
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Designing a container management
solution to improve flexibility and portability,

and reducing cost for iPaaS solutions.

Martijn H. Woudstra
Master Thesis

m.h.woudstra@alumnus.utwente.nl

First Supervisor:
Dr.ir. J.M Moonen (UT)

Second Supervisor:
Dr.ir. J.L. Rebelo Moreira (UT)

Company Supervisor:
Dhr. S. Kaya (eMagiz)

Telecommunication Engineering Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands



Executive Summary

Enterprises rely more and more on multiple systems in order to execute daily tasks. In order
to connect these different systems, middleware can be deployed to overcome syntactic an
semantic interoperability. Creating and maintaining these integrations can be a lot of work
and costly. iPaaS platforms jump into this gap by providing a platform to easily create and
maintain these integrations. Developers design the required integration on the platform, test
the integration and deploy it. This deployment happens in the cloud or on-premise to facilitate
the integration. Depending on how much the integration is expected to use, a cloud resource
is appointed to the integration.

However, several problems occur from this deployment. Firstly, most platforms use on
cloud provider and create solutions based on that cloud provider, increasing vendor lock-in.
Switching from one cloud provider to another is difficult, since all cloud specific processes
need to be changed. This calls for a solution that works cloud agnostic. Secondly, traditional
cloud resources are bought in terms of a specific size of Virtual Machine (VM). This is done
based on the estimation of how much the integration would require. In order to ensure the
integration always works, the machine size is overestimated. Due to this, during non-peak
moments, a lot of resources are bought, but never used, resulting in waste of cloud resources.

This research aimed to find a generic solution for iPaaS providers to increase flexibility and
portability, and to reduce cost. For this, requirements were discussed in terms of what the new
architecture should be able to do. Based on the requirements, several different frameworks
and tools were discussed, and assessed against the requirements. Kubernetes came out as
best fitting solution, matching 11 out of 13 requirements. The other two requirements were
depending on the cloud architecture of the iPaaS provider.

Next, using the reference architecture of iPaaS providers and the result of the frameworks
and tools comparison, a gap analysis was performed, and a target architecture was designed.
This architecture fulfilled 24 out of 25 requirements. Validation also showed portability and
flexibility increased. To apply the theory in practice, a case study was performed. From this,
a decrease of 28% was identified. Although overhead cost increased by 10%, dynamic cost
decreased by 36.5%. Since dynamic cost scale with the amount of customers, this outweights
the increase of overhead cost.

This research produced several artefacts: A suggested reference architecture for iPaaS
providers’ cloud architecture, a reference architecture applying Kubernetes to the iPaaS
providers’ cloud architecture, and a cost analysis of the reference architecture applied in a
case study.

ii



Contents

Executive Summary ii

Contents iii

List of Figures v

List of Tables vi

Acronyms vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 About eMagiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 13
2.1 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 SaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 PaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 IaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 iPaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Container Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Container Orchestrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Examples of iPaaS solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Requirements 21
3.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Dependencies between requirements . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Measurability of the requirements . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Relation to the business motivation . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Container Orchestration Solutions 30
4.1 Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Docker Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Spring Cloud Skipper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Apache Mesos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



CONTENTS iv

4.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Solution Design 40
5.1 Baseline Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Target Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Installation instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 AWS, Azure and Google Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Validation 58
6.1 Validation of Reference Architecture . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Validation Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.6 Validation Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Conclusions 76
7.1 Revisiting the Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

References 84

Appendices 91
A Network Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B Example Integration Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 95
C AWS Cloud Formation SQL Deployment . . . . . . . . . . . . . . . . . . . . . 99
D Azure Arm template SQL Deployment . . . . . . . . . . . . . . . . . . . . . . 102
E Google deployment mananger SQL Deployment . . . . . . . . . . . . . . . . . 108
F Kubernetes YAML SQL Deployment . . . . . . . . . . . . . . . . . . . . . . . 109



List of Figures

1.1 Integrations required with and without Canonical Data Model (CDM) . . . . 3
1.2 Motivation view related to the problem statement . . . . . . . . . . . . . . . 5
1.3 Combining Chapters of the report with Peffers’ DSRM model . . . . . . . . . 7
1.4 Example output of capture phase . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Example of a message definition . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Example mapping from CDM to message definition . . . . . . . . . . . . . . . 11
1.7 Example of basic API-Gateway flow generated by eMagiz . . . . . . . . . . . 12

2.1 SaaS vs PaaS vs IaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Reference architecture Container Orchestration according to Rodrigues . . . . 19

3.1 Dependencies between requirements. . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Requirements and motivation view combined . . . . . . . . . . . . . . . . . . 29

4.1 Kubernetes componenets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Business process of integrating a system of an iPaaS customer . . . . . . . . . 41
5.2 SSL Termination, Pass-through or Bridging in Load Balancer (LB)s, simplified 42
5.3 Message Flow within the cloud host . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Overview of the deploy process without autoscaling . . . . . . . . . . . . . . . 43
5.5 Overview of the deploy process with autoscaling . . . . . . . . . . . . . . . . 44
5.6 Mapping of the baseline architecture to the chapters of Section 5.2 . . . . . . 45
5.7 New deployment process using Helm . . . . . . . . . . . . . . . . . . . . . . . 46
5.8 Ingress controller as deployed in Kubernetes . . . . . . . . . . . . . . . . . . . 48
5.9 DNS auto update and TLS auto challenge . . . . . . . . . . . . . . . . . . . . 49
5.10 Overview of architecture to collect and display logs and metrics . . . . . . . . 50
5.11 Overview of the target architecture . . . . . . . . . . . . . . . . . . . . . . . . 51
5.12 Situation without autoscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.13 Situation with autoscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.14 Overview of the gap analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Validation setup of IS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Cloud view of eMagiz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Statistics of CPU usage of VM-set 1. . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Statistics of CPU usage of VM-set 2. . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Statistics of CPU usage of VM-set 3. . . . . . . . . . . . . . . . . . . . . . . . 71
6.6 Cost comparison current- and new situation . . . . . . . . . . . . . . . . . . . 73

v



List of Tables

1.1 Evaluation of Requirement Elicitation Technique according to Abbasi . . . . 8
1.2 Design Science Research Guidelines according to Hevner . . . . . . . . . . . . 9

2.1 Advantages of different virtualization strategies . . . . . . . . . . . . . . . . . 14
2.2 Characteristics of iPaaS solutions according to Potocnik . . . . . . . . . . . . 17
2.3 Responsibilities of Integration Platform-as-a-Service (iPaaS) solutions according

to Potocnik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Capabilities of container orchestration platforms . . . . . . . . . . . . . . . . 18

3.1 Dependencies between requirements (1/2) . . . . . . . . . . . . . . . . . . . . 25
3.2 Dependencies between requirements (2/2) . . . . . . . . . . . . . . . . . . . . 26

4.1 Required ports by Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Fulfilment of requirements of Kubernetes . . . . . . . . . . . . . . . . . . . . 35
4.3 Required ports by Docker Swarm . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Fulfillment of requirements of Docker Swarm . . . . . . . . . . . . . . . . . . 37
4.5 Fulfillment of requirements of different treatments . . . . . . . . . . . . . . . 39

6.1 Fulfillment of functional requirements of the solutions . . . . . . . . . . . . . 59
6.2 Fulfillment of non-functional requirements of the solutions . . . . . . . . . . . 61
6.3 Cost of static components in Google Cloud . . . . . . . . . . . . . . . . . . . 65
6.4 Cost of dynamic components in Google Cloud . . . . . . . . . . . . . . . . . . 66
6.5 Overhead cost using Google Cloud . . . . . . . . . . . . . . . . . . . . . . . . 66
6.6 Cost of static components in AWS . . . . . . . . . . . . . . . . . . . . . . . . 66
6.7 Cost of dynamic components in AWS . . . . . . . . . . . . . . . . . . . . . . 67
6.8 Overhead cost using AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.9 Cost of static components in Azure . . . . . . . . . . . . . . . . . . . . . . . . 67
6.10 Cost of dynamic components in Azure . . . . . . . . . . . . . . . . . . . . . . 67
6.11 Overhead cost using Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.12 Cost comparisons overhead cost in AWS, Google Cloud and Azure . . . . . . 68
6.13 Cost comparison overhead cost in AWS, Google Cloud and Azure compared to

the current situation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.14 Spike patterns in VM sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.15 Comparison current- and new cost for dynamic components on AWS, Google

Cloud and Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.16 Cost comparison eMagiz case study in the current- and new situation for

overhead and dynamic components combined . . . . . . . . . . . . . . . . . . 73
6.17 Flexibility assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.18 Validation strategies in this research . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Design Science Research Guidelines according to Hevner assessed . . . . . . . 81

vi



Acronyms

AD Active Directory
AKS Azure Kubernetes Service
API Application Programming Interface
AWS Amazon Web Services
CA Certificate Authority
CAGR Compound annual growth rate
CAPEX Captital Expenditure
CDM Canonical Data Model
CF Cloud Foundry
CLI Command-line Interface
CNI Container Network Interface
CO Container Orchestration
CPU Central Processing Unit
CRD Custom Resource Definition
CRI-O Container Runtime Interface for the Open Container Initiative
CRON Command Run On
CTO Chief Technical Officer
DaaS Desktop-as-a-service
DC/OS Distributed Cloud Operating System
DNS Domain Name System
DSRM Design Science Research Methodology
EC2 (Amazon) Elastic Compute Cloud
EKS (Amazon) Elastic Cloud Kubernetes
ESB Enterprise Service Bus
ES Event Streaming
ESP Encapsulating Security Protocol
FQDN Fully Qualified Domain Name
GC Garbage Collection
GiB Gibibyte
GKE Google Kubernetes Engine
GPS Global Positioning System
HA Highly Available
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure-as-a-service
IP Internet Protocol
iPaaS Integration Platform-as-a-Service
kubectl Kube Control
LB Load Balancer
LXC Linux containers
MAC Media Access Control
MoSCoW Must, Should, Could, Would like

vii



viii

NIST National Institute of Standards and Technology
OPEX Operational Expenditure
OS Operating System
PaaS Platform-as-a-service
PV PerstistentVolume
PVC PerstistentVolumeClaim
QOS Quality-of-Service
RAM Random Access Memory
RBAC Role-based access control
RKT Rocket
SaaS Software-as-a-service
SLA Service Level Agreement
SLO Service Level Objective
SSL Secure Sockets Layer
TAP Test-, Acceptance-, Production-
TCP Transmission Control Protocol
TLS Transport Layer Security
TXT Text records
UDP User Datagram Protocol
URL Uniform Resource Locator
UUID Universally Unique Identifier
VC Virtual Container
vCPU Virtual CPU
VM Virtual Machine
VPC Virtual Private Cloud
XaaS Anything-as-a-Service
YAML YAML Ain’t Markup Language



Chapter 1

Introduction

In this chapter, the motivation and problem that this research focuses on will be elaborated
on. From that, research questions will be deducted. Next, the approach to answer the research
questions will be elaborated on. The structure of the report will be presented to the reader,
followed by the scope of the report, and an introduction to eMagiz, a company that helped
verify this report.

1.1 Motivation
The market of microservices is growing rapidly. The ‘Microservices Market’ is expected to
grow from $832 million in 2020 to $2701 million by 2026[1], meaning a Compound annual
growth rate (CAGR) (compound annual growth rate) of 21.7%. For Integration Platform-as-
a-Service (iPaaS) solutions, the growth is projected to be even larger with a CAGR of 38%
between 2021 and 2026[2]. These two markets growing side by side is no surprise, taking that
iPaaS solutions are ideal for integrating microservices. iPaaS solutions are made to enable
connecting and deploying microservices easily.

iPaaS solutions have major responsibilities when it comes to the availability of the system
it supports. Disruption of a system could potentially disrupt message delivery of customers’
messages, which could lead to wrong actions due to missing data, or disruption of the informa-
tion chain. At the same time, iPaaS solutions are an ideal place to integrate new technologies;
the amount of impact changing a single iPaaS solution has is generally greater than when
one company itself implements these new technologies and patterns. This is because these
platforms generally serve many different enterprises.

1.2 Problem Statement
Deploying cloud services or Anything-as-a-Service (XaaS) solutions on bare-metal has been
widely described as costly[3]. Virtualization has been adopted by the industry as an alternative
because of its measurable and intuitive benefits including reduction of Captital Expenditure
(CAPEX) cost improved staff efficiency, and quicker deployment options[3]. One of the main
issues in virtualization is resource optimization. Containerization is a going trend adopted by
many enterprises to deal with this issue. Containers are "packaged, self-contained, ready-to-
deploy parts of applications and, if necessary, middleware and business logic"[4]. Containers
omit the need for an Operating System (OS), in contradiction to Virtual Machine (VM)s
which need an OS, and additional overhead. Furthermore, they instantiate faster[5] and offer

1



1.2. PROBLEM STATEMENT 2

near bare-metal performance [5]. However, Khan described that security is a drawback of
containerization due to less isolation because of the shared kernel access[6].

Additionally, Sharma showed that interference (simultaneous accessing of resources) when
many containers are deployed on one host might lead to reduced performance[5]. Furthermore,
management becomes an issue when handling many different containers. One can imagine
having hundreds of containers running for different tenants can be impractical if, for example,
a customer request comes in and requires adjustment of their containers. This calls for a need
to deploy and manage these containers flexibly.

iPaaS providers choose to use containers because containers are environment independent,
meaning that the providers do not have to set up all environments with specific software like
databases or network adapters. Instead, these are all packed within the container, meaning
that (almost) any environment is capable of hosting these containers. For iPaaS solutions,
customers can design their integration with the platform. Afterward, their integration can be
deployed as a packaged container, usually on the virtual infrastructure of the iPaaS provider.

The downside of running integration in containers is that resources of the host need to
be shared, meaning that if one container starts consuming many resources, other containers
experience delay[5]. Additionally, containers will share the underlying kernel, which causes
security issues[5] as mentioned earlier.

Customers should be able to spin up and tear down their integration containers, while the
iPaaS provider should be able to manage and service all containers. This, however, causes
many of the already mentioned problems to arise. There is a need for additional tooling to
solve these problems. Many different solutions exist to achieve the desired situation. However,
to the best of our knowledge, no research has been conducted on what requirements apply to
iPaaS solutions, which solution would best solve these problems, and how to implement this
solution.

1.2.1 Example scenario for a customer

Assume a hypothetical company IOps, which shares many characteristics with real-world
logistic companies. IOps is a logistic company that operates internationally in Europe, focuses
on transporting electronic devices all over Europe. IOps has trucks to deliver goods from A to
B, but they also outsource contracts to other transport companies. IOps has many different
systems contributing to their main business goal. For example, IOps has a bookkeeping
system to record the incoming and outgoing funds. Additionally, they have an order system
to track the current, past, and future contracts with all required information like pickup
address, destination address, pickup time, weight, etc. Customers can also send a request
to this system when they need something to be shipped. Furthermore, IOps has systems in
place to track truck drivers and their loads. These are connected to the Global Positioning
System (GPS) locations of the truck. For customers, a portal exists to track the goods they
ordered. This system is connected to the order system and the tracking system. All these
systems are bought as is and are not developed by IOps.

To reduce the workload of transferring data from one system to the other system, these
need to be connected. However, all systems have a different definition of how these messages
look (syntactic meaning), what they mean (semantic meaning). IOps could develop middle-
ware software to connect one system to the next, but since all systems are connected, the
number of adapters will quickly explode (exponentially, see [7] and Figure 1.1b), and becomes
unmanageable.

IOps wants to have a central place to manage these integrations and to reduce the
number of integration, to reduce maintenance cost for these integrations, and to have a
more clear overview of what and between which systems integrations exist. Furthermore, they



1.2. PROBLEM STATEMENT 3

(a) Integrations required without CDM
(Nodes = 6, Edges = 30)

(b) Integration required with CDM
(Nodes = 6, Edges = 12)

Figure 1.1: Integrations required with and without CDM

want to be able to expose their order system to receive messages from customers.
Lastly, they experience more traffic on their tracking system during the day and thus want to
dynamically give the system more bandwidth and resources during this time.

The business goals of IOps can be achieved using iPaaS solutions. Firstly, the iPaaS
solution can be used to have a central place where all integrations can be overviewed. Secondly,
to reduce the number of integrations required, IOps can define a Canonical Data Model (CDM)
in the iPaaS solution. A CDM is a central model where all incoming messages map onto and
outgoing messages map from. This way, there is a central data model where all integrations
map onto, reducing the needed integrations to the number of systems, making the equation
linear (See Figure 1.1b). Thirdly, to receive messages from customers, IOps can define an
Application Programming Interface (API)-Endpoint in the iPaaS solution, connect it to the
CDM and use the existing integration to send it to their order system.

The last business goal of IOps is more difficult. Often, one has to decide how many resources
a system would get, thus either overestimating for the slower periods or underestimating for
the faster periods. To solve this, the system should be either manually or automatically scaled
up and down.

Not defined as a business goal, but a requirement of the system is as little downtime as
possible, and no loss of data. Therefore, the iPaaS solution should also have redundancy
available.

In the next subsection, the customer requests are translated into business goals for iPaaS
providers.

1.2.2 Motivation for iPaaS providers to handle the problem

The business goals mentioned above are problems iPaaS providers try to solve. One problem
described earlier, the CDM, is not in the scope of this research. Two other problems mentioned,
giving the system more bandwidth and resources, and the need for redundancy, are
covered by this research. There are a few options how to add this redundancy and temporary
scale-up. However, these options rise challenges that need to be overcome. To be able to
add redundancy, one can startup a replication of the application. This requires the storage
volumes to be able to handle multiple connections in a stateful manner. The feature of having
more computing power based on needs is called auto-scaling. Two methods of auto-scaling is
vertical auto-scaling and horizontal auto-scaling. Horizontal auto-scaling means increasing the
number of workers to handle the request. Vertical auto-scaling is the addition of resources
to the existing worker (usually VMs)[8]. Vertical scaling is useful up to a certain point since
scaling cannot go beyond the resources the physical system has[8]. Horizontal scaling has
more options (since adding a new machine is not limited by the current stack), but also brings



1.2. PROBLEM STATEMENT 4

additional challenges. For example, when do you need to add a new VM, and how can you
decide when to remove unused VMs. Or even replacing VMs with VMs with more resources.
On a high level, the following reasons exist to solve the problems at hand:

• Firstly, a group of containers (cluster) should be able to manually or automatically
scale up or down depending on the used or requested resources, and the resources
available. This raises challenges for administrators of such clusters. Manually checking
the resources is labor-intensive, and burst changes could be hard to identify and react
to. This problem is one of the problems that need to be solved. Having autoscaling also
opens up the opportunity to adopt ’pay-per-use’ structures. (Flexibility)

• Furthermore, reducing costs is always on the mind of enterprises. By scaling up and down
containers, the Operational Expenditure (OPEX) cost can be reduced since resources
will be freed when not used. (Cost)

• Lastly, customers of iPaaS solutions might have requested to have their integrations
deployed on certain cloud host platforms. This motivates to adopt container management
to facilitate deployments on multiple cloud platforms. (Portability)

Other than these three reasons, additional reasons can be addressed, which do not have a
direct cause that leads to the research questions but are strongly influenced by the result of
the treatment. Therefore, these influenced issues will also be discussed.

• Firstly, Opara-Martins has argued that the adoption of cloud has stimulated vendor
lock-in[9]. This offers a risk but also a limitation in portability since only the offered
services of one vendor can be used. Therefore, this problem needs to be addressed as
well. (Prevent vendor lock-in)

• Secondly, the literature suggests that the maturity level of an enterprise can be improved
by virtualizing resources, location, and ownership[10]. Since the problem at hand already
is about shared resources of containers, this opportunity can be looked at as well. This
increases the level of Maturity. (Maturity)

• Thirdly, to be able to adopt future possibilities in technological advancements, like
serverless computing, some prior dependencies need to be solved, of which one is the
container management strategy. Due to this, there are open opportunities for future
strategies which can be identified and explored. (Looking towards the future)

We see the motivation from iPaaS providers to solve the two problems mentioned has
three main reasons:

• Flexibility: iPaaS Providers want to be able to automatically scale up and down
containers to deliver performance according to the customer’s needs.

• Cost: Reducing the resource utilization when little workload is offered to reduce OPEX
cost.

• Portability: Ability to deploy on multiple cloud hosting platforms.

Additionally, by solving the problems described, three other topics could be improved,
since there is a direct or indirect influence between these topics and the problems above:

• Prevent vendor lock-in: To reduce the risk of vendor lock-in due to the adoption of
cloud containers, [9] vendors are looking for possibilities to adopt hybrid solutions.

• Maturity: Containerization and virtualization of resources, location, and ownership
increase maturity level[11].

• Looking towards the future: Managed containers open up future possibilities, like
serverless computing.

These goals described above are model in Figure 1.2 with their relations.



5

1.2. PROBLEM STATEMENT

iPaaSNprovider

Profitability
DeliverNto
customer
demands

Customers

CentralNplaceNto
manageNthese

integration

ReduceNthe
numberNof
integration

ExposeNsystemsNto
receiveNmessages

fromNother
systems

GiveNintegrations
moreNbandwidth
duringNpeakNtime

NoNfailuresNin
system

HaveNanNoverview
ofNintegration

FlexibilityNinNscaling
upNandNdown

PreventNvendor
lockin

BeingNableNto
adoptNfuture
technologies

IncreaseNmaturity
level

BeNfutureNproof

ReduceNtheNcost
perNintegration

ReduceNcostNof
integration

Profitability Interoperability

IntegrateNsystems

ReduceNcost IncreaseNrevenue

CostNofNrunning
unscalable

containersNisNhigh

CloudNadoption
increasesNvendor

lock-inNrisks

ProvideNisolated
environments

ProvideNlatest
innovations

Figure 1.2: Motivation view related to the problem statement



1.3. RESEARCH QUESTIONS 6

1.3 Research Questions
Based on the Problem Statement, research questions have been formulated. These questions
are in line with the Design Science Research Methodology (DSRM) [12], as further described
in Section 1.4.

The main research question is formulated as:

MQ How should an iPaaS implement container orchestration in order to improve
flexibility and portability, and reducing cost?

In order to answer the main question, several subquestions are defined:

SQ1 What is container orchestration and iPaaS, and how can they work together to
improve flexibility portability, and reducing cost?

Rationale: To investigate the relevance of container orchetration for an iPaaS, these two
topics will first be evaluated. In addition, this question will address whether these
two topics can be used in conjunction to achieve the intended benefits.

SQ2 Which specific requirements should be covered to improve the flexibility and
portability and reduce the cost of an iPaaS solution to ensure feasibility and
similar functionality?

Rationale: After the literature discussion, requirements for the solutions should be discussed
to take into account during the design process.

SQ3 What container orchestration solutions exist for iPaaS cloud architectures
and what is the tradeoff between these solutions? How do these solutions meet the
requirements and what would be the disadvantages of these solutions?

Rationale: Available techniques are reviewed and discussed, and how they would be able to
fullfill the requirements set in the previous subquestion

SQ4 Can a reference architecture be derived as solution design, and can
this architecture be introduced into the as-a-service deployment landscape
of iPaaS solutions?

Rationale: Taking into account the requirements and available techniques, a solution
design must be made. This should be done to a generic iPaaS case, to see if an
reference architecture can be derived.

SQ5 Does the reference architecture solve the problem identified,
taking into account the requirements of portability, flexibility and cost reduction?
of iPaaS solutions?

Rationale: The design should be validated in terms of validity of the model, whether it
improves on the desired aspects, and whether the solution holds in a real-world case.

SQ6 To which XaaS solutions would this reference architecture be applicable,
and what advantages would this bring?

Rationale: The solution is made for iPaaS solution. However, it might solve more problems
existing, and thus the solution is assessed whether it can be generalized or
used in more domains.



1.4. APPROACH 7

Figure 1.3: Combining Chapters of the report with Peffers’ DSRM model[12]

1.4 Approach
During this research, Peffers’ DSRM[12] will be used. Peffers’ methodology tries to provide
handles on how to perform such a design research. It guides the researcher from the problem
statement and requirements to an artifact. Peffers’ methodology allows researchers to start at
any part of the process given the available knowledge.

Peffers’ DSRM describes 6 activities (see figure 1.3):

1. Problem identification and motivation
2. Define objectives of a solution
3. Design & develop
4. Demonstrate
5. Evaluate
6. Communicate

Given the research problem, four different entry points for research exist: Problem centered
approach starting from activity 1, an objective centered approach, starting from activity 2, a
development centered approach, starting from activity 3, and lastly, when a solution already
exists or is observed, starting from activity 4.

The research questions in 1.3 are already formulated according to Peffers DSRM.
SQ1 asks for a literature review to the definition of iPaaS and container orchestration,

and the dynamic between them. This step will also give more insight in the problem at
hand. SQ2 asks to define requirements, as per step two in the DSRM, ’Define objectives of a
solution’. This step can be performed by conducting interviews with experts from the field to
give input for these requirements.

Finding requirements is a process which can be -performed in several ways. From compar-
ison of these techniques in the report of Rehman[13], the type which should be used is heavily
dependent on the situation of the requirement engineer. Each technique has pros and cons,



1.4. APPROACH 8

but Rehman suggest at least to use a combination of techniques. Abbasi[14] adds various
properties to the different techniques. This table is shown in Table 1.1.

Since experts are available to answer questions, this opportunity is used to determine
requirements for the system. From the experts, Qualitative and Quantitative data is needed to
define the right requirements. For this, the technique of performing an interview was chosen.
The interviewee would first answer some basic questions about the system (like purpose and
stakeholders). Afterwards, requirements in Must, Should, Could, Would like (MoSCoW)
format would be established. This would give us requirements for the system which would be
prioritized according to the MoSCoW importance ladder

Techniques of Requirement
Elicitation

Direct
/Indirect Qualitative/Quantitative data Communication Understanding

the domain

Classic/Traditional Techniques Interviews Direct Qualitative Data
and Quantitative Data

Single-directional with the
exception of interviews Yes

Surveys Indirect Qualitative Data
and Quantitative Data

Single-directional with the
exception of interviews Yes

Questionnaires Indirect Quantitative Data Single-directional with the
exception of interviews Yes

Cognitive /Analytical Techniques Card sorting Indirect Quantitative Data Single- and Twodirectional Yes

Laddering Indirect Qualitative Data
and Quantitative Data Single- and Twodirectional Yes

Repertory Grids Indirect Qualitative Data
and Quantitative Data Single- and Twodirectional Yes

Modern and Group
Elicitation Techniques Brain Storming Direct Qualitative Data Twodirectional Yes

JAD Direct Qualitative Data Twodirectional No
Prototyping Direct Qualitative Data Twodirectional No

Social Analysis Ethnography Direct Qualitative Data Single- and Twodirectional Yes
Direct Observation Direct Qualitative Data Single- and Twodirectional Yes
Passive Observation Indirect Qualitative Data Single- and Twodirectional Yes

Table 1.1: Evaluation of Requirement Elicitation Technique according to Abbasi[14]

SQ3 asks to review available techniques, and discuss their advantages and disadvantages.
From the process in SQ1, a number of techniques will arise, which can be discussed and
compared. Lastly, their documentation can be consulted to discuss (without a proper
prototype) how the solution would meet the requirements or not.

SQ4 asks for a solution design. From SQ2 and SQ3 a solution direction is already presented,
by a ’best solution’ to solve the problem, and the requirements that the solution needs to
fullfill. However, an additional component is needed, being a reference architecture of the
current situation. This will be discussed based on literature and interviews. Combining these
three components gives enough information to perform a gap analysis, and design a target
architecture.

Next, SQ5 asks whether the solution has fulfilled the requirements and the objective of
this research. This needs to happen in six steps. Firstly, the requirements of SQ2 are validated
with a prototype. Secondly, the models from SQ4 are validated with the help of experts for
validity. Next, it needs to be proven the flexibility and portability has increased. This will be
done by comparing situations in the old scenario with situations in the new situation. Lastly,
two cost components need to be verified. Firstly, the overhead cost need to be discussed to
determine how it compares to a current situation. Then, the dynamic component needs to
be verified. Combining the overhead and dynamic compontent gives us proof if the solution
reduces cost. Lastly, in Subsection 7.3.1 the validity of the research itself is validated. For this,
we use the Design-Science Research Guidelines of Hevner[15]. Hevner defines seven guidelines
for a valid design research as can be found in Table 1.2:

Lastly, in SQ6 the solution is generalized. Different XaaS solutions might benefit from
the architecture, and this is discussed.



1.5. REPORT STRUCTURE 9

Guidelines Description
Guideline 1: Design as artifact Design-science research must produce a viable

artifact in the form of a construct, a model,
a method, or an instantiation

Guideline 2: Problem relevance The objective of design-science research is to
develop technology-based solutions to important
and relevant business problems

Guideline 3: Design evaluation The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well-executed evaluation methods

Guideline 4: Research contributions Effective design-science research must provide a
clear an verifiable contribution in the areas
of the design artifact, design foundations
and/or design methodologies.

Guideline 5: Research rigor Design-science research relies upon the application
of rigorous methods in both the construction and
evaluation of the design artifact

Guideline 6: Design as a
search process

The search for an effective artifact requires utilizing
available means to reach desired
ends while satisfying laws in the problem environment.

Guideline 7: Communication
of research

Design-science research must be presented effectively
both to technology-oriented as well as
management-oriented audiences.

Table 1.2: Design Science Research Guidelines according to Hevner[15]

1.5 Report structure
This report is structured as follows:

• Chapter 1 introduces the problem and defines the questions which need to be answered
to solve the problem. The research design is also described.

• Chapter 2 will provide the information required for the rest of the report in terms of
virtualization, as-a-service deployments (SaaS, PaaS, iPaaS), and container orchestration
solutions.

