoomed in version of the boxplot in Fig. 11. with a range from 0 to 40 mm.  

 

Figure 11 and 12 show the quantitative results of the cross-validation experiment for the renal artery ostia 

detection network for the different number of input channels. First, the U-Net with only the MinIP 

projection as the input image shows the largest outlier (173 mm) and a considerably large number of 

major outliers (18 outliers above 40 mm). The addition of the TTP projection as a second input decreased 

the number of major outliers to five. The addition of the stent-graft mask to the MinIP and TTP does not 

improve the performance of the network in terms of major outliers with 7 predictions with a localization 

error of more than 40 mm. In total, there were six cDSAs of the same patient with a major outlier in two 

of the three experiments. There was no cDSA that had a major outlier in all three experiments. 

Furthermore, there were no cDSAs that had two major outliers for both renal arteries.  

The Shapiro-Wilk test on the results of the cross-validation shows a non-normal distribution of the data 

in the single, dual and triple input group for all renal arteries, right renal arteries, and left renal arteries. 

For the U-Net with the MinIP as single input, the median Euclidean distance between the x,y-coordinates 

of the predicted and ground truth location for both renal arteries is 1.52 mm (IQR: 0.89 – 3.605). The 

median Euclidean distance is 1.44 mm (IQR: 0.89 – 2.68) and 1.60 mm (IQR: 0.89 – 6.790) for the right 

and left renal artery, respectively. A Mann-Whitney U test showed no significant difference between the 

results of the left and right renal artery for the single input network (p=0.360).  

For the U-Net with the MinIP and TTP as input projections, the median Euclidean distance between the 

predicted and ground truth renal artery ostia locations was 1.52 mm (IQR: 0.87 – 3.22), 1.26 mm (IQR: 

0.80 – 2.56) and 1.65 mm (0.89 – 4.33) for both renal arteries, the right renal arteries and left renal arteries, 

respectively.  
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 MinIP MinIP + TTP MinIP + TTP + stent  p-value 

Right renal arteries 
1.44 mm  

(IQR: 0.89 – 2.68) 

1.26 mm  

(IQR: 0.80 – 2.56) 

1.26 mm  

(IQR: 0.89 – 2.88) 
0.854 

Left renal arteries 
1.60 mm  

(IQR: 0.89 – 6.790) 

1.65 mm  

(0.89 – 4.33) 

1.70 mm  

(IQR: 0.89 – 3.58) 
0.958 

Both renal arteries 
1.52 mm  

(IQR: 0.89 – 3.605) 

1.52 mm  

(IQR: 0.87 – 3.22) 

1.65 mm  

(IQR: 0.89 – 3.21) 
0.853 

Table 2: Median Euclidean distance between the predicted and ground truth locations of the renal artery ostia. 

Statistically significant if p<0.05 

There was no difference between the localization error of the predicted locations between the right renal 

arteries and the left renal arteries according to the Mann-Whitney U test (p=0.174). 

The U-Net with three input channels shows a median Euclidean distance between the prediction and 

ground truth of 1.65 mm (IQR: 0.89 – 3.21) for both renal arteries. The median Euclidean distances for 

the right renal artery ostia and left renal artery ostia are 1.26 mm (IQR: 0.89 – 2.88) and 1.70 mm (IQR: 

0.89 – 3.58), respectively. There is no significant difference between the performance of the U-Net for 

with regards to the prediction of the right and left renal artery ostia, according to the Mann-Whitney U 

test (p=0.260). The performance results of the U-Net is summarized in Table 2. 

Evaluation of the results in Table 2 shows that the performance of the network does not statistically 

significantly improve in terms of the median localization error if a second or third input channel with the 

TTP projection and stent segmentation is added to the network according to the Kruskal Wallis test. 

However, the mean Euclidean distance of the U-Net decreases from 10.8 mm ± 26.41 mm to 5.58 mm ± 

11.78 if the MinIP projection is accompanied by the TTP projection and to 6.75 mm ± 16.12 if both the 

TTP and stent segmentation mask are added as extra input channels. The decreased mean Euclidean 

distance with multiple input channels is also reflected in the reduced number of major outliers above 40 

mm for multiple input channels versus a single input.  

The results of the U-Net with a single input and multiple inputs were also evaluated based on the 

cumulative successful detection rate, shown in Fig. 13. Taking into account the average diameter of the 

renal artery of 6 mm, and thus a clinically relevant maximum deviation of 3 mm from the central  

lumen line, the U-Net was capable of successfully detecting 74% of the renal arteries with a single input 

projection, 72% of the renal artery ostia with two input projections and 75% of the renal artery ostia for 

the triple input. 

Overall, the results show that although there is no significant difference in terms of localization error for 

the renal artery ostia between the single and multiple inputs to the network, the outcomes of the 

experiments do suggest an added value of the TTP projection and stent segmentation in terms of the 

number and magnitude of outliers. 
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Fig. 13. Cumulative successful detection rate of the renal artery ostia on the cDSA for different thresholds and 

input projections.  

 

3.4 Discussion 

In this study, we have demonstrated the possibility to train a convolutional neural network for the 

automatic localization of renal arteries on a cDSA, using only a 2D MinIP projection and with the addition 

of a TTP projection and stent segmentation mask. Automatic detection of renal artery ostia in a cDSA 

series may seem trivial on its own, but in combination with other AI in-house developed artificial 

intelligence-based models, it can be of added value for automatic and objective analysis of cDSAs. 

Automatic intraoperative analysis of cDSAs may consist of several aspects, such as evaluation of 

proximal position of the stent-graft after deployment, detection, and evaluation of endoleaks and 

evaluation of blood flow dynamics.  

3.4.1 Interpretation of the results 

Analysis of the results shows us that approximately 75% of the renal arteries can be detected within 

clinically relevant range of deviation, considering the diameter of the renal artery. A reduced amount of 

contrast-agent present in the renal artery, together with the reduced clarity of the renal artery contours, 

seems to negatively influence the performance of the network, as demonstrated by the results in Fig. 10. 

In the prediction heatmap of MinIP projections with renal arteries that have sufficient contrast-agent and 

clear contours, we observe activation solely at the site of the renal arteries. In the suboptimal results, the 

heatmap shows us activations at the site of renal arteries as well. However, activations are higher at the 

site of contrast-agent induced artefacts in the intestines. The amount of contrast-agent, together with the 

clarity of the renal artery contours seem to be an important factor for the performance of the network. 

