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Abstract 
The present study investigated whether it is likely that stimulus-response translation 

contributes significantly to sequence execution in the discrete sequence production (DSP) task 

after extensive practice. This was done by inhibiting two other processing strategies, namely, 

the use of motor chunks and central-symbolic representations. In a DSP study, 24 participants 

counted tones and used an unpracticed hand configuration for sequence execution after 

extensive practice. Based on the assumption that each manipulation slowed responses by 

inhibiting a processing strategy, we expected the combined slowing of tone counting and 

using an unpracticed hand configuration to be larger than the added slowing of each 

manipulation alone. However, the results showed an additive increase of mean reaction times 

(RTs) when combining the two manipulations. To determine whether this can be explained by 

significant contribution of stimulus-response translation, we used the data of the DSP study to 

compare a model including stimulus-response translation with a model excluding it. The 

simulation of both models showed that stimulus-response translation likely contributed to 

sequence execution, but that it cannot explain the additive increase of RTs either. This could 

mean that more processing strategies were used or that other factors such as biomechanical 

differences affected mean RTs. 

Keywords: discrete sequence production task, automated movement sequences, motor 

chunking, secondary task, sequence learning, cognitive processing, stimulus-response 

translation 
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1. Introduction 

How humans automate a sequence of movements through practice is a topic that has 

been studied by a considerable number of researchers. When people automate behaviors like 

typing on a keyboard, driving a car, or lacing a shoe, they can use their processing resources 

for something else like observing the traffic in the case of the car example (Verwey et al., 

2015). This begs the question of why it is possible for a person to engage in this kind of multi-

tasking despite the sequence of movements, which is being executed, potentially being quite 

complex. Additionally, one might wonder if and possibly why a secondary task impairs 

sequence execution in certain ways, for example, by decreasing the speed or accuracy of 

sequence execution. 

An attempt to explain the underlying processes in movement sequence learning is 

made by the cognitive framework for sequential motor behavior (C-SMB) developed by 

Verwey et al. (2015). The C-SMB distinguishes between a central and a motor processor that 

are responsible for sequence execution and operate in parallel. Both processors are initially 

needed to execute a sequence of movements in the sense that the central processor initiates 

and triggers each movement, so the motor processor can execute it. Through practice, motor 

chunks develop which reduce the complexity of executing a sequence of individual actions to 

executing one or more motor chunks of actions that summarize the whole sequence. This 

enables the motor processor to execute a sequence on its own while the central processor only 

has to initiate the sequence but not trigger each individual movement. Hence, if the central 

processor is unavailable for sequence execution, for example, due to a secondary task, the 

motor processor can still execute the sequence. This might explain, for example, why it is 

possible, after extensive driving practice, to shift gears quickly while still observing the traffic 

or having a conversation with another passenger. 

However, it has also been observed that the speed of sequence execution increases 

through practice and that it can decrease again after practice if a secondary task is being 

performed while executing the sequence (Verwey et al., 2015). Here, the C-SMB argues that, 

after extensive practice, the central and motor processors are assumed to be racing to trigger 

each next movement of the sequence. Each processor builds up its own representation of the 

response and whichever processor is faster at providing a complete representation is also the 

processor responsible for triggering the response. A theoretical implication of this race model 

is that adding another processor to the race would generally increase the speed of sequence 

execution while removing a processor would generally decrease the speed of sequence 
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execution.1 For example, when motor chunks have formed, the motor processor can race with 

the central processor which should increase the speed of sequence execution in addition to the 

use of motor chunks generally being faster than other processing strategies which further 

increases the speed of sequence execution. Similarly, eliminating the central processor from 

the race by, for example, engaging in a secondary task while executing a sequence should 

decrease the speed of sequence execution even when motor chunks have already formed. This 

brings us to the focus of this paper. 

 

1.1 Aims 
The general purpose of this paper was to affirm the race assumptions of the C-SMB in 

the context of executing sequences in the discrete sequence production (DSP) task 

(Abrahamse et al., 2013). To be more precise, we wanted to investigate to what extent 

responses are slowed in the DSP task after extensive practice when one or even two 

processors are eliminated from the race of processors. One of those two processors is the 

motor processor and the other one is a processor related to central processing which will be 

explained in more detail in the following paragraphs. Several studies with the DSP task have 

already suggested that responses are slowed when a processor is presumably eliminated from 

the race (De Kleine & Verwey, 2009; Verwey et al., 2010; Verwey et al., 2014; Verwey & 

Clegg, 2005; Verwey & Wright, 2004). However, how much responses are slowed if two 

processors are inhibited from contributing to sequence execution has not been studied yet. 