• Chapter 3 will define requirements of the solution.
• Chapter 4 discusses available techniques including their strong and weak sides, and how

they would fit in the solution design or not.
• Chapter 5 will discuss how the solution can be designed.
• Chapter 6 will discuss the validity of the design by reflecting to the functional- and

non-functional requirements. This includes a cost analysis.
• Chapter 7 will draw a conclusion. Future work and a generalization will also be discussed.

1.6 Assumptions
Assumptions used during the research will be discussed in this section.

Firstly, we need to assume the size of the business to make accurate estimations of cost
and available resources like available working hours. For this research, we assume the business
which wants to adopt the solution to be small-sized, meaning less than 50 employees and less
than €10 million turnover. Furthermore, this document is written based on documentation



1.7. ABOUT EMAGIZ 10

and versions currently available. Future version might work differently. Lastly, this report
uses euro’s instead of USD. We take the exchange rate at the moment of writing of 1 Euro =
1.10 USD. All figures presented will be in euro’s.

1.7 About eMagiz
To validate the solution proposed, an iPaaS provider was contacted. eMagiz is based out of the
Netherlands and has between 10 and 50 employees. The company has an online portal where
customers can design integrations in five different steps: Capture, Design, Create, Deploy and
Manage. First, the company is introduced, and the general workings of the platform, after
which the solution is validated.

eMagiz[16] was founded in 2011 and shares the same building and owner as CAPE
Groep[17]. eMagiz operates from Enschede, near the University of Twente, and develops
a similarly named platform that is a low-code, enterprise integration platform as a service
(iPaaS). eMagiz aired its online, cloud-based platform, around 2013, but it has been building
its integrations long before that. They continued building integrations, which lead to an
Enterprise Service Bus (ESB) solution. Later, in 2020, it launched two other integration
patterns; API Gateway and Event Streaming. It provides an online environment to set up
data integrations, which can be self-managed and are cloud-hosted.

In the next sections, relevant background information to understand the assignments
during the internship is explained.

1.7.1 Platform overview

In this section, the design process for customers in eMagiz is explained. The readers should
note that not everything is elaborated on here because it is not needed for the rest of the
report. Only important principles, which are needed to understand the design choices, are
described.

Capture Phase

Customers of eMagiz purchase a full-stack web-based integration platform. In this platform,
a web interface is offered to design integrations. Firstly, one starts in the capture phase
where the customer designs the systems involved and the messages that flow to the different
applications. Here, the user also provides information on whether these messages should be
handled by an ESB, the API Gateway, or by Event Streaming (ES). A small example is given
in Figure 1.4. For typical customers, the number of systems and messages will be many times
bigger. Notable is that all different message types are displayed without integration type
(Gateway, ESB or Streaming) here. This will be defined in the next section, the Design Phase.

Design Phase

In the design phase, the focus is on designing how the messages are formatted and how the
messages are transformed. How this is done, depends on the receiving and sending systems,
and is for the customers to design. Using the portal (web interface), customers can define
messages (as can be seen in Figure 1.5) for the receiving and sending systems, and define a
mapping between them (see Figure 1.6).



1.7. ABOUT EMAGIZ 11

Figure 1.4: Example output of capture phase

Figure 1.5: Example of a message definition

Create Phase

In the Create Phase, the actual flow (instructions on how to process a message in detail,
including validation and transformations) is created. From the design phase, a basic flow
is generated, which validates the messages and transforms them (as defined in the design
phase). However, much more customization might be desirable. For example, one side could
be sending XML messages, while the other end receives JSON. Or, one needs to fetch data
from another source to successfully transform the data. eMagiz has made many of these
wanted customizations available. An example flow is illustrated in Figure 1.7. When satisfied
with the integration, one can define Unit Tests to validate the result of the integration.

Figure 1.6: Example mapping from CDM to message definition



1.7. ABOUT EMAGIZ 12

Figure 1.7: Example of basic API-Gateway flow generated by eMagiz

Deploy Phase

In the Deploy Phase, a release is created. This release is a collection of releases of integrations
(such as the one in Figure 1.7). When the release is ready, it can go through several Test-,
Acceptance-, Production- (TAP)environments. When Production is reached, the integration
is deployed in the cloud. This process is fully automated. After a short while, the integration
is deployed and ready to receive messages.

Manage Phase

In the Manage Phase, the customer can review the performance of his integrations. Log- and
error messages are visible, as well as the current status of the flows and exceptions happening
in the flows. Customers can also set alerts if wanted.



Chapter 2

Background

In this chapter the literature review will be summarized containing the most relevant in-
formation required for the research. Firstly, some basic concepts required which need to
be at hand for the rest of the report are explained, like virtualization and containerization,
Software-as-a-service (SaaS) and iPaaS. Later, we will dive into more detailed concepts like
Kubernetes.

2.1 Virtualization
Virtualizing is the process of adopting cloud providers to host virtual machines and using those
machines to run certain software. Using virtualized servers over physical hardware has many
benefits, including the low CAPEX cost (initial investment cost) due to the pay-as-you-go
models most providers use, the ability to quickly scale up or down, use different operating
systems, and to break down large applications into smaller applications. This last benefit
prevents monolithic software, which can become large, complex, and full of unsolvable technical
debt[18]. Breaking these applications into smaller microservices prevents this. These smaller
microservices can then be deployed on a virtual machine. Typically, these machines can adjust
better to the resources needed by the microservices.

To go into more detail about virtualization, we first need to know what containerization is.
Containerization is usually confused with virtualization, but there are some fundamental

changes. As virtualization talks about the infrastructure to deploy software on, containerization
focuses more on the software to deploy. Since these microservices are usually deployed in
virtualized environments, the context of the server can vary from OS to available resources.
A containerized application or service is configured in such a way that all required libraries,
binaries, and configuration files are present (or can be made present) in the container.
Therefore, deploying containers becomes independent of the environment it is running in.
This allows users to deploy their containers on all kinds of machines.

A container can exist in two states, running (as a container) and stopped (as an image or
configuration file). When a container is stopped, it is a flat-file better known as the Container
Image. The container image is like a blueprint how the running container should look like. To
start a container, a runtime engine is needed that translates the flat Container Image into a
running service. Many examples exist, like Docker, Container Runtime Interface for the Open
Container Initiative (CRI-O), Linux containers (LXC) and Rocket (RKT). These engines
prepare mount points for file storage, pull required images, and handles (user) requests, either
through the command line or automated.

Now that we have a definition for containerization, we can come back to the more high-level
concept of virtualization. Different types of virtualization exist, including: VM , Virtual

13



2.1. VIRTUALIZATION 14

Container (VC), containers within VM, lightweight VMs and Unikernals. VMs are virtual
machines with a hypervisor managing all the virtual machines running under it, including
storage, network, and computing resources. These VMs are completely isolated from each
other and have a high level of security. On the other side, the cost for management of
VMs is high and takes long to instantiate. VC are smaller, cost fewer resources and time
to instantiate, but are less secure and are less scalable. This difference is due to VCs not
having dedicated bare metal resources, but sharing them with other containers[5]. Usually,
however, this problem of shared resources is easier to solve than the startup time of VMs and
the required bare metal resources.

Containers within VMs combine the positive aspects of both. Containers running inside
VMs have high isolation due to the nature of the VMs (only containers of one tenant can run
in one VM), while still having fast instantiate timers due to the nature of containers[5].

Lightweight VMs are similar to containers within VMs, but have an customized kernel,
specifically designed for fast bootup. These kernels usually don’t have legacy support and
bootloaders. Specializing even more and removing all unncessesary resources is referred to as
Unikernels. These kernels are specifically compiled for one specific task. These Unikernels are
very fast, but lack customization.

All five options are interesting for different applications. For example, VMs are interesting
for running servers due to their high level of isolation and flexibility. VCs are usefull when
instantiation time and resource utilization is more important, but security isn’t the greatest
interest. Containers in VMs are interesting for hosting multi-tenant environments with many
different containers. Lightweight VMs and unikernels are interesting for applications with
very little variation in the tasks they perform. This is summarized in Table 2.1.

Advantage Disadvantage

VMs Isolation, Security at system level Increased cost and time for
instantiation, migration

VCs
Lightweight, smaller footprint,

less cost and time to instantiate.
Isolation at the application level

Less secure, low networking
bandwidth and scalability,
performance interference

Containers
inside VMs

Increased Isolation, security at
both system and application level.

Minimal Migration time and latency

Increased time to instantiate
and boot

Lightweight
VMs

Highly kernel dependent,
less boot time

Single purpose applications
alone served better

Unikernels
High Isolation, security,

smallest footprint, portability and ,
interoperability, less power consumption

Single user,
Single application bound

Table 2.1: Advantages of different virtualization strategies[19]

Virtualization solves most problems that arise with SaaS projects, like scalability, data
integration, unified data access, and hosting flexibility[20]. Using virtualization, instances of
the software solution can be easily deployed, scaled up or down, and maintained.

In the next sections, different as-a-service concepts will be explained. SaaS is the most strict
service type allowing no customization, Platform-as-a-service (PaaS) allows to deployment of
custom software, and Infrastructure-as-a-service (IaaS) allows for custom OS and middleware
(see Figure 2.1). iPaaS is a combination of IaaS and PaaS solutions, offering an interface for
defining integrations over the IaaS layer or over the PaaS layer, depending on the solution.



2.2. SAAS 15

Figure 2.1: SaaS vs PaaS vs IaaS

2.2 SaaS
Since the rise of SaaS platforms around the dot com explosion in 2001, SaaS solutions have
become an unmissable piece of technology in many different enterprises. Gibson states that
"Software-as-a-Service gives subscribed or pay-per-use users access to software or services that
reside in the cloud and not on the user’s device"[21]. Thus, SaaS solutions are applications that
you don’t have to install. Rather, they are accessible through the internet. National Institute
of Standards and Technology (NIST)[22], the National Institute of Standards and Technology
of the United States, defined SaaS as "The capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The applications are accessible
from various client devices through either a thin client interface, such as a web browser (e.g.,
web-based email), or a program interface. The consumer does not manage or control the
underlying cloud infrastructure including network, servers, operating systems, storage, or even
individual application capabilities, with the possible exception of limited user-specific application
configuration settings."[23]. The most prominent benefit of adopting SaaS solution is the
decrease of cost since it is low on initial cost, software, hardware, and staff[21]. The target
audience for SaaS solutions is end-users. These users can access the application through a web
interface. Together with the birth of SaaS solutions, many solutions relying on virtualization
have also been introduced. This includes PaaS, IaaS and Desktop-as-a-service (DaaS)[24].
Another solution is the iPaaS.

2.3 PaaS
In contradiction to SaaS solutions, PaaS solutions don’t offer any specific software application.
Instead, the platform can be used to deploy applications on. For example, developers can
use PaaS solutions to deploy their custom software on to test or release it. PaaS solutions,
therefore, offer the hardware, some software, and some middleware for developers to use.
SaaS solutions can be deployed and run on these PaaS solutions. NIST[22] defines a PaaS



2.4. IAAS 16

solution as: "The capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages, libraries,
services, and tools supported by the provider. The consumer does not manage or control
the underlying cloud infrastructure including network, servers, operating systems, or storage,
but has control over the deployed applications and possibly configuration settings for the
application-hosting environment"[25]. When abstracting even further, and omitting even more
pre-installed components, IaaS solution offers infrastructure without for example databases
and an OS. The next section will elaborate more on IaaS solutions.

2.4 IaaS
In contradiction to PaaS, IaaS does not offer much out of the box solutions. Typically, the
physical layer (bare metal), the networking, and the firewall are present, but customers can
install their own OS and tools on the infrastructure. Typical applications of IaaS solutions
are the deployment of entire clusters of containers.

NIST[22] defines IaaS as: "The capability provided to the consumer is to provision pro-
cessing, storage, networks, and other fundamental computing resources where the consumer
can deploy and run arbitrary software, which can include operating systems and applications.
The consumer does not manage or control the underlying cloud infrastructure but has control
over operating systems, storage, deployed applications, and possibly limited control of select
networking components (e.g., host firewalls)[26]."

Similarly to PaaS solutions, iPaaS solution offer the hardware and software needed. iPaaS,
however, focus more on defining integrations than general SaaS solutions, and have more
specific software installed than PaaS solutions. The next section will elaborate more on iPaaS
solutions.

2.5 iPaaS
According to Serrano (2014), an iPaaS "is a suite of cloud services that enable users to
create, manage, and govern integration flows connecting a wide range of applications or data
sources without installing or managing any hardware or middleware."[27]. Adopting an iPaaS
solution is therefore interesting when many different services must be integrated, to manage
all integrations centrally and not have to worry about hardware or middleware. NIST does
not provide a definition for iPaaS.

Potocnik describes several characteristics and requirements of iPaaS solutions[28] as can
be found in Table 2.2.

Taking into account the responsibilities, there are four main components an iPaaS should
contain according to Ring and Ebert[29][30] as can be found in Table 2.3

2.6 Container Management
Container Management is "a set of practices that govern and maintain containerization
software. Container management tools automate the creation, deployment, destruction, and
scaling of application or systems containers."[31].

Container Management tools have a few parts in common, for example, orchestrator,
resource monitor, scheduler, discovery service, state storage, and overlay network.[32]

Very often, the orchestrator already contains other parts of container management, like
the scheduler and the state storage. Therefore, we will describe all aspects under the container
orchestrator.



2.7. CONTAINER ORCHESTRATOR 17

Characteristic Description

Data integrity and security Data should be complete and consistent,
and be transported securely.

Data transformation
and migration

iPaaS should allow for transformations between
different data types and formats.

Connectivity iPaaS solutions should allow connectivity using
standardized connection patterns.

Governance and
management

iPaaS solutions must have mechanisms in place to
govern data and integrations.

Orchestration
Automatic configuration and management of

applications. For iPaaS this is important for deploying
solutions for applications.

Monitoring iPaaS solutions should offer insight into the performance
of the integrations.

Table 2.2: Characteristics of iPaaS solutions according to Potocnik[28]

Responsibility Description

Integration processes Specify the logic of how and when data are exchanged
between applications.

Data mappings Data mappings between the attributes of source and destination
data objects.

Pre-built adapters Pre-built adapters to connect to different types
of applications.

Supporting elements Functionalities to support the development
of components 1–3.

Table 2.3: Responsibilities of iPaaS solutions according to Potocnik[28]

2.7 Container Orchestrator
Redhat describes container orchestration as: "Container orchestration automates the deploy-
ment, management, scaling, and networking of containers".[33] This means that container
orchestration should take care of scaling up and down in terms of resources and replications,
handle internal networking, deployment strategies. Khan describes seven capabilities of
container orchestration platforms[6] (see Table 2.4).

Khan also gives examples of such platforms[6]

• Kubernetes
• Amazon’s Elastic Container Service
• Mesosphere
• Docker Swarm
• Microsoft Azure (providing Kubernetes, Swarm and Mesosphere)
• Rancher OS
• Nomad

Rodriguez[34] has defined a reference architecture for container orchestration (see Figure
2.2). In this figure, Jobs are applications submitted by users. These jobs consist of tasks
which are usually independent and homogeneous. Resource requirements are requirements
in terms of Central Processing Unit (CPU) and memory they require to execute the job.
Quality-of-Service (QOS) requirement defined fault-tolerances, time constraints and priorities



2.8. EXAMPLES OF IPAAS SOLUTIONS 18

Cluster state management
and scheduling

- Flexible scheduling of tasks across the cluster
and supporting maintenance activities and provides
the control mechanisms for algorithms.
- Reliable state management and repartitioning
of data or resources across the cluster
- Informing dependent systems of changes so they
can react appropriately to cluster changes
- Throttling system task and changes

Providing high availability
and fault tolerance

- Elimination of single points of failure by adding
redundancy to the system
- Reliable crossover from system A to system B
when neccesary
- Failure detection

Ensure security -
Simplifying networking -
Enabling service discovery -
Making continuous
deployment possible

-

Providing monitoring and
governance

- For infrastructure like VMs
- For containers

Table 2.4: Capabilities of container orchestration platforms[6]

for example.
The Cluster Manager Master consists of eight components. The Resource Monitor tracks

the resource usage of each worker and component. Additionally, the Accounting component
keeps track of metrics relevant to the owner of the cluster, like the number of jobs and energy
consumption. The Admission control is responsible for measuring two metrics, i) whether the
resource quota requested by jobs is being fulfilled, and ii) whether there are enough resources
available in the cluster. The Task Scheduler maps tasks onto cluster resources. It does this by
taking into account available resources and requirements of the task, and its priority. The
Task Relocator can also be seen as a scheduler, which reschedules if anything happens, like
a dying container, lack of resources, or excessive use of resources. The Task Launcher is
responsible for starting a task on a specific worker based on the input of the scheduler or
relocator. Lastly, the Resource Provisioner adds new workers either automatically or manually
by an administrator.

For the Compute Cluster, each worker has a worker agent responsible for all worker
processes like collecting metrics and starting containers. The Container is the host of the
actual service and can be of various types.

2.8 Examples of iPaaS solutions
Many iPaaS solutions exist, all focussing on different aspects of the solution or different
industries. Mulesoft is one of the leaders according to Gartner[35]. It offers extensive data
integration tooling and API management. Their built-in CI/CD solution and integration
testing make testing and deploying integrations low effort. Additionally, customers can
choose to deploy locally or in the cloud offered by Mulesoft. Another iPaaS solution is
Boomi[36], which focuses more on low-code development and uses AI to help the developer
with Smart Data Mapping. Workato[37] is an iPaaS platform focusing on the amount of



2.8. EXAMPLES OF IPAAS SOLUTIONS 19

Figure 2.2: Reference architecture Container Orchestration according to Rodrigues[34]



2.8. EXAMPLES OF IPAAS SOLUTIONS 20

prebuilt adapters. Workato has over a thousand prebuilt adapters, which customers can click
together in their low-/no-code platform. Workato focuses on improving business processes by
allowing integration with many accounting- and sales tools. Pricing plans are focused on large
enterprises. Jitterbit[38] focuses more on the middle large customers. It also offers a low-/no-
code platform. Jitterbit offers "a mix of cloud-based application, data, and process-integration
capabilities offered at reasonable subscription charges"[39]. Other platforms include IBM[40],
Snaplogic[41]



Chapter 3

Requirements

In this chapter, the requirements of the system will be defined. First, we will analyze the
current situation by consulting literature and experts in the field.

Three interviewees agreed to help define requirements. Firstly, a team lead working for an
iPaaS provider. Secondly, a Chief Technical Officer (CTO) at an iPaaS Provider, and lastly a
Software Delivery Manager at an iPaaS Provider.

Firstly, the requirements are summarized, after which the requirements will be elaborated
in more detail. The reader is made aware that requirements will be quantified and be made
measurable in Section 3.4.

3.1 Functional requirements
Functional requirements are defined for the target solution to determine whether the so-
lution solves the problems identified. The requirements are separated into four categories;
Isolation- and Security requirements, Pricing requirements, Organizational requirements, and
Responsibility requirements.

3.1.1 Isolation and Security Requirements

iPaaS solutions usually facilitate multiple customers. These customers buy an iPaaS solution
with the understanding their solution will simply work. If they mess up, their integration can
be affected, but for others to mess up should not interfere with the workings of their solutions.
This raises the requirement that Customers must not be able to decrease the performance of
other customers. With the assumption or agreement of no disruption, most iPaaS solutions
also want to isolate and obfuscate references to other customers, even if they are not accessible.
From here, the requirement Customers must not be able to identify other customers on the
solution is formulated.

As for security, there are also some requirements. Secure Sockets Layer (SSL) was initially
made for clients to secure against man-in-the-middle attacks[42]. This is done by verifying the
certificates of the server by the client. for iPaaS solution, it is as important to trust the client
as the client trusting the server, and thus instead of SSL, Two-Way SSL is recommended, and
thus Industry-standard security must be allowed, like two-way SSL and currently acceptable
encryption solutions.

On the other hand, iPaaS solutions are often used to connect legacy systems[27]. Since
iPaaS solutions connect such legacy systems, iPaaS solutions should be able to handle older
policies, to not lose support for these systems. How far a solution should go with this
requirement is dependent on future and current customers and thus since the solution is
typically middleware, also older standards should be allowed up to a certain degree.

21



3.1. FUNCTIONAL REQUIREMENTS 22

Standard in the industry is to have three lanes for a solution, Testing, Acceptance, and
Production. Production should be as stable as possible with no to nearly no downtime.
Acceptance is an exact replica of production to test a future deployment on production but
does not handle the workload of production. Testlane is a lane that is, as the name suggests,
for testing purposes. This can, depending on the policy of the iPaaS Solution, include load
testing, where the goal is to understand how much load a system can take. To not stress the
Production environment, this usually happens on Testing or Acceptance lanes. Therefore, it
would be ideal to have Testing and Acceptance on different clusters. If not possible, these load
tests must not interfere with the working of the cluster.

Lastly, most likely the solution will contain some clustering strategy. This is a common
discussion in all fields like the energy supply field[43], the Electrical Engineering field[44]
but also the in the field being discussed now. Clustering strategy contains tradeoffs when
choosing more workers per cluster or more clusters for the number of nodes[45]. This itself is
worth researching further. However, the interviewees mentioned that the number of individual
clusters should be low to reduce cost and have a multi-tenancy solution, and thus in terms of
nodes per cluster ratio, the number of clusters should be low. (Multi-tenant).

3.1.2 Pricing and Organizational Requirements

Setting a budget for a proposed solution helps determine what components can be in and
which are not possible due to budget pressure. However, interviewees have mentioned that
the initial setup is expected to cost quite a substantial amount due to the complexity of the
process. For this, the interviewees suggested working with an estimated cost for a solution
instead of working with a budget. For the OPEX, it should be close or lower to the current
OPEX cost. For the entire solution, an estimation of the solution cost must be made.

Interviewees mentioned that for their businesses, there was no need for a ’pay as you go’
model, where billing is done based on the exact (virtual) hardware usage. Instead, they work
with packets, where a customer buys the solution, and with that buys a certain amount of
hardware. Therefore, Metrics like Memory (Random Access Memory (RAM)) and CPU
usage can be available.

As mentioned in Section 1.2, the adoption of cloud solutions including container orchestra-
tion can introduce vendor lockin. Most providers (like Azure, Amazon Web Services (AWS),
and Google) provide solutions that introduce (partially) vendor lock-in. Interviewees men-
tioned that the current dependency on one cloud provider is not desired and thus vendor
lock-in should decrease vendor dependency/lock-in

Lastly, the solution must be able to scale, but this does not have to happen automatically.

3.1.3 Responsibility requirements

To determine which party is responsible, requirements are defined. Firstly, as mentioned in
Pricing and Organization Requirements, customers work with packets. This means customers
can use the totality of the packet and is responsible for scaling up and down within the packet.
These packets have been determined together with consultants and thus should offer sufficient
capacity. However, if an increase of packets is required, this should be done by the iPaaS
provider.

iPaaS solutions provide some type of interface to handle deployments of solutions. Wherever
these solutions will be hosted (public/private/hybrid cloud or on-premise), the portal should
be leading. This means that if a customer has access to their solution in the portal, they
should also have access to the web environment. (This does not mean they can change the
environment, but users which are set to have access in the portal should be able to access
parts of the solution in the cloud as well).



3.2. NON-FUNCTIONAL REQUIREMENTS 23

3.1.4 Summary of functional requirements

Isolation and Security

: • Customers must not be able to identify other customers and access their data on the
solution (IS1).

• Customers must not be able to decrease the performance of other customers (IS2).
• Lanes (Testing & Acceptance, Production) should run on different clusters. At least

Testing & Acceptance performance must not interfere with Production performance
(IS3).

• Industry-standard security must be allowed, like two-way SSL and currently acceptable
encryption solutions (IS4).

• Older standards should be allowed up to a certain degree (IS5).
• In terms of nodes per cluster ratio, the number of clusters should be low. (Multi-tenant)

(IS6).

Pricing

: • An estimation of the solution cost must be made (P1).
• Operational costs should be similar or lower than the current OPEX costs (P2).
• The billing strategy is based on a packet, and not on CPU or Memory usage, so these

metrics can be available (P3).

Organizational

: • Deployment of the solutions should decrease vendor dependency (O1).
• Horizontal scaling must be possible, but does not have to happen automatically (O2).

Responsibility

: • Increasing packet sizes and thus maximum available resources are up for the iPaaS
provider (R1).

• Initial setup can be complicated and can require specialized personnel, but day-to-day
activities must be executable for non-experts of the software (R2).

• The iPaaS solution is the source of truth, and thus all settings must be configured in
the portal and the cluster must act upon pushed from the portal (R3).

• The iPaaS solution is responsible for user credentials, but customers must be able to
access their deployments with these credentials where ever the solution is hosted (R4).

3.2 Non-functional requirements
Other than functional requirements, several non-functional requirements were applicable.
These have mostly to do with disaster recovery, maintenance, cost, and performances .

3.2.1 Disaster recovery

Disaster recovery is important to define requirements about since, in Subsection 1.2.1, little
downtime as possible, and no loss of data is described as one of the goals of both the customer
and the iPaaS provider. These requirements define how much risk is mitigated or accepted.
For this aspect, we look at the load balancers and the workers.

Load Balancer (LB)s are required to enable access to the solution. LBs are a gatekeeper to
the entire solution. Therefore, these load balancers should be Highly Available (HA). When



3.2. NON-FUNCTIONAL REQUIREMENTS 24

one LB fails, another should take over. We assume here the major cloud providers have
reasonable Service Level Agreement (SLA), and thus define the time when a load balancer
fails, it should take no more than the time equal to cloud provider standards. For workers, the
same applies. When one worker fails, another should take over. However, since this is not the
gatekeeper of the solution, but rather one of the many workers, the severity of the failing node
is less worrying. Since health probes need to expire, containers need to be torn down and spun
up again, the maximum time for workers to be replaced should be 180 seconds. Furthermore,
underlying cloud environmental components could fail. This could cause containers to crash
and thus lose data. Guaranteeing zero loss of data is not reasonable, and thus we use the
same availability as cloud providers use. Therefore, a worker must not lose more than 0.05%
of its messages. Lastly, a for the master plane of the cluster. Again, this value is set to the
cloud standards. Therefore, the availability of the master plain must be equal to or more than
99.95%.

3.2.2 Cost

Concerning changes in cost, certain requirements are determined. This is to ensure the solution
will not be significantly more expensive than desired. Three states are defined: idle, where the
cluster is not ready to accept messages, but costs are made due to buying in certain aspects
of the solution, unused, where there is no workload but the cluster can start working, and
running.

• At an idle state, the cluster may at most cost 400 Euro (C1)
• At an unused state, the cluster may at most cost 600 Euro (C2)
• The increase of cost per customer (including cluster overhead) may at most be 5 % of

the old situation (C3)

3.2.3 Maintenance

Except for the cost of the solution, maintenance costs should also be taken into account. This
can, for example, be updating the cluster about security or performance or checking alerts
from the solution.

We define two different types of maintenance, day-to-day, and expert maintenance. Day-
to-day maintenance is maintenance performed by any developer, who does not need to have
specific knowledge. This includes checking cluster health, handling alerts, and monetization.
Expert maintenance is maintenance performed by someone with specific skills, like updating
the framework version or managing worker-/node groups. As defined in Section 1.6, we assume
a small company with less than 50 employees. Therefore, available time for additional tasks is
low. We assume that Day-to-day cluster maintenance should take at most 8 hours per month
and Expert cluster maintenance should take at most 8 hours per month

3.2.4 Performance

Lastly, non-functional requirements for performance are defined. This is with regards to
processing speed. This is defined based on the time for the cluster to adapt to change requests.
When a chance in replication is requested, this change should take at most 180 seconds. This
number is based on requirement DR2.



3.3. DEPENDENCIES BETWEEN REQUIREMENTS 25

3.2.5 Summary of non-functional requirements

Disaster recovery

• When a load balancer fails, it should take at most the amount of seconds in line with
cloud providers’ SLAs before load balancing is continued (DR1).

• When a worker fails, it may take at most 180 seconds before containers are available
again (DR2)

• When a worker fails, it may lose at most 0.05% of messages(DR3)
• The availability of the cluster should be at least 99.95% (DR4)

Cost

• At an idle state, the cluster may at most cost 400 Euro (C1)
• At an unused state, the cluster may at most cost 600 Euro (C2)
• The increase of cost per customer (including cluster overhead) may at most be 5 % of

the old situation (C3)

Maintenance

• Day-to-day cluster maintenance should take at most 8 hours per month (M1)
• Expert cluster maintenance should take at most 8 hours per month (M2)

Performance

• When a change in replication is requested, it should take at most 180 seconds (Pe1)

3.3 Dependencies between requirements
Between the requirements there exist dependencies. For example, the requirement to not be
able to identify other customers connected to the cloud solution (IS1) is in contradiction (or
at least conflicts with) the requirement to have a low number of cluster to nodes ratio (IS6).
This is because having a cluster per customer would solve IS1, but cannot be executed because
of IS6. All dependencies are given in Table 3.1 and 3.2, and Figure 3.1. The table and figure
show that some conflicting requirements are in place. In the design phase, these requirements
must be weighed when choosing an available option. There are also dependencies between the
non-functional requirements within the disaster recovery section.

Additionally, we see that most of the requirements influence the cost, as expected. However,
since any function might increase cost, these dependencies have been omitted in the figures.
Apart from this dependency, there are no dependencies between functional and non-functional
requirements.