The clarity of the renal arteries and the amount of contrast-induced artefacts may be the result of 



36 

 

movement during acquisition of the cDSA, despite the induced apnea. Furthermore, a lateral course of 

the superior mesenteric artery in close proximity of the renal arteries led to incorrect localizations in some 

cases.  

The temporal information regarding blood flow and appearance of the visceral arteries throughout the 

cDSA series is lost in a 2D MinIP projection. The renal arteries are visualized at the beginning, and thus 

before the majority of other arteries, of the cDSA recording as the pigtail catheter for contrast-agent 

injection is placed proximal to these arteries. The time component in the cDSA series may be important 

to discriminate between other arteries and contrast-induced artefacts in the intestines. To partly regain 

this potentially important temporal information, a TTP projection was added as a second input channel to 

compensate for the loss and possibly increase the performance of the network. However, despite less 

major outliers and a reduced average Euclidean distance between the predicted and ground truth 

coordinates, there no significant advantage nor disadvantage of adding this second input channel.  

The addition of the stent-graft segmentation as a third input next to the MinIP and TTP projections was 

expected to further improve the accuracy of the network. The stent-graft segmentation provides the 

network with indirect spatial information on where the renal arteries can be expected in the frame of the 

cDSA. For the EVAR procedures, the renal arteries are always located proximally or distally to the 

proximal end of the stent-graft, depending infrarenal or suprarenal fixation. The median and mean 

localization error did not significantly change after addition of the stent-graft segmentation. The accuracy 

of the stent-graft segmentation mask might influence the added value that the stent segmentation mask 

input has on the performance of the network. However, evaluation of the stent-graft masks for the major 

outliers shows a good visual results of the stent-graft segmentation masks that were used as input to the 

network.  

The purposely induced apnea minimizes the movement due to ventilation of the patient but the cardiac 

cycle may still induce minor movements of the arteries. However, during this experiment, with the use 

of 2D projections from a 3D array, the assumption was made that there was no movement of the visceral 

arteries during the recording of the cDSA. Even though minor movements may be possible, we expect 

minor influence hereof in the results of the experiments. Another note that needs to be made is the use of 

millimeters to express the Euclidean distance of the localization error. The distance between the X-ray 

source, patient and detector influences the scale of the patients anatomy on screen. Therefore, the 

Euclidean distances can be used as an indication of the localization error but cannot be considered as the 

true error.  

3.4.2 Comparison with literature 

Automatic localization of landmarks with deep learning has been reported extensively in previous 

studies.43,44,47 To the best of our knowledge, this is the first study that uses deep learning for automatic 

landmark localization on cDSA series during EVAR. Payer et al. investigated several CNN architectures 
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for automatic localization of multiple landmarks in 2D X-ray radiographs of the hand. Their approach is 

closest to our approach regarding the network architecture, creation of ground truth heatmaps, and 

experimental setup. Using a U-Net, they achieved a median localization error of 0.68 mm on 37 landmarks 

in the radiographs, which is slightly less than half of our median localization error.43 In contrast to our 

data set of 95 images, they were able to optimize their network based on a data set with close to 900 

images, while their 2D X-ray images are also expected to have less variation in terms of anatomy, 

background structures and artefacts. Noothout et al. proposed a global-to-local localization approach in 

which regression and classification were performed simultaneously to localize landmarks in 

Cephalometric X-rays. With a more sophisticated approach compared to ours, they report a median 

localization error of around 1 mm with a data set consisting of 400 radiographs.47  

3.4.3 Limitations of the study 

Several limitations exist within this study. Deep learning networks are capable of objectively processing 

and learning from large amounts of data that may exceed the exposure of a single human. The current 

study was performed based on a limited number of cDSAs from a single center. Expansion of the data set 

is expected to substantially increase the performance of the model and reduce the median Euclidean 

deviation and increase the successful detection rate at lower thresholds.  

In this study, there was a variability in the image dimensions of the cDSA’s. We used a patch-based 

approach during training of the U-Net as the network requires similar input dimensions for all images. 

Resizing of the images to the same dimensions induces distortion of the image proportions and was 

therefore not considered a viable option. A limitation of using a patch-based approach is the loss of spatial 

information with regard to the position of the renal arteries on the image, which may be beneficial for 

localization of the renal artery ostia. Furthermore, since the renal arteries are mostly located at the top of 

the cDSA images, random patch extraction from the 2D projections during training may induce and 

imbalance in the number of patches with and without renal arteries. This is because pixels towards the 

boundaries of the images are extracted less during patch extracting than pixels towards the center of the 

image. A weighted patch extraction was also considered, however, this would lead to a bias in the network 

as it may expect a renal artery ostium in every patch which is not favorable during patch-based sliding 

window inference evaluation of a 2D projection with original image dimensions.  

A last limitation of this study is the lack of external validation. The application of cross-validation in our 

study validated the performance of the network internally. However, external validation on an 

independent data set needs to be performed to test the performance of the network in different institutions. 

The current study only used cDSA images acquired in a Philips hybrid operating room, but the 

performance on cDSAs acquired at other institutions using a system of a different manufacturer is 

unknown.  
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3.4.4 Future perspectives 

For future work on this study, there are several aspects that could be focused on to further improve the 

accuracy of the network and increase the successful detection rate at lower thresholds. Cina et al., 

proposed a deep learning method for automatic detection of vertebral corners on 2D sagittal X-ray images, 

a study that in terms of imaging modality relates to this paper.44 In contrast to our method, they use a two-

step approach; the first CNN localizes the vertebra and identifies the vertebral corners, in the second step, 

the localization is refined in a smaller patch of the image. The application of this two-step approach may 

be useful in our study, as the highest activation is always in close proximity to the renal arteries. Using a 

cropped images based on the location of the highest activation, the refined localization of the origin of 

the renal arteries is less influenced by other arteries and contrast-induced artefacts.  