This is the central question that this paper will address along with the question of which two 

processors are likely being inhibited from contributing to sequence execution in the DSP task.  

The latter question is related to the idea that the central processor itself can use 

different processing strategies for sequence execution (Verwey et al., 2015). To understand 

how this might be relevant for the present study, it is first necessary to understand how the 

involvement of the central processor in sequence execution evolves even before motor chunks 

have formed. When a sequence of movements is initially presented, an individual can only 

use stimulus-response (S-R) translation for sequence execution which is rather slow (Verwey 

et al., 2015). S-R translation describes the notion that the central processor triggers individual 

movements of a sequence which is characterized by reacting to key-specific stimuli in the 

 
1 While this is generally true, the extent to which the speed of sequence execution increases or decreases depends 
on how often the added or removed processor wins or won the race. A processor, that rarely wins the race and 
hence does not contribute much to sequence execution, also has a small impact on the speed of sequence 
execution when added to or removed from the race of processors. 
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DSP task. After a bit more practicing, the central processor uses so-called central-symbolic 

representations, and the individual can respond faster.2 The C-SMB assumes that a secondary 

task inhibits the use of central-symbolic representations by the central processor causing the 

slowing of responses after practice. With more repetition, motor chunks develop in long-term 

memory which means that individuals can load these chunks to execute the sequences rapidly 

with limited effort. 

While it was initially believed that S-R translation would be outpaced by the other 

sequencing systems suggesting that the central processor would mainly use central-symbolic 

representations after extensive practice, Verwey et al. (2020) have shown that participants 

continue reacting to key-specific stimuli as long as their luminance changes. This means that 

S-R translation can still race with the other sequencing systems (i.e., the use of motor chunks 

and central-symbolic representations). Moreover, Verwey et al. (2014) suggested that the 

central processor can be split up to perform different parallel processes. Hence, rather than 

performing one task at a time and switching between two tasks in a serial fashion, the central 

processor could perform two tasks parallelly by distributing central processing resources to 

both tasks in a graded fashion. Therefore, based on the findings of Verwey et al. (2020) and 

Verwey et al. (2014), it would be possible to partition the central processor into an S-R 

translation processor and a central-symbolic processor. These two processors are assumed to 

work in parallel racing against each other and the motor processor.  

Hence, such a three-processor model basically assumes the S-R translation (SR) 

processor, the Central-Symbolic (CS) processor, and the Motor Processor (MP). The previous 

two-processor model assumes the Motor Processor and the Central Processor (CP) that reads 

central-symbolic representations and performs the S-R translation which would not be 

relevant for sequence execution after extensive practice. Figure 1 summarizes the differences 

between the two models.  

 

  

 
2 In this phase, the central processor still selects individual responses, but these are primed by execution of the 
preceding responses at all processing levels enabling the individual to respond faster (Verwey et al., 2015). This 
is a further component of sequence learning called ‘associative learning’ which is also responsible for decreasing 
RTs through practice. The possible effect of associative learning on sequence execution is being largely ignored 
in this paper. 
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Figure 1 

Relationships between the processors in terms of racing with differentiation between the two-

processor (2P) model (solid black lines in the center) and the three-processor (3P) model 

(dashed blue lines forming the outer circle). For the 2P model, the central processor (CP) 

mainly uses central-symbolic (CS) representations after extensive practice whereas S-R 

translation (SR) is only used initially with little or no practice. The motor processor (MP) is 

part of both models and requires extensive practice, so it can use motor chunks to participate 

in the race to trigger the next response. For the three-processor model, one parallel race 

including the MP, CS, and SR processors is assumed rather than three individual races 

between each pair of processors like the figure might indirectly suggest. 
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While Verwey et al. (2020) found evidence for participants continuing to react to key-

specific stimuli after extensive practice, it was not clearly known whether the contribution of 

S-R translation to sequence execution would affect reaction times in a meaningful way when 

two processors are presumably eliminated from the race. Therefore, we also could not know 

beforehand how relevant the contribution of an SR processor would be for the present study. 