Relation
Requirement IS1 IS2 IS3 IS4 IS5 IS6 P1 P2

Conflicting IS6 IS6 IS6, R2 IS5 IS4 IS1,IS2,IS3
Strengthening IS3, R1 P2 P3

P3 O1 O2 R1 R2 R3 R4
Conflicting R2 R2 IS2,O2,R1

Strengthening IS2 R4 R3

Table 3.1: Dependencies between requirements



3.4. MEASURABILITY OF THE REQUIREMENTS 26

Relation
Requirement DR1 DR2 DR3 DR4 C1

Conflicting
Strengthening DR4 DR3 DR2 DR1

C2 C3 M1 M2 Pe1
Conflicting

Strengthening

Table 3.2: Dependencies between requirements

Functional

R4

R3

R2

R1

O2

O1

P3

P2

P1

IS6

IS5

IS4

IS2

IS3

IS1

Non-functional

DR4

DR3

DR2

DR1

Figure 3.1: Dependencies between requirements.

3.4 Measurability of the requirements
To determine whether the solution has fulfilled the requirements specified, a method of assessing
the requirements must be defined. Most will be trivial, but some require a specification of
how the values should be measured. Requirements that require no measure definition (like
IS1, which is fulfilled if no method of finding other customers can be found) are not described
in this section.

The term performance is used in IS2, IS3 and Pe1. Performance is defined as the average
execution time of a request. This includes overhead. For this comparison, an equal amount of
Virtual CPU (vCPU) and RAM should be allocatable for the request. This means that the
server should not be pressured and thus be able to deliver less performance. Furthermore,
the limitations set on the containers performing the request should be equal. Thus, both
situations should be equally capped or have unlimited (at least excess) resources.

IS5 mentions a a certain degree of older standards should be allowed. This requirement
is impossible to fully define. However, what is meant here, is that there should be options
to allow older standards, which are not recommended anymore. For example, CloudFlare
published 11.36% of the websites are using Transport Layer Security (TLS)v1, while TLSv1.3
is out already[46]. Knowing iPaaS solutions act as middleware for legacy systems, standards
like TLSv1 should be supported. Which standards should be allowed is impossible to define



3.5. RELATION TO THE BUSINESS MOTIVATION 27

due to the many standards present in terms of encryption, security tokens, and more.
IS6 defines the number of nodes per cluster should be low. This means that a multi-

tenant solution should exist where multiple customers should be able to work on the same
cluster. However, no value was defined for this requirement. For this requirement, the business
perspective to add a new cluster should be the reason to start a new cluster, not the limitations
of the cluster.

P2 requires comparison of current and future OPEX cost. For this, we use the hypothetical
case of 10 customers in the old situation with an average usage comparable to the existing
situation. The total OPEX cost is compared to the OPEX cost in the new situation. The
reason to use 10 customers is to share the possible bigger overhead cost across more customers
and have a more realistic estimation. Due to the nature of container orchestration (sharing
resources and thus reducing OPEX cost), we can assume more customers mean that the
OPEX cost of the new solution will only decrease more.

O1 mentions a decrease in vendor dependency. This can be achieved in two ways. Either
the solution can be run across multiple hosts (e.g. a master plain with AWS, and workers with
Azure), or the option to port the full solution on multiple cloud providers. E.g. running the
solution on AWS and Azure requires minimal changes. For the non-functional requirements,
DR2 mentions an amount of time before containers are available again. This can be tested
by tearing down a container manually and recording the time it takes for the cluster to
start a new container. This includes the time to detect a container stopped working, using a
reasonable liveliness check according to the specification of the solution.

Furthermore, DR3 mentions a loss of messages. We define these as messages which are
impossible to reproduce. For example, some messages might be stored on queues and since no
response was given by the worker, a retry is executed. These are not lost messages. However,
when messages cannot be reproduced, these are lost packages.

3.5 Relation to the business motivation
In section 1.2, the problem statement and the motivation view have been described. To show
that the requirements directly contribute to the goals identified, this section will describe the
relations.

In Figure 1.2, a motivational view was already created. In this chapter, requirements
were defined. These can be combined to show the relevance of the requirements. Figure 3.2
shows the relations between the requirements and the motivational elements. Some will be
elaborated on below. However, elaborating all of them would be most trivial or would add
little value to the reader.

P2 defines that current OPEX cost should be lower or similar to the current OPEX cost.
This can be directly related to the goal of the iPaaS provider to reduce cost. This then
contributes to the profitability driver of the iPaaS provider.

O1 defines the requirement that vendor dependency should decrease. Decreasing vendor
dependency also reduces the vendor lock-in goal. The requirements define that the solution
should be able to run on multiple cloud providers, and thus the solution can be ported to
different vendors.

One of the main cost drivers of businesses without container orchestration is the wasted
resources. Usually, VMs are bought but not fully utilized. On the other hand, when more
computing resources are needed, this requires manual intervention. O2 therefore defines this
manual intervention should not be necessary, and therefore contributes to the goal of flexible
scaling, but also contributes to the goal of being able to give more resources in times where a
peak in processing power is required.



3.5. RELATION TO THE BUSINESS MOTIVATION 28

In terms of isolation, IS1 prevent customers to detect each other, and IS2 prevent
customers from influencing each other. These two requirements contribute to the goal to
provide isolated environments.

Lastly, R3 and R4 define the portal should be the source of truth both for credentials of
the customer as for the infrastructure, independent where the solution is deployed. These two
requirements thus relate directly to the goal of a central place to manage the integrations.



29

3.5. RELATION TO THE BUSINESS MOTIVATION

iPaaS
provider

Profitability
DeliverNto
customer
demands

Customers

CentralNplace
toNmanage

these
integration

ReduceNthe
numberNof
integration

Expose
systemsNto

receive
messages
fromNother

systems

Give
integrations

more
bandwidth

duringNpeak
time

NoNfailuresNin
system

HaveNan
overviewNof
integration

FlexibilityNin
scalingNup
andNdown

Prevent
vendorNlockin

BeingNableNto
adoptNfuture
technologies

Increase
maturityNlevel

BeNfuture
proof

ReduceNthe
costNper

integration

ReduceNcost
ofNintegration

Profitability
Interoperabil

ity

Integrate
systems

ReduceNcost
Increase
revenue

CostNof
running

unscalable
containersNis

high

Cloud
adoption
increases

vendorNlockM
inNrisks

Provide
isolated

environment
s

Provide
latest

innovations

P2

O1

O2 IS1 IS2 R3 R4

IS3 IS6

IS5IS4P3P1

R2 R1

DR4DR3DR2DR1
C1 C2C3

M1 M2

Pe1

Deliver
robustNand

reliable
software

BeingNableNto
integrateNall
systemsNas
requestedNby

users

Integrate
legacy
systems

Figure 3.2: Requirements and motivation view combined



Chapter 4

Container Orchestration Solutions

In this chapter, possible container orchestration solutions are discussed, what their benefits
and disadvantages are, and how they relate to the requirements. This chapter will regard
Kubernetes, Docker Swarm, Spring Boot Skipper, and Apache Mesos (and related).

4.1 Kubernetes
In this section, we describe how Kubernetes works and what requirements it has.

Kubernetes, or K8s (omitting 8 letters between the K and s), is an open-source system for
automating deployment, scaling, and management of containerized applications[47]. Kuber-
netes consists of different components with their own task. To discuss the components, we
need to discuss some concepts and naming conventions.

4.1.1 Kubernetes Components

When deploying Kubernetes, a (Kubernetes) cluster is created. This cluster is the entirety of
all components working together. Within the cluster, at least one worker should be present.
This is usually one server or VM. In Kubernetes, one such worker is called a node. Within a
node, multiple pods can be run. Pods are representations of (multiple) running containers.
Next to worker nodes, one or more master nodes, also known as control-plane, is present. The
master plane manages the worker nodes; it starts new workers if needed, and can be spread
over multiple nodes for high availability. Within the master plane, multiple components are
present:

• API Server: The API Server is the cluster gateway. This is the entry point for
communicating with the cluster, like deploying new services. The API Server also acts
as a gatekeeper by verifying authentication.

• Scheduler: After validating the request by the API Server, the scheduler schedules a
process on a specific worker node based on certain factors like resources available. Note
that the scheduler only decides which worker the process will be placed. The actual
spinning up is done by a different process.

• Controller manager: Detects cluster state changes, like crashes or failures. It will try
to reschedule a new pod if needed by making a request to the scheduler.

• etcd: Also referred to as the cluster brain. It is a key-value store of the state of the
cluster, holding information like cluster health and available resources. Note that no
application data is stored here.

Usually, when the cluster is deployed on the cloud, master nodes are managed by the
cloud provider. This means they aren’t viewed as separate nodes but as part of the cluster

30



4.1. KUBERNETES 31

settings. Additionally, to master nodes, worker nodes exist. Within the worker nodes, multiple
components are present:

• Kubelet: Runs the actual pods inside a node.
• Kube proxy: Network proxy which to handle requests from the API Server.
• Container runtime: Software responsible for running the container. These runtimes

should be CRI (Container Runtime Interface) compliant. Examples are CRI-O[48],
RKTlet[49] and frakti[50].

As for communication, Kube Control (kubectl) is a command-line tool to interact with
the cluster. Using kubectl you can communicate with the API Server. Other than kubectl,
graphical interfaces and direct API connections are possible. However, kubectl is the most
powerful.

MasterUNode

Scheduler

APIUController

Controller
manager

etcd

WorkerUNode

Kubelet

KubeUproxy
Container
Runtime

Pod

Pod

WorkerUNode

Kubelet

KubeUproxy
Container
Runtime

Pod

Pod

WorkerUNode

Kubelet

KubeUproxy
Container
Runtime

Pod

Pod

MasterUNode

Scheduler

APIUController

Controller
manager

etcd

User

kubectl

Figure 4.1: Kubernetes componenets

Everything mentioned so far is required to set up a cluster. The next objects explained
are optional to configure the cluster to ones liking. The objects are split between Workload
Objects, Service Objects, Config- and Storage Objects, and Cluster Objects

The following Objects are a subset of available Workload Objects:
• Pod: As mentioned before, pods are the equivalent of a (set of) running container(s).
• Deployments: Even though pods are the actual running containers in Kubernetes

terms, users will not directly interact with pods. Deployments are the blueprint of how
a pod should look like and is the way of creating pods for users. Deployments require
container images to set up the container of the pods.

• ReplicaSet: To manage the replicas required from the deployment, there is another
layer between a deployment and a pod, called a ReplicaSet. A ReplicaSet starts the
required number of pods defined in the deployment. Users will usually not touch replica
sets.

• StatefulSet: Persistent storage is handled by volumes, but having replication has
consequences for stateful storage. For that, StatefulSets are created, which are API
objects used to manage stateful storage. StatefulSets are also meant for stateful
applications and are similar to deployments.

• DaemonSets: DaemonSets are sets that deploy pods to every node. Examples of uses
for daemon sets are network services or log services that should exist on every node.
The network Domain Name System (DNS) is such a service that lives in DaemonSets.

• Jobs and CronJobs: Jobs are short-living pieces of executable code running once or
scheduled. One example could be to run a single unit test. CronJobs run repeatedly on
a predefined interval.



4.1. KUBERNETES 32

• Taint: Taints are labels to determine what objects can be scheduled on what infrastruc-
ture. For example, a NodeGroup can contain a taint to only allow pods with the same
toleration to be scheduled on the node.

• Toleration: Tolerations are labels to determine how to handle taints. Tolerations could
contain information to allow certain services to be scheduled on tainted nodes.

The following Objects are a subset of available Service Objects:

• Service: Every time a pod starts, it gets assigned a new internal IP address. This will
start causing problems when a pod restarts, for example when a connection is hardcoded.
Therefore, you can attach a service to a pod. A service has a permanent IP address and
lives separate from the pod. This means if the pod dies and restarts, the service will
connect to the pod again and stay the same. There are four types of services.

– ClusterIP: Exposes the service on the internal network on a specific cluster IP.
Default for services.

– NodePort: Exposes the service externally on http(s)://<NodeIP>:<NodePort>.
Users can choose on what Node the request lands.

– LoadBalancer : Exposes the service externally on a load balancer. The load balancer
redirects requests to nodes.

– ExternalName: Exposes the service externally on a CNAME record. Proxies need to
be created manually.

• Ingress: Instead of Internet Protocol (IP) addresses, usually Uniform Resource Locator
(URL)s are in a human-readable format. To translate the URL to IPs, an Ingress can
be configured. Ingress are definitions (configs) of how to forward the human-readable
URL to IP addresses or service. Additionally, an Ingress controller will then handle
the forwarding to the service from the readable URL to an IP or service by collecting
all Ingresses and deciding how to forward these messages. Ingress Controllers can be set
up as third-party plugins.

The following Objects are a subset of available Config and Storage- Objects:

• ConfigMap: A ConfigMap is a set of key-value pairs of configuration settings. Note
that this is stored in plain and thus should not contain sensitive information.

• Secret: Essentially the same as ConfigMap, but made to store secret information.
• Volume: Kubernetes does not handle resource allocation for storage. Instead, volumes

should be added to Kubernetes for pods to store data. Volumes are non-persistant.
• PersistantVolume: Unlike Volumes, PerstistentVolume (PV) survive reboot by living

separated from pods. A PV is Volume that is added to the cluster by administrators for
pods to use either statically, or dynamic by the cloud provider based on StorageClasses.
These PVs can be claimed and released.

• PersistantVolumeClaim: PerstistentVolumeClaim (PVC)s are the method for pods
to request a piece of the PV. A PVC can requests different types of storage and thus
define request properties, like an amount, access type, and StorageClass.

• StorageClass: Storage classes are methods to dynamically provision PVs. Depending
on the setup, cloud providers usually offer different types of storage classes.

The following Objects are a subset of available Cluster Objects:

• Namespace: Kubernetes allows separation of resources (deployments, services) based
on namespaces. This allows for multi-team or multi-tenant setups. Note that not
all components are namespaced. For example, Nodes and PersistantVolumes are not
namespaced.



4.1. KUBERNETES 33

• (Cluster) role: Roles are additive permissions for certain resources (get, watch,
list, create, delete, patch, update). Cluster roles are the same, except they are not
namespaced.

• (Cluster) role binding: Role binding binds certain roles to users, groups, or service
accounts. Identically to Cluster Role, Cluster Role Binding is not namespaced.

• Node: As mentioned before, a node is a machine (bare metal or VM) that is either a
worker or master node.

• Service account: While users have (something similar to) user accounts, services have
service accounts to grant permissions to certain resources.

4.1.2 Kubernetes Requirements

Installing Kubernetes on a production environment involves several steps and requirements.
To set up a cluster, one must install some kind of deployment tools kubeadm or kops. Which
one is best depends on the type of deployment that is desired. Kops for example also creates
the underlying VMs and servers on AWS, while Kubeadm assumes the infrastructure is in
place.

Kubernetes has the following requirements for its nodes:

• A compatible Linux host.
• 2 GB or more RAM per host.
• 2 CPU cores or more per host.
• Network connectivity between all nodes.
• Unique hostname, Media Access Control (MAC) address, and product Universally

Unique Identifier (UUID) for every node.
• Certain ports must be open.
• Swap must be disabled (To be changed in future versions >1.22).

For a minimal setup, one master node is required.
The required ports (Transmission Control Protocol (TCP) and User Datagram Protocol

(UDP)) can be found in table 4.1.

Master/Worker TCP/UDP/Both Port number Direction
Master TCP Inbound 2379-2380
Master TCP Inbound 6443
Master TCP Inbound 10250
Master TCP Inbound 10257
Master TCP Inbound 10259
Worker TCP Inbound 10250
Worker TCP Inbound 30000-32767

Table 4.1: Required ports by Kubernetes

Additionally, Kubernetes has some boundaries of what a cluster can handle as listed below.
More clusters can be created to overcome this problem:

• No more than 110 pods per node
• No more than 5000 nodes
• No more than 150000 total pods
• No more than 300000 total containers



4.1. KUBERNETES 34

Additionally, one of the requirements of Kubernetes is to have a network plugin installed
to handle more complex networking operations like IP Filtering, traffic monitoring, etc.
Kubernetes allows third-party plugins to be installed. These plugins should adhere to the
Container Network Interface (CNI). These plugins might require additional port specifications.
A (partial) list of third-party plugins is provided here[51].

Lastly, the cgroup driver[52] is used to determine available resources. Kubernetes (kubelet
specifically) uses systemd by default. Other tools (like Docker) should maintain the same
cgroup driver to prevent overestimating resources. Switching cgroup drivers late in the process
has shown to be problematic[53].

So far, production environments have been discussed. In addition, several tools exist for
development deployments. Minikube[54] spawns a single container in docker and deploys a
single node on the Minikube cluster. Minkube is especially useful for development purposes
since it is lightweight and comes with the ability to set up an entire cluster with a single
command. Kind[55] is similar to Minikube but allows for multiple nodes in form of docker
containers.

4.1.3 Kubernetes Cloud Providers

The above configurations focus on on-premise solutions. However, many solutions exist from
cloud providers. Examples are:

• (Amazon) Elastic Cloud Kubernetes (EKS) from Amazon[56]
• Google Kubernetes Engine (GKE) from Google[57]
• Azure Kubernetes Service (AKS) from Azure, Microsoft[58]
• OpenShift from RedHat[59]

These Kubernetes-as-a-service providers allow for easier management of the cluster instead
of having to manage the cluster yourself. These providers usually have an interface or
command-line tool to automate the creation of clusters. For example, EKS can be configured
using the AWS portal. Additionally, eksctl from Weaveworks[60] can be used to configure
AWS EKS taking some configuration tasks away from the developer.

Due to the scope of the research, we cannot dive into the performance factors of all
platforms available. However, Pereira has described the performance of three platforms, being
EKS, GKE and AKS[61][56][57][58]. Therefore, we consider these three platforms as possible
options for hosting K8s clusters.

Performance

Pereira describes that for network-intensive applications, GKE has the best performance. For
CPU-intensive containerized applications, AWS has the best performance. For a general-
purpose solution, no comparison exists, due to the many different options possible. These
options are heavily dependent on the goals of the solution. The results are based on comparable
Intel Xeon E5-267x CPUs and 8GiB of RAM.

Cost

As for the cost of the clusters, the three platforms offer similar prices. EKS offers a price
of $0.10 for each cluster per hour. Additionally, (Amazon) Elastic Compute Cloud (EC2)
instances can be added to the cluster as workers. A full list of instances is available here[62].
Which type fits best is dependent on the type of workload. Note that additional sources, such
as storage, load balancing, etc. might be required.



4.2. DOCKER SWARM 35

Req Yes/No Explaination
IS1 Yes By using RBAC to disable list operations for sensitive resources
IS2 Yes Using resource limits for pods or quotas for namespaces
IS3 Yes Setting up a different cluster is possible,

but by separating lanes with namespaces, quotas should be sufficient
IS4 Yes Nginx Ingress can handle Client Certificate Authentication .

Nginx is widely used for handling Hypertext Transfer Protocol (HTTP) requests in the industry already.
IS5 Yes Nginx Ingress has (disabled) functionalities to support older standards
IS6 Yes Kubernetes can scale up to 5000 nodes per cluster
P1 ? Not possible to determine at this point
P2 ? Not possible to determine at this point
P3 Yes Many solutions exist like Prometheus
O1 Perhaps This depends on the implementation of the cluster, but is possible
O2 Yes Horizontal scaling is possible
R1 Yes Using quotas for namespaces an administrator can set boundries.

Pods scale outmatically within this boundry
R2 Perhaps Depending on the set-up most can be automated
R3 Yes Using the YAML config files an administrator can manage the entire cluster
R4 Yes Using YAML files, one can create a user on the cluster

Table 4.2: Fulfilment of requirements of Kubernetes

For GKE, the same base price applies of $0.10 for each cluster per hour. Additionally, the
price for workers needs to be added on top of this and additional resources. Information can
be found here[63].

Other than GKE and EKS, AKS does not ask for a cluster management fee, and only
asks for additional costs for the VMs and additional resources. Prices can be found in the
Azure pricing calculator[64].

Limitations

Many limitations exist when adopting one of these providers. For example, EKS natively
adopts the Amazon Virtual Private Cloud (VPC) Container Network Interface (CNI). This
CNI cannot be used outside of the Amazon VPC. Amazon claims to have close relations
with four partner products, Calico, Cilium, Weave Net, and Antrea. Amazon suggests taking
support when these other CNIs are used.

GKE on the other hand does not use CNI plugins and uses default kubenet. Azure offers
the Azure CNI and kubenet.

4.1.4 Satisfaction of the requirement

The requirements defined in Chapter 3 are reflected upon to see if Kubernetes could fulfill
them. The results are in Table 4.2. In this table, we see almost all requirements can be
met, with the exception of O1 and R2 . These depend on the implementation of the solution,
meaning that there exist options to fulfill the requirement, but might not be possible due to
the implementation. Additionally, P1 and P2are not discussed, since these require a solution
before a cost estimate can be given.

4.2 Docker Swarm
Docker Swarm is, similar to Kubernetes, a container orchestration software. It is managed
by Docker. It can automate deployment, manage to scale, and apply self-healing. In terms
of architecture, it is similar to Kubernetes. It uses master and worker nodes to define the
hierarchy between nodes and the separation of responsibility.



4.3. SPRING CLOUD SKIPPER 36

4.2.1 Requirements

Installing Docker Swarm introduces some requirements to the setup. The following require-
ments need to be met. The required ports required can be found in Table 4.3:

• A compatible Windows, Linux or Mac host with Docker installed (Docker Desktop or
the packages docker-ce, docker-ce-cli and containerd.io)

• Network connectivity between all nodes
• Certain ports must be open
• Absolut minimum of 512MB RAM, 2GB recommended
• Optional: If desired to create an overlay network with encryption, IP Protocol 50

(Encapsulating Security Protocol (ESP)) should be enabled.

Master/Worker TCP/UDP/Both Port number Direction
Master & Worker TCP Both 2377
Master & Worker Both Both 7946
Master & Worker UDP Both 4789

Table 4.3: Required ports by Docker Swarm

4.2.2 Docker Swarm Cloud Providers

Unlike Kubernetes, Cloud providers do not advertise with a Docker Swarm service. Since the
setup of Docker is very autonomous and has all required components out of the box, deploying
it on bare VMs is not unusual. Docker has compatibility with all major cloud vendors in
their Command-line Interface (CLI) (command-line interface), which creates containers on
the cloud platform.

4.2.3 Cost

Docker Swarm comes with docker and is free of charge. Three main charges apply additionally,
which are the cost of the servers to run the Docker (master/worker) nodes, the optional use of
Docker Trusted Registry for storage of images for on-premise solutions, and Universal Control
Pane for managing nodes in on-premise situations. The nodes are usually ran on EC2 like
instances, of which the prices can be found here[64][63][65].

4.2.4 Satisfaction of the requirement

The requirements defined in Chapter 3 are reflected upon to see if Docker Swarm could fulfill
them. The results are in Table 4.4. In this table, we see that IS1 and IS2 cannot be fullfilled.
This since Docker Swarm does not support multi-tenancy. For this reason, we see R1 and R4
are also not supported. As for O2 , this is not supported, since auto scaling is not possible.

4.3 Spring Cloud Skipper
Spring Cloud Skipper (Skipper) is an initiative of Spring (by VMWare). It originated from
Spring Cloud Data Flow but was migrated to a separate tool. The goal of Skipper is to
provide an abstraction layer between Spring Boot applications and Cloud Providers. Skipper
can communicate with a local environment (for development or on-premise solutions), with
Cloud Foundry (CF) (a PaaS solution for entire application stacks), or with Kubernetes.



4.3. SPRING CLOUD SKIPPER 37

Req Yes/No Explaination
IS1 No Docker Swarm does not provide the tools to setup multi tenancy
IS2 No Since no multi-tenancy exist, there is no viable way of isolating customers
IS3 Yes Setting up a different cluster is possible,

but by separating lanes with dedicated nodes is possible. Questionalble is
if this is desired

IS4 Yes Security (like Two-Way SSL is enabled and enforced by default
IS5 Sortof Older standards can be manually installed into containers,

but this is not desired
IS6 Yes Docker Swarm does not limit in terms of nodes per cluster.

Performance can decrease.
P1 ? Not possible to determine at this point
P2 ? Not possible to determine at this point
P3 Yes Many solutions exist like Prometheus
O1 Yes Any cloud platform can run Docker
O2 No Autoscaling does not exist in Docker. Additional efford is required.
R1 No Since no multi-tenancy exist, all customers can use all resources
R2 Yes Docker Swarm is really intuitive and low-effort
R3 Yes Docker YAML Ain’t Markup Language (YAML) files can change the cluster (Except R4)
R4 No Users do not exist in Docker

Table 4.4: Fulfillment of requirements of Docker Swarm

Since its initial release in 2018, its adoption hasn’t really grown and does not involve a large
community backing its progress. For example, only 57 questions are tagged with Skipper
and 27 with spring-cloud-skipper on StackOverflow.

This also shows in the low amount of documentation and example present in sources.
Mainly the websites of spring.io[66] contain limited documentation. For example, the process
of deploying applications using Skipper is not documented in how it mutates the cloud
environment.

4.3.1 Spring Cloud Skipper Requirements

Skipper itself is a Spring Boot application. It requires Java and some tool to store the state.
The list of available databases is provided here[67]. Next to that, a working environment is
needed, like Cloud Foundry or Kubernetes.

• Java ≥ 8 installed
• Connection to a running environment (like CF or Kubernetes)
• Some database to store the state

4.3.2 Cost

The cost of Skipper itself is free since the entire solution is open source and requires no
licensing, except the hosting cost of Skipper. The cost of hosting Skipper is difficult to
estimate since Skipper does not mention system requirements. However, since Skipper only
deploys Spring applications to other environments, we can assume the service is minimal.
Initial testing shows usage of less than 500MB memory. However, the environment connected
to Skipper is not free. For these costs, we refer to the sections already described (Section
4.1.3).



4.4. APACHE MESOS 38

4.3.3 Activity of Skipper

Little documentation is found of Skipper, and thus the activity of Skipper is researched.
Scholar yielded two relevant results[68][69] since 2020 (one year after initial release) with the
key "Spring Cloud Skipper". IEEE returned no results, similar to Scopus. More unscientific
sources returned very little results as well. Youtube returned one video from 2019 about
Skipper, and searches for conferences, lectures, or presentations about Skipper yielded no
result.

4.3.4 Conclusion

Spring Cloud Skipper does not have the active community or documentation the author is
looking for. Even though not explicitly mentioned in the requirements, the solution is meant
to be durable for many years to come. Skipper had some activity in 2019, but lost all its
momentum and does therefore not satisfy the requirement to be a valid solution for the
problem. Although it is part of a bigger application stack called Spring Cloud Data Flow[70],
the problem Data Flow solves is too broad and does not focus on the scope of this research.

4.4 Apache Mesos
The paper of Truyen[71] mentions Apache Mesos and two additions to the core product,
Marathon and Aurora. Apache Mesos abstracts the individual resources of nodes to a single
pool of resources. Marathon was designed to provide endpoints for starting, stopping and
scaling jobs using Mesos. Aurora was made to allow for running long-living jobs and Command
Run On (CRON) jobs. Both are interesting when looking at the capabilities they offer as
described by Truyen. However, Aurora has been discontinued, and Marathon has been
practically dead ever since the open-source Mesos has been integrated into Distributed Cloud
Operating System (DC/OS). The open-source variant is not maintained anymore.

Unfortunately, DC/OS has since then also announced to drop support and will no longer
be maintaining the solution.

4.5 Comparison
From the literature, few Container Orchestration (CO) solutions were discussed. Furthermore,
many of these smaller solutions seem to have disappeared under the pressure of Docker and
Kubernetes. Kubernetes and Docker both fulfill some of the requirements that were set,
but not all under all conditions. The fulfillment of the requirements has been discussed for
Kubernetes and Docker Swarm in subsections 4.1.2 and 4.2.4 respectively. In table 4.5 these
are shown side to side. In this comparison, we see that Kubernetes fulfills the requirements
best, while Docker Swarm is unable to fulfill at least five of the requirements. From this, we
decide to use Kubernetes as technology to facilitate the solution design.



4.5. COMPARISON 39

Req Kubernetes Docker Swarm
IS1

√
×

IS2
√

×
IS3

√ √

IS4
√ √

IS5
√

≈
IS6

√ √

P1
P2
P3

√ √

O1 ≈
√

O2
√

×
R1

√
×

R2 ≈
√

R3
√ √

R4
√

×
Total 11

√
, 0 ×, 2 ≈ 7

√
, 5 ×, 1 ≈

Table 4.5: Fulfillment of requirements of different treatments



Chapter 5

Solution Design

In this chapter, a model of the baseline architecture and processes will be described. The
models are discussed in Section 5.1. Next, in Section 5.2, all previously gained information
(like requirements, available techniques, and baseline architecture and processes) is combined
to derive a reference architecture to solve the problem at hand. Then, a gap analysis is
performed to determine what steps need to be taken to move from the baseline architecture to
the target architecture in Section 5.3. Additionally, instructions will be given to achieve the
architecture in the three major cloud hosts, Google Cloud, Microsoft Azure, and AWS. These
setups will also be discussed in Section 5.5. This chapter uses the stardards as described by
the ArchiMate® 3.1 Specification[72] as framework for how to design the models.

5.1 Baseline Architecture
In this section, the baseline reference architecture for an iPaaS will be derived. Only parts
relevant to the research question will be discussed.

For this section, it is assumed that all cloud hosts offer the same functionality, which is
later verified in Chapter 6. Additionally, we assume all iPaaS providers have their solutions
currently hosted at either Azure, AWS, or Google Cloud.

Firstly, the business processes for customers are discussed. Next, the cloud architecture is
discussed. This means, when an integration is designed, it should be receiving, transforming,
and redirecting messages (or relevant actions). These integrations can both be run on-premise
or in the cloud. For now, we omit the possibility of on-premise solutions, since these can
be very different depending on the requirements, while most cloud providers offer similar
services, making the architecture more generic. Lastly, the deployment process is described.
An overview of the entire baseline architecture will also be given.