3.5 Conclusion 

In this study, we have demonstrated the feasibility of using a U-Net for the automatic localization of the 

renal arteries on a completion digital subtraction angiography during EVAR. Experiments have shown 

that the addition of a second input channel to compensate for the lost temporal information in the 2D 

MinIP projection leads to fewer major outliers but does not significantly improve the localization error 

and successful detection rate of the network. The addition of the stent-graft segmentation did not improve 

the localization error or reduce the number of major outliers.  
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4.1 Introduction 

Since its introduction, Endovascular Aneurysm Repair (EVAR) has increasingly gained popularity and 

established itself as the first choice of treatment for elective repair of an infrarenal abdominal aortic 

aneurysm (AAA) as opposed to invasive open surgical repair.41 The minimally invasive approach of 

EVAR compared to open surgical repair has led to short-term benefits in terms of peri-operative survival, 

severe complications and hospital stay.8,11 Despite these early advantages of EVAR, the endovascular 

approach is being plagued by a significantly higher reintervention rate due to complications, of which 

endoleaks make up the majority.12 

Endoleaks make up the majority of indications for a secondary intervention after EVAR, with type 2 

endoleaks being the most encountered type.12,48 Type 2 endoleaks are defined as a retrograde flow of 

blood into the peri-graft volume of the aneurysm sac after deployment of the stent-graft. Sources of the 

retrograde flow are the inferior mesenteric artery, accessory renal arteries, intercostal arteries and lumbar 

arteries.49 The number of patent lumbar arteries has been demonstrated as a risk factor for the 

development of a type 2 endoleak.38 Furthermore, Seike et al. has also demonstrated that the number of 

patent lumbar arteries is significantly correlated with a higher risk of the development of persistent type 

2 endoleaks and sac enlargement after EVAR.35  

The first encounter with a possible endoleak is during the completion angiogram at the end of an EVAR 

procedure; a digital subtraction angiographic technique that visualizes the blood flow with the injection 

of a contrast-agent. Clinical decision-making is based on the completion angiogram. However, the 

evaluation of the completion angiogram is performed by subjective visual inspection and therefore user-

dependent. Detection and classification of endoleaks on the completion angiogram is not always trivial 

and shows moderate inter-observer agreement between medical specialists as we have seen in an inter-

observer agreement study by Smorenburg et al. In this study, medical specialists independently scored 

completion angiograms on the presence and type of endoleaks. As the evaluation of the completion 

angiogram remains subjective with moderate inter-observer agreement, automatic objective 

intraoperative image analysis such as automatic detection and classification of endoleaks can potentially 

increase the inter-observer agreement between medical specialists and improve the outcome of the 

procedure.  

Automatic identification of lumbar arteries can help in the objective intraoperative evaluation of 

completion angiograms. Although acquisition of the cDSA is performed in a single projection plane, the 

study in chapter 3 has shown that over-projection of the lumbar arteries by the contrast-agent in the aortic 

lumen is very rare. Presence of lumbar arteries in the proximity of detected endoleaks can aid in the 

classification of the endoleak. Therefore, the aim of this study is to use a deep learning-based approach 

for the automatic identification and localization of lumbar arteries on a completion angiogram and 

investigate the influence of additional input channels on the performance of the network. We hypothesize 
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that the deep learning network is capable of identifying lumbar arteries on the cDSA and that additional 

input channels increase the performance of the network. 

4.2 Methods 

4.2.1 Proposed pipeline 

This study aims to automatically identify the presence of lumbar arteries on a completion digital 

subtraction angiography acquired at the end of an EVAR procedure. A convolutional neural network with 

a U-Net42 architecture was trained to return a prediction heatmap that shows the location and course of 

the lumbar arteries. Two-dimensional (2D) minimum intensity projections (MinIP) obtained from cDSA 

series were used as the main input to the network and extra 2D feature projections extracted from the 

cDSA series were added to the main input to investigate the influence hereof on the performance of the 

network. The network performance for the single and multiple input channels is evaluated based on 

precision-recall curves.  

4.2.2 Data 

To train a network for identification of lumbar arteries on a cDSA, we used a data set consisting of 70 

completion digital subtraction angiographies (cDSA) of patients that were treated for an infrarenal 

abdominal aortic aneurysm using EVAR. All cDSAs were acquired using a C-arm X-ray system in a 

Philips Azurion FlexMove 7 C20 Hybrid Operating Room (Philips Healthcare, Best, The Netherlands) in 

the Amsterdam University Medical Centers, location VUmc, between April 2017 and April 2020. Images 

were retrospectively extracted from a prospectively maintained database with approval of the local 

medical ethical review committee.  

A multiphase acquisition protocol was used for the acquisition of the cDSAs: during the first phase, 

images are acquired at a frame rate of 3 frames per second (fps) for 6 seconds, during the second phase, 

images are acquired at 1 fps for 5 seconds and images are acquired at 0.5 fps during the third phase for 

the rest of the recording. Contrast-agent was automatically injected by the hybrid operating room system 

with a typical volume of 15 to 20 mL at a rate of 20 to 25 mL per second. The amount of contrast and 

length of the recording was determined by the surgeon in charge. A purposely induced apnoea was used 

to minimalize visceral and stent-graft motion during recording of all series. The dimensions of the cDSA 

and isotropic pixel sizes were 790 x 1024 to 1904 x 1904 pixels and 0.154 x 0.154 mm2 to 0.370 x 0.370 

mm2, respectively. The number of frames in the cDSA series ranged from 16 to 43.  

4.2.3 Image transformations 

In this study, we propose to face the identification of lumbar arteries on a cDSA with a 2D approach, 

even though the cDSA series is a 2D + time array consisting of multiple consecutively acquired 2D images 

which can be seen as a 3D array. Therefore, the 2D + time array consisting of multiple frames of the 

cDSA is reduced to a single 2D frame which is used as input for the convolutional neural network. The  
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Fig. 14. Illustration of the 2D feature projections obtained from the completion digital subtraction angiography. 

For the Time To Peak, red indicates an early high density of contrast-agent and green indicates a late high density 

of contrast-agent. In the Area Under Curve projection, red indicates a low area (less contrast-agent) and green 

indicates a large area under the curve (more contrast-agent) in each pixel during the cDSA. The stent 

segmentation is obtained from the deep learning stent-graft segmentation model (Appendix A). 
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different 2D input projections are shown in Fig. 14. Several arguments can be given for using 2D 

projections as input for the neural network as opposed to the complete 3D array of the cDSA. 

First, a potential advantage of using 2D projections as opposed to the entire 2D + time cDSA series as 

input for the network is that the network does not have to distinguish between images on the visibility of 

the lumbar arteries. Second, transformation of the cDSA series into a single projection visualizes the 

entire lumbar artery that would be visible over the course of the cDSA series. In individual frames of the 

cDSA series, only a small part of the lumbar artery may be visible as the rest of the artery has not been 

filled with contrast-agent. This is achieved by application of a Minimum intensity projection (MinIP) 

along the temporal axis of the cDSA series. The MinIP visualizes the highest density of contrast-agent 

reached for each pixel during the cDSA and therefore visualizes the entire vessel tree that was filled with 

contrast-agent. Identification of lumbar arteries is expected to be more accurate in case of maximum 

visibility of the lumbar artery which is achieved by this single 2D projection. 