This was an issue because our predictions regarding the slowing of responses were different 

depending on how much the SR processor contributes. If the contribution of the SR processor 

is small after extensive practice, only the motor and central processors are assumed. 

Furthermore, when both processors are inhibited, no processor would initially be available for 

sequence execution. While it can be assumed that the central processor switches between a 

secondary task and sequence execution to perform both tasks at “roughly” the same time, 

(Verwey et al., 2015) this would most likely slow the central processor significantly due to 

the switching interrupting the execution of the sequence. Hence, an increased slowing of 

responses would be expected if the motor and central processors are inhibited from 

contributing to sequence execution.  

On the other hand, significant contribution of the SR processor after extensive practice 

might not lead to this increased slowing of responses when two processors are inhibited. If S-

R translation continues after extensive practice, the central-symbolic processor would be 

inhibited by a secondary task while the SR processor could still contribute to sequence 

execution and possibly, but not necessarily, prevent an increased slowing of responses that the 

two-processor model would expect. 

Hence, while a reaction time study (Study 1) had the purpose of investigating to what 

extent responses of a DSP sequence are slowed after extensive practice when one or two 

processors are eliminated from the race of processors, a follow-up simulation study (Study 2) 

was designed to test whether the assumed processors can be eliminated from the race. This 

was done by modeling the processors and races of processors of the two- and three-processor 

models based on the RT data of the DSP study to determine which model was more likely to 

be true. However, before going into more detail regarding Study 2, we first have to discuss 

how the assumed processors could be inhibited from contributing to sequence execution in the 

DSP task by discussing prior research. 
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1.2 Previous research with the DSP task 
In the DSP task, participants are required to execute keying sequences on a simple 

computer keyboard while their reaction time (RT) is being measured (Abrahamse et al., 

2013). Multiple studies with the DSP tasks have shown that a secondary task slows responses 

and suggested that a secondary task can eliminate a processor related to central processing 

from the race to trigger the next response (Verwey et al., 2010; Verwey et al., 2014). For 

example, Verwey et al. (2010) used a tone counting task as a secondary task to investigate the 

role of the central processor during sequence execution. The secondary tone counting task had 

the purpose of occupying the central processor so that its contribution to sequence execution 

was inhibited. When participants had to count tones next to executing the sequences, their 

RTs were longer. Moreover, responses slowed down less for familiar sequences compared to 

unfamiliar ones when comparing sequence executing with and without tone counting. The 

lessened slowing of responses for familiar sequences can be explained by the reduced 

involvement of the central processor in sequence execution once motor chunks have formed. 

This would support the assumption that a secondary task eliminates a processor related to 

central processing from the race. 

Next, there are also several studies which might suggest that the use of motor chunks 

by the motor processor can be inhibited by a change of effectors given that the sequence has 

been extensively practiced (De Kleine & Verwey, 2009; Verwey & Clegg, 2005; Verwey & 

Wright, 2004). Verwey and Wright (2004) examined whether performance in the DSP task is 

effector-dependent. The effectors in this case were the hand configurations which differed 

between the use of fingers from one or two hands in practice. Verwey and Wright (2004) 

compared sequence execution with practiced and unpracticed hand configurations. Their 

results suggest that learning in the DSP task involves an effector-dependent component in the 

sense that participants executed sequences with their practiced hand configuration faster than 

with the unpracticed hand configuration. This slowing could be explained by the motor 

processor not being able to participate in the race anymore. Nonetheless, executing a familiar 

sequence with an unpracticed hand configuration was faster than executing an unfamiliar 

sequence with it suggesting an effector-independent learning component. Verwey and Wright 

(2004) concluded that sequence learning starts in an effector-independent way and gradually 

involves an effector-dependent component with more practice. This could imply that the use 

of motor chunks by the motor processor is effector-dependent, as motor chunks develop in 

later stages of sequence learning and require extensive practice.  
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To conclude, both tone counting and using an unpracticed hand configuration after 

extensive practice are assumed to be manipulations that eliminate a processor, namely the 

motor processor and a processor related to central processing, from the race to trigger the next 

response of a sequence. In that sense, the studies from Verwey and Wright (2004) and 

Verwey et al. (2010) affirmed the race assumptions of the C-SMB by suggesting that using 

only one processor led to longer RTs relative to using two processors. However, an issue is 

that we cannot truly know whether tone counting and using an unpracticed hand configuration 

actually eliminated a processor from the race and that this elimination caused RTs to increase. 