5.1.1 Customer’s business processes

For customers of the iPaaS solution need for a new integration might arise. This can have
various reasons, explained in subsection 1.2.2. When this happens, a developer is required
to design the integration. For this, the developer defines the system requirement of the
systems which need to be integrated. Based on these requirements, the requirements for the
integration are defined. The developer designs the integration in the iPaaS platform conform
the requirements. To ensure the integration works as required, tests (unit-, regression-, load
tests, and more) can be defined. When these tests succeed, the integration can be deployed.
the iPaaS platform ’activates’ the integration (see subsection 5.1.3). From here, the integration
is active and needs to be monitored to ensure the performance is as expected. The developer
could define alerts to act on unexpected events, like increased message load or degraded

40



5.1. BASELINE ARCHITECTURE 41

integration performance. With traditional deployments as described in subsection 1.2.2, acting
on an increased message load is difficult, since scaling is not automated or not possible at all.
An overview of the business process is available in Figure 5.1

OrdersMtoMadd
functionalityMto

business
landscape

Determine
integration

requirements

NewMSystem
introducedMto

digital
landscape

IntegrateMnewMsystemMTDev,

Define
what

systemsMit
requiresMto
integrate

with

Define
integration
requireme

nts

Create
integration

Define
tests

IfMtestMfail

Deploy
integration

Incident

ManageMintegrationsMTOps,

ReactMto
incidents

Review
integration
performan

ce

Create
alertsMand
monitors

LimitMthe
dataMintake

AllowMtheMtriggeringMof
Give

integration
sMmore

bandwidth
during

peakMtime

FlexibilityMin
scalingMup
andMdown

CTO
System
architect

Developer

Customer

Integrate
systems

InMthisMfigure,Mred
elementsMareMnot
optimal

TheMprocess
doesMnot
support

scalingMup
whenMincidents

happening,
andMneitherMin
advanceMafter
monitors/alerts

areMcreated

AfterMdeployment,
theMintegration
canMreceiveMand
sendMmessages

Figure 5.1: Business process of integrating a system of an iPaaS customer

5.1.2 Baseline Cloud Architecture

When a deployment is activated, it is deployed on the cloud. The cloud should have a certain
architecture to serve the integration. For customers, this is a black-box principle; they do not
need to know how the cloud is designed. However, for this project, it is pertinent. Starting
from the entry of the cloud, there are different options for how such cloud architecture can
look, depending on the requirements. On the edge of the cloud, some endpoint should be
exposed to receive data on. This can be either a Fully Qualified Domain Name (FQDN) or
an IP address. Either a single endpoint or multiple endpoints (with or without DNS) can be
available. For example, a solution could have one endpoint receive.iops.com, and reroute
traffic based on the content of the message. On the other hand, a solution could have many
endpoints, e.g. customer1.iops.com with DNS routing. Both options are viable and depend
on requirements like isolation and security.

These entry points are most likely backed by a load-balancer. This load-balancer makes
sure the entry point redirects traffic to one or, more desirable, multiple processors. This
ensures all traffic is not loaded onto one single processor, but split into multiple processors,
to allow for more processing power. Once again, depending on the requirements, these load
balancers could be chained. This is useful when the solution is hosted in multiple cloud zones
(or regions). The first LB would redirect the message to the right zone, while the second LB
would redirect the message to the right processing instance.

As for security, it is possible the LB also needs to perform some actions here. When
the message has hit the LB, the message is in a ’secure’ environment, meaning the message
cannot be altered, and the routing can be fully managed by the iPaaS provider, some security
measures can be lifted here. One such example is SSL Termination. When a user visits
a website, it’s usually served over Hypertext Transfer Protocol Secure (HTTPS), meaning
the data is encrypted over SSL. Since the message is received, the authentication part of
the message can be dropped. This is called SSL Termination. However, depending on the
application behind the LB and security policies, it could be the SSL connection needs to
be maintained, and thus that the LB needs to keep the SSL connection. This is called SSL



5.1. BASELINE ARCHITECTURE 42

Pass-through, see Figure 5.2. SSL offloading introduces risks, (e.g. man-in-the-middle-attack),
and should be used with care. One can re-encrypt the message again (called SSL bridging),
but this introduces overhead due to encrypting and decrypting the message.

LB

SSL validationHTTPS

Encrypt
SSL Validation
and Security

checks

HTTPS

HTTP

Entry

Processing worker

Processing worker

HTTP

SLL Termination

HTTPS

SSL Pass-through

Customer

HTTPS

Processing worker
HTTPS

SSL Bridging

Figure 5.2: SSL Termination, Pass-through or Bridging in LBs, simplified

From here, the message can reach the right destination. To ensure isolation, customers
are often placed within their VPC. This ensures the isolation can be configured.

For iPaaS providers, providing logs and metrics to be available to customers allows
customers to evaluate their integrations and change them if needed. These logs and metrics
are collected from containers or runtimes and saved to a central storage site. Examples of
stacks which allow metrics to be stored and evaluated are Datadog[73], Prometheus[74] (for
scraping) plus Grafana[75] (for displaying), or ElasticSearch (for storing) and Kibana (for
displaying) from the Elastic stack[76]. Many more examples of solution stacks exist apart
from these three. For logs, Fluentbit[77], LogPoint[78] and Apache’s logging libraries[79] are
common choices. These metrics and logs are stored on some persistent storage, like Amazon
S3, or Azure NetApp Files. A general view can be found in image 5.3

5.1.3 Deployment process

In the last two subsections, the generic cloud setup and the business process is defined regarding
deploying and running the integration. Figure 5.1 describes a process Deploy Integration.
For customers, this could simply be a button, but in the software layer, processes are running
to deploy the configured integration to the cloud. When the customer hits the deploy button,
the configuration as defined in the platform is saved and packed with the required dependencies

Internet

CloudyHost

Traffic
routing

SSL
offloadingA DNSyResolver

FQDN

IP
Address

DNS

Image
Repository

Public
IP

Loadbancers
he.g.yzone,

regionalVHTTPhSV
AMQP

....

Persistant
storage

Shortylived
storage

CustomeryVPC

Application
Loadbalancer

Worker

WorkerHTTPhSV
AMQP

....

Figure 5.3: Message Flow within the cloud host



5.1. BASELINE ARCHITECTURE 43

Developer

Deploy(Integration

Cluster

Start(container
Receive

instructions(to
install(/(update

integration

Install(required
dependencies

Pull(new(image
from(repository

Run(setup

Integration(Platform

Prepare(Image

Pack(integration
into(image

Publish(image(to
(private)
repository

Send(instructions
to(VM

Deploy(integration Image(Repository
Releases(integration

(deploy)

Figure 5.4: Overview of the deploy process without autoscaling

(if any) into an image. Additionally, a configuration or start script is generated. This script
defines what the VM needs to do to run the image. The image is pushed to a (private)
repository, so it can be pulled from a central place to multiple destinations. The configuration
is uploaded to the VM. This configuration can have many different forms, depending on the
container runtime on the VM. This configuration defines where to download the image and
the steps required to run the image. With this configuration, the VM can start running as
expected. During this process, messages (like the command to upload the configuration),
should be running through the infrastructure according to Figure 5.3. The deployment process
is available in Figure 5.4

5.1.4 Overview Deployment Process

Combining the views from previous subsections, an overview can be made of the entire process
of deploying an application by the customer. An overview can be found in Figure 5.5. This
model is an aggregation of the previous models, where the top part (business layer) describes
the business process, the middle part describes the deployment process, and the bottom part
describes the cloud architecture.

5.1.5 Summary

To solve the problems at hand, a new architecture needs to be designed. This architecture
needs to fulfill the requirements in chapter 3, but also not change the current behavior. The
exception to this is the addition of the auto-scale functionality. To summarize:

• A DNS resolver should be available, which can redirect to a specific VPC or equivalent
of it.

• LBs should be in place both inside the customer VPC, and in front of customer VPCs.
• The LB in front of customer VPCs should be able to reroute traffic and to handle SSL

offloading.



5.1. BASELINE ARCHITECTURE 44

Deploy)Integration

Cluster

Receive
instructions
to)install)z

update
integration

Pull)new
image
from

repository

Install
required

dependenc
ies

Run)setup

Integration)Platform

Pack
integration
into)image

Publish
image)to
GprivateF
repository

Send
instructions

to)VM

CTO

New)System
introduced)to

digital
landscape

Integrate)new)system)GDevF

Define
what

systems)it
requires)to
integrate

with

Define
integration
requireme

nts

Create
integration

Define
tests

If)test)fail

Deploy
integration

Customer

Manage)integrations)GOpsF

React)to
incidents

Review
integration
performan

ce

Create
alerts)and
monitors

Limit)the
data)intake

System
architect

Orders)to)add
functionality)to

business
landscape

Developer

Incident

Determine
integration
requirement

s

Give
integration

s)more
bandwidth

during
peak)time

Flexibility)in
scaling)up
and)down

Integrate
systems

Allow)the)triggering)of

Internet

Cloud)Host

Persistant)storage

Short)lived
storage

Traffic
routing

SSL
offloadingA DNS)Resolver

FQDN

IP
Address

DNS

Image
Repository

Public
IP

Loadbancers
Ge.g.)zoneH

regionalFHTTPGSF
AMQP

....

Customer)VPC

Application
Loadbalancer

Worker

Worker

HTTPGSF
AMQP

....

ImageInstruction

In)this)figureH)red
elements)are
desiredH)but)not
present

The)process
does)not
support

scaling)up
when)incidents

happeningH
and)neither)in
advance)after
monitorszalerts

are)created

Figure 5.5: Overview of the deploy process with autoscaling



5.2. TARGET ARCHITECTURE 45

5T3T,

Internet

Instruction

DeploykIntegration

Cluster

Receive
instructions
tokinstallkL

update
integration

Pullknew
image
from

repository

Install
required

dependenc
ies

Runksetup

IntegrationkPlatform

Pack
integration
intokimage

Publish
imagekto
HprivateN
repository

Send
instructions

tokVM

Image

CloudkHost
Image

Repository

Public
IP5T3T5

A DNSkResolver

FQDN

IP
Address

DNS

5T3T6

Traffic
routing

Loadbancers
HeTgTkzoneA

regionalNHTTPHSN
AMQP

TTTT

5T3T5

SSL
offloading

5T3TW

CustomerkVPC

Application
Loadbalancer

Worker

Worker

5T3T6

Persistantkstorage

Shortklived
storage

HTTPHSN
AMQP

TTTT

Figure 5.6: Mapping of the baseline architecture to the chapters of Section 5.2

5.2 Target Architecture
In the previous sections, the baseline architecture and problems are described. This section
will describe how the target architecture should be to comply with the requirements defined
in Chapter 3. The acquired knowledge from Chapter 4 is used for this. This section is divided
into several subsections, each tackling a different part of the solution, to segregate the solution
into smaller parts. These parts include:

• Deployment Process: The desired way to communicate with the cluster.
• Master Plane: The configuration point of the Kubernetes cluster, with cluster-wide

configuration
• Worker Plane: The setup and configuration of workload processors
• Exposing Interface: The routing from the public IP to the right pods
• DNS and TLS: Securing and automating access for HTTPS.
• Metrics, Logs and Alerts: Observability of the cluster

In order to show how aspects of the target architecture are mapped onto the baseline
architecture, a overview is given in Figure 5.6.

5.2.1 Deployment Process

This subsection will describe how the cluster can be managed programmatically. For this,
the deployment process needs to be adapted. This section will discuss how Figure 5.5 can be
changed to be able to communicate with the Kubernetes Cluster API to make changes to the
cluster.

Firstly, it is required to describe how Kubernetes determines what actions to perform.
Kubernetes keeps track of the current state of the cluster. When a developer sends a new
update to the cluster (e.g. scale up a deployment), Kubernetes will compare the current
state and the desired state of the cluster. If these values do not match, Kubernetes will
determine the steps required to meet the desired state, and execute those. This means, that if



5.2. TARGET ARCHITECTURE 46

Developer

DeploykIntegration

ClusterStartkcontainer

Send
configurationkto

cluster

ReceivekHelm
instruction

Runksetup
Pullknewkimage
fromkrepository

IntegrationkPlatform

PreparekImage

SendkHelm
instructionskto

cluster

PublishkHelm
chartktokrepository

Publishkimagekto
(private)
repository

Packkintegration
intokimage

Deploykintegration ImagekRepositoryHelmkrepository

Orangekelements
areknewkor
changedkelements

Releaseskintegrationk(deploy)

Figure 5.7: New deployment process using Helm

a configuration is applied twice, Kubernetes will not perform any action, since the desired
state is equal to the current state.

When an integration is defined in the iPaaS portal, and the integration is released, similar
to the current situation, the integration is packed into an image and sent to the (private)
repository. However, instead of sending instructions to the VM, a helm[80] instruction is sent
to the cluster. Helm can be seen as a package manager for Kubernetes, similar to apt or yum
on Linux distributions. Using helm charts, developers can define templates for a deployment.
This template will be filled by a file containing variables. Kubernetes can then download the
image and its required dependencies, and configure its architecture as defined in the chart.
Other than Helm, there are no other viable package managers for Kubernetes. The adjusted
deployment process can be found in figure 5.7. This step ensured that communication with
the API server was possible and the use of helm charts was available. This contributes to
requirement M1 to ensure the deployment process takes (nearly) no time.

5.2.2 Master Plane

In this subsection, the master plane is discussed. In the baseline architecture, no such
component is present. The master plane is needed for the management of the cluster and the
enable the ability of container orchestration. In the cloud, the master plane mainly consists
of settings (like zonal or regional clusters, security principles, and scaling profiles).

Within all three cloud vendors, the master plane of the cluster is managed by the cloud
host. Most cloud hosts have two at least two flavors of clusters. For GKE, this is a normal
cluster or an autopilot cluster. In the normal cluster, the nodes need to be maintained, while
the autopilot configures nodes for you. This autopilot cluster’s pricing model is based on
the pods and their usage, while a normal cluster’s pricing model is based on the number of
clusters. Azure offers two flavors as well, the normal cluster and Azure Arc. Azure Arc lets
you connect other services to the Azure stack. However, this requires more maintenance, and
Microsoft does not offer guarantees about this. Taking portability into mind, the generic
cluster is the best option.

The master plane is the controlling instance in the cluster. Here, some settings are required
to enable or disable. Most cloud hosts offer similar settings, but some options might be



5.2. TARGET ARCHITECTURE 47

different. For example, GKE has an option to enable or disable network policies, while other
hosts enable this by default.

Many settings are up to iPaaS providers to decide, depending on their specific business
goals and SLAs. However, some settings should be considered for all iPaaS providers.

• IP Range Autorization: The API server of the cluster should be heavily protected.
Anyone having access to here could be a serious breach. Therefore, allowing access to
the API server from only a specific (range of) IP(s) should be considered.

• Maintenance window: Enabling automatic upgrades improves security. However,
this also disrupts services. When the master plane upgrades, no scaling can occur. To
prevent this from happening during primary times, a maintenance window should be
set.

• Autoscaling profile: When pods are running on nodes, sometimes moving pods from
one node to another might allow for deletion of one node. However, this can cause
disruption or the dropping of connections. Therefore, a business choice should be made
whether this is desired or no disruption is desired.

• Application layer secret encryption: On all hosts, storage layer encryption is
enabled. Another layer of security, application layer secret encryption, can increase the
security of secrets. However, this requires maintenance of the encryption key, increasing
the maintenance effort required.

Based on the general need, it is recommended to allow only IP ranges used by the cluster
administrators to be allowed or to set up a jumper pod. A jumper pod is a pod that developers
can access, allowing administrators to enable only traffic from within the cluster to be allowed.
For the Maintenance window, it is recommended to set to a time where the least scaling
occurs, and no additional workloads need to be scheduled. The autoscaling profile is up for
the business to decide, but given the objectives of this research, an economic setting will be
used. As for the application layer secret encryption, it is advised to enable this when enough
maintenance effort can be assigned to it.

This step ensured that a cluster exists (and possibly more can be created for other TAP-
environments). This ensured the completion of requirements IS3 and enabled options to solve
other requirements.

5.2.3 Worker Plane

This subsection discusses how worker planes are set up in the target architecture. This can be
compared to the Customer VPC (multiple of them) of Figure 5.3.

The worker plane consists of node pools and nodes. Node pools contain a collection of
nodes with certain specifications, like size and availability zone. Node groups can be configured
to scale up depending on the pressure on the node pool, and automatically start or tear down
nodes. When nodes are available, Kubernetes will automatically schedule pods and provide
required resources (like PVs) to run workloads.

An overview is included in Figure 5.8. This image will be explained more in the next
Subsection.

This step enabled setting up automatic scaling NodeGroups, contributing to O2. This
also contributes to M1, since no manual scaling is needed after this step. Lastly, the ability to
enable automatic healing was achieved. Automatic healing contributes to DR1 and DR2.

5.2.4 Exposing Interface

In this subsection, principles from the baseline architecture are translated to Kubernetes
principles regarding the internet-facing load balancer. This can be mapped to the DNS



5.2. TARGET ARCHITECTURE 48

Internet

Customer

Customer
Service

Application
LB

InfraHNodePool

InfraHNodes

IngressHControllerH(LB)

SSL
offloading/

passthrough

Traffic
routing

CloudHattached
LB

HTTP(S)

Ingress
Ingress

CustomerHNodePool

CustomerHNodes

CustomerHPod

Integration

CustomerHPod

Integration

Figure 5.8: Ingress controller as deployed in Kubernetes

Resolver and the first LoadBalancer in Figure 5.3.
Firstly, the internal DNS resolver principle in the baseline architecture can be exchanged

for an Ingress Controller in Kubernetes. Ingress Controllers forward traffic according to the
rules defined in the Ingresses. Kubernetes does not use a default Ingress Controller, but allows
for importing one of many available controllers, as listed here[81]. Ingresses allow setting
forwarding rules based on host, path, or port to specific services. Depending on the chosen
plugin, it could handle actions like SSL Offloading and Traffic routing. If we attach a Service
to the Ingress Controller, we can define it as a LoadBalancing service. When this is defined,
the cloud host will attach a Front Facing LB. This allows external access which can be HA
(if the amount of Ingress Controller pods in the replication is greater than one), and with the
forwarding rules as specified by the Ingresses. An overview can be found in Figure 5.8

This step contributes to IS1, because it ensured routing is enabled and authentication on
the routes can be applied. Furthermore, this step allowed to setup two-way SSL as defined in
IS4, and older standards can be allowed as per IS5.

5.2.5 DNS and TLS

In the previous Section, the forwarding strategy for internal traffic was discussed. In this
Subsection, the method of generation and validating the TLS certificates is discussed, equal
to the Traffic Routing and SSL Offloading functionality of Figure 5.3

For traffic to reach the cluster, an external DNS needs to be configured. This allows
nameservers to forward traffic from anywhere to reach the cluster. One option is to manually
set the DNS records according to needs. However, this requires additional effort, and is more
prone to errors, when IP addresses change. Instead, this section introduces a plugin called
external-dns[82]. External-DNS updates DNS records exposed by the cloud provider based
on the rules defined in the Ingresses. External-DNS is available for all major cloud vendors.
External-DNS will create Text records (TXT)-records to keep track of the DNS management.
Furthermore, it creates A-records pointing to the IngressController. This path is not secured
yet and will give warnings when accessed. For this, Cert-Manager can help. Cert-Manager can,
based on Ingress rules, solve certificate challenges (e.g. from LetsEncrypt) and install acquired
certificates automatically. This ensures websites are encrypted and secure automatically based
on ingress rules. One thing to note is that there are rate limits in place, which should be
taken into account. An overview can be found in figure 5.9

This step contributes to M1 and M2, since deploying a workload now automatically updates
the DNS records and generates TLS certificates, lowering the amount of manual labour needed.
This step also increased security by automatically providing encryption over the traffic.



5.2. TARGET ARCHITECTURE 49

InfraANodePool

InfraANodePool

InfraANodes

IngressAControllerARLBq

SSL
offloading/

passthrough

Traffic
routing

Kubernetes
Cluster

HAAMasterAPlane
RManagedAbyAcloudq

etcd

Ingress

Secrets

CustomerANodePool

CustomerANodes

ExternalADNS Cert-Manager
HTTP

ChallengerApod
Creates

Cloud
AttachedALB

StaticAIP

TLSASecret

DNS

DNSARecord LetsAEncrypt

RequestAand
receiveAchallenge

Perform
Challenge

Sign
Certificate

Figure 5.9: DNS auto update and TLS auto challenge



5.2. TARGET ARCHITECTURE 50

5.2.6 Metrics, Logs and Alerts

CustomerENodePool

CustomerENodes

CustomerEPod

Metric
exposer

IntegrationLog

CustomerEPod

Metric
exposer

IntegrationLog

Prometheus

Prometheus
exporter

ScrapeEover
HTTP

PodEmetrics

Push

KubeEState
Metrics

ClusterEmetrics

Daemonset

Prometheus
nodeEExporter

LogEreader
andEforwarder

NodeEmetrics

Persistance
LogsEstorage

Persistant
Metrics
storage

Visualization
solution

Customer

DifferentEcolor
linesEindicate
differentEtypeEof
metrics

Figure 5.10: Overview of architecture to collect and display logs
and metrics

Observability is important
when hosting cloud solu-
tions to be able to react to
events quickly or to get in-
sight into the performance
of the solutions. Impor-
tant aspects to achieve ob-
servability are Logs, Met-
rics and Alerting, Tracing,
and Visualization[83]. As
mentioned in 5.1.2, quite
a lot of stacks exist for
this. However, some are
more preferred than oth-
ers. Since Kubernetes
exposes metrics over an
HTTP endpoint, a pulling
(or scraping) solution to
get these metrics would
fit best with Kubernetes
architecture. When we
consider the budget as de-
fined in requirements C1,
C2 and C3, we prefer to
use free, open-source solu-
tions. Prometheus[74] is
perfect for this. It scrapes metrics from HTTP endpoints defined in its configuration and
stores it as a time series. However, Prometheus stores all data scraped, causing the storage
to quickly fill. Therefore, another storage should be present to store the aggregated and
more finely chosen metrics for long-term storage. Doing this also enables to set the retention
period of Prometheus to the desired value, so the storage used by Prometheus does not grow
substantially. Since Prometheus metrics are time series, the underlying storage should be
able to handle time series. However, which solution is used does not make a big difference.
Therefore, storage solutions should be similar to the solution currently adopted. However,
one requirement could be that there should be an exporter from Prometheus to the storage
solution (see [84]). As pods can expose metrics over HTTP, node- and cluster metrics should
also be available to ensure full observability over the cluster. For nodes, the Prometheus Node
exporter[85] could be used, to expose metrics about individual nodes and scrape them with
Prometheus. As for cluster metrics, Kube State Metrics [86] exposes these metrics. For logs,
visualization and traceability, one should again consider where the data is written to. This is
the main influence for what solution should be chosen and depends on the current application
stack. An overview can be found in figure 5.10

5.2.7 Overview Target Architecture

Combining all models from the previous subsection, a general architecture can be derived.
This can be found in figure 5.11. This figure is a combination of all models mentioned in
previous subsections. Since all aspects have been discussed before, this image is meant to
provide an overview of the solution architecture.



51

5.2. TARGET ARCHITECTURE

Internet

Kubernetes
Cluster

HABMasterBPlane
EManagedBbyBcloudD

etcd

Ingress

Secrets
Cluster
State

APIBServer

Scheduler

Customer
Service

Application
LB

NetworkBpolicy
basedBon

namespace

CustomerBNodePool

CustomerBNodes

CustomerBPod

Integra
tion

Metric
exposer Log

Metric

CustomerBPod

Integra
tion

Metric
exposer Log

Metric

Prometheus

Prometheus
exporter

Push

CertzManager

HTTP
ChallengerBpod

Creates

Kube
State

Metrics

VScrape

ExternalBDNS

Metric

KubeProxy

Container
Runtime

KubeCTL

AppliedBto

Change
cluster
setup

InfraBNodePool

InfraBNodes

IngressBControllerBELBD

SSLBoffloadingW
passthrough

TrafficBrouting

Autoscale
horizontal

Vertical
Autoscaler

Routing
rulesBand

TLS

Daemon
Set

CNI
LogBreader

andBforwarder

Prometheus
node

Exporter
Metric

Scrape

Customer

Execute
generated

helm

HelmBChart

PersistantBLog
Storage

Persistant
Metric
Storage

Dashboard
service

Create
Alert

View
Integration

state

HTTP
Message

DNS

Write
ABandBTXT
Records

Lets
Encrypt

Challenges

Sign
Certificate

Request
andBreceive
challenge

StaticBIP
Cloud

AttachedBLB

Receive
Message

DeveloperPortal

Figure 5.11: Overview of the target architecture



5.3. GAP ANALYSIS 52

Customer

ManageSintegrationsSFOpsQ

ReactSto
incidents

Review
integration
performan

ce

Create
alertsSand
monitors

LimitSthe
dataSintake

Developer

Incident

CloudSHost

ShortSlived
storage

Persistant
storage

CustomerSVPC

Worker

Worker
Application

Loadbalancer

Resource
pressure

Traffic
routing

SSL
offloadingA DNSSResolver

FQDN

IP
Address

DNS

Image
Repository

Public
IP

Loadbancers
FeGgGSzonez

regionalQHTTPFSQ
AMQP

GGGG

AllowStheStriggeringSof

InSthisSfigurezSred
elementsSare
desiredzSbutSnot
present

Give
integrations

moreSbandwidth
duringSpeak

time

FlexibilitySin
scalingSupSand

down

TheSprocess
doesSnot
support

scalingSup
whenSincidents

happeningz
andSneitherSin
advanceSafter
monitorsxalerts

areScreated

Figure 5.12: Situation without autoscaling

5.3 Gap Analysis
In this section, the baseline architecture and target architecture are analyzed to determine
what steps are required to achieve the architecture that satisfies the objective of the research.
An overview is given in figure 5.14.

5.3.1 Incident due to high load

Depending on the business processes, there could be a spike in required resources. This
can happen due to scheduled processes, like data replication, nightly processing (e.g. route
scheduling), or other events. During this time, it is possible the existing resources are not
sufficient, and resource pressure occurs. This can cause all kinds of problems, like loss of data
due to cleanup policies, timeouts on connections causing loss of data, and many more of these
types of events. This could be problematic for a customer and thus must be avoided. From
comparing Figures 5.12 and Figures 5.13, it is clear that due to the lack of the option to scale
up processors, only limiting the data intake is possible. Instead, it would be better to have
some auto-scaling features as illustrated in Figure 5.13. This feature can start new containers
when pressure is high or tear down containers when pressure is low.

5.3.2 Requires steps to perform

In the previous Subsection, the need for processor scaling was described. This is the main
gap that needs to be closed. To do so, intermediate steps are required.

• Firstly, there is a need to be able to communicate with the cluster. In the baseline
architecture, the ability exists to create images and upload them to VMs, and to control
the VMs. However, new integrations need to be developed. Communication with the
Cluster API needs to be created, to control the cluster. Additionally, helm operations
need to be configured. Helm is used to upload workloads to the cluster. This step is



5.3. GAP ANALYSIS 53

Customer

ManagebintegrationsbWOpsA

Reactbto
incidents

Review
integration
performan

ce

Create
alertsband
monitors

Create
scaling

properties

Limitbthe
databintake

Developer

Incident

Givebintegrations
morebbandwidth
duringbpeakbtime

Flexibilitybin
scalingbup
andbdown

CloudbHost

Shortblived
storage

Persistant
storage

CustomerbVPC

Worker

Worker
Application

Loadbalancer

Resource
pressure

Scalebup
the

processors

Traffic
routing

SSL
offloadingA DNSbResolver

FQDN

IP
Address

DNS

Image
Repository

Public
IP

Loadbancers
WezgzbzoneQ

regionalAHTTPWSA
AMQP

zzzz

Allowbthebtriggeringbof

InbthisbfigureQbbright
greenbelementsbare
solutionsbsolvingbred
elementsbinbprevious
models

Figure 5.13: Situation with autoscaling

Baseline
Architecture

Current
infrastructure

doesknot
supportkK8s

APIkcalls

Abilitykto
communicate

withkakK8s
Cluster

NokCluster
exists

AkClusterkis
createdkand

master
plane

configured

No
NodePools
andkNodes
existkinkthe

cluster

ThekCluster
has

workers
assigned

ThekCluster
cankreceive

insecure
messages

fromkthekweb

ThekCluster
cannotkreceive

andkhandle
incoming
messages

Deployment
processkneeds
tokbekupdated

)543462

Abilitykto
handlekcluster

APIkcalls

Abilityktokuse
helmkcharts

Createkmaster
planekwith

configuration
)543422

NodePoolskneedkto
bekcreatedkwithkthe
rightkprovisioning

)543432

NodePool)s2Clusterkand
MasterkPlane

IngressController ExternalSDNS
and

CertManager

Exposing
interface

needsktokbe
createdk)543442

TLSkandkDNS
needsktokbe
automated

)543452

Clusterkcan
exposeknew
endpoints

andkhandle
TLSktraffic

Secure
messages
cannotkbe

verified-kandknew
routerkareknot
automatically
addedktokthe

DNS

Logkand
Metric

storagekis
available

Therekiskno
placektokstore

logskand
metrics-kand
theykareknot

collected

SetupkLogkand
Messagesk)543462

Prometheus-
Persistantkstorage
forklogskandkmetrics

Figure 5.14: Overview of the gap analysis



5.4. INSTALLATION INSTRUCTIONS 54

important for the iPaaS provider to manage the workloads. This was elaborated in
Subsection 5.2.1. This contributes directly to requirement M1.

• Secondly, a cluster needs to be created and configured. This ensures a cluster exists
to perform the next deployment steps. This was elaborated in Subsection 5.2.2. This
contributes directly to requirement IS3.

• Thirdly, worker NodePools need to be configured. NodePools spin up Nodes, on which
customer integrations run. This was elaborated in Subsection 5.2.3. This contributes
directly to requirements O2, DR1, DR2, and M1.