A Time to Peak (TTP) projection illustrates the time between the start of the cDSA acquisition and the 

time at which the contrast-agent density in the artery reaches its highest point. This 2D projection is 

therefore a representation of how fast a given artery is visible after injection of the contrast-agent. As the 

lumbar arteries at the height of the stent-graft are mostly visible in a later stage of the cDSA series due to 

the inflow of contrast-agent through collateral arteries, the information captured in this projection may 

be of added value to discriminate between multiple visible arteries. The temporal information on the 

visibility of the arteries in the cDSA series is lost by using the MinIP as the main input, and this TTP 

projection compensates for this loss of flow dynamic information in the cDSA. 

The total amount of contrast-agent within a given artery during the acquisition of the cDSA can be 

captured in an Area Under the Curve (AUC) projection. After stent-graft deployment, the contrast-agent 

reaches the lumbar arteries at the height of the stent-graft through collateral arteries, while other arteries 

such as the renal arteries and superior mesenteric artery including branches have a more direct inflow of 

contrast-agent. The contrast-agent concentration in the lumbar arteries may therefore be lower due to 

dilution and thus a lower total amount of contrast-agent flows through the lumbar arteries. The AUC 

projection may help in correctly identifying the lumbar arteries from other arteries based on the total 

amount of contrast-agent that within the artery during acquisition of the cDSA. 

Lumbar arteries are commonly present alongside the stent-graft. The position of the stent-graft on the 

cDSA can provide spatial information to the network on the expected locations of the lumbar arteries. 

For this study, a stent-graft segmentation mask is obtained from all cDSA series using a deep learning 

network for automatic stent-graft segmentation on cDSA images (Appendix A).  

 



44 

 

 

Fig. 15. Left: MinIP projection of the cDSA. Middle: Ground truth heatmap with Gaussian filtered lines that 

represent the location and course of the lumbar arteries. Right: Ground truth heatmap projected onto the MinIP 

projection. 

 

4.2.4 Data annotation 

Annotation of the ground truth heatmaps for automatic identification of the lumbar arteries is partly based 

on the data annotation methods for landmark localization problems using heatmap regression as 

illustrated by earlier studies and the annotation of the renal artery ostia in chapter 4.43,44 A similar two 

step approach as for the data annotation of the renal artery ostia is used for the lumbar arteries. Lumbar 

artery ground truth heatmaps differ in the fact that a Gaussian filtered line is used to represent the visible 

course of the artery on the cDSA as opposed to a Gaussian function representing a single landmark at the 

ostia.  

For the first step, a custom framework was setup in MeVisLab45 for annotation of the lumbar arteries. 

The lumbar arteries were identified on the cDSA with the guidance of the preoperative CTA and 

maximum intensity projection of the preoperative CTA. For this, a similar setup was used as described in 

chapter 3. A central lumen line was drawn over the course of the visible lumbar artery on a single frame 

in the cDSA. The coordinates of the central lumen line were subsequently converted from world to pixel 

coordinates. In the next step, the central lumen lines of the lumbar arteries were dilated and the entire 

ground truth frames were processed with a Gaussian filter. A maximum intensity projection was 

performed along the temporal axis of the ground truth frames to obtain a 2D ground truth heatmap with 

all labelled lumbar arteries as illustrated in Fig. 15. 

4.2.5 Convolutional Neural Network 

For the automatic identification of lumbar arteries on the cDSA based on the 2D projections obtained 

from the cDSA, a two-dimensional convolutional neural network with a U-Net architecture was trained.42 

The output of the U-Net is a single linear output layer that represents a prediction heatmap illustrating the 
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distance of each pixel to the central lumen line of a lumbar artery, as opposed to the more known binary 

output for segmentation tasks.  

The U-Net was trained in a patch-wise manner with image patches of 512 x 512 pixels randomly extracted 

from the 2D projections. Data augmentation was applied prior to image extraction to create additional 

synthetic data to increase the generalizability of the network and compensate for the limited number of 

images available for the study. Image patches were randomly flipped horizontally with a probability of 

50%. As a general pre-processing step prior to input to the network, the 2D projections were resampled 

to pixel sizes of 0.2 x 0.2 mm2 using bilinear interpolation and rescaled to a pixel range of [0, 1] and in a 

channel-wise manner in case of multiple input projections.  

The network was optimized using a mean squared error (MSE) loss together with an Adam optimizer 

algorithm. Hyperparameters of the U-Net were a learning rate of 0.001, dropout rate of 0.2 and a training 

batch size of 64 image patches. The training was performed for 3000 epochs with a reduction of the 

learning rate by a factor 10 after 2000 and 2500 epochs. A sliding window inference was used to process 

the test images with the original dimensions by the patch-based trained network.  

The network was implemented using the Pytorch-based framework MONAI46 and run on a workstation 

with a NVIDIA GeForce RTX 3090 Graphics Card with 24 GB of memory. 

4.2.6 Post-processing 

The prediction heatmap outputs of the U-Net are post-processed to obtain a binary map for the prediction 

of the presence of a lumbar artery on the cDSA. First, the prediction heatmap is post-processed using a 

grayscale closing which consists of subsequent grayscale dilation and grayscale erosion. This step is 

performed to connect multiple activation segments of the same lumbar artery in the prediction heatmap. 

A binary output image is subsequently obtained from the prediction heatmap by thresholding based on 

pixel intensity. Small components in the binarized image are removed based on a minimum area that the 

components need to have in order to be considered a possible lumbar artery. Smaller components than 

the minimum area were considered as artefacts. The remaining components are dilated to expand the 

predicted region of the lumbar artery presence. The ground truth heatmaps are similarly thresholded to 

obtain a binary ground truth mask. The workflow of the post-processing steps are illustrated in Fig. 16. 

 4.2.7 Experiments and evaluation of network performance 

The U-Net was trained for identification of lumbar arteries based on different combinations of input 

projections. In the first experiment, only the MinIP projection was used as the input image for the 

network; in the consecutive experiments, the MinIP projection was accompanied by the TTP, AUC or 

stent-graft segmentation mask.  
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Fig. 16. Flowchart of the post-processing steps. A binarized prediction is obtained from the prediction heatmap 

by grayscale closing, thresholding based on pixel intensities, selection of components based on the area and 

dilation of the prediction components. The binary ground truth is obtained by thresholding the ground truth 

heatmap based on pixel intensity. The overlay of the binarized prediction and ground truth is used for calculation 

of the TP, FP and FN. 