For example, Verwey et al. (2016) pointed out that the effector-dependent component of 

sequence learning could alternatively be explained by adjusting to the biomechanical 

properties of the used effectors while motor learning might be mostly effector-independent. 

This would imply that using an unpracticed hand configuration does not directly affect the use 

of motor chunks by the motor processor.  

As it was not fully clear whether the RT increases in previous studies can be attributed 

to the elimination of a processor from the race, we tested whether the presumed elimination of 

two processors from the race would be consistent with the race assumptions of the C-SMB in 

terms of RTs increasing. Hence, by investigating how much RTs increase if we combine the 

use of tone counting and an unpracticed hand configuration, we attempted to generate further 

evidence supporting the notion of parallel processors that are racing to trigger each next 

response and that can be eliminated from the race by the manipulations used in our and 

previous studies.  

 

2. Study 1 

The aim of Study 1 was to examine to what extent tone counting and/or using an 

unpracticed hand for sequence execution would increase RTs in the DSP task after extensive 

practice. To that end, we incorporated a practice phase into the DSP task which served the 

purpose of building up central-symbolic representations and motor chunks through practice. 

In this practice phase, one of two hand configurations was used which did not change until the 

following test phase. Here, a tone counting task and a switch of hand configurations from the 

practiced to the unpracticed hand configuration were implemented to study the effects of tone 

counting and using an unpracticed hand configuration on sequence execution.  

This led to four different conditions in the test phase. One condition included the tone 

counting task (Tone Counting condition), a second one involved the use of an unpracticed 
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hand configuration (Hand Switch condition), and a third one included both of these 

manipulations at the same time (Hand Switch/Tone Counting condition). Finally, the fourth 

condition did not include any manipulations relative to practice (Control condition).  

As we assumed that each manipulation would eliminate one processor from the race to 

trigger the next response, and the C-SMB postulates that eliminating a processor from the 

race slows responses, we expected tone counting and using an unpracticed hand configuration 

to each increase RTs similar to previous studies (De Kleine & Verwey, 2009; Verwey et al., 

2010; Verwey et al., 2014; Verwey & Clegg, 2005; Verwey & Wright, 2004). Consequently, 

mean RTs in the Tone Counting and Hand Switch conditions were predicted to be longer than 

mean RTs in the Control condition.  

Next, given that both the use of tone counting and an unpracticed hand configuration 

slowed responses in previous studies and each of them is assumed to eliminate one processor 

from the race, it could also be expected that combining the two manipulations would further 

slow responses. The question is how large this increase in RTs would be relative to the 

slowing with one manipulation. The two-processor model would predict an increased slowing 

of responses due to the assumed unavailability of both central and motor processors for 

sequence execution. Statistically, the increased slowing of responses would be reflected in an 

interaction of tone counting and using an unpracticed hand configuration significantly 

increasing mean RTs in the Hand Switch/Tone Counting condition.  

However, the slowing of responses might not be further increased when three 

processors are involved, and S-R translation continues to contribute to sequence execution 

after extensive practice. An additive effect would be predicted if the slowing of responses is 

not further increased, so the sum of the slowing effects of tone counting and using an 

unpracticed hand configuration would be roughly the same as their combined slowing effect 

in the Hand Switch/Tone Counting condition. However, as we did not know before Study 2 

whether the three-processor model would predict an additive or interactive increase of RTs, 

both types of RT increases were theoretically possible and could be an indication of 

significant contribution of the SR processor to sequence execution. Hence, we limited our 

explicit expectations for Study 1 to the two-processor model and the assumption that S-R 

translation contributes little to sequence execution after extensive practice. Based on that 

assumption, we expected the RT increase when tone counting and using an unpracticed hand 

configuration are combined to be larger than the sum of RT increases when only one 

manipulation is applied.  
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Lastly, Verwey et al. (2010) have shown that the effect of tone counting has only been 

observed for the three responses following a tone and that ensuing responses until the tone of 

the next sequence were not affected by the secondary task anymore. Consequently, we also 

expected the three responses following a tone to be slowed more than the responses preceding 

the tone. This analysis excluded the initial response of a sequence which is usually 

significantly slower than all following responses of a sequence even after extensive practice 

(Verwey et al., 2015). 