• Fourthly, a mechanism to perform routing needs to be installed. This mechanism will
also allow receiving messages. This was elaborated in Subsection 5.2.4. This contributes
directly to requirements IS1, IS4, and IS5.

• Fifthly, the routing endpoints need to be published to the DNS server to allow routing
based on URLs. This also allows to automatically generated certificates and apply them
to endpoints. This ensures the connection is secured. This was elaborated in Subsection
5.2.5. This contributes directly to requirements O1, M1, and M2.

• Lastly, infrastructure for generating, scraping, and storing logs, metrics and alerts need
to be configured. After this step, the cluster is operational, and workloads can be
deployed to the cluster. This was elaborated in Subsection 5.2.6. This contributes
to no requirement directly but ensures the target architecture is capable of the same
functionality as the baseline architecture.

5.4 Installation instructions
To replicate the prototype setup as defined in the previous section, the steps as defined in the
gap analysis are required. This section will describe how the total solution can be configured
by giving intallation instructions for the target architecture. A basic setup is given, and
customizations are up to the reader to implement. To change the configurations, the values
file of the helm chart can be used. The specifics can be found in the repository of each
component. For this example, fluent-bit will be used as a log processor, ElasticSearch as log
storage, Kibana as log dashboard, Grafana as metric dashboard, Prometheus as a metric
scraper, and Nginx-ingress as IngressController.

1. Deploy a cluster with the cloud provider where you want the cluster to be run. Specific
documentation for GKE[87], AKS[88] and EKS[89] are available.

2. Access the cluster via the CLI of the cloud host
3. Add the required helm repositories:

helm repo add nginx-stable https://helm.nginx.com/stable &&
helm repo add prometheus-community

https://prometheus-community.github.io/helm-charts &&↪→

helm repo add jetstack https://charts.jetstack.io &&
helm repo add fluent https://fluent.github.io/helm-charts &&
helm repo add external-dns https://kubernetes-sigs.github.io/external-dns/ &&
helm repo add elastic https://helm.elastic.co &&
helm repo update

4. Deploy the Nginx Ingress Controller via helm by executing:
helm upgrade -f nginx-values.yaml --install ingress-nginx ingress-nginx \
--repo https://kubernetes.github.io/ingress-nginx \
--namespace ingress-nginx --create-namespace

Note here that the values.yaml is from the official repository. Only values about metrics
scraping are edited.



5.4. INSTALLATION INSTRUCTIONS 55

5. Install prometheus. This also installs node-exporter and kube-state-metrics.
helm upgrade -f prometheus-values.yaml --install prometheus

prometheus-community/prometheus --namespace metrics --create-namespace↪→

Note here that the values.yaml is from the official repository. Values that were updated
were to disable alertmanager and pushgateway, and changes Ingress settings.

6. Install Fluent-Bit
helm upgrade -f fluentbit-values.yaml --install fluent-bit fluent/fluent-bit

--namespace fluentbit --create-namespace↪→

Note here that the values.yaml is from the official repository. The config section needs
heavy tweaking based on the requirements, including the elastic endpoint of step 12.

7. Install Cert-manager
helm upgrade --install cert-manager jetstack/cert-manager --namespace

cert-manager --create-namespace --set installCRDs=true↪→

Note here that the values.yaml is from the official repository. Custom Resource Definition
(CRD)s automatic installation was enabled.

8. Install a cluster issuer. The following yaml file was applied. For this situation, nginx
was used to perform a HTTP challenge from LetsEncrypt. More options exist. Note
that this uses the Acceptance environment, and should be changed to a production
environment.
cat <<EOF | kubectl apply -f -
apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:

name: letsencrypt-acceptance
spec:

acme:
email: EMAIL_OMITTED
server: https://acme-staging-v02.api.letsencrypt.org/directory
privateKeySecretRef:

name: cluster-private-key
solvers:
- http01:

ingress:
class: nginx

EOF

9. Perform the installation steps according to your cloud host provider from
https://github.com/kubernetes-sigs/external-dns#deploying-to-a-cluster

10. Install external-dns
helm upgrade -f externaldns-values.yaml --install external-dns

external-dns/external-dns --namespace external-dns --create-namespace↪→

Note here that the values.yaml is from the official repository. TXT related settings,
domain filters, providers and source were updated.

11. Install the ECK operator for Elastic and Kibana:
helm upgrade --install elastic-operator elastic/eck-operator -n elastic-system

--create-namespace↪→

12. Deploy instances of ElasticSearch and Kibana
cat <<EOF | kubectl apply -f -
apiVersion: elasticsearch.k8s.elastic.co/v1
kind: Elasticsearch



5.5. AWS, AZURE AND GOOGLE CLOUD 56

metadata:
name: prototype
namespace: elastic-system

spec:
version: 8.0.1
nodeSets:
- name: prototype

count: 1
config:

node.store.allow_mmap: false
EOF &&
cat <<EOF | kubectl apply -f -
apiVersion: kibana.k8s.elastic.co/v1
kind: Kibana
metadata:

name: prototype
namespace: elastic-system

spec:
version: 8.0.1
count: 1
elasticsearchRef:

name: prototype
EOF

Depending on your setup, it might be required to expose ElasticSearch or Kibana
through an Ingress rule.

13. Install the prometheus-elastic-exporter
helm upgrade -f elastic-exporter-values.yaml --install

prometheus-elastic-exporter
prometheus-community/prometheus-elasticsearch-exporter -n monitoring
--create-namespace

↪→

↪→

↪→

In this values file, properties like the elastic endpoint and configuration should be set.
14. Deploy integration containers by providing helm charts in a repository, and applying

them to the cluster, in a similar way to the steps above. Due to the wide variety of
setups of the integration containers, we cannot define exactly how these containers
should be started. However, a possible example is given in Appendix B. This deployment
is based on a stateless container that can be downloaded from an image repository.

15. Deploy Network Policies to all namespaces according to the required security. An
example can be found in AppendixA

5.5 AWS, Azure and Google Cloud
In the previous section, a boilerplate was designed to deploy a Kubernetes cluster according to
the requirements defined. In this section, these will be applied to the different cloud providers.

5.5.1 Google Cloud

Using the Web UI of Google Cloud, a cluster was created. This took into account the settings
as discussed in Subsection 5.2.2. To reduce cost, the infra node group was omitted and all
pods were hosted in a single node group. After running all commands defined in Subsection
5.4, the solution was successfully deployed. After deploying a test image on the cluster and
setting the routing in an Ingress, the DNS was updated, and a certificate was issued. The
test deployment was available after a short while and handled messages as expected. To test



5.6. CONCLUSION 57

isolation, a second pod was deployed in a different namespace. The network policy as defined
in Appendix A was applied to later validate the solution.

One thing to note on Google Cloud is that there is no fast volume type available to perform
write-many operations. This was not required by the solution but is something to bring to
the attention of the reader. Google Cloud has released File Store[90], but this is based on
NAS storage, which might be too slow for certain goals and is relatively expensive.

5.5.2 Microsoft Azure

The same solution was deployed to Microsoft Azure. Given the instruction in Subsection 5.4,
the solution was deployed. However, following the instruction of step 9 was not successful.
This is due to the method of obtaining an account to validate the solution. This account was
provided by the educational institute. This means the account was in the Active Directory (AD)
of the institute. One step in the instruction was to create a service account within the AD.
This operation was not allowed by the institute. This means that automatically creating DNS
entries were not verified. The integration between external-dns and AzureDNS is in Beta phase,
which means "Community supported, well tested, but maintainers have no access to resources
to execute integration tests on the real platform and/or are not using it in production[82]".
Therefore, it is safe to assume this would work with the right permissions.

5.5.3 AWS

For AWS, an account was provided by the educational institute. Giving the right permissions
to create the desired resources appeared to be quite difficult, and required multiple meetings
between the account manager and the researcher. The required settings can be found here[91].
Additionally, AWS strict rules on how the infrastructure of the cloud should be set up for
nodes to join the cluster. An example of a valid VPC can be found here[92]. Furthermore,
plugins that are by default enabled on Azure and Google Cloud, need to be added manually
on AWS, being the CoreDNS (for service discovery), VPC CNI (for pod networking), and
kube-proxy (for service networking). Lastly, to manipulate Route53 entries, permissions are
required. This can be found in the documentation of external-dns[82] and cert-manager[93].
After this, the cluster could be set up as defined in Subsection 5.4 successfully. In short, AWS
requires more setup before cluster creation, and is more strict in its permissions, but can work
as the other two clouds.

5.6 Conclusion
In this Chapter, research question SQ3, "Can a reference architecture be derived as solution
design, and can this architecture be introduced into the as-a-service deployment landscape of
iPaaS solutions?" was answered. Since the previous two research questions were answered,
requirements and possible treatments were available in this chapter. Additionally, this chapter
derived a model of the baseline architecture of iPaaS solutions. Using the two findings and
the reference architecture, a new architecture was designed. This architecture was made to
fulfill the requirements and to optimize the value attributes of portability and reduction of
cost. In short, Figure 5.11 provides a reference architecture with the answer to the research
question, where it is integrated in the as-a-service deployment landscape of an reference iPaaS
architecture.



Chapter 6

Validation

In this chapter, the proposed solution is validated. In the research question, the goal of
the research was defined. It should increase portability and flexibility while decreasing
cost. Additionally, no functionality should be lost. To validate the solution, the reference
architecture is validated with experts to validate the validity of the model. Next, the functional
and non-functional requirements are validated by assessing whether the requirements are met
based on test implementation, findings of the experts and design of the solution. Then, a
case study is discussed, where the target architecture is applied. Validated is whether the
old functionality still works. Furthermore, the dynamic and static cost component of the
old situation and new situation is discussed. Lastly, the increase of both the portability and
flexibility is discussed.

6.1 Validation of Reference Architecture
To validate the correctness of the reference architecture, two experts were consulted to give
feedback on the previous versions of the models. They were asked to give feedback about the
model itself, and the use whether it is in line with the ArchiMate® 3.1 Specification[72]. They
were asked to validate and comment on Figures 5.1 up to and including 5.14. Their comments
included: Spelling errors or require rephrasing on Figures 5.1, 5.5, 5.6, 5.7, 5.12, 5.13, and
5.14. The experts indicated missing relations or wrongly used relations in Figures 5.1, 5.4,
5.5, 5.6, 5.7, 5.10, 5.11, and 5.14. Advice on restructuring was given on 5.14. A change of
object type (e.g. from technology- to application layer) was suggested for Figures 5.3 and 5.14.
These suggestions have been reviewed, and almost all were adopted in the current version of
the figures.

About the experts:

Experts consulted in this section were two students who successfully completed the Enterprise
Architecture course at the University of Twente. This course aims to:

• To become familiar with the most important Enterprise Architecture (EA) frameworks
(e.g. Zachman, ArchiMate, etc.), methodologies (e.g. TOGAF), specification (ArchiMate
and other modeling languages), and analysis (qualitative and quantitative) approaches
and with their applications in different areas of research and practice (e.g., smart logistics
and smart industry, enterprise security and risk management, etc.).

• To be able to formulate a business problem, analyze that problem (using any methods or
theories that may have been provided during the BSc or MSc program), translate that
problem into an EA change process, and propose a migration strategy from a baseline

58



6.2. FUNCTIONAL REQUIREMENTS 59

EA to a target EA that solves the original problem, and is based on a clear motivation
for the design decisions taken.

• To apply hybrid EA-data analytics techniques as a means to support decision problems.

Both successfully finished the course with an excellent grade of a 8.5. Additionally, both
have participated in the course Architecture of Information Systems, where the knowledge
was again tested, and both passed this as well.

6.2 Functional Requirements
In this section, the functional requirements from Section 3.1 are validated. This is done by
building a prototype as defined in section 5.2 and 5.4. Then, depending on the requirement,
either the documentation was consulted whether the requirement is fulfilled, a test was set up
to validate the requirement or a combination of both. The result can be found in Table 6.1.

Req Yes/No Explaination
IS1 Yes Combining network policies and Role-based access control (RBAC) rules, this is achieved
IS2 Yes Nodes are automatically scaled up if needed.

Using ResourceQuotas, maximum resources can be limited
IS3 Yes Two clusters were created.
IS4 Yes Two way SSL is supported, not automatic generation of certs
IS5 Yes Nginx IngressController allows setting allowed standards[94].
IS6 Yes This is achieved.
P1 Yes An estimation was made for static and dynamic components, see Subsection 6.4.2
P2 Depends This is heavily dependent on iPaaS provider’s setup, see Subsection 6.4.2
P3 Yes These are exported to any sources from Prometheus
O1 Yes The solution was successfully deployed on AWS, Google Cloud and Azure
O2 Yes Horizontal Scaling was setup.
R1 Yes Packet sizes can be increased by using ResourceQuotas
R2 Yes Day to day activities can be automated using

Helm Charts integrated by the portal.
R3 Yes Using Helm charts, value files can be defined from the portal.
R4 Yes The iPaaS solution can create service accounts for each customer.

Credentials for this don’t exist

Table 6.1: Fulfillment of functional requirements of the solutions

To validate IS1, a setup was used, where four pods were created. Firstly, an IngressCon-
troller. Secondly, a tester pod, having the image
k8s.gcr.io/e2e-test-images/jessie-dnsutils:1.3 was used, in namespace not-prototype.
Next, two simple HTTP pods were deployed in namespace prototype. One of these pods was
exposed by the IngressController. Except for that setting, both pods were identical in terms
of security policy (see Appendix A). Using curl from the pod in the prototype namespace
only the exposed pod in the prototype namespace was reachable. The other pod in the
not-prototype namespace did not reply to curl commands. This validates the isolation across
namespaces. A representation can be found in figure 6.1

In terms of identification of other customers, the cert-manager did expose the namespace
where the certificate is placed in the TXT record. Therefore, namespaces should be hashed or
at least not be relatable to the customer. All containers are run by service accounts that do
not have role bindings to list sensitive information, like namespaces, and were set up to have
restrictive RBAC-rules.

As for IS2, since customers can be limited using ResourceQuotas, pods of customers
cannot grow indefinitely. Also, setting limits on pods limits the growth of pods. This means



6.2. FUNCTIONAL REQUIREMENTS 60

that using a combination of Limits and ResourceQuotas, pods in a namespace can be limited
in how they grow horizontal and vertical. Assuming the node size is sufficient, this will cause
no problems on the other customer’s pods. This was validated by spinning up more pods
than allowed (or requesting more resources than allowed). These pods were not scheduled.
On the other hand, infrastructural components (IngressController for example), can scale
automatically without limitations, causing them to scale up to what is needed to handle all
traffic.

Figure 6.1: Validation setup of IS1. Red lines indicate
unsuccessful communication, green lines indicate success-
ful communication

IS3 was executed successfully.
IS4 was proven to work by gen-

erating client-side certificates man-
ually. Although cert-manager can
generate server certificates automat-
ically, generating client certificates
(and distributing them) is more dif-
ficult. Due to the scope of the re-
quirement, it was sufficient to show
client certificates worked manually.
This was verified by setting up an
Ingress rule with client certificate
validation on. When the certificate
was not sent, it resulted in a 403
(Unauthorized) error. When the
certificate was sent, the result was
returned successfully.

For IS5, there are many options
to allow for older and less secure
standards, as can be found in [94].

IS6 was executed successfully.
P1 dictates that an estimate of

the cost must be made. By running
the prototype on all clouds, an es-
timation was made. However, it is
not possible to estimate for a specific case. Some iPaaS providers might have more customers,
increasing dynamic costs. This is further elaborated in Subsection 6.4.2.

The same applies for P2. Comparing OPEX cost can only be done in specific cases. More
details can be found in Subsection 6.4.2.

P3 can be performed with Prometheus metrics. This, however, requires percize configura-
tions, which we cannot proof detailled. The possibility is present. Additional tools include
KubeCost[95].

O1 dictates that vendor dependency should decrease. It was proved this solution can run
on all three major cloud providers. This shows the solution can be moved from one host to
another, and thus the dependency decreases. This, however, is still up to the iPaaS providers
to implement.

In order to fulfill O2, a HorizontalPodAutoscaler was setup. Detailed instructions are
available here[96]. Using Prometheus metrics, custom scaling metrics could also be set up.

As for Responsibility, R1 can be fulfilled by updating a namespace’s ResourceQuota from
the iPaaS solution portal.

R2 defines that daily tasks should be low effort. Since Kubernetes is autoscaling and
auto-healing, little effort has to be done to keep the cluster running. Updates of Kubernetes



6.3. NON-FUNCTIONAL REQUIREMENTS 61

master plain and nodes take little time (or are fully automated). Initial setup or development
is expensive since the communication between portal and Cluster API should be set up and
be programmed based on the iPaaS provider’s current workings.

In terms of R3, the portal can send desired cluster states to the Cluster API. This ensures
the desired state by the portal is achieved.

R4 is difficult to discuss. In Kubernetes, workloads are run by ServiceAccounts. ’Users’
are not a Kubernetes concept. Instead, anyone having a valid certificate signed by Kubernetes
Certificate Authority (CA) is considered authenticated. Other authentication options include
OpenID Connect Tokens, Webhook Tokens, and Bearer Tokens (see [97] for details).

6.3 Non-Functional Requirements
In this section, the non-functional requirements are validated. This is done by building a
prototype as defined in section 5.2 and 5.4. Then, depending on the requirement, either the
documentation was consulted whether the requirement is fulfilled, a test was setup to validate
the requirement or a combination of both. The result can be found in Table 6.2.

Req Yes/No Explaination
DR1 Yes Load balancers are hosted by the cloud provider.

Containers can have as many replicas as desired.
DR2 Yes By default, probing takes 40 seconds, which gives

enough time for containers to startup.
DR3 No* By default, workers could lose more messages.
DR4 Yes Cluster availability is defined in the SLA of the cloud provider to be sufficient.
C1 Yes An idle cluster costs between €65,- and €145,- per month. See Subsection 6.4.2
C2 Yes A running cluster costs between €200,- and €260,- per month using one node

(2 vCPU and 8GB RAM). See Subsection 6.4.2
C3 Depends This is heavily dependent on current setup, see Subsection 6.4.2
M1 Yes Dashboards can be defined, to watch cluster health,

but all processes require no intervention
M2 Yes Updating always takes time, but using helm charts the infrastructure can be

maintained easily. Customer images are up for customers to maintain.
Pe1 Yes On average, node creation takes 90 seconds.

Startup of the container is dependent on it’s function and size.

Table 6.2: Fulfillment of non-functional requirements of the solutions
*See explanation in the text

DR1 describes that load balancers should not take more than the SLAs guaranteed time
to start. Since IngressController containers can be spun up multiple times, it is only the time
it takes for the cloud host which dictates how long this process takes. We can assume the
cloud host does not take longer than their SLA.

As for the workers described by DR2, this is a bit different. Two possible methods to
determine whether a pod is healthy exist. First, the container can crash properly (by exiting
with an error code), causing Kubernetes to restart it or spin up a new pod. Secondly, if the
container is unable to crash itself, a liveliness probe can be used. When the container is healthy,
it should respond to some request defined in the container spec. When this probe request is
not fulfilled properly, kubelet will assume it crashed, and restart it properly. A default value
for this liveliness probe to test liveliness is 10 seconds, with the failure threshold being set
at 3, meaning it can take at most 40 seconds before the container is deemed unhealthy, and
restarted with default values. Custom configuration can make this even faster. We assume 140



6.4. CASE STUDY 62

seconds is enough time for containers to startup, although due to containers being different
depending on their function, some containers can take longer to startup. In most cases, this
would be enough time, or it would be up to the developers of the integration to split it, and
thus we accept this requirement as completed.

As for DR3, it is marked as No in Table 6.2. By default, messages are not stored anywhere,
and thus messages will be lost. Kubernetes does not implement a mechanism to solve this
problem. However, as will be explained in 6.4, software solutions exist that can act as
persistent queues. These persistent queue solutions are, for example, ActiveMQ Artemis[98],
RabbitMQ[99] or Apache Kafka[100]. Kubernetes can support such systems but is up to the
provider to implement

When considering the availability of the cluster (DR4), the availability of the master
plane is meant. This is fully hosted by the cloud provider, and thus is generally is available
according to the SLA. However, some exceptions rise here. When updating cluster settings
or upgrading the control plane, the master plane needs to ’rebuild’ and does not take new
requests. For zonal clusters, this means no requests can be taken. Regional clusters, however,
have more than one control plane and keep working as intended. NodePools are updated one
at a time. Surge can be enabled to make Kubernetes add nodes temporarily while NodePools
are upgrading. Note that no cluster configuration changes can be made when NodePools are
upgrading. Also note that upgrading nodes cordons the nodes, meaning the pods need to be
rescheduled. This should however not disrupt stateless containers in most cases. All combined,
the cluster’s master plane can be available in HA in regional clusters. Cluster configuration
can be disrupted, but this does not cause downtime of the cluster access.

C1 and C2 are elaborated in more detail in Subsection 6.4.2. This showed both require-
ments are met. For C3, this is again heavily dependent on the current situation. More details
can be found in Subsection 6.4.2.

M1 and M2 dictate that maintenance time should not exceed 8 hours for everyday
maintenance and 8 hours for expert maintenance. For daily maintenance, dashboards can be
configured to watch cluster health. This gives an overview of the current state in an instant.
This ensures only maintenance is needed when the dashboard shows errors. In any other
case, no intervention is needed. Although it is not provable in this research, the author did
not have to maintain anything during the prototype, and thus the requirements are deemed
fulfilled. In terms of expert maintenance, most updates are done automatically after setting
the right configurations. These operations need to be watched, but no intervention should be
required. Therefore, this requirement is also deemed fulfilled.

As for Pe1, provisioning nodes takes time. The time this takes depends on the cloud
host and the type of node to be provisioned. Although the node might appear as ’not ready’,
pods will already be installed on the node. Therefore, it is hard to determine whether the
requirement has been met. However, tests show that this takes about 90 seconds, and never
longer than 180 seconds (n=9).

6.4 Case Study
To validate the solution, a case study was done. This was performed at eMagiz, which
was introduced in Section 1.7. The workings of the portal have already been discussed in
Subsection 1.7.1. The cloud architecture has not yet been discussed. Although customers
deploy their integration with a press of a button, there is an environment deployed in the
cloud to ensure all integrations can be run. Due to confidentiality and security, the exact
setup cannot be described but is similar to the general overview in Figure 5.3.



6.4. CASE STUDY 63

6.4.1 Applying the solution design to eMagiz

To validate the reference architecture, the baseline cloud architecture of eMagiz was compared
to the architecture in Subsection 5.1.4. The reference architecture was applied to the current
cloud deployment of eMagiz and was verified with experts.

First, the baseline cloud architecture of eMagiz was discussed with three experts at the
company. The architecture was modeled and can be found in figure 6.2, and was compared to
Figure 5.3. A few things stand out being different from the model in Subsection 5.1.4. Firstly,
two types of customer container deployments exist; single lane and double lane. Single lane
has no application LoadBalancer within the customer VPC and one processor, while double
lane does have an application LoadBalancer and two processors. Furthermore, an Artemis
instance is deployed to queue AMQP messages. This ensures no messages are lost. HTTP
messages are directed straight to the processors.

Route5G

[EndpointsURL]
[EndpointsURL]

[EndpointsURL]

[SomesIP]
[SomesIP]

[SomesIP]

DNS

Internet

VPCsIntern

NetworksLB

ElasticsIP

Service
Endpoint

HAProxy

HAProxy

OnesandsTwo
waysSSL

SSLsoffloading

Trafficsrouting

HTTPSb
AMQP

VPCsSingle

JMSsRuntime
instance Runtime

instances

Runtime
Instance

Peeringsconnection

Application
LB

VPCsDouble

JMSsRuntime
Instances2

JMSsRuntime
InstancesF

HTTP RuntimesInstance
RuntimesInstance

ElasticsIP

Firewallb
Security
Groups

Direct
accessPeeringsconnection

HTTP

AMQP

AMQP

HTTP

Figure 6.2: Cloud view of eMagiz.

Comparing Figure 5.4 with the situation at eMagiz, little differences can be identified. An
image is created and pushed to an image repository, after which an instruction is sent to the
VM to pull the image and set up the container.

Looking at it from a business perspective, customers can choose to either have one or two
processors and no dynamic scaling between these options. This is in line with the identified
problem; if the containers are not under workload, bought computing power is not used, while
there is no way to scale up when a single lane solution is having trouble processing the data.

In general, the solution of eMagiz can easily be mapped on the models of Section 5.1. Two
main differences from the general solution have to be taken into account though. Firstly, the
image generated by the eMagiz platform could be different than the general workloads used
to define the installation instructions defined in Section 5.4. Secondly, there is an additional
component, being the Artemis instance(s), in front of the workers.

After comparing the architecture of eMagiz with the architecture defined in Section 5.1,



6.4. CASE STUDY 64

the generated image of eMagiz was investigated. This was done to ensure the image had no
other dependencies which weren’t already described in this report. One such exception exists.
To pull the image from the repository, an ImagePullSecret was needed. This secret allows
for authentication with the repository when pulling the image. How to set up such secrets
is defined in the Kubernetes documentation[101]. This, however, stresses the importance of
securing cluster access, since secrets can be compromised when cluster access is compromised.

Since the image does not have a helm chart yet, a custom YAML definition was created
for the image. This custom definition consists of:

• Namespace: This to ensure the container is separated from other aspects of the solution
• ResourceQuota: Limiting the used resources within the namespace to validate its

working and limit costs.
• ServiceAccount: This account runs the container.
• Role: A role with permissions according to what is needed for the container. In this

case, GET operations on secrets and GET operations on services
• RoleBinding: To bind the role to the service account
• Service: To expose the container to the cluster on an internal IP and service name.

Ports opened are according to the eMagiz requirements.
• Deployment: To run the container. The ImagePullSecret is used here.
• Ingress: To expose the container externally on the web.

Additionally, the IngressController was deployed (using steps 3 and 4 in 5.4) to ensure
the Ingress routing was working. After that, the customized YAML definition deployed
successfully on the cluster, and the container worked as intended; it was available to the web
on the defined URL. The container was set up to use authentication, which was tested and
worked as intended.

After testing the integration container, the other aspect not in the target architecture,
the Artemis deployment, was tested. This was deployed similar to the integration container.
Some additional ports were required to make Artemis and the integration container able to
communicate, but no other problems arose.

This (partial) solution was tested to determine whether identified problems were solved.
Firstly, the integration container was scaled up to three instances. By accessing the solution in
the browser it was observed that messages were distributed to different containers each time in
round robin fashion. This is expected and desired behaviour. Messages are evenly distributed
between processors and thus share the workload. However, due to how eMagiz deploys the
Artemis server, replicating Artemis was not possible. Artemis can either dynamically or
statically find its peers, and eMagiz was set to do this statically. This finding has been
documented. After this finding, a different option to validate the solution was identified.
ArtemisCloud.io[98] is a solution to deploy Artemis on Kubernetes. This solution has been
preconfigured to discover its peers dynamically. This proves that there is an option to deploy
Artemis in a scalable manner. However, eMagiz was not configurable to use the ArtemisCloud
instance instead of the eMagiz Artemis instance, and thus the complete workings could not be
verified. (The author believes that changes in the eMagiz Artemis would allow the solution
to work). Due to this limitation, the Artemis server was not tested to be scalable, since this
would break the solution.

After validating the two parts that are different from the identified architecture, the full
installation instructions were followed to deploy the entire solution. Several configuration
files (values.yaml) needed to be changed to find and work with the Artemis server and the
integration container.



6.4. CASE STUDY 65

6.4.2 Cost Analysis of the Case Study

During the case study, the cost of the solution was studied. To do so, some assumptions were
already defined in section 1.6, including the exchange rate of €1.00 equals $1.10. All figures
here are in euro’s.

For this section, a cluster was set up using two nodes of each 2 vCPUs, and 8GiB Memory
was used, for a total of 4 vCPU and 16 Gibibyte (GiB) Memory. Each node uses 32 GiB as
the boot volume. Only on-demand prices were considered. Spot instances are only available
when the cloud host has excess resources, but this solution cannot rely on this. Contracts
could reduce the cost of VMs, but require a contract period, which is dependent on the iPaaS
provider again. Therefore, flat, on demand prices were used. Lastly, the overhead of the
cluster did not take the full 4 vCPU and 16 GiB ram it was able to take. Instead, on average,
2 vCPU (out of 4) and 1.2GiB Memory (out of 16GiB) was used for the overhead. This meant
that, on average, 2 vCPU and 14.8 GiB Memory was available for workloads. This means the
actual cost of the overhead is lower. However, since these VMs need to be reserved anyway
(even when not completely used), we maintain this price as overhead.

The cost was divided into two parts. The static cost (or overhead cost) which is not
connected to the amount of data that needs to be processed. This consists of the cost for the
Kubernetes Engine (running the cluster), (part of) the Cloud Logging, Networking (service
discovery), and DNS. For the dynamic part of the cost calculation, the Compute engine cost
and the Cloud Logging cost were taken into account.

In the validation, three cloud providers are concidered, Google Cloud (GKE), AWS (EKS),
and Azure (AKS).