 

A seven-fold cross-validation of the U-Net was performed for the each of the four experiments. In the 

cross-validation, the data set was split into seven folds, each consisting of ten cDSAs from which the 

projections are obtained. In every cycle, six folds are used as the training set, and the seventh fold is used 

as the test set.  

The performance of the network for each combination of input projections is evaluated based on a 

precision-recall curve. For every fold in each of the cross-validations, the prediction heatmaps are post-

processed as described in section 5.2.6 and illustrated in Fig. 16. to obtain the binarized predictions. The 

binarized prediction is compared with the binarized ground truth and the true positive (TP), false positive 

(FP), and false negative (FN) predictions are determined. Overlap between components in the binarized 

prediction and binarized ground truth were considered as a correct prediction, thus TP. A component in 

the binarized prediction without an overlap of a component in the binarized ground truth was considered 

as FP and a component in the binarized ground truth without a component at the same location in the 

binarized prediction was considered as FN. 
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For every fold in the cross-validations, the TP, FP and FN are determined for ten different thresholds of 

pixel intensity values. For each experiment, a precision-recall curve is created based on the TP, FP and 

FN at different thresholds for the complete cross-validation on 70 cDSAs. The area under the curve in 

the precision-recall curve (AUCPR) is determined to obtain the overall performance of the network with 

the MinIP, MinIP + TTP, MinIP + AUC, and MinIP + stent-graft segmentation mask as input projections 

to the network. The AUCPR for the different experiments are compared to determine the combination of 

input projections for the best performance of the network.  

4.3 Results 

A seven-fold cross-validation was performed on the full data set of 70 cDSAs to evaluate the performance 

of the trained U-Net for the automatic identification of lumbar arteries on the completion angiogram. The 

performance of the network was evaluated based on the AUCPR of the cross-validation for the different 

combinations of input projections. Fig. 17 shows the qualitative results of the prediction of the presence 

and location of lumbar arteries on the cDSA.  

The influence of thresholding on the final prediction of the presence and location of lumbar arteries on 

the cDSA is illustrated in Fig. 18. A lower threshold leads to a higher number of TP predictions and low 

number of FN, but also leads to a higher number of FP predictions. Increasing the threshold value for 

creating a binary prediction leads to a lower number of FP predictions but also decreases the number of 

TP predictions and increases the number of FN. Fig. 19 illustrates another final prediction if a low 

threshold is used for creating the binary prediction. The FP activations in the prediction heatmap are 

commonly located on the superior mesenteric artery (SMA) and the SMA branches.  

For each of the experiments with a different combination of input projections, a precision-recall curve 

was created based on the results of the cross-validation. The precision-recall curves are illustrated in Fig. 

20. The AUCPR are 0.59, 0.61, 0.67 and 0.62 for the MinIP, MinIP + TTP, MinIP + AUC, and MinIP + 

stent segmentation mask input projections, respectively. The addition of an extra input channel with a 2D 

feature projection showed improvement of the AUCPR in all cases. The addition of the AUC projection 

to the MinIP as a second input projection showed the largest increase of the AUCPR.  
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Fig. 17. Qualitative results for the identification of lumbar arteries on the cDSA. The results shown are generated 

by the U-Net that was trained based on the MinIP and AUC projections. Bounding boxes are created around the 

binary prediction and binary ground truth. The red boxes represent the ground truth, the blue boxes represent the 

prediction of the network. 

 

 

Fig. 18. Illustration of the prediction by the U-Net trained on the MinIP + AUC projections for different 

thresholds of pixel intensity during post-processing of the prediction heatmaps. A lower threshold (left image) 

results in a higher rate of FP predictions, while a higher threshold (right image) results in a higher rate of FN 

predictions. The red boxes represent the ground truth, the blue boxes represent the prediction of the network. 
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Fig. 19. Illustration of a prediction at a low threshold for creating the binary prediction. The superior mesenteric 

artery (SMA) and branches of the SMA are accountable for a large number of FP predictions. The red boxes 

represent the ground truth, the blue boxes represent the prediction of the network. 

 

Fig. 20. Precision-recall curves of the U-Net trained on different combinations of input projections. The precision-

recall curve is determined based on the complete cross-validation of 70 cDSAs for each of the combinations of 

input projections.  
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4.4 Discussion 

This study has demonstrated that a U-Net can be utilized to automatically identify and localize lumbar 

arteries on a completion angiogram, based on 2D feature projections obtained from the cDSA serie. In 

light of the automatic detection and classification of endoleaks on a completion angiogram using deep 

learning, this trained network can aid in the classification of endoleaks after incorporation to a network 

for automatic detection of endoleaks. The added value for classification of endoleaks primarily applies to 

the classification of type 2 endoleaks due to the involvement of lumbar arteries for this type of endoleak.  

4.4.1 Interpretation of the results 

Analysis of the qualitative results have shown that the trained U-Net is capable of correctly identifying 

and localizing lumbar arteries on a completion angiogram. The results, as in Fig. 18 and Fig. 19, also 

show that post-processing of the prediction heatmaps returned by the network plays an important role in 

the performance of the final prediction of the network. The majority of the false positive predictions are 

the result of activation in the prediction heatmap on the contrast-filled superior mesenteric artery 

branches. The incorrect activations on the branches of the superior mesenteric artery may the be result of 

their close proximity to the lumbar arteries on the completion angiogram and their relatively similar 

diameter. Concerning the diameter of the artery, there were no activations in the prediction heatmap at 

the site of the renal arteries, indicating that the diameter may play a role in distinguishing between 

different arteries.  

With the reduction of the cDSA series into a single 2D MinIP projection, temporal information is lost. 

Therefore, the hypothesis was that extra 2D feature projections added to the MinIP projection would 

increase the performance of the network. The quantitative results show that the network with only the 

MinIP projection as input resulted in the lowest AUCPR. The addition of extra 2D feature projections 

increased the performance of the network. The AUC projection, which is a measure for the amount of 

contrast within a pixel throughout the cDSA serie, has the most added value to the performance of the 

network. The accuracy of the stent-graft segmentation mask may influence the added value of the stent-

graft segmentation mask as an additional input projection. Visual inspection, however, did not show a 

clear relation between the accuracy of the stent-graft and the prediction heatmap in terms of correct 

identification and localization of the lumbar arteries.  

The false negative predictions can partly be explained based on the visibility of the lumbar arteries on the 

2D projections that were used as input. During annotation of the lumbar arteries, the contrast levels of the 

cDSAs were adjusted for better visualization of the arteries with limited contrast-agent and visibility. 