 

3. Methods 

3.1 Participants 

Twenty-four participants between the age of 18 and 29 years took part in this 

experiment (Mage = 20.71 years, SDage = 2.40 years). They were all students from the 

University of Twente. Only right-handed participants who did not smoke and had not drunk 

any alcohol in the 24 hours prior to the experiment were eligible to participate. The reward for 

participating in this study were 3.5 credit points. The ethics committee of the University of 

Twente approved this study. 

 

3.2 Materials 

 The experiments were conducted in a small room on a Dell PC using Windows 10 

with a Logitech keyboard using the QWERTY layout as well as a PS/2 connection. The AOC 

G2460PF monitor had a resolution of 1920x1080, a size of 24 inches, and a refresh rate of 

144 Hz. A pair of Sennheiser HD 400s headphones was used for the test phase to present 

high- and low-pitched tones. An informed consent, a participant instruction paper, and a paper 

version of the awareness task were given to the participant. The blocks for the practice phase, 

test phase, and a computerized awareness task were created using E-prime 2.0 (E-Prime® 

Legacy Versions, 2018). 

 

3.3 Task 

The version of the DSP task used in this study started with a practice phase consisting 

of six blocks. Each block consisted of 240 trials with a 20-second break halfway through each 

block and a four-minute break after each block, yielding 720 practice trials per sequence. Four 

empty squares were shown on the screen in horizontal order. The squares corresponded to the 

keys C, V, B, N as spatially compatible placeholders that were ordered in the same horizontal 
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way as the keys. To indicate which of the four keys had to be pressed, the corresponding 

placeholder was filled with green color while the other three placeholders remained white like 

the background and did not illuminate.  

Two 7-key sequences were executed in each practice session and counterbalancing 

was used to distribute those two out of four sequences to each participant. The sequences used 

in this experiment were VBCNVNC, CNVBCBV, BVNCNCB, and NCBVBVN. Which one 

of the two sequences was shown on each trial was randomized, but the total number of trials 

with each sequence was equal at the end of the practice phase. There was a 1500 ms break 

between each trial. In case of a mistake, the message “error, wait” was shown for 1 second 

and the current sequence was skipped. The same happened if a response was not quick 

enough which was followed by a “no response” message.  

The test phase consisted of one block including four subblocks with 48 trials each. At 

the third key position of a sequence in all subblocks, a tone was played for 100 ms. This tone 

was either low pitched (440 Hz) or high pitched (698 Hz), and it was random which one was 

played. The task was to count the low pitch tones and ignore the high pitch tones. However, 

this was only required for half of the subblocks whereas the others demanded ignoring all 

tones. To be more precise, the subblocks were divided into a 2 (hand configuration: practiced 

vs unpracticed) x 2 (tone counting: count vs ignore) design. The order of the subblocks was 

counterbalanced across participants. There was a 20-second break between each subblock 

which was followed by an instruction page for the next subblock. 

 

3.4 Procedure 

Before the experiment started, participants filled out the informed consent and read the 

participant instructions. They gave their cell phones to the researcher to avoid distraction. 

Then, the participant read the description of the experiment shown on the computer screen. It 

was checked whether the participant used the correct fingers and that these were placed on the 

keys C, V, B, N before starting. Half of the participants started with the left hand whereas the 

other half used fingers from both of their hands. Participants starting with the left hand used 

all of their fingers except the thumb, so the little finger was on the far left key and the index 

finger on the far right. The other half started with pinky and ring finger from their left hand on 

the two leftmost keys and index finger plus middle finger from their right hand on the two 

rightmost keys. If the participant did not have any further questions, the researcher left the 

room and the participant started with the first block. The experimenter could observe the 
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participant through a camera in the room. After each block and its respective break, the 

researcher came back into the room to start the next block. This was done for all six blocks of 

the practice phase.  

After the sixth and last practice block, the experimenter explained what was expected 

from the participant in the seventh block. Written instructions followed on the computer 

screen, and the researcher made sure that everything was understood. The participant put on 

the headphones and listened to an example of the low- and high-pitched tones. Then, the 

experimenter left again, so the participant could start the first of four subblocks. Before each 

subblock, the participant read an instruction page that indicated what had to be done. 