Google Cloud

Running on Google Cloud in February 2022, we see the following cost for the static components,
as can be found in Table 6.3:

Category Component Cost per month
Kubernetes Engine Regional Kubernetes Clusters €72,96
Cloud Logging Log Volume *€2,83
CloudDNS ManagedZone €0,20
Networking Service Discovery €0,10
Total €76,09

Table 6.3: Cost of static components in Google Cloud
*Not all logs were static cost, see below

For Cloud Logging, the total cost was €3,00. The number of logs contributing to static cost
was around 10M log messages. The total volume of log messages was about 10.6M messages.
Therefore, the estimated cost of the static component for log messages, was calculated as

10M

10.6M
∗ e3.00 = e2.83

.
Running in February 2022, we see the following cost for the dynamic components, as can

be found in Table 6.4

For Cloud Logging, the total cost was €3,00. The number of logs contributing to dynamic
cost was around 0.6M log messages. The total volume of log messages was about 10.6M



6.4. CASE STUDY 66

Category Component Cost per month
Compute Engine E2 Instance Core running in EMEA €80,65
Compute Engine E2 Instance RAM running in EMEA €34,34
Compute Engine Loadbalancing Minimum price €16,03
Compute Engine Static IP Charge €6,52
Compute Engine Storage PD Capacity (64 GiB) €2,51
Compute Engine Traffic (3.6 GiB) €0,30
Cloud Logging Log Volume *€0,17
Total €143,32

Table 6.4: Cost of dynamic components in Google Cloud
*Not all logs were dynamic cost, see below

messages. Therefore, the estimated cost of the static component for log messages, was
calculated as

0.6M

10.6M
∗ e3, 00 = e0, 17

.
Combining the static and dynamic components of the overhead cost, gives us a total as

described in Table 6.5.

Cost per month
Static €76,09
Dynamic €143,32
Total (x1 scale) €214,78
Total (x10 scale) €1504,66

Table 6.5: Overhead cost using Google Cloud

AWS

As mentioned in Subsection 5.5.3, AWS has more requirements on how the VPC should be
set up. This introduces higher overhead costs. Additionally, AWS does not split its usage
as much as Google does. For AWS, to save credit, only three days in March were used for
testing. However, this gives us enough indication to extrapolate this over the entire month.

Running in march and extrapolating cost, we see the following cost for the static compo-
nents, as can be found in Table 6.6:

Category Component Cost per month
Kubernetes Engine Regional Kubernetes Clusters €72,96
VPC NatGateway €69,09
Route53 HostedZone €3,60
Total €142,55

Table 6.6: Cost of static components in AWS

Running in march and extrapolating cost, we see the following cost for the dynamic
components, as can be found in Table 6.7:



6.4. CASE STUDY 67

Category Component Cost per month
Computing Engine EC2 Instances (t4g.large) €101,94
Computing Engine Storage (64GiB) €6,93
Total €108,87

Table 6.7: Cost of dynamic components in AWS

Combining the static and dynamic components of the overhead cost, gives us a total as
described in Table 6.8.

Cost per month
Static €142,55
Dynamic €108,87
Total (x1 scale) €256,05
Total (x10 scale) €1235,88

Table 6.8: Overhead cost using AWS

Azure

Azure does not count static cost for clusters. However, for production environments, an SLA
needs to be bought. Otherwise, an Service Level Objective (SLO) is applied to the product.
SLO offer no guarantees about the availability, which is undesired for production environments.
Running in march and extrapolating cost, we see the following cost for the static components,
as can be found in Table 6.9:

Category Component Cost per month
Kubernetes Engine Regional Kubernetes Clusters €0,00
SLA Uptime SLA* €65,68
AzureDNS HostedZone €0,50
Total €66,18

Table 6.9: Cost of static components in Azure
*SLA is needed to guarantee 99.5% uptime. Without, you get a free SLO of 99.5%

Running in march and extrapolating cost, we see the following cost for the dynamic
components, as can be found in Table 6.10:

Category Component Cost per month
Computing Nodes €130,31
Computing Storage (64GiB) €4,32
Storage ReadWrite Operations €0,00
Total €134,63

Table 6.10: Cost of dynamic components in Azure



6.4. CASE STUDY 68

Combining the static and dynamic components of the overhead cost, gives us a total as
described in Table 6.11.

Cost per month
Static €66,18
Dynamic €134,63
Total (x1 scale) €200,81
Total (x10 scale) €1412,48

Table 6.11: Overhead cost using Azure

Comparison

In this subsection, the total cost of the three cloud hosts is summarized. Also, to indicate
the cost when the solution grows, a 10 times larger NodePool is described, where the total
computational powers are 20 vCPU and 80GiB Memory (x10 scale). The result can be found
in Table 6.12.

AWS Google Cloud Azure
Static €142,55 €76,09 €66,18
Dynamic €108,87 €143,32 €134,63
Total (x1 scale) €256,05 €214,78 €200,81
Total (x10 scale) €1235,88 €1504,66 €1412,48

Table 6.12: Cost comparisons overhead cost in AWS, Google Cloud and Azure. Costs are per
month

This comparison was done based on relatively small machines (2 vCPU and 8GiB Memory).
Which machines should be used is an entire research itself. Larger machines mean the overhead
space is minimal but is expensive when only partly used. In this comparison, we see that AWS
has high overhead cost, but low dynamic cost. This would mean AWS gets cheaper the more
you use it. Azure has no cost for the cluster itself, meaning that if the SLA is not the highest
priority (e.g. for a development cluster), this cluster could save quite some money (static cost
is nearly nothing for Azure). Google is not as widely adopted as AWS, but cheaper, and has
more functionalities than both AWS and Azure, and handles network traffic better[61]

Comparing overhead cost to the current situation

In this subsection, the estimated overhead cost is compared to the actual overhead cost. To
do this, a few things need to be elaborated. Cost breakdown differ greatly between the old
situation and the new situation. Almost all aspects will differ.

As such, we try to group current cost which could potentially be mapped onto the new
situation cost, but this is far from accurate. Furthermore, due to confidentiality, we cannot
post exact cost breakdown. Current static cost is around €60,-. On top of this, dynamic cost
worth €330,- are made.

This means the static cost are a total overhead of around €390,-. This includes all containers
required to run the basic setup. In order to compare the cost of previous Subsections to
the costs of the current situations, the dynamic machine costs were updated to match the
machines used in the current setup. Since Kubernetes uses shared resources, this can be



6.4. CASE STUDY 69

placed on different machines. The cost of the same resources compared to the current set up
are displayed.

In the new situation, this would come down to the values found in Table 6.13.

Host Static cost Similar dynamic cost Total Cost
Current €60,00 €330,00 €390,00
AWS €142,55 €310,90 €453,45
Google €76,09 €338.73 €414.82
Azure €66,18 €424,96 €419,14

Table 6.13: Cost comparison overhead cost in AWS, Google Cloud and Azure compared to
the current situation. Costs are per month
Note: Dynamic cost do not equal dynamic cost in previous sections, since dynamic cost have
been upscaled to match dynamic resources of the current situation

From this comparison, it is clear that the new situation has higher overhead cost. This
was expected, as the overhead cost was expected to increase due to the required infrastructure
and Kubernetes master plane cost. It is expected that the dynamic cost will make up for this.

Comparing dynamic cost to the current situation

In this subsection, we compare cost of the current solution and the target solution in terms of
dynamic cost. For this, we use the prices of AWS to elaborate the process, but in the end a
short comparison is also made for Azure and Google Cloud.

For the dynamic cost comparison, a few VMs were considered. Their cost were assessed
and it was assessed how they could be fit on a Kubernetes stack. For this, a few different
customers and integrations were considered. First, the VM sets with their remarkable features
and average usages are described, followed by the machine properties. For an overview, see
Table 6.14. After all VMs are described, all VM-sets are placed on a fictional Kubernetes
stack to estimate the dynamic costs. These costs will be elaborated in text.

The first VM-set showed a clear daily patterns. Each day between 18:00 and 0:30 a spike
in CPU usage was visible. On other times, the VM used about 5 to 7% CPU on average. On
spiking moments, this increased up to little over 70%. However, no spike in Memory used
could be detected during these hours. Rather, the used memory did not spike at any moment.
Gradually it went up from 60 to 61%, but Garbage Collection (GC) brought it back to 60%.
During GCs, a spike was visible in CPU usage. It was noted that 40% of the disk was used.
A visualization of the CPU usage can be found in Figure 6.3.

The next VM showed other signs. During weekend days, the CPU usage was lower than
during weekdays. During weekdays, CPU usage was between 8 and 18%. On weekend days
this is on average 4%. Three peaks were observed, two of which due to GC, and one peak
(55%) seemed to be due to a high burst of data, but no pattern was identified. RAM usage
was between 48% and 53%. Disk usage was 34%. A visualization of the CPU usage can be
found in Figure 6.4.

The third VM showed a CPU usage of between 8 and 9%. The were no spikes visible in
the data. Again, no RAM was affected during this time. This usage was between 70 and 71%.
Disk usage was 45%. A visualization of the CPU usage can be found in Figure 6.5.

Across all runtimes, RAM did not GC a lot. This means that most (or all) data is stored
in the RAM. Additionally, the overview averages all cores. This means that low CPU does
not mean all cores are idle, some cores might be working fully, while others are idle. E.g.,
when core one is processing a lot of data, while core two is idle, it would still show up as 50%
CPU usage.



6.4. CASE STUDY 70

Figure 6.3: Statistics of CPU usage of VM-set 1. All lines are the CPU usages of the different
VMs in the set.

Figure 6.4: Statistics of CPU usage of VM-set 2. All lines are the CPU usages of the different
VMs in the set.

VM-set 1 consists 32 CPU cores and 128 GiB RAM. Total cost for this VM-set (on
demand) is about €1040,-. In order to determine the cost in the new situation, the total
usage of all machines combined need to be determined, as Kubernetes can schedule it one one
node instead of different VMs. For this VM-set, a total of 100GiB RAM (99,6) and 1 CPU
core (0,94) is required during non-peak times, and 100GiB RAM and 5 CPU cores (4,34) are



6.4. CASE STUDY 71

Figure 6.5: Statistics of CPU usage of VM-set 3. All lines are the CPU usages of the different
VMs in the set.

VM-set Spike? Pattern Base CPU Peak CPU Peak period RAM% Disk
1 Yes Daily 5-7% 73% 3 Hours 60-61 40
2 Yes Weekends 4% 8-18% Days 48-53 34
3 No - 1-9% - - 70-71 45

Table 6.14: Spike patterns in VM sets

needed during peak times. For this, Kubernetes would need two nodes of 8 CPU cores and 64
GiB RAM for a total of 16 CPU cores and 128 GiB RAM. The total cost for this would be
€660,- (2 times r6g.2xlarge) which is a decrease of 36% in cost. This nodegroup would have
more than sufficient overhead to host the solution. In this comparison, two large machines
were used to make sure that replication can happen over atleast two nodes, but not limiting
the nodes to smaller machines to minimize of the overhead per node.

VM-set 2 consists 16 CPU cores and 64 GiB RAM. The cost of this would be around
€510,-. For this VM-set, a total of 47GiB RAM (46.8) and 2 CPU core (1.28) is required
during non-peak times, and 47 RAM and 3 CPU cores (2.5) are needed during peak times.
Since we already have VM-set 1 on the Kubernetes stack, and can use the leftover space, only
a r6g.xlarge machine of 4 cores and 32 GiB ram would be needed, bringing the total to 20
CPU cores, and 160 GiB RAM for a total use of 7 cores during peaks, and 3 cores during
offtimes, and 147GiB of RAM, giving us 13GiB ram and many cores for overhead.

The total cost for the old situation would be around €1550,- for dynamic cost, while using
the Kubernetes shared resources would be €994,- for the dynamic cost. This is a decrease of
35%.

e994 − e1550
e1550 ∗ 100 = −35%

Finally, VM-set 3 consists 16 CPU cores and 64 GiB RAM. The cost of this would be



6.4. CASE STUDY 72

€530,-. For this VM-set, a total of 45GiB RAM (44.48) and 1 CPU core (0.52) is required.
This VM-set does not have peak times so this is also the required resources during peak times.
To add this solution to the Kubernetes nodes, we need a total of 4x r6g.2xlarge machines are
needed to put all three VM-sets on the stack. The cost of this would be €1319,80 for 32 Cores
and 256GiB RAM. Adding this solution to the stack, the reduced dynamic cost is 36,5%

e1319 − e2077
e2077 ∗ 100 = −36.5%

Old Situation New Situation
Max CPU (Cores) 7,36 7,36
Max RAM (GiB) 191 191
Allocated CPU (Cores) 64 32
Allocated RAM (GiB) 256 256
Total cost per month €2077,- €1319,-

From this, three things become evident. Firstly, the sharing of resources can save substantial
amounts of money, since the unused VM space can now be used by other customers. This
means the unused space in a VM is drastically decreased. Secondly, the RAM usage is the
limiting factor here in reducing cost even more. This should be noted as a recommendation.
Lastly, we notice that the RAM is needed both in peak and non-peak times, such that we
cannot use scaling to handle peaktimes and thus reduce the number and size of nodes.

For Azure, the machine types and cost are different. Here, it would be best to get E8-4as
machines, with 4 CPU cores and 64GiB RAM. Four of these would satisfy the needs for a
total of €1446,79. On Google Cloud, five n1-highmem-8 machines could be used. Sizing is
a bit different for Google Cloud machines. The total resources for this solution would be
40 CPU cores and 260 GiB of RAM for a total of €1401,59. This includes a Sustained Use
Discount applied since specific machines were used. An overview can be found in Table 6.15

Current Situation AWS Google Azure
Max CPU (Cores) 7,36 7,36 7,36 7,36
Max RAM (GiB) 191 191 191 191
Allocated CPU (Cores) 64 32 40 16
Allocated RAM (GiB) 256 256 260 256
Total cost per month €2077,- €1319,- €1401,- €1446,-

Table 6.15: Comparison current- and new cost for dynamic components on AWS, Google
Cloud and Azure

6.4.3 Conclusion Case Study

In the previous Subsections, the overhead and dynamic cost were calculated. Using these two
cost breakdowns, a total estimate can be made. This can be found in Table 6.16. A graphical
representation is given in Figure 6.6. From this, we can see a decrease in cost of 28%. On
all clouds, the overhead cost of Kubernetes increases compared to the current solution. This
is different for the dynamic cost, which are lower than the current situation. Knowing th
dynamic cost will change when more customers are on the Kubernetes stack, the potential to
reduce cost increases, since the overhead cost will not increase, which is the biggest factor in
the new situation. We note here, that the memory used is the bottleneck of reducing cost
even more. We must also note that the VMs chosen for the NodeGroup were based on basic
knowledge. Potentially, better chosen machines could decrease cost more.



6.5. VALIDATION PORTABILITY 73

Current Situation AWS Google Azure
Overhead cost per month €390,00 €453,45 €414,82 €419,14
Dynamic cost per month €2077,00 €1319,00 €1401,00 €1446,00
Total cost per month €2467,00 €1772,00 €1815,00 €1865,00

Table 6.16: Cost comparison eMagiz case study in the current- and new situation for overhead
and dynamic components combined

Figure 6.6: Cost comparison current- and new situation. Costs are per month

The decreased cost can be calculated as:

e1772 − e2467
e2467 ∗ 100 = −28.1%

6.5 Validation Portability
In this section, the possible increase in portability is discussed. As per Techopedia, portability
is "a measure of how easily an application can be transferred from one computer environment
to another. A computer software application is considered portable to a new environment if
the effort required to adapt it to the new environment is within reasonable limits"[102]. Thus,
this section needs to prove the solution can be moved easier than before.

Current implementations are heavily dependent on the cloud environment. These environ-
ments can be deployed as code using various tools. AWS uses CloudFormation[103], Google
uses Google Deloyment Manager[104], and Azure uses ARM Templates[105]. This means,
that every mutation of the cloud requires full implemention of these manager. A central place,
like a portal, would thus have to integrate with all these tools.

Instead, Kubernetes, once initialized, uses YAML files (or helm charts when available)
and API calls, independent of the cloud provider. Moving an integration on AWS requires a
CloudFormation mutation, and on Azure a ARM Template. Both, when running Kubernetes,
can accept YAML files.

For example, the template in Appendix C is an example how to deploy an SQL instance
to AWS according to https://computingforgeeks.com/setup-aws-rds-mysql-db-
instance-with-cloudformation/. For Azure, the template can be found in Appendix D or
https://azure.microsoft.com/en-us/resources/templates/managed-mysql-with-vnet/.
For Google, the template can be found in Appendix E, which uses



6.6. VALIDATION FLEXIBILITY 74

https://stackoverflow.com/questions/51152743/how-to-create-mysql-database-with
-user-and-password-in-google-cloud-platform-usi. All three examples use different syn-
taxes to deploy an mysql server. In Kubernetes, either using Helm or YAML files this is
the same for all three cloud providers. The YAML file can be found in Appendix F. The
installations using Helm are (using the Bitnami repository):

helm repo add bitnami https://charts.bitnami.com/bitnami &&
helm install mysql bitnami/mysql -n mysql --create-namespace

Additionally to the move internally within the cloud, moving from AWS to Azure (for
example) and the other way around, both require the same YAML, only sent to a different
endpoint.

6.6 Validation Flexibility
In this section, the possible increase in flexibility is discussed. Flexibility is a widely used
term in IT, but no formal definition exist for this specific domain. Most definitions focus
on the flexibility of software or SaaS solutions, not as much on IaaS or iPaaS domains.
Golden discussed that the definition of flexibility consist of four dimensions: temporal, range,
intention and focus[106]. Temporal is concerned with the time which it takes an organisation
to react to change. This means if a company can respond fast to changes, it has an higher
temporal flexibility than when responses are slow. Also, the fit of the solution is important.
If the solution fits the problem better, it is considered more flexible. Range is defined as
the potential responses that the organisation possesses, first, to changes which were foreseen
and, second, to those not foreseen. This is measured by the amount of possible responses
to foreseen (versatility) and unforeseen (robustness) events. Intention is either offensive or
defensive. Offensive flexibility uses changes to gain business advantages, while defensive
react to changes to minimize impart. Last, focus can be internal or external. Internal focus
concerns organizational structure and employee flexibility. External focus concerns suppliers
and alliances. Golden mentions that intention and focus are based on the domain flexibility is
applied to[106].

In this validation step, the author sees no reason to take into account intention and focus.
These two aspects are, as far as the author is concerned, not applicable to software solutions.
Rather, these would apply to the organization. In this validation phase, this is not of interest.

Therefore, the two axis and four measurements, efficiency and responsiveness (temporal),
and versatility and robustness (range), need to be assessed to determine how flexibility has
changed.

In terms of robustness, Kubernetes has built in mechanisms for disaster recovery. Although
it does not natively support node auto-repair, most cloud providers do offer this functionality.
Next to this, Kubernetes will restart failed containers based on the auto-start policy, meaning
that failed containers will start again if configured so. Furthermore, replications allow to
catch single point of failures. Traditionally, deploying two instances is not a problem, but
detencting if one is down, and then starting another instance, might require additional tooling.
Kubernetes offers this natively. This increases both the versatility and the robustness of the
solution.

Furthermore, since Kubernetes uses Ingresses to define routing rules, canary release become
more easy. This allows to be more flexible in how deployments should be rolled out. Although
canary releases are possible without Kubernetes

These assumptions were tested with three employees at the company. The results can be
found in Table 6.17:



6.7. CONCLUSION 75

Aspect Result Remark
Efficiency 4.0 Clients always start with smaller-medium sized cloud resources.

At some point there is a need for more, but it’s very unpredictable
when. This is easier with the proposed solution

Responsiveness 4.3 Scaling of containers and auto provisioning increases responsiveness
greatly.

Versatility 3.3 No comments
Robustness 4.0 Because the Kubernetes control plane covers a larger part of the

total solution compared to the baseline architecture, the chances
that something unforeseen needs changes outside of this control
plane decrease significantly

Average 3.9

Table 6.17: Flexibility assessment
In this table, 1 means a heavy decrease, while 5 means a heavy increase of flexibility. All
weights are equal.

Subject How
Requirements The author has validated the requirements using the

prototype
Models Two experts have validated the models. Feedback has been encorporated

in current models
Portability Portability has been reasoned why it should have improved, using

real scenario’s
Flexibility Flexbility has been reasoned, and three employees have been asked

about their opinion
Real Scenario The reference architecture was applied to a case study in order

to validate the prototype
Dynamic Cost Prototype cost have been compared to the case studies’ current

dynamic cost
Static Cost Prototype cost have been compared to the case studies’ current static cost

Table 6.18: Validation strategies in this research

From this, it is clear that on three of the four aspects, according to the employees,
flexibility increases significantly. For one of the aspects, it increases slightly. Combined
with the theoretical grounds for improved flexibility gives enough support to claim flexibility
increases.

6.7 Conclusion
In this chapter, the solution was validated. Multiple strategies have been used, summarized
in table 6.18. In this chapter, it was validated most requirements were met, except for
the need to persist messages on failures. The requirement has been discussed, and most
enterprise solutions will have this solved within their product. The models in this report were
validated, and changed based on expert feedback. Portability and flexbility were assessed,
and determined to have increased. Cost comparison of the current and target architecture
showed a substantial decrease in cost.



Chapter 7

Conclusions

In this chapter, the research will be concluded. First, a conclusion is drawn, answering the
research questions of Section 1.3. Next, the solution is considered for other domains than
this research focussed on. This could open up potential new research and could provide a
broader domain to which the research extends. Then, the research is discussed. During the
discussion, the validity of the approach is validated, alternative interpretations are presented,
and limitations are described. Also, the contribution to science and industry are discussed.

7.1 Revisiting the Research Questions
In this section, an answer will be given to the research questions defined in chapter 1.3. This
research focussed on giving direction to iPaaS providers to improve their portability, flexibility
and decrease cost by introducing Kubernetes into the cloud architecture. This was needed
because traditional VMs can cause a lot of waste of money by not utilizing the available
resources. Furthermore, adopting clouds without a framework that is accepted by all major
clouds can introduce vendor lock-in, and decrease portability. Kubernetes furthermore claims
to improve flexibility. The research questions will be broken down to give precise answers to
the questions.

The main research question of this research is defined as:

MQ How should an iPaaS implement container orchestration in order to improve
flexibility and portability, and reducing cost?

This research provides a reference architecture of the assumed cloud architecture and a
possible target architecture. Kubernetes has been proven to increase portability and flexibility,
and reduce cost for the assumed cloud architecture, using the reference architecture in Figure
5.11. In order to elaborate on the reasoning behind this answer, one by one the Subquestions
will be discussed based on the findings. The first question defined was:

SQ1 What is container orchestration and iPaaS, and how can they work together to
improve flexibility portability, and reducing cost?

The answer to this question can be found in Chapter 2. In this chapter, different types of
XaaS solutions are discussed, including iPaaS. iPaaS is a type of XaaS focussed on designing
integrations using a portal, and deploying the integration in the cloud. This cloud deployment
can be reached by systems to connect to other systems in such a way, that semantic and
syntactic differences are solved. Container orchestration is a type of container management
focusing on seven main capabilities, including: Cluster state management, providing high
availability and fault tolerance, ensuring security, simplifying networking, enabling service

76



7.1. REVISITING THE RESEARCH QUESTIONS 77

discovery, making continuous deployment possible, and providing monitoring and governance.
Both can work together by applying container orchestration to the cloud-deployed containers
handling the integrations. This introduces benefits like failure detection, state management,
flexible scheduling across the cluster, and the possibility to add redundancy. Most container
orchestrations work with frameworks that allow being run on multiple clouds (improving
portability), have mechanics for failure detection or solving (flexibility), and make better use
of the scalability of containers (reducing cost).

Next, SQ2 was defined to determine important requirements specifically for iPaaS solutions:

SQ2 Which specific requirements should be covered to improve the flexibility and
portability and reduce the cost of an iPaaS solution to ensure feasibility and
similar functionality?

This question was answered in Chapter 3. Four categories were defined for functional
requirements, including isolation and security, pricing, organization, and responsibility. For
the non-functional requirements, an additional four categories were defined. These are disaster
recovery, cost, maintenance, and performance. A total of 25 requirements were defined, based
on interviews held with different people from iPaaS providers.

Next, the available solutions are discussed in the next question:

SQ3 What container orchestration solutions exist for iPaaS cloud architectures
and what is the tradeoff between these solutions? How do these solutions meet the
requirements and what would be the disadvantages of these solutions?

Chapter 4 was devoted to answering this question. Using the techniques found in the
literature of the previous question, and by researching these specific techniques, four solutions
were discussed: Kubernetes, Docker Warm, Spring Cloud Skipper, and Apache Mesos. Apache
Mesos was discontinued between the last reference in the literature and now, and thus was
no viable option. For Spring Cloud Skipper, the community was too small. Only a few
sources discussed this solution causing their activity to be very low. It was also not widely
adopted. On the other hand, both Kubernetes and Docker Swarm are actively followed
by the community and have a high activity. These two solutions were discussed in more
detail including a comparison of costs. Furthermore, the fulfillment of the requirements was
discussed. In this comparison, Kubernetes fulfilled more requirements than Docker Swarm.
For Kubernetes, in that stage of the research, it was not clear if Kubernetes would decrease
vendor dependency, and whether it would require expert personnel. Other requirements were
fulfilled. Choosing Kubernetes over Docker ensured more requirements were fulfilled. However,
it was also discussed Docker Swarm was easy to set up and manage. This trade-off had to be
accepted to fulfill critical requirements like the ability to handle multi-tenancy.

Using the results found in Chapter 3 and 4, the question was discussed:

SQ4 Can a reference architecture be derived as solution design, and can
this architecture be introduced into the as-a-service deployment landscape
of iPaaS solutions?

For this, Section 5.1 discussed the current architecture of iPaaS providers. Next, the gap
was discussed in Section 5.3. This was combined with the requirements and the information
about Kubernetes to define a reference architecture, considering the deployment process and
the cloud architecture. A prototype was created, and an installation manual was given to
replicate the setup. On all three major cloud providers, the prototype worked as intended,
given the differences explained in Section 5.5. The result was a reference architecture as can
be found in Figure 5.11.



7.2. CONTRIBUTIONS 78

With the prototype and reference architecture ready, the next question was tackled:

SQ5 Does the reference architecture solve the problem identified,
taking into account the requirements of portability, flexibility and cost reduction?
of iPaaS solutions?

This question contains multiple validation steps. First, the reference architecture needed
to be validated for validity. This was checked by experts and accepted as described in Section
sec:validationmodels. Next, the fulfillment of the requirements needed to be validated. This
was done in Section 6.2 and 6.3. One requirement was not fulfilled, being "When a worker
fails, it may lose at most 0.05% of messages". Kubernetes does not provide mechanisms
for this. However, in the enterprise setting, most providers will already have such measures
available. It would be up to the iPaaS providers to ensure this does not happen. Furthermore,
two requirements could be fulfilled but were too much dependent on the setup of the cloud
architecture. These were P2 and C3. P2 could not be verified, because there is no data
available on the average OPEX cost of iPaaS providers. However, in Subsection 6.4.2, it was
discussed for the case study. The same applies to C3 since no average is available for overhead
per customer. Next, the dynamic and static components for cost were analyzed. This was done
by comparing the cost of the case study with the cost of the old situation. The total of the
overhead and dynamic costs showed a decrease of 28,1% for the entire solution. Although the
overhead cost increased by 10%, the dynamic cost made up for this as it decreased by 36,5%.
The total decrease in cost will most likely increase more with more customers migrating to
the Kubernetes stack.

Next, SQ6 was answered:

SQ6 To which XaaS solutions would this reference architecture be applicable,
and what advantages would this bring?

This was discussed in Subsection 7.2.1. The comparison was made with multi-tenant SaaS
and PaaS solutions. However, no evidence has been given. This is up for future work to
discuss this more in-depth. For this, additional literature needs to be generated to do this
more in-depth.

Reflecting on the Main Question of this research, we have all the required information to
answer this:

MQ How should an iPaaS implement container orchestration in order to improve
flexibility and portability, and reducing cost?

This research provides a reference architecture of the assumed cloud architecture and a
possible target architecture. Kubernetes has been proven to increase portability and flexibility,
and reduce cost for the assumed cloud architecture, using the reference architecture in Figure
5.11. Industry can use this reference architecture and cost analysis to determine if the proposed
architecture also applied to their business.

7.2 Contributions
In this section, the contributions are summarized. First a generalization is discussed. This
was already mentioned in Section 7.1. This is needed because contributions in the research
might also be applicable to other domains, which opens up contributions to multiple areas of
research, and opens up options for future work. Then, the contribution to both practice and
research are discussed. Lastly, recommendations to practice are given.



7.2. CONTRIBUTIONS 79

7.2.1 Generalization

In this section, the solution is generalized. First, it is discussed whether the solution could be
generalized for all iPaaS solutions. Secondly, it is discussed if the solution can be applied to
other domains than the domain discussed in this research, iPaaS. This research was designed
to fit the needs of iPaaS, but some parts could perhaps be reusable for other domains. It
was already discussed that integrations of customers are like a black-box, the infrastructure
should be compatible with many different implementations of these integrations. If we use this
principle, we can abstract what application is run behind the infrastructure. The infrastructure
should work even if we change whatever is run within the containers (or pods).

Firstly, we generalize towards all iPaaS solutions. As discussed, a reference architecture
was designed to attempt to make the solution as generic as possible for all iPaaS solutions.
However, it is hard to validate this, as only one case study was considered. On the other hand,
the architecture derived is generic enough that most iPaaS solutions would be able to use this
as a starting point, adding what they have additionally to the reference model themselves.
This would mean the additional aspects need to be added to the analysis, including its cost in
the cost comparison. This is then customer-specific and thus did not belong in the reference
model. Therefore, the author argues this iPaaS model would be generic for all iPaaS.

Secondly, towards more X-as-a-service principles is generalized. In SaaS solutions, com-
panies provide a software solution, usually to multiple customers (multi-tenant), either by
deploying one solution, or multiple solutions, one for each customer. In the latter case,
it would be very similar to the current proposed architecture, where namespaces separate
customers, but one central entry point could be used. The separation happens in the cloud,
on the infrastructure before the actual application. This would mean the current solution
would fit such situations, where the deployed solution is able to scale efficiently (e.g. consists
of microservices). For applications where separation happens on the application layer, this
solution would also be applicable, but less interesting. This is because the use of Ingresses
is not required, and no separate endpoints are needed, and thus the power of external-dns
and cert-manager is not fully used. However, some overlap can exist and thus would be
interesting for future research. More research has already been performed in the SaaS domain,
for example by Verreydt[107]. This still opens up the opportunity to compare results for both
domains, check if there are similar results, and thus the possibility to make a general solution
for multiple domains.