Lumbar arteries with poor visibility, but visible with adjustment of contrast levels, were also annotated. 

The visibility of these barely visible lumbar arteries on the cDSA was lost during creation of the 2D 

projections, and may therefore be a plausible cause of the false negative predictions. An important finding 
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is that part of the false negative predictions are thus a result of the loss of visibility of the lumbar arteries 

in the input data to the network and not a result of post-processing.  

4.4.2 Limitations of the study 

The primary limitation of the current study is the limited availability of cDSAs for training the U-Net for 

automatic identification of lumbar arteries. There is a significant variability among the cDSA images 

acquired at the end of an EVAR procedure between different patients in terms of pixel intensities, which 

are dependent on the body composition of patients and influences the visibility of the lumbar arteries on 

the cDSA. Furthermore, the amount, location and course of lumbar arteries can vary significantly between 

patients. The data set needs to be extended to account for these differences across the patient’s anatomy 

and is expected to increase the performance of the network. 

The performance of the trained U-Net has not been validated on an external data set. The cDSA images 

in the data set are all acquired in the same type of hybrid operating room in a single institution. Therefore, 

no conclusions can be drawn about the robustness of the network in other institutions and on cDSAs 

acquired using hybrid operating rooms of different manufacturers.  

The identification of the lumbar arteries on the cDSA was faced with a 2D approach, using the 2D feature 

projections obtained from the cDSA. While this approach has its benefits as described in section 4.2.3, 

this approach also comes with a limitation. Reduction of the 2D + time cDSA series to a single frame also 

results in possible over-projection of lumbar arteries. This may limit the ability of the deep learning 

network to correctly detect the lumbar arteries. The extent of over-projection of lumbar arteries by other 

arteries has not been studied in this thesis, and should be considered for further research on this topic. 

4.4.3 Future perspectives 

In future studies, there are several aspects that could be focused on to further improve the performance 

of the U-Net for identification of lumbar arteries. First of all, this study has evaluated the performance of 

the network based on the MinIP projection and with the addition of extra 2D feature projections. Only a 

single extra 2D feature projection was added along with the MinIP projection in this study. In future work, 

the influence of adding multiple 2D feature projections along with the MinIP projection on the 

performance of the network can be investigated. 

Another aspect that could be focused on are the post-processing steps to obtain a binary prediction from 

the prediction heatmaps. In this study, the initial binary prediction from the prediction heatmap was 

performed using a threshold for pixel intensity, and subsequently, components with an area below a fixed 

threshold were removed as they were considered artefacts. Within the post-processing steps, only the 

pixel intensity threshold was varied while other parameters were fixed. In future work, the influence of 

other parameters in the post-processing steps on the final prediction and performance of the network 

could be investigated. 
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After further optimization of the current methods, the network for automatic identification and 

localization of lumbar arteries should be incorporated into a network for the automatic detection and 

classification of endoleaks on cDSA images. The current network can be of added value for classification 

of, especially, type 2 endoleaks due to their close relation with lumbar arteries. In such a future network, 

the performance of the classification of type 2 endoleaks can be investigated based on the close proximity 

or overlap between the detected endoleak and lumbar arteries.  

4.5 Conclusion 

This study has demonstrated the usability of a U-Net for the automatic identification and localization of 

the lumbar arteries on completion digital subtraction angiographies acquired at the end of an EVAR 

procedure. The addition of extra 2D feature projections increased the performance of the network, with 

the AUC projection resulting in the largest increase of performance.  
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Chapter  5 

General discussion for clinical implementation 

and overall conclusion 

  



54 

 

5.1 General discussion for clinical implementation 

This thesis has demonstrated that deep learning can be utilized to automatically extract information from 

completion digital subtraction angiography images. More specifically, we have shown the possibility of 

automatic detection of renal arteries and lumbar arteries, as part of the ultimate goal of objective 

intraoperative image analysis during EVAR procedures. This section describes the usability and clinical 

implementation of these developed deep learning-based methods. 

Digital subtraction angiography has the limitation of image acquisition in a single direction. This 

technique is thus prone to over-projection, possibly leading to the invisibility of lumbar arteries due to 

coverage of the arteries by the contrast-filled aortic lumen. This could limit the detection of relevant 

lumbar arteries by a deep learning network. However, in this thesis, we have demonstrated that only 

around two percent of the lumbar arteries are over-projected by the aortic lumen. Therefore, the uni-

directional image acquisition does not limit the automatic detection of lumbar arteries using deep learning 

models in terms of over-projection. 

Invisibility of a lumbar artery on the CTA has a good predictive value for the invisibility of the same 

lumbar artery on the completion angiogram. In contrast, the visibility of the lumbar artery on the CTA 

has a moderate predictive value for the visibility of the same lumbar artery on the completion angiogram. 

Further research could focus on the cause of the reduced predictive value for the latter case. A good 

predictive value for the visibility of lumbar arteries on the completion angiogram could function as a form 

of prior knowledge in the automatic detection of lumbar arteries. 

Given further optimization of the renal artery ostia detection network, this model can aid in the objective 

analysis of the stent-graft position analysis. During deployment of the stent-graft in infrarenal aneurysms 

with a short neck, a minimum apposition needs to be achieved to ensure a proper seal of the 

endoprosthesis. A combination of an optimized renal artery ostia network and stent-graft segmentation 

network can be utilized to this end. Infrarenal or suprarenal fixation of the stent-graft needs to be taken 

into account when developing the deployment accuracy analysis. 

As described in the chapter 4, the renal artery ostia detection network can also be utilized as a predictor 

for classification of persistent and transient endoleaks in case of early onset type 2 endoleaks. The basis 

of this analysis lays in the study published by Mursalin et al., who described a significant difference 

between the appearance time of the endoleak cavity after contrast-agent filling of the renal arteries 

between persistent and transient endoleaks with a sensitivity of 88% and specificity of 86%.25 To achieve 

this automatic analysis, a combination of the renal artery ostia detection network and endoleak detection 

network needs to be realised.  

Automatic identification of lumbar arteries on the final completion angiogram can be of added value for 

the automatic classification of endoleaks, especially type 2 endoleaks. As the treatment options and 

treatment urgency for the different type of endoleaks differ significantly, the automatic classification of 
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endoleaks can impact the clinical decision-making on whether or not further surgical acting is required 

within the same EVAR procedure. 

5.2 Overall conclusion 

The overall aim of this study was to develop automatic methods for the detection and localization of renal 

artery ostia and lumbar arteries on the completion digital subtraction angiography at the end of an EVAR 

procedure. The future goal is to use these methods for further development of objective intraoperative 

analytical applications, such as stent-graft position evaluation and endoleak classification.  