Regardless of whether low tones had to be counted or not, during the test block high- and 

low-pitched tones were presented to the participant in all subblocks. After a subblock that 

included tone counting, the participant indicated how many low tones they had counted.  

Following the test block, a computerized awareness task was used to assess explicit 

sequence knowledge by testing whether participants could reproduce the sequences executed 

during the DSP task without seeing the keyboard. A slightly different paper version of the 

awareness task was also used. However, the results of these awareness tasks are not reported 

in this paper and therefore, the awareness tasks are not further described. 

 

3.5 Data Analysis 

For the practice phase, a Hand(s) used in Practice (2: one vs two) x Block (6) x Key 

(7) repeated measures ANOVA was used with the Hand(s) used in Practice as the between-

subjects variable and the other two variables as within-subjects variables. This was done for 

both the mean reaction times and the error proportions that were transformed to arcsine 

proportions before submission. For the test phase, a Hand(s) used in Practice (2: one vs two) x 

Hand configuration (2: unpracticed vs practiced) x Tone counting condition (3: distractor tone 

vs target tone vs no counting) x Key (7) repeated measures ANOVA was used with the 

Hand(s) used in Practice as the between-subjects variable and the other three as within-

subjects variables. Again, arcsine proportions of the errors were submitted to this ANOVA 

design as well as the mean reaction times.  

Moreover, a Hand(s) used in Practice (2: one vs two) x Hand configuration (2: 

unpracticed vs practiced) x Tone counting condition (3: distractor tone vs target tone vs no 

counting) x Key (3: 3-5) repeated measures ANOVA was done with the Hand(s) used in 

Practice as the between-subjects variable and the other three as within-subjects variables. This 
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analysis served the purpose of focusing only on the three responses following a tone, as 

Verwey et al. (2010) have shown that still later responses after a tone were not slowed by it 

anymore. For all repeated measures ANOVAs, Greenhouse-Geisser values were reported 

unless the assumption of sphericity was violated in which case the results of the multivariate 

test were reported. Lastly, a Hand(s) used in Practice (2: one vs two) x Hand configuration (2: 

unpracticed vs practiced) x Keys before/after tone (2: 2,6,7 vs 3,4,5) x Tone counting 

condition (3: distractor tone vs target tone vs no counting) repeated measures ANOVA was 

used with Hand(s) used in Practice as the between-subjects variable and the other three as 

within-subjects variables. This last ANOVA was used for planned comparisons regarding 

whether responses following a tone were slowed more than those preceding it as observed by 

Verwey et al. (2010).  

 

4. Results 

4.1 Practice phase 

The repeated measures ANOVA for the mean reaction times showed that participants 

became faster with more practice, F(2.41,53.11) = 131.22, p < 0.01, ηp
2 = 0.85, and the mean 

reaction times for key positions within a sequence differed as well, F(2.38,52.54) = 136.52, p 

< 0.01, ηp
2 = 0.86. Figure 2 shows the mean reaction times for all blocks and key positions. 

Furthermore, a Block x Key interaction indicated that some key positions experienced a 

higher decrease in mean reaction times through practice compared to others, F(6.68,147.16) = 

9.43, p < 0.01, ηp
2 = 0.30. Lastly, it did not seem to matter whether participants practiced with 

one (M = 270.95 ms) or two hands (M = 282.23 ms), F(1,22) = 0.18, p = 0.66, ηp
2 = 0.01. 
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Figure 2 

Mean reaction times (ms) for each of the six blocks (upper frame) as well as each of the seven 

key positions of a sequence across all of these blocks (lower frame).  

 

 

 

Next, the repeated measures ANOVA for arcsine-transformed error proportions 

showed that the proportions differed based on the key position within a sequence, 

F(3.81,83.97) = 21.88, p < 0.01, ηp
2 = 0.49 (M1 = 0.005, M2 = 0.010, M3 = 0.019, M4 = 0.003, 

M5 = 0.021, M6 = 0.025, M7 = 0.008). Moreover, a Block x Key interaction indicated that 
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certain key positions differed in terms of the development of error proportions through 

practice, F(9.26,203.90) = 2.24, p = 0.02, ηp
2 = 0.09. Lastly, a Block x Key x Hand(s) used in 

Practice interaction showed that the deviations of the previous interaction look different when 

comparing whether one or two hands were used, F(9.26,203.90) = 1.94, p = 0.046, ηp
2 = 0.08. 