In general, anything built on top of the IaaS layer would maybe be interesting to apply
this solution on. This also includes PaaS solutions for the same reasons as for SaaS solutions.
The abstraction of middleware and OS can be inside containers, making it nearly no different
from SaaS solutions. Kubernetes would deliver the IaaS layer, on which solutions could be
built. Especially situations with multi-tenant requirements might benefit from this solution.

7.2.2 Contribution to practice

The goal of this research was to give a scientific basis to the industry for transition to
frameworks used for container orchestration. Currently, no literature exists giving the industry
basis for such transition. This research adds to the limited literature by providing a scientific
basis for choosing what frameworks to adopt and potential solutions how to integrate this.
The industry can use this paper to compare their cloud setup and cost and determine how
much their architecture compares to the reference architecture provided. If that seems to be
closely related, they can use the results of this research to determine the potential benefit of
implementing such a framework. Thus this research contributes to practice by providing:

• A reference architecture for the domain of iPaaS, allowing enterprises to compare



7.3. LIMITATIONS AND FUTURE WORK 80

themselves to the reference architecture of this report.
• A manual on how to deploy the reference architecture on the three biggest cloud

providers.
• Empirical results comparing the reference architecture without container orchestration

to an architecture with container orchestration.
• Reasoning why some plugins were used to give a base to the industry what plugins

would work or not.

As discussed in Subsection 7.2.1, some results could also apply to SaaS solutions, but the
validity of this generalization still needs to be validated.

7.2.3 Contribution to research

Contribution to research has overlap with contribution to practice. Firstly, the reference
architecture derived in this research could be a base for research to discuss the architecture of
the iPaaS domain. Furthermore, a potential generalization was identified between the cloud
architecture of iPaaS solutions and the (multi-tenant) SaaS cloud architecture.

Thus this research contributes to research by providing:

• A reference architecture for the domain of iPaaS, which can be used in future work to
compare iPaaS architectures.

• A potential generalization between SaaS and iPaaS solutions.
• A reference architecture for adopting Kubernetes in iPaaS solutions.
• Empirical evidence that sharing of resources can save substantial amount of money.
• An observation that high RAM usage limits the reduction of cost when replication is

needed.

7.2.4 Recommendations to Practice

This research was validated by applying the hypothesis to the real world scenario of eMagiz.
From this, several recommendations were found which could both contribute to the reduction
of cost of eMagiz, and potential enablers for future research or development. These were all
discussed in Section 6.4 already, but will be summarized here.

• The scaling was made difficult by the amount of RAM assigned to each VM and
container. Scaling up these containers would require substantial RAM. This causes
inefficient scaling. Therefore, scalable containers should be identified, and its RAM
usage should be as low as possible. This enables more efficient scaling of high volume
containers.

• eMagiz Should setup systems to either detect or ask customers for peak times. This
allows to scale in advance. Scaling based on resource pressure could delay messages,
while it was identified that these peak times were on set intervals. This allows scaling in
advance and no delay in the delivery of messages.

• eMagiz Should pack containers with high velocity together or in separate containers.
This allows for scaling only on containers which require more resources, without scaling
low velocity containers.

7.3 Limitations and Future Work
In this section, the results of the research are discussed. This includes the discussion of the
validity of the research, interpretation of the result, possible alternative strategies that were
considered, and limitations of the work.



7.3. LIMITATIONS AND FUTURE WORK 81

7.3.1 Validity of the research

In this subsection, the validity of the research is discussed. The guidelines of Hevner[15] were
discussed in Section 1.4

To determine to what extend the research was valid, the guidelines are assessed in Table
7.1.

Guidelines Assessment
Guideline 1 The research produces a reference architecture and installation instructions
Guideline 2 The solution is technology based, and virtualization and containerization are

relevant topics
Guideline 3 The solution was validated based on requirement fulfilment, model validation,

cost comparison, performance and flexbility assessment. These validations were
based on multiple methods, including a case study, architecture analysis, functional
testing, informed argumentation and scenarios.

Guideline 4 After extensive literature research, no previous research was found combining
Container Orchestration and the domain of iPaaS providers. This research combined
industry applied knowledge with scientific research.

Guideline 5 This research did not provide many empirical results, except for the cost analysis.
However, Hevner mentions the how well is important, rather than how
and why. The author believes this is achieved by the multiple validation methods used
This assesses all aspects of the solution rather than only looking if it works.

Guideline 6 This research was not performed iteratively. This causes the solution
to be non-optimal. For an optimal solution, the result of the validation step
should be input for another design cycle

Guideline 7 The research was presented to stakeholders from a company (eMagiz) in this domain,
aswell as to researches at the university of faculties of both Behavioural, Management
ad Social Sciences, and Electrical Engineering, Mathematics and Computer Science.

Table 7.1: Design Science Research Guidelines according to Hevner[15] assessed

From this table, we determine that six guidelines have been followed. One guideline,
number 6, was not fulfilled, since the research was not done iteratively. This means the
optimal solution has not been reached. It can be argued that the first prototype and the
case study were steps in an iterative process, since the prototype did not fully work in the
case study, and changes had to be made. Additionally, components of the research (including
requirement engineering) were done in multiple sessions. Due to time constraints of the
research, this could not be done iteratively. Nonetheless, this guideline was not fulfilled as
described. This notion has been accepted as a flaw of the research. Additionally, guideline
5 was deemed followed by the author. This, however, could be subject to discussion, as not
many empirical results were presented.

7.3.2 Alternative interpretation of results

In this subsection, some alternative views on the research will be discussed. This is to give
the author’s view on other interpretations of the work done by this research.

Firstly, one can argue the research validated the working of Kubernetes instead of providing
proof of the solutions working for the specific domain chosen for the research. However, during
the case study, a solution currently used by iPaaS solutions was obtained, and based on this,
the prototype was validated. This indeed also validates the workings of Kubernetes, moreover,
it validates the correct workings of solutions currently used by iPaaS solutions. This is a more



7.3. LIMITATIONS AND FUTURE WORK 82

specific validation than just validating that Kubernetes works.
Secondly, the cost comparison is based on just one company’s infrastructure, and thus

one can say it is not representative for the entire domain. Although there is some truth in
this, it must be noted that a generic architecture has been derived for iPaaS solutions first.
This was later validated to be in line with the model made, and thus the company would be
representative for the model designed earlier. Additionally, even if this were not the average
case, this would most likely be on the least beneficial side for the research. The author believes
that the cost of the case study was low, and similar solutions would either be equal or more
expensive, making the solution even more cost-efficient than the current case study showed.
The motivation behind this is that the VM-sets considered in the case study were relatively
large, with busy machines. Other VM-sets were smaller, but also showed more unused VM
space. This could lead to even better use of resources when these VM-sets are considered.

7.3.3 Limitations of the research

In this Subsection, various limitations of the research are discussed.
Firstly, we notice that Subsection 7.3.1 concludes not all guidelines of a Design-Science

Research have been followed. As mentioned, the research was not performed iteratively. This
means the solution found is possibly not optimal. Instead, the results found in the validation
should have been input for another round of development. This was not done due to the
time available for this research. Creating the requirements, assessing possible techniques, and
creating the prototype were all time-intensive.

Secondly, although cost improvement has been shown for the case study, there is no
generalization available to claim cost reduction. For this, either literature needs to become
available, or more case studies have to be performed. For now, this research was validated using
the infrastructure of the case study. Additional case studies could overcome this limitation
and add to the claim of this research. This is more extensively discussed in Subsection 7.3.2

Thirdly, the case study did not allow for empirical evidence of the benefit of auto-scaling
of pods. Since RAM was always the limiting factor, and not the peak load on the integrations,
this could not be validated from the case study. One can imagine performing emprical tests
where GC is forced would discuss whether the RAM used could be lowered. It could also
show performance issues when more GC occurs. For this, one can limit the amount of RAM
available and thus force GC, and see what happens with the performance.

Fourthly, No evidence was found to support the claim that the treatment might work for
SaaS solutions, rather than only for iPaaS solutions. More work is required to validate this
claim. Due to time constraints this claim was not investigated further.

Lastly, it was observed that one requirement "When a worker fails, it may lose at most
0.05% of messages" was not fulfilled. This was discussed in Section 6.3. This is a limitation
of the treatment designed in this research, and raises potential for an improved architecture.
Later developments in the field might add functionalities to solve this problem. A few projects
were refenced in Section 6.3 which might be able to solve the problem with additional tooling.

7.3.4 Future work

The author has identified a few possibilities for future research, allowing to get more insight
into some aspects of the industry. From this, research could deliver insights for industry in
terms of models or frameworks to aid in decision making. Many of the points summarized
here have already been discussed in detail.

• A base model for cloud architecture of iPaaS was derived. This should be validated or
extended. Doing so will give future work better estimation models, as this research ran



7.3. LIMITATIONS AND FUTURE WORK 83

into this boundary.
• This research was validated based on one case study, both due to confidentiality and

time available. Performing similar experiences at iPaaS providers could confirm or reject
this generalization, giving more insight into the industry.

• As discussed in Subsection 7.2.1, SaaS application where separation of customers happens
in the application layer was thought to be less relevant to apply this research on. However,
this is an assumption, and the contradiction might be true. This opens for future research
to apply the research on this specific domain, and to make changes if necessary. The
results of that research might also shed new light on this research.



Bibliography

[1] ResearchAndMarkets, Cloud Microservices Market - Growth, Trends, COVID-19 Im-
pact, and Forecasts (2021 - 2026), 2021. [Online]. Available: https://www.researchandmarkets.
com/reports/4787543/cloud-microservices-market-growth-trends.

[2] ExpertMarketResearch, Integration Platform as a Service (iPaaS) Market, 2021. [On-
line]. Available: https://www.expertmarketresearch.com/reports/integration-
platform-as-a-service-ipaas-market.

[3] ENTERPRISE MANAGEMENT ASSOCIATES, “Reducing Operational Expense
(OpEx) with Virtualization and Virtual Systems Management,” Tech. Rep., Nov. 2009.

[4] C. Pahl, “Containerization and the PaaS Cloud,” IEEE Cloud Computing, vol. 2, no. 3,
pp. 24–31, 2015. doi: 10.1109/MCC.2015.51.

[5] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers and Virtual
Machines at Scale,” in Proceedings of the 17th International Middleware Conference,
New York, NY, USA: ACM, Nov. 2016, pp. 1–13, isbn: 9781450343008. doi: 10.1145/
2988336.2988337. [Online]. Available: https://dl.acm.org/doi/10.1145/2988336.
2988337.

[6] A. Khan, “Key Characteristics of a Container Orchestration Platform to Enable a
Modern Application,” IEEE Cloud Computing, vol. 4, no. 5, pp. 42–48, Sep. 2017. doi:
10.1109/MCC.2017.4250933.

[7] Stackoverflow, What is the maximum number of edges in a directed graph with n
nodes? [closed], 2011. [Online]. Available: https://stackoverflow.com/questions/
5058406/what-is-the-maximum-number-of-edges-in-a-directed-graph-with-
n-nodes.

[8] M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth, “A Virtual Machine Re-packing
Approach to the Horizontal vs. Vertical Elasticity Trade-off for Cloud Autoscaling,”
2013.

[9] J. Opara-Martins, R. Sahandi, and F. Tian, “Critical analysis of vendor lock-in and its
impact on cloud computing migration: a business perspective,” Journal of Cloud Com-
puting, vol. 5, no. 1, pp. 1–18, Dec. 2016, issn: 2192113X. doi: 10.1186/S13677-016-
0054-Z/FIGURES/11. [Online]. Available: https://link.springer.com/articles/
10.1186/s13677-016-0054-z%20https://link.springer.com/article/10.1186/
s13677-016-0054-z.

[10] R. Nishant, S. C. Srivastava, and B. Bahli, “Does virtualization capability maturity
influence information systems development performance? Theorizing the non-linear
payoffs,” Proceedings of the Annual Hawaii International Conference on System Sci-
ences, vol. 2020-January, pp. 5503–5512, 2020, issn: 15301605. doi: 10.24251/HICSS.
2020.677.

84

https://www.researchandmarkets.com/reports/4787543/cloud-microservices-market-growth-trends
https://www.researchandmarkets.com/reports/4787543/cloud-microservices-market-growth-trends
https://www.expertmarketresearch.com/reports/integration-platform-as-a-service-ipaas-market
https://www.expertmarketresearch.com/reports/integration-platform-as-a-service-ipaas-market
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/2988336.2988337
https://dl.acm.org/doi/10.1145/2988336.2988337
https://dl.acm.org/doi/10.1145/2988336.2988337
https://doi.org/10.1109/MCC.2017.4250933
https://stackoverflow.com/questions/5058406/what-is-the-maximum-number-of-edges-in-a-directed-graph-with-n-nodes
https://stackoverflow.com/questions/5058406/what-is-the-maximum-number-of-edges-in-a-directed-graph-with-n-nodes
https://stackoverflow.com/questions/5058406/what-is-the-maximum-number-of-edges-in-a-directed-graph-with-n-nodes
https://doi.org/10.1186/S13677-016-0054-Z/FIGURES/11
https://doi.org/10.1186/S13677-016-0054-Z/FIGURES/11
https://link.springer.com/articles/10.1186/s13677-016-0054-z%20https://link.springer.com/article/10.1186/s13677-016-0054-z
https://link.springer.com/articles/10.1186/s13677-016-0054-z%20https://link.springer.com/article/10.1186/s13677-016-0054-z
https://link.springer.com/articles/10.1186/s13677-016-0054-z%20https://link.springer.com/article/10.1186/s13677-016-0054-z
https://doi.org/10.24251/HICSS.2020.677
https://doi.org/10.24251/HICSS.2020.677


BIBLIOGRAPHY 85

[11] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A Comparative Study of
Containers and Virtual Machines in Big Data Environment,” in IEEE International
Conference on Cloud Computing, CLOUD, vol. 2018-July, IEEE Computer Society,
Sep. 2018, pp. 178–185, isbn: 9781538672358. doi: 10.1109/CLOUD.2018.00030.

[12] K. Peffers, T. Tuunanen, C. Gengler, et al., “The design science research process: A
model for producing and presenting information systems research,” Proceedings of
First International Conference on Design Science Research in Information Systems
and Technology DESRIST, Oct. 2006.

[13] T. U. Rehman, M. N. A. Khan, and N. Riaz, “Analysis of Requirement Engineering
Processes, Tools/Techniques and Methodologies,” International Journal of Information
Technology and Computer Science, vol. 5, no. 3, pp. 40–48, 2013, issn: 20749007. doi:
10.5815/ijitcs.2013.03.05. [Online]. Available: http://www.mecs-press.org/.

[14] M. Ahmed Abbasi, J. Jabeen, Y. Hafeez, D.-e.-B. Batool, and N. Fareen, “Assessment
of Requirement Elicitation Tools and Techniques by Various Parameters,” Software
Engineering, vol. 3, no. 2, pp. 7–11, 2015, issn: 2376-8037. doi: 10.11648/j.se.
20150302.11. [Online]. Available: http://www.sciencepublishinggroup.com/j/se.

[15] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information
systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004, issn: 02767783.
[Online]. Available: http://www.jstor.org/stable/25148625.

[16] eMagiz, Emagiz. [Online]. Available: https://www.emagiz.com/.
[17] Cape Groep, Cape groep. [Online]. Available: https: //www .capegroep.nl /en/

homepage/.
[18] H. Sneed and R. Seidl, Softwareevolution: Erhaltung und Fortschreibung bestehender

Softwaresystem, 1st ed. dpunkt.verlag, 2013, p. 302, isbn: 978-3-86490-041-9.
[19] A. Gowri, “Impact of Virtualization Technologies in the Development and Management

of Cloud Applications,” International Journal of Intelligent Systems and Applica-
tions in Engineering, vol. 7, no. 2, pp. 104–110, Jun. 2019, issn: 2147-6799. doi:
10.18201/ijisae.2019252789. [Online]. Available: https://www.ijisae.org/
IJISAE/article/view/891.

[20] S. Liu, Y. Zhang, X. Meng, S. Liu, Y. Zhang, and X. Meng, “Towards High Maturity
in SaaS Applications Based on Virtualization: Methods and Case Study,” International
Journal of Information Systems in the Service Sector (IJISSS), vol. 3, no. 4, pp. 39–53,
2011, issn: 1935-5688. [Online]. Available: https://econpapers.repec.org/RePEc:
igg:jisss0:v:3:y:2011:i:4:p:39-53.

[21] J. Gibson, R. Rondeau, D. Eveleigh, and Q. Tan, “Benefits and challenges of three cloud
computing service models,” in Proceedings of the 2012 4th International Conference
on Computational Aspects of Social Networks, CASoN 2012, 2012, pp. 198–205, isbn:
9781467347921. doi: 10.1109/CASoN.2012.6412402.

[22] NIST, Software as a Service (SaaS). [Online]. Available: https://csrc.nist.gov/
glossary/term/software_as_a_service.

[23] NIST-CSRC, Computer Security Resource Center. [Online]. Available: https://csrc.
nist.gov/.

[24] S. A. Rajathi and J. Devagnanam, “Exploring and Understanding The Cloud Envi-
ronment with Resource Allocation Techniques,” Journal of Science and Technology,
vol. 6, p. 7, 2021. doi: 10.46243/jst.2021.v6.i3.pp07-12. [Online]. Available:
www.jst.org.indoi:https://doi.org/10.46243/jst.2021.v6.i3.pp07-12.

https://doi.org/10.1109/CLOUD.2018.00030
https://doi.org/10.5815/ijitcs.2013.03.05
http://www.mecs-press.org/
https://doi.org/10.11648/j.se.20150302.11
https://doi.org/10.11648/j.se.20150302.11
http://www.sciencepublishinggroup.com/j/se
http://www.jstor.org/stable/25148625
https://www.emagiz.com/
https://www.capegroep.nl/en/homepage/
https://www.capegroep.nl/en/homepage/
https://doi.org/10.18201/ijisae.2019252789
https://www.ijisae.org/IJISAE/article/view/891
https://www.ijisae.org/IJISAE/article/view/891
https://econpapers.repec.org/RePEc:igg:jisss0:v:3:y:2011:i:4:p:39-53
https://econpapers.repec.org/RePEc:igg:jisss0:v:3:y:2011:i:4:p:39-53
https://doi.org/10.1109/CASoN.2012.6412402
https://csrc.nist.gov/glossary/term/software_as_a_service
https://csrc.nist.gov/glossary/term/software_as_a_service
https://csrc.nist.gov/
https://csrc.nist.gov/
https://doi.org/10.46243/jst.2021.v6.i3.pp07-12
www.jst.org.indoi:https://doi.org/10.46243/jst.2021.v6.i3.pp07-12


BIBLIOGRAPHY 86

[25] NIST, Platform as a Service (PaaS). [Online]. Available: https://csrc.nist.gov/
glossary/term/platform_as_a_service.

[26] NIST, Infrastructure as a Service (IaaS). [Online]. Available: https://csrc.nist.
gov/glossary/term/infrastructure_as_a_service.

[27] N. Serrano, J. Hernantes, and G. Gallardo, “Service-Oriented Architecture and Legacy
Systems,” IEEE Software, vol. 31, no. 5, pp. 15–19, Sep. 2014, issn: 0740-7459. doi:
10 . 1109 / MS . 2014 . 125. [Online]. Available: https : / / ieeexplore . ieee . org /
document/6898686/.

[28] M. Potocnik and M. B. Juric, “Integration of SaaS using IPaaS,” in Pr oceedings of the
1st Inter national Confer ence on CLoud Assisted Ser viceS, vol. 1, 2012, pp. 35–41.

[29] K. Ring, “EAI: Making the right Connections,” Ovum Reports, Boston, 2000.
[30] N. Ebert, K. Weber, and S. Koruna, “Integration Platform as a Service,” Business and

Information Systems Engineering, vol. 59, no. 5, pp. 375–379, Oct. 2017, issn: 18670202.
doi: 10.1007/s12599-017-0486-0. [Online]. Available: https://zapier.com.

[31] E. Mell and B. Pariseau, What Is Container Management and Why Is It Important?
Apr. 2021. [Online]. Available: https://searchitoperations.techtarget.com/
definition/container-management-software.

[32] M. Imdoukh, I. Ahmad, and M. Alfailakawi, “Optimizing scheduling decisions of
container management tool using many-objective genetic algorithm,” Concurrency and
Computation: Practice and Experience, vol. 32, no. 5, e5536, Mar. 2020, issn: 1532-0634.
doi: 10.1002/CPE.5536. [Online]. Available: https://onlinelibrary.wiley.com/
doi/full/10.1002/cpe.5536.

[33] Redhat, What is container orchestration? Dec. 2019. [Online]. Available: https://www.
redhat.com/en/topics/containers/what-is-container-orchestration.

[34] M. A. Rodriguez and R. Buyya, “Container-based cluster orchestration systems: A
taxonomy and future directions,” Software: Practice and Experience, vol. 49, no. 5,
pp. 698–719, May 2019, issn: 1097-024X. doi: 10.1002/SPE.2660. [Online]. Available:
https://onlinelibrary-wiley-com.ezproxy2.utwente.nl/doi/full/10.1002/
spe.2660.

[35] Gartner, Gartner Magic Quadrant for Enterprise Integration Platform as a Service, Sep.
2020. [Online]. Available: https://www.gartner.com/en/documents/3990698/magic-
quadrant-for-enterprise-integration-platform-as-a-.

[36] Boomi, Boomi. [Online]. Available: https://boomi.com/.
[37] Workato, Workato. [Online]. Available: https://www.workato.com/integrations/

netsuite.
[38] Jitterbit, Jitterbit. [Online]. Available: https://www.jitterbit.com.
[39] Ovum, Ovum Decision Matrix: Selecting a Cloud Platform for Hybrid Integration

Vendor, 2019–20. [Online]. Available: https://omdia.tech.informa.com/OM010250/
Ovum-Decision-Matrix-Selecting-a-Cloud-Platform-for-a-Hybrid-Integration-
Vendor-201920.

[40] IBM, IBM App Connect. [Online]. Available: https://www.ibm.com/nl-en/cloud/
app-connect.

[41] Snaplogic, Snaplogic. [Online]. Available: https://www.snaplogic.com.

https://csrc.nist.gov/glossary/term/platform_as_a_service
https://csrc.nist.gov/glossary/term/platform_as_a_service
https://csrc.nist.gov/glossary/term/infrastructure_as_a_service
https://csrc.nist.gov/glossary/term/infrastructure_as_a_service
https://doi.org/10.1109/MS.2014.125
https://ieeexplore.ieee.org/document/6898686/
https://ieeexplore.ieee.org/document/6898686/
https://doi.org/10.1007/s12599-017-0486-0
https://zapier.com
https://searchitoperations.techtarget.com/definition/container-management-software
https://searchitoperations.techtarget.com/definition/container-management-software
https://doi.org/10.1002/CPE.5536
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5536
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5536
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://doi.org/10.1002/SPE.2660
https://onlinelibrary-wiley-com.ezproxy2.utwente.nl/doi/full/10.1002/spe.2660
https://onlinelibrary-wiley-com.ezproxy2.utwente.nl/doi/full/10.1002/spe.2660
https://www.gartner.com/en/documents/3990698/magic-quadrant-for-enterprise-integration-platform-as-a-
https://www.gartner.com/en/documents/3990698/magic-quadrant-for-enterprise-integration-platform-as-a-
https://boomi.com/
https://www.workato.com/integrations/netsuite
https://www.workato.com/integrations/netsuite
https://www.jitterbit.com
https://omdia.tech.informa.com/OM010250/Ovum-Decision-Matrix-Selecting-a-Cloud-Platform-for-a-Hybrid-Integration-Vendor-201920
https://omdia.tech.informa.com/OM010250/Ovum-Decision-Matrix-Selecting-a-Cloud-Platform-for-a-Hybrid-Integration-Vendor-201920
https://omdia.tech.informa.com/OM010250/Ovum-Decision-Matrix-Selecting-a-Cloud-Platform-for-a-Hybrid-Integration-Vendor-201920
https://www.ibm.com/nl-en/cloud/app-connect
https://www.ibm.com/nl-en/cloud/app-connect
https://www.snaplogic.com


BIBLIOGRAPHY 87

[42] S. Gupta and S. Dhir, “An Enhanced Approach to Use SSL for End To End Security,”
(IJCSIT) International Journal of Computer Science and Information Technologies,
vol. 5, no. 2, pp. 1053–1057, 2014, issn: 0975-9646. [Online]. Available: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.658.5398&rep=rep1&
type=pdf.

[43] D. Xie, Q. Zhou, X. You, B. Li, and X. Yuan, “A novel energy-efficient cluster formation
strategy: From the perspective of cluster members,” IEEE Communications Letters,
vol. 17, no. 11, pp. 2044–2047, Nov. 2013, issn: 10897798. doi: 10.1109/LCOMM.2013.
100813.131109.

[44] Z. Jin, D. Y. Kim, J. Cho, and B. Lee, “An Analysis on Optimal Cluster Ratio in
Cluster-Based Wireless Sensor Networks,” IEEE Sensors Journal, vol. 15, no. 11,
pp. 6413–6423, Nov. 2015, issn: 1530437X. doi: 10.1109/JSEN.2015.2459374.

[45] D. Weibel, Architecting Kubernetes clusters — choosing a worker node size, Jul. 2019.
[Online]. Available: https://learnk8s.io/kubernetes-node-size.

[46] CloudFlare, Why tls 1.3 isn’t in browsers yet. [Online]. Available: https://blog.
cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/.

[47] Kubernetes, Kubernetes. [Online]. Available: https://kubernetes.io/.
[48] cri-o, Cri-o, lightweight container runtime for kubernetes. [Online]. Available: https:

//cri-o.io/.
[49] Kubernetes, Rktlet. [Online]. Available: https://github.com/kubernetes-retired/

rktlet.
[50] Kubernetes, Frakti. [Online]. Available: https://github.com/kubernetes-retired/

frakti.
[51] Kubernetes, Cluster Networking. [Online]. Available: https://kubernetes.io/docs/

concepts/cluster-administration/networking/.
[52] kubernetes, Configuring a cgroup driver, 2021. [Online]. Available: https://kubernetes.

io/docs/tasks/administer-cluster/kubeadm/configure-cgroup-driver/.
[53] Container runtimes. [Online]. Available: https://kubernetes.io/docs/setup/

production-environment/container-runtimes/#cgroup-drivers.
[54] The Kubernetes Authors, Minikube. [Online]. Available: https://minikube.sigs.k8s.

io/docs/start/.
[55] The Kubernetes Authors, Kind. [Online]. Available: https://kind.sigs.k8s.io/.
[56] Amazon, Amazon Elastic Kubernetes Service (EKS). [Online]. Available: https://aws.

amazon.com/eks/.
[57] Google, Google Kubernetes Engine. [Online]. Available: https://cloud.google.com/

kubernetes-engine.
[58] Microsoft, Azure Kubernetes Service (AKS). [Online]. Available: https : / / docs .

microsoft.com/en-us/azure/aks/.
[59] RedHat, Red Hat OpenShift. [Online]. Available: https://www.redhat.com/en/

technologies/cloud-computing/openshift.
[60] WeaveWorks, eksctl. [Online]. Available: https://eksctl.io/.
[61] A. Pereira Ferreira and R. Sinnott, “A performance evaluation of containers running on

managed kubernetes services,” Proceedings of the International Conference on Cloud
Computing Technology and Science, CloudCom, vol. 2019-December, pp. 199–208, Dec.
2019. doi: 10.1109/CLOUDCOM.2019.00038.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.658.5398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.658.5398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.658.5398&rep=rep1&type=pdf
https://doi.org/10.1109/LCOMM.2013.100813.131109
https://doi.org/10.1109/LCOMM.2013.100813.131109
https://doi.org/10.1109/JSEN.2015.2459374
https://learnk8s.io/kubernetes-node-size
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://kubernetes.io/
https://cri-o.io/
https://cri-o.io/
https://github.com/kubernetes-retired/rktlet
https://github.com/kubernetes-retired/rktlet
https://github.com/kubernetes-retired/frakti
https://github.com/kubernetes-retired/frakti
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/configure-cgroup-driver/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/configure-cgroup-driver/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cgroup-drivers
https://kubernetes.io/docs/setup/production-environment/container-runtimes/#cgroup-drivers
https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/start/
https://kind.sigs.k8s.io/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://docs.microsoft.com/en-us/azure/aks/
https://docs.microsoft.com/en-us/azure/aks/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://eksctl.io/
https://doi.org/10.1109/CLOUDCOM.2019.00038


BIBLIOGRAPHY 88

[62] Amazon, Amazon EC2 Instance types. [Online]. Available: https://aws.amazon.com/
ec2/instance-types/.

[63] Google, Google GKE Pricing. [Online]. Available: https://cloud.google.com/
kubernetes-engine/pricing.

[64] Microsoft, Azure Pricing Calculator. [Online]. Available: https://azure.microsoft.
com/en-us/pricing/calculator/.

[65] AWS, AWS Pricing Calculator. [Online]. Available: https://calculator.aws/.
[66] Spring, Spring. [Online]. Available: https://spring.io/.
[67] Spring, Spring cloud skipper reference guide. [Online]. Available: https://docs.spring.

io/spring- cloud- skipper/docs/2.8.1/reference/htmlsingle//#getting-
started-system-requirements.

[68] F. Gutierrez, “Spring Cloud Data Flow Internals,” Spring Cloud Data Flow, pp. 265–
310, 2021. doi: 10.1007/978- 1- 4842- 1239- 4{\_}9. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-1-4842-1239-4_9.

[69] F. Gutierrez, “Spring Cloud Data Flow: Introduction and Installation,” Spring Cloud
Data Flow, pp. 209–262, 2021. doi: 10.1007/978-1-4842-1239-4{\_}8. [Online].
Available: https://link.springer.com/chapter/10.1007/978-1-4842-1239-4_8.

[70] Spring, Spring cloud data flow. [Online]. Available: https://spring.io/projects/
spring-cloud-dataflow.

[71] E. Truyen, D. Van Landuyt, D. Preuveneers, B. Lagaisse, and W. Joosen, “A Compre-
hensive Feature Comparison Study of Open-Source Container Orchestration Frame-
works,” Applied Sciences 2019, Vol. 9, Page 931, vol. 9, no. 5, p. 931, Mar. 2019, issn:
20763417. doi: 10.3390/APP9050931. [Online]. Available: https://www.mdpi.com/
2076-3417/9/5/931/htm%20https://www.mdpi.com/2076-3417/9/5/931.

[72] T. O. Group, Archimate® 3.1 specification. [Online]. Available: https : / / pubs .
opengroup.org/architecture/archimate3-doc/.

[73] Datadog, Cloud monitoring as a service | datadog. [Online]. Available: https://www.
datadoghq.com/.

[74] Prometheus, Prometheus - monitoring system and time series database. [Online].
Available: https://prometheus.io/.

[75] Grafana, Grafana: The open observability platform | grafana labs. [Online]. Available:
https://grafana.com/.

[76] Elastic, Free and open search: The creators of elasticsearch, elk and kibana | elastic.
[Online]. Available: https://www.elastic.co/.

[77] FluentBit, Fluent bit. [Online]. Available: https://fluentbit.io/.
[78] LogPoint, Award winning siem software - simple, flexible and scalable - logpoint. [Online].

Available: https://www.logpoint.com/en/?utm_source=capterra&utm_medium=
cpc&utm_campaign=logmanagement.

[79] Apache, Apache log4net – apache log4net: Home - apache log4net. [Online]. Available:
https://logging.apache.org/log4net/.

[80] H. Community, Helm, the package manager for kubernetes. [Online]. Available: https:
//helm.sh/.

[81] Kubernetes, Kubernetes Ingress Controller. [Online]. Available: https://kubernetes.
io/docs/concepts/services-networking/ingress-controllers/.

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/kubernetes-engine/pricing
https://cloud.google.com/kubernetes-engine/pricing
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/
https://calculator.aws/
https://spring.io/
https://docs.spring.io/spring-cloud-skipper/docs/2.8.1/reference/htmlsingle//#getting-started-system-requirements
https://docs.spring.io/spring-cloud-skipper/docs/2.8.1/reference/htmlsingle//#getting-started-system-requirements
https://docs.spring.io/spring-cloud-skipper/docs/2.8.1/reference/htmlsingle//#getting-started-system-requirements
https://doi.org/10.1007/978-1-4842-1239-4{\_}9
https://link.springer.com/chapter/10.1007/978-1-4842-1239-4_9
https://link.springer.com/chapter/10.1007/978-1-4842-1239-4_9
https://doi.org/10.1007/978-1-4842-1239-4{\_}8
https://link.springer.com/chapter/10.1007/978-1-4842-1239-4_8
https://spring.io/projects/spring-cloud-dataflow
https://spring.io/projects/spring-cloud-dataflow
https://doi.org/10.3390/APP9050931
https://www.mdpi.com/2076-3417/9/5/931/htm%20https://www.mdpi.com/2076-3417/9/5/931
https://www.mdpi.com/2076-3417/9/5/931/htm%20https://www.mdpi.com/2076-3417/9/5/931
https://pubs.opengroup.org/architecture/archimate3-doc/
https://pubs.opengroup.org/architecture/archimate3-doc/
https://www.datadoghq.com/
https://www.datadoghq.com/
https://prometheus.io/
https://grafana.com/
https://www.elastic.co/
https://fluentbit.io/
https://www.logpoint.com/en/?utm_source=capterra&utm_medium=cpc&utm_campaign=logmanagement
https://www.logpoint.com/en/?utm_source=capterra&utm_medium=cpc&utm_campaign=logmanagement
https://logging.apache.org/log4net/
https://helm.sh/
https://helm.sh/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/


BIBLIOGRAPHY 89

[82] kubernetes-sigs, External-dns. [Online]. Available: https://github.com/kubernetes-
sigs/external-dns.

[83] R. Picoreti, A. P. D. Carmo, F. M. D. Queiroz, A. S. Garcia, R. F. Vassallo, and
D. Simeonidou, “Multilevel observability in cloud orchestration,” pp. 770–775, Oct.
2018. doi: 10.1109/DASC/PICOM/DATACOM/CYBERSCITEC.2018.00134.

[84] Prometheus, Exporters and integrations | prometheus. [Online]. Available: https :
//prometheus.io/docs/instrumenting/exporters/.

[85] Prometheus, Prometheus node exporter: Exporter for machine metrics. [Online]. Avail-
able: https://github.com/prometheus/node_exporter.

[86] Kubernetes, Kubernetes kube state metrics: Add-on agent to generate and expose
cluster-level metrics. [Online]. Available: https://github.com/kubernetes/kube-
state-metrics.

[87] Google, Creating a zonal cluster | kubernetes engine documentation | google cloud.
[Online]. Available: https://cloud.google.com/kubernetes-engine/docs/how-
to/creating-a-zonal-cluster.

[88] Microsoft, Quickstart: Deploy an aks cluster by using azure cli - azure kubernetes
service | microsoft docs. [Online]. Available: https://docs.microsoft.com/en-
us/azure/aks/kubernetes-walkthrough.

[89] AWS, Creating an amazon eks cluster - amazon eks. [Online]. Available: https://
docs.aws.amazon.com/eks/latest/userguide/create-cluster.html.

[90] G. Cloud, Filestore. [Online]. Available: https://cloud.google.com/filestore/.
[91] AWS, Identity and access management for amazon eks. [Online]. Available: https:

//docs.aws.amazon.com/eks/latest/userguide/security-iam.html.
[92] AWS, Creating a vpc for your amazon eks cluster. [Online]. Available: https://docs.

aws.amazon.com/eks/latest/userguide/creating-a-vpc.html.
[93] T. cert-manager Authors, Cert-manager io. [Online]. Available: https : / / cert -

manager.io/.
[94] Nginx, Configmap - nginx ingress controller. [Online]. Available: https://kubernetes.

github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-
ciphers.

[95] Kubecost. [Online]. Available: https://guide.kubecost.com/hc/en-us/articles/
4407601807383-Kubernetes-Cost-Allocation.

[96] Horizontalpodautoscaler walkthrough. [Online]. Available: https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/.

[97] Kubernetes, Authenticating. [Online]. Available: https://kubernetes.io/docs/
reference/access-authn-authz/authentication/.

[98] A. C. IO, Artemis on kubernetes. [Online]. Available: https://artemiscloud.io/.
[99] RabbitMQ, Rabbitmq. [Online]. Available: https://www.rabbitmq.com/.

[100] Apache, Apache kafka. [Online]. Available: https://kafka.apache.org/.
[101] Kubernetes, Pull an image from a private registry. [Online]. Available: https://

kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-
registry/.

[102] Techopedia, What does portability mean? [Online]. Available: https://www.techopedia.
com/definition/8921/portability.

https://github.com/kubernetes-sigs/external-dns
https://github.com/kubernetes-sigs/external-dns
https://doi.org/10.1109/DASC/PICOM/DATACOM/CYBERSCITEC.2018.00134
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://github.com/prometheus/node_exporter
https://github.com/kubernetes/kube-state-metrics
https://github.com/kubernetes/kube-state-metrics
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-zonal-cluster
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-zonal-cluster
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://cloud.google.com/filestore/
https://docs.aws.amazon.com/eks/latest/userguide/security-iam.html
https://docs.aws.amazon.com/eks/latest/userguide/security-iam.html
https://docs.aws.amazon.com/eks/latest/userguide/creating-a-vpc.html
https://docs.aws.amazon.com/eks/latest/userguide/creating-a-vpc.html
https://cert-manager.io/
https://cert-manager.io/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-ciphers
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-ciphers
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/configmap/#ssl-ciphers
https://guide.kubecost.com/hc/en-us/articles/4407601807383-Kubernetes-Cost-Allocation
https://guide.kubecost.com/hc/en-us/articles/4407601807383-Kubernetes-Cost-Allocation
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://artemiscloud.io/
https://www.rabbitmq.com/
https://kafka.apache.org/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://www.techopedia.com/definition/8921/portability
https://www.techopedia.com/definition/8921/portability


BIBLIOGRAPHY 90

[103] AWS, Aws cloudformation. [Online]. Available: https://aws.amazon.com/cloudformation/.
[104] Google, Google cloud deployment manager documentation. [Online]. Available: https:

//cloud.google.com/deployment-manager/docs.
[105] Microsoft, What is azure resource manager. [Online]. Available: https : / / docs .

microsoft.com/en-us/azure/azure-resource-manager/management/overview#
template-deployment.

[106] W. Golden and P. Powell, “Towards a definition of flexibility: In search of the holy
grail?” Omega, vol. 28, no. 4, pp. 373–384, 2000, issn: 0305-0483. doi: https://
doi.org/10.1016/S0305- 0483(99)00057- 2. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0305048399000572.

[107] S. Verreydt, E. H. Beni, E. Truyen, B. Lagaisse, and W. Joosen, “Leveraging ku-
bernetes for adaptive and cost-efficient resource management,” in Proceedings of
the 5th International Workshop on Container Technologies and Container Clouds,
ser. WOC ’19, Davis, CA, USA: Association for Computing Machinery, 2019, pp. 37–42,
isbn: 9781450370332. doi: 10.1145/3366615.3368357. [Online]. Available: https:
//doi.org/10.1145/3366615.3368357.

https://aws.amazon.com/cloudformation/
https://cloud.google.com/deployment-manager/docs
https://cloud.google.com/deployment-manager/docs
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#template-deployment
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#template-deployment
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#template-deployment
https://doi.org/https://doi.org/10.1016/S0305-0483(99)00057-2
https://doi.org/https://doi.org/10.1016/S0305-0483(99)00057-2
https://www.sciencedirect.com/science/article/pii/S0305048399000572
https://www.sciencedirect.com/science/article/pii/S0305048399000572
https://doi.org/10.1145/3366615.3368357
https://doi.org/10.1145/3366615.3368357
https://doi.org/10.1145/3366615.3368357


Appendices

91



Appendix A

Network Policy

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: deny-all
namespace: customer-0001

spec:
policyTypes:
- Ingress
- Egress
podSelector: {}
ingress: []
egress: []

---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-exposed
namespace: customer-0001

spec:
podSelector:

matchLabels:
role: external

policyTypes:
- Ingress
- Egress

ingress:
# External: In from all over port 443,80
- from:

- ipBlock:
cidr: 0.0.0.0/0

ports:
- port: 443
- port: 80

# Cluster: In from all with label role=ingress over port 80,443
- from:

- namespaceSelector: {}
podSelector:

matchLabels:
role: ingress

ports:
- port: 80

92



APPENDIX A. NETWORK POLICY 93

- port: 443

# Namespace: In from all
- from:

- podSelector: {}

egress:
# External: Out to all over port 80,443
- to:

- ipBlock:
cidr: 0.0.0.0/0

ports:
- port: 443
- port: 80

# Cluster: Out to none

# Namespace: Out to all
- to:

- podSelector: {}

# DNS: Out to DNS
- to:

- namespaceSelector: {}
podSelector:

matchLabels:
k8s-app: kube-dns

ports:
- port: 53

protocol: UDP
---
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: deny-all
namespace: customer-0001

spec:
policyTypes:
- Ingress
- Egress
podSelector: {}
ingress: []
egress: []

---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: deny-all-but-namespace
namespace: not-prototype

spec:
podSelector:

matchLabels:
role: internal

policyTypes:
- Ingress
- Egress



APPENDIX A. NETWORK POLICY 94

ingress:
# External: In from none

# Cluster: In from none

# Namespace: In from all
- from:

- podSelector: {}

egress:
# External: Out to all over port 80,443
- to:

- ipBlock:
cidr: 0.0.0.0/0

ports:
- port: 443
- port: 80

# Cluster: Out to none

# Namespace: Out to all
- to:

- podSelector: {}

# DNS: Out to DNS
- to:

- namespaceSelector: {}
podSelector:

matchLabels:
k8s-app: kube-dns

ports:
- port: 53

protocol: UDP



Appendix B

Example Integration Deployment

# https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
apiVersion: v1
kind: Namespace
metadata:

name: customer-0001
---
# See https://kubernetes.io/docs/concepts/policy/resource-quotas/
apiVersion: v1
kind: ResourceQuota
metadata:

name: quota
namespace: customer-0001

spec:
hard:

cpu: "<CPU>"
memory: <MEMORY>Mi
pods: "<PODS>"
replicationcontrollers: "<REPLICATION_CONTROLELRS>"
resourcequotas: "<RESOURCE_QUOTAS>"
services: "<SERVICES>"

---
# See https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
apiVersion: v1
kind: ServiceAccount
metadata:

name: sa-customer-0001
namespace: customer-0001

automountServiceAccountToken: false
---
# See https://kubernetes.io/docs/reference/access-authn-authz/rbac/
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:

name: role-podrunner
namespace: customer-0001

rules:
- apiGroups:

- ''
resources:

- secrets
verbs:

- get

95



APPENDIX B. EXAMPLE INTEGRATION DEPLOYMENT 96

- apiGroups:
- ''

resources:
- services

verbs:
- get

---
# See https://kubernetes.io/docs/reference/access-authn-authz/rbac/
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

name: role-binding-podrunner-sa
namespace: customer-0001

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: role-podrunner

subjects:
- kind: ServiceAccount

name: sa-customer-0001
namespace: customer-0001

---
# See https://kubernetes.io/docs/concepts/services-networking/service/
apiVersion: v1
kind: Service
metadata:

name: service-alpha
namespace: customer-0001

spec:
type: ClusterIP
ports:

- name: http
port: 80
protocol: TCP
targetPort: 80

- name: https
port: 443
protocol: TCP
targetPort: 443

selector:
app.kubernetes.io/name: pod-alpha

---
# https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
apiVersion: apps/v1
kind: Deployment
metadata:

labels:
role: integration

name: deployment-alpha
namespace: customer-0001

spec:
selector:

matchLabels:
app.kubernetes.io/name: pod-alpha

revisionHistoryLimit: 10
minReadySeconds: 60



APPENDIX B. EXAMPLE INTEGRATION DEPLOYMENT 97

template:
metadata:

labels:
app.kubernetes.io/name: pod-alpha

spec:
containers:

- name: pod-alpha
image: <IMAGE>
imagePullPolicy: IfNotPresent
ports:

- name: http
containerPort: 80
protocol: TCP

- name: https
containerPort: 443
protocol: TCP

resources:
requests:

cpu: 90m
memory: 90Mi

imagePullSecrets:
- name: <IMAGE_PULL_SECRET>

nodeSelector:
kubernetes.io/os: linux

serviceAccountName: sa-customer-0001
terminationGracePeriodSeconds: 30

---
# See https://kubernetes.io/docs/concepts/services-networking/ingress/
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: ingress-alpha
namespace: customer-0001
annotations:

cert-manager.io/cluster-issuer: letsencrypt-acceptance
nginx.ingress.kubernetes.io/rewrite-target: /\$1

\# Uncomment for mTLS
\# nginx.ingress.kubernetes.io/auth-tls-verify-client: "on"
\# nginx.ingress.kubernetes.io/auth-tls-secret: "<TLS_SECRET>"
\# nginx.ingress.kubernetes.io/auth-tls-verify-depth: "1"
\# nginx.ingress.kubernetes.io/auth-tls-pass-certificate-to-upstream: "false"
spec:

ingressClassName: nginx
tls:
- hosts:

- customer-0001.iops.com
secretName: customer0001iops

rules:
- host: customer-0001.iops.com

http:
paths:
- path: /(.*)

pathType: Prefix
backend:

service:
name: service-alpha



APPENDIX B. EXAMPLE INTEGRATION DEPLOYMENT 98

port:
number: 443



Appendix C

AWS Cloud Formation SQL
Deployment

AWSTemplateFormatVersion: "2010-09-09"
Description: "Create a DB subnet group and MYSQL Database"

Parameters:
VPC:

Type: String
Description: The VPC to create the cluster
Default: vpc-ID

PrivateSubnet01:
Type: String
Description: The subnet for the DB cluster
Default: subnet-ID

PrivateSubnet02:
Type: String
Description: The subnet for the DB cluster
Default: subnet-ID

MasterUsername:
Type: String
Description: The username for our database.

MasterUserPassword:
Type: String
Description: The password for the database.
"NoEcho": true

ParameterGroup:
Type: String
Description: The name of the database parameter group created.

Resources:
EC2SecurityGroup:

Type: "AWS::EC2::SecurityGroup"

99



APPENDIX C. AWS CLOUD FORMATION SQL DEPLOYMENT 100

Properties:
GroupDescription: "Database instances security group"
VpcId: !Ref VPC
SecurityGroupIngress:

-
CidrIp: "*.*.*.*/32"
FromPort: 3306
IpProtocol: "tcp"
ToPort: 3306

SecurityGroupEgress:
-

CidrIp: "0.0.0.0/0"
IpProtocol: "-1"

RDSDBSubnetGroup:
Type: "AWS::RDS::DBSubnetGroup"
Properties:

DBSubnetGroupDescription: "Subnet Group for mySQL database"
DBSubnetGroupName: !Sub "\${AWS::Region}-aws-dxl-database-subnet-group"
SubnetIds:

- !Ref PrivateSubnet01
- !Ref PrivateSubnet02

Tags:
- Key: Name

Value: eu-central-1-test-db-cluster
- Key: createdBy

Value: Maureen Barasa
- Key: Project

Value: test-blog
- Key: Environment

Value: test

RDSDBInstance:
Type: AWS::RDS::DBInstance
Properties:

DBInstanceIdentifier: aws-dxl-database-1
AllocatedStorage: 100
DBInstanceClass: db.m5.large
Engine: "MYSQL"
MasterUsername: !Ref MasterUsername
MasterUserPassword: !Ref MasterUserPassword
BackupRetentionPeriod: 7
MultiAZ: true
EngineVersion: 8.0.20
AutoMinorVersionUpgrade: true
Iops: 1000
PubliclyAccessible: false
StorageType: io1
Port: 3306
StorageEncrypted: true



APPENDIX C. AWS CLOUD FORMATION SQL DEPLOYMENT 101

CopyTagsToSnapshot: true
MonitoringInterval: 60
EnableIAMDatabaseAuthentication: false
EnablePerformanceInsights: true
PerformanceInsightsRetentionPeriod: 7
DeletionProtection: true
DBSubnetGroupName: !Ref RDSDBSubnetGroup
VPCSecurityGroups:

- !Ref EC2SecurityGroup
MaxAllocatedStorage: 1000
DBParameterGroupName: !Ref ParameterGroup
MonitoringRoleArn: !Sub "arn:aws:iam::\${AWS::AccountId}:role

/rds-monitoring-role"
Tags:

- Key: Name
Value: aws-dxl-database-1

- Key: createdBy
Value: Maureen Barasa

- Key: Project
Value: test-blog

- Key: Environment
Value: test

Outputs:
Cluster:
Description: The DB Cluster Name
Value: !Ref RDSDBInstance

SubnetGroup:
Description: The db subnet group name
Value: !Ref RDSDBSubnetGroup



Appendix D

Azure Arm template SQL
Deployment

{
"\$schema": "https://schema.management.azure.com/schemas/2019-04-01
/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"metadata": {

"_generator": {
"name": "bicep",
"version": "0.4.1008.15138",
"templateHash": "6360281189485765882"

}
},
"parameters": {

"serverName": {
"type": "string",
"metadata": {

"description": "Server Name for Azure database for MySQL"
}

},
"administratorLogin": {

"type": "string",
"minLength": 1,
"metadata": {

"description": "Database administrator login name"
}

},
"administratorLoginPassword": {

"type": "secureString",
"minLength": 8,
"metadata": {

"description": "Database administrator password"
}

},
"skuCapacity": {

"type": "int",
"defaultValue": 2,

102



APPENDIX D. AZURE ARM TEMPLATE SQL DEPLOYMENT 103

"metadata": {
"description": "Azure database for MySQL compute capacity"

}
},
"skuName": {

"type": "string",
"defaultValue": "GP_Gen5_2",
"metadata": {

"description": "Azure database for MySQL sku name "
}

},
"SkuSizeMB": {

"type": "int",
"defaultValue": 5120,
"metadata": {

"description": "Azure database for MySQL Sku Size "
}

},
"SkuTier": {

"type": "string",
"defaultValue": "GeneralPurpose",
"allowedValues": [

"Basic",
"GeneralPurpose",
"MemoryOptimized"

],
"metadata": {

"description": "Azure database for MySQL pricing tier"
}

},
"skuFamily": {

"type": "string",
"defaultValue": "Gen5",
"metadata": {

"description": "Azure database for MySQL sku family"
}

},
"mysqlVersion": {

"type": "string",
"defaultValue": "8.0",
"allowedValues": [

"5.6",
"5.7",
"8.0"

],
"metadata": {

"description": "MySQL version"
}

},
"location": {



APPENDIX D. AZURE ARM TEMPLATE SQL DEPLOYMENT 104

"type": "string",
"defaultValue": "[resourceGroup().location]",
"metadata": {

"description": "Location for all resources."
}

},
"backupRetentionDays": {

"type": "int",
"defaultValue": 7,
"metadata": {

"description": "MySQL Server backup retention days"
}

},
"geoRedundantBackup": {

"type": "string",
"defaultValue": "Disabled",
"metadata": {

"description": "Geo-Redundant Backup setting"
}

},
"virtualNetworkName": {

"type": "string",
"defaultValue": "azure_mysql_vnet",
"metadata": {

"description": "Virtual Network Name"
}

},
"subnetName": {

"type": "string",
"defaultValue": "azure_mysql_subnet",
"metadata": {

"description": "Subnet Name"
}

},
"virtualNetworkRuleName": {

"type": "string",
"defaultValue": "AllowSubnet",
"metadata": {

"description": "Virtual Network RuleName"
}

},
"vnetAddressPrefix": {

"type": "string",
"defaultValue": "10.0.0.0/16",
"metadata": {

"description": "Virtual Network Address Prefix"
}

},
"subnetPrefix": {

"type": "string",



APPENDIX D. AZURE ARM TEMPLATE SQL DEPLOYMENT 105

"defaultValue": "10.0.0.0/16",
"metadata": {

"description": "Subnet Address Prefix"
}

}
},
"functions": [],
"variables": {

"firewallrules": [
{

"Name": "rule1",
"StartIpAddress": "0.0.0.0",
"EndIpAddress": "255.255.255.255"

},
{

"Name": "rule2",
"StartIpAddress": "0.0.0.0",
"EndIpAddress": "255.255.255.255"

}
]

},
"resources": [

{
"type": "Microsoft.DBforMySQL/servers/virtualNetworkRules",
"apiVersion": "2017-12-01",
"name": "[format('{0}/{1}', parameters('serverName'),
parameters('virtualNetworkRuleName'))]",
"properties": {

"virtualNetworkSubnetId": "[resourceId('Microsoft.Network/
virtualNetworks/subnets', parameters('virtualNetworkName'),
parameters('subnetName'))]",
"ignoreMissingVnetServiceEndpoint": true

},
"dependsOn": [

"[resourceId('Microsoft.DBforMySQL/servers', parameters('serverName'))]",
"[resourceId('Microsoft.Network/virtualNetworks/subnets',
parameters('virtualNetworkName'), parameters('subnetName'))]"

]
},
{

"type": "Microsoft.Network/virtualNetworks",
"apiVersion": "2020-06-01",
"name": "[parameters('virtualNetworkName')]",
"location": "[parameters('location')]",
"properties": {

"addressSpace": {
"addressPrefixes": [

"[parameters('vnetAddressPrefix')]"
]

}



APPENDIX D. AZURE ARM TEMPLATE SQL DEPLOYMENT 106

}
},
{

"type": "Microsoft.Network/virtualNetworks/subnets",
"apiVersion": "2020-06-01",
"name": "[format('{0}/{1}', parameters('virtualNetworkName'),
parameters('subnetName'))]",

"properties": {
"addressPrefix": "[parameters('subnetPrefix')]"

},
"dependsOn": [

"[resourceId('Microsoft.Network/virtualNetworks',
parameters('virtualNetworkName'))]"

]
},
{

"type": "Microsoft.DBforMySQL/servers",
"apiVersion": "2017-12-01",
"name": "[parameters('serverName')]",
"location": "[parameters('location')]",
"sku": {

"name": "[parameters('skuName')]",
"tier": "[parameters('SkuTier')]",
"capacity": "[parameters('skuCapacity')]",
"size": "[format('{0}', parameters('SkuSizeMB'))]",
"family": "[parameters('skuFamily')]"

},
"properties": {

"createMode": "Default",
"version": "[parameters('mysqlVersion')]",
"administratorLogin": "[parameters('administratorLogin')]",
"administratorLoginPassword": "[parameters('administratorLoginPassword')]",
"storageProfile": {

"storageMB": "[parameters('SkuSizeMB')]",
"backupRetentionDays": "[parameters('backupRetentionDays')]",
"geoRedundantBackup": "[parameters('geoRedundantBackup')]"

}
}

},
{

"copy": {
"name": "firewallRules",
"count": "[length(variables('firewallrules'))]",
"mode": "serial",
"batchSize": 1

},
"type": "Microsoft.DBforMySQL/servers/firewallRules",
"apiVersion": "2017-12-01",
"name": "[format('{0}/{1}', parameters('serverName'),
variables('firewallrules')[copyIndex()].Name)]",



APPENDIX D. AZURE ARM TEMPLATE SQL DEPLOYMENT 107

"properties": {
"startIpAddress": "[variables('firewallrules')[copyIndex()].StartIpAddress]",
"endIpAddress": "[variables('firewallrules')[copyIndex()].EndIpAddress]"

},
"dependsOn": [

"[resourceId('Microsoft.DBforMySQL/servers', parameters('serverName'))]"
]

}
]

}



Appendix E

Google deployment mananger SQL
Deployment

{% set deployment_name = env['deployment'] %}
{% set instance_name = deployment_name + '-instance' %}
{% set database_name = deployment_name + '-db' %}

resources:
- name: {{ instance_name }}

type: gcp-types/sqladmin-v1beta4:instances
properties:

region: {{ properties['region'] }}
settings:

tier: {{ properties['tier'] }}
backupConfiguration:

binaryLogEnabled: true
enabled: true

- name: {{ database_name }}
type: gcp-types/sqladmin-v1beta4:databases
properties:

name: {{ database_name }}
instance: $(ref.{{ instance_name }}.name)
charset: utf8

- name: insert-user-root
action: gcp-types/sqladmin-v1beta4:sql.users.insert
metadata:

runtimePolicy:
- CREATE
dependsOn:
- {{ database_name }}

properties:
project: {{ env['project'] }}
instance: $(ref.{{ env['deployment'] }}-instance.name)
name: testuser
host: "%"
password: testpass

108



Appendix F

Kubernetes YAML SQL
Deployment

apiVersion: v1
kind: Service
metadata:

name: mysql
spec:

ports:
- port: 3306
selector:

app: mysql
clusterIP: None

---
apiVersion: apps/v1
kind: Deployment
metadata:

name: mysql
spec:

selector:
matchLabels:

app: mysql
strategy:

type: Recreate
template:

metadata:
labels:

app: mysql
spec:

containers:
- image: mysql:5.6

name: mysql
env:

# Use secret in real usage
- name: MYSQL_ROOT_PASSWORD

value: password
ports:
- containerPort: 3306

109



APPENDIX F. KUBERNETES YAML SQL DEPLOYMENT 110

name: mysql
volumeMounts:
- name: mysql-persistent-storage

mountPath: /var/lib/mysql
volumes:
- name: mysql-persistent-storage

persistentVolumeClaim:
claimName: mysql-pv-claim

---
apiVersion: v1
kind: PersistentVolume
metadata:

name: mysql-pv-volume
labels:

type: local
spec:

storageClassName: manual
capacity:

storage: 20Gi
accessModes:

- ReadWriteOnce
hostPath:

path: "/mnt/data"
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:

name: mysql-pv-claim
spec:

storageClassName: manual
accessModes:

- ReadWriteOnce
resources:

requests:
storage: 20Gi


	Executive Summary
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Approach
	Report structure
	Assumptions
	About eMagiz

	Background
	Virtualization
	SaaS
	PaaS
	IaaS
	iPaaS
	Container Management
	Container Orchestrator
	Examples of iPaaS solutions

	Requirements
	Functional requirements
	Non-functional requirements
	Dependencies between requirements
	Measurability of the requirements
	Relation to the business motivation

	Container Orchestration Solutions
	Kubernetes
	Docker Swarm
	Spring Cloud Skipper
	Apache Mesos
	Comparison

	Solution Design
	Baseline Architecture
	Target Architecture
	Gap Analysis
	Installation instructions
	AWS, Azure and Google Cloud
	Conclusion

	Validation
	Validation of Reference Architecture
	Functional Requirements
	Non-Functional Requirements
	Case Study
	Validation Portability
	Validation Flexibility
	Conclusion

	Conclusions
	Revisiting the Research Questions
	Contributions
	Limitations and Future Work

	References
	Appendices
	Network Policy
	Example Integration Deployment
	AWS Cloud Formation SQL Deployment
	Azure Arm template SQL Deployment
	Google deployment mananger SQL Deployment
	Kubernetes YAML SQL Deployment