In the first phase of this study, we have demonstrated that lumbar arteries are rarely over-projected by the 

aortic lumen on completion angiograms, eliminating over-projection as an obstacle for using completion 

angiograms for automatic lumbar artery identification. Furthermore, we have concluded that the 

invisibility of a lumbar artery on the pre-operative CTA is a good predictor for the invisibility of the same 

lumbar artery on the intraoperative cDSA, while a visible lumbar artery on the CTA is a moderate 

predictor for a visible lumbar artery on the completion angiogram.  

In the second phase of the study, we demonstrated the possibility of automatic localization of the renal 

artery ostia on the cDSA using a deep learning network. Using the proposed methods, three quarters of 

the renal artery ostia were automatically detected within a clinically relevant range. Automatic renal artery 

detection can aid in objective stent-graft position analysis and sub-classification of type 2 endoleaks. 

In the third phase of the study, we demonstrated the feasibility of a deep learning based method for the 

automatic identification of lumbar arteries on the final completion angiogram. Automatic identification 

of lumbar arteries can be of added value for automatic classification of type 2 endoleaks. 
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Abstract  

Purpose: 

Modern endovascular hybrid operating rooms generate large amounts of medical images during a 

procedure, which are currently mostly assessed by eye. In this paper, we present fully automatic 

segmentation of the stent graft in completion digital subtraction angiography during endovascular 

aneurysm repair, utilizing a deep learning network.  

 

Technique: 

Completion digital subtraction angiographies (cDSAs) of 47 patients treated for an infrarenal aortic 

aneurysm using EVAR were collected retrospectively. A two-dimensional convolutional neural network 

(CNN) with a U-Net architecture was trained for segmentation of the stent graft from the completion 

angiographies. The cross-validation resulted in an average Dice similarity score of 0.957 ± 0.041 and 

median of 0.968 (IQR: 0.950 – 0.976). The mean and median of the average surface distance are 1.266 ± 

1.506 mm and 0.870 mm (IQR: 0.490 – 1.430), respectively.  

 

Conclusion:  

We developed a fully automatic stent graft segmentation method based on the completion digital 

subtraction angiography during EVAR, utilizing a deep learning network. This can provide the platform 

for the development of intraoperative analytical applications in the endovascular hybrid operating room 

such as stent graft deployment accuracy, endoleak visualization, and image fusion correction. 

 

Keywords: 

Deep learning, Artificial Intelligence, Digital Subtraction Angiography, Endovascular Aneurysm 

Repair, EVAR, Segmentation, Automatic, Intraoperative, Abdominal Aortic Aneurysm, AAA 
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Introduction 

Since its introduction, endovascular aneurysm repair (EVAR) has been inextricably dependent on 

intraoperative fluoroscopic imaging. Technical innovations in the past decade have led to the replacement 

of the mobile fluoroscopic C-arm with modern high-tech hybrid operating rooms. With the increased 

imaging capabilities of the contemporary hybrid operating room, large numbers of fluoroscopy images 

and digital subtraction angiography (DSA) images are generated during and after the EVAR procedure. 

Intraoperative clinical decision making has been predominantly based on visual inspection of images by 

the operating team, with the exception of CT-fluoroscopy image fusion for navigational purposes1,2. 

However, while hundreds of images are acquired during a typical intervention, the vast majority of these 

go unused, while they may have significant value to add information to the procedure or improve 

procedural outcomes.  

The interest in artificial intelligence techniques, and particularly deep learning, has exploded in the past 

years, driven by an increase in computational power, the utilization of large datasets, and image-guided 

surgery.3 We propose that these techniques can be used to fully exploit all acquired intraoperative images 

at no additional burden to the operating team. A considerable advantage of using deep learning algorithms 

is the objective analysis  images versus the subjective visual inspection by the operating team. Moreover, 

because the number of examples that a deep learning algorithm is exposed to during training is only 

limited by the availability of data, its exposure could be higher than that of a single observer, potentially 

outperforming humans. In terms of clinical implementation, this has the potential of improving 

interobserver agreement during clinical decision-making in the operating room. 

Completion DSAs (cDSAs) performed at the end of the procedure after stent graft deployment contain 

information on the stent graft’s position, possible endoleaks, patency of arteries and stent-graft limbs, and 

blood flow dynamics. To fully exploit the possible hidden and valuable information in these images to 

improve procedural outcomes, we propose to analyse these images using deep learning. In this paper, we 

present fully automatic segmentation of the stent-graft in cDSA, utilizing a deep learning network. We 

hypothesize that an automatic stent graft segmentation method can be developed which can provide the 

basis for further intraoperative applications to objectively analyse the cDSAs in the endovascular hybrid 

operation room. 

Technique 

Data collection 

Completion digital subtraction angiographies of 47 patients treated for an infrarenal aortic aneurysm 

using EVAR were collected retrospectively. Patients in the study cohort received a bifurcated stent graft, 

bifurcated stent graft with an iliac branch device, or a single-limb aortoiliac stent graft. The collection of  
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Figure 1. Overview of machine learning network with minimum intensity projection and label as input and 

corresponding output. The output image has a Dice score of 0.979. 
 

cDSAs from the patients’ electronic medical records was performed with the approval of the local medical 

ethical review board. All cDSAs were acquired using a C-arm X-ray system in a Philips Azurion 

FlexMove 7 C20 Hybrid Operating Room (Philips Healthcare, Best, The Netherlands) in the Amsterdam 

University Medical Centers, location VUmc, in the period from May 2017 to April 2020. Images were 

acquired with isotropic and anisotropic dimensions ranging from 790 x 1024 to 1904 x 1904 pixels with 

isotropic pixel sizes ranging from 0.154 x 0.154 mm2 to 0.370 x 0.370 mm2. cDSAs were acquired with 

a multiphase acquisition protocol; phase 1 for 6 seconds at 3 frames per second (fps), phase 2 for 5 

seconds at 1 fps and phase 3 at 0.5 fps indefinitely. Typically one cDSA contained between 18 to 43 

images per series. A purposely induced apnoea minimalized visceral and stent graft motion during the 

recording of all series.  