 

4.2 Test phase 

The repeated measures ANOVA for the mean reaction times including all responses 

showed that participants were faster when they used the same hand configuration that they 

had previously practiced with (M = 238.49 ms) compared to using an unpracticed hand 

configuration (M = 366.56 ms), F(1,22) = 88.32, p < 0.01, ηp
2 = 0.80. Participants were fastest 

in the no-counting condition (M = 271.01 ms), followed by sequences with a distractor tone 

(M = 311.21 ms), and lastly, sequences with a target tone (M = 325.35 ms), F(1.55,34.17) = 

26.67, p < 0.01, ηp
2 = 0.54. A Hand configuration x Tone counting condition interaction was 

not found, F(1.23,27.13) = 0.05, p = 0.86, ηp
2 = 0.003 (Practiced: MDistractorTone = 247.53 ms, 

MTargetTone = 260.07 ms, MNoCounting = 207.86 ms; Unpracticed: MDistractorTone = 374.88 ms, 

MTargetTone = 390.62 ms, MNoCounting = 334.17 ms). 

Additionally, key positions within a sequence differed in terms of their mean reaction 

time, F(2.80,61.81) = 63.30, p < 0.01, ηp
2 = 0.74 (M1 = 461.27 ms, M2 = 255.80 ms, M3 = 

315.57 ms, M4 = 244.38 ms, M5 = 290.87 ms, M6 = 285.54 ms, M7 = 264.24 ms). Participants 

who practiced with two hands were in general slower than participants who practiced with 

one hand, F(1,22) = 4.78, p = 0.04, ηp
2 = 0.17. Next, a Hand configuration x Hand(s) used in 

Practice interaction showed that participants who practiced with two hands were slowed more 

when they switched to one hand than vice versa, F(1,22) = 20.72, p < 0.01, ηp
2 = 0.48 (Figure 

3). A Hand configuration x Key interaction indicated that the difference between the hand 

configurations used was not the same for all key positions, F(3.82,84.04) = 8.50, p < 0.01, ηp
2 

= 0.27, and that this effect was also dependent on the hand(s) used in practice as seen in the 

Hand configuration x Key x Hand(s) used Practice interaction, F(3.82,84.04) = 9.58, p < 0.01, 

ηp
2 = 0.30.  
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Figure 3 

Mean reaction times (ms) of all responses in the test phase for using a practiced or 

unpracticed hand configuration based on the hand(s) used in practice 

 

 

Conducting the same repeated measures ANOVA with only the mean reaction times 

for responses three to five affirmed the main effect of Tone counting condition, F(1.59,34.98) 

= 20.44, p < 0.01, ηp
2 = 0.48, and the main effect of Hand configuration, F(1,22) = 78.37, p < 

0.01, ηp
2 = 0.78. Nonetheless, a significant Hand configuration x Tone counting condition 

interaction was not found in this analysis either, F(1.19,26.38) = 0.19, p = 0.71, ηp
2 = 0.01. 

Figure 4 shows that the increases in mean reaction times following a tone were additive when 

tones had to be counted and an unpracticed hand configuration was used. The major 

differences in this analysis compared to the analysis including all responses were that it is 

questionable whether the difference between practicing with one (M = 247.89 ms) or two 

hands (M = 319.33 ms) made a significant impact on mean reaction times of the test phase, 
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F(1,22) = 4.19, p = 0.053, ηp
2 = 0.16, and that a Hand configuration x Key x Hand(s) used 

Practice interaction was not observed, F(1.81,39.94) = 0.36, p = 0.67, ηp
2 = 0.01. 

 

Figure 4 

Mean reaction times (ms) for using a practiced or unpracticed hand configuration in all three 

counting conditions for responses three to five 

 

 

Planned comparisons also showed that the three responses following a tone 

(MDistractorTone = 294.62 ms, MTargetTone = 312.49 ms, MNoCounting = 243.69 ms) were slowed 

more than responses two, six, and seven (MDistractorTone = 277.32 ms, MTargetTone = 289.57 ms, 

MNoCounting = 238.69 ms), F(1,22) = 4.67, p = 0.04, ηp
2 = 0.17.  

Next, the repeated measures ANOVA for arcsine-transformed error proportions 

showed that participants made more errors when they used an unpracticed