Image modification  

We assumed that the stent graft did not move during a cDSA series and therefore posed our segmentation 

problem as a two-dimensional (2D) segmentation problem, in which one segmentation stent graft mask 

is obtained per cDSA series. To represent a cDSA series as a 2D image, a maximum intensity projection 

(MaxIP) was obtained along its temporal axis. This resulted in one projection image per cDSA, in which 

the visibility of the injected contrast agent was minimized, thereby maximizing the visibility of the stent 

graft. To train and evaluate the deep learning method, pixel-wise manual segmentation masks of the stent 

graft were created by an expert for all cDSA series. Subsequently, all 2D projection images and 

corresponding ground truth masks were resampled to 0.4 x 0.4 mm2 isotropic pixel spacing using bilinear 

interpolation and nearest neighbour interpolation, respectively. 

Neural network architecture and training 

A two-dimensional convolutional neural network (CNN) with a U-Net architecture was trained for 

segmentation of the stent graft from the 2D projection images.12 Training of the neural network was 

performed using randomly extracted images patches with size 512 x 512 pixels from the projection 

images. Training patches were augmented to create additional synthetic data to increase the  



63 

 

 

Figure 2. Successful automatic stent segmentation results (purple) and corresponding ground truth labels (red). 

Note that these the first three stent grafts have suprarenal fixation and the prediction is based on the stent graft 

struts and not the fabric. The Dice coefficient scores for the shown predictions are 0.985, 0.976, 0.983 and 0.976 

 

 

Figure 3. Two patients with suboptimal segmentation. The upper green arrows indicate an area predicted outside 

the ground truth label. The lower green arrows indicate an area not predicted inside the ground truth label. The 

left prediction has a Dice score of 0.719 and the right prediction has a Dice score of 0.930 

 

generalizability of the network. Data augmentation consisted of horitzontal flipping with a probability of 

0.5 and rotation around the image centre with a maximum deviation of ± 14 degrees. The network was 

trained by minimizing a Dice loss with an Adam optimizer algorithm using a learning rate of 0.001, 

dropout of 0.2, and a batch size of 8. The training was performed for 2000 epochs with a reduction of the 

learning rate by a factor 10 after 1000 and 1500 epochs.  

The network was implemented using the Pytorch-based framework Medical Open Network for AI 

(MONAI)4 and run on a workstation with a NVIDIA GeForce RTX 3090 Graphics Card with 24 GB of 

memory.  
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Figure 4. Box plots demonstrating the quantitative results (Dice coefficient score and average surface distance) 

of the cross-validation on then full data set. 

 

Evaluation of the network’s performance 

The performance of the network was evaluated based on a Dice similarity score, which measures the 

overlap of the predicted segmentation of the model with the ground truth segmentation. Moreover, we 

computed the average surface distance between the reference and predicted stent graft masks. This is the 

average distance (in mm) from all points on the boundary of the predicted segmentation to the closest 

point on the boundary of the ground truth segmentation.  

We performed nine-fold cross-validation on the full data set. Automatic stent graft segmentations with a 

high Dice similarity score on unseen test images are shown in Fig. 2. The results show that the network 

is capable of segmenting bifurcated stent-grafts, aorto-uni-iliac stent grafts, and bifurcated stent grafts 

with iliac branch devices, irresepective of the device manufacturer. Moreover, the network is able to 

correctly annotate stent grafts with infrarenal and suprarenal fixation. Fig. 3. shows the result of the largest 

outlier in Fig. 4, together with another suboptimal segmentation as a result of over- and under-

segmentation. 

Quantitative results are shown in Figure 4. A Shapiro-Wilk test and Q-Q plots show that both the Dice 

similarity scores and average surface distances are non-normally distributed. The cross-validation 

resulted in an average Dice similarity score of 0.957 ± 0.041 and median of 0.968 (IQR: 0.950 – 0.976). 

The mean and median of the average surface distance are 1.266 ± 1.506 mm and 0.870 mm (IQR: 0.490 

– 1.430), respectively.  
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Discussion 

The results of our study demonstrate that a deep learning-based method can fully automatically segment 

the stent graft in completion digital subtraction angiography images. The proposed method can provide 

the basis for further development of clinical analytic applications of cDSAs. This includes objective 

assessment of stent graft deployment, present endoleaks, patency of arteries and stent graft limbs and 

blood flow dynamics.  

Inspection of the results shows that our proposed method is capable of segmenting different 

configurations of stent grafts, i.e. bifurcated stent grafts with and without iliac branch devices and aorto-

uni-iliac stent grafts. The different strut structures and suprarenal and infrarenal fixation did not seem to 

influence the performance of the deep learning network.  

Several previous studies have reported automatic feature extraction of angiographic images during 

EVAR. These studies mainly focus on characterization and quantification of arterial deformations after 

insertion of stiff guide wires, intraoperative correction of image fusion and automatic segmentation of 

guidewires.5-10 Closest to our work is the study of Breininger et al., who also proposed a fully automatic  

deep learning based method for stent graft segmentation in single 2D fluoroscopic images.11 Note that in 

contrast to their method, we perform automatic segmentation on a 2D projection obtained from the entire 

2D + time cDSA sequence. This leads to results that appear to be slightly more accurate than those 

reported by Breininger et al., who obtained an average Dice coefficient score of 0.943 ± 0.043 whereas 

the average of our Dice coefficient was 0.957 ± 0.041.  

The study was limited by the number of available cDSAs. Data augmentation was utilized to partially 

compensate for the reduced number of available imaging. However, expansion of the dataset would likely 

further improve the performance and robustness of the deep learning network. Despite the high Dice 

similarity scores of our experiment, one major outlier as a result of under segmentation can be observed 

in Fig. 4 of which the result is visualized in Fig. 3. Limited visibility and contrast of the stent graft limbs 

on the 2D projection may be the underlying cause. Over-segmentation, shown in Fig. 3 as well, may be 

due to substantial background artefacts due to existing contrast-agent in the intestines. Additional input 

channels to the network comprising different 2D projections of the cDSA may help reduce over- and 

under segmentation. 

Our proposed method for fully automatic stent graft segmentation lays the foundation for further 

development of clinical analytic applications for cDSA to fully exploit possible valuable information. 

Future work can focus on the development of deep learning networks for segmentation of anatomical 

structures and analysis of flow parameters. The merging of separate models can lead to the development 

of fully automatic analytic applications to assist the surgeon in more objective clinical decision making 

in the hybrid operation room.   
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Conclusion 

We developed a fully automatic stent graft segmentation method based on the completion digital 

subtraction angiography during EVAR, utilizing a deep learning network. This can provide the platform 

for the development of intraoperative analytical applications in the endovascular hybrid operating room 

such as stent graft deployment accuracy, endoleak information, and image fusion correction. 
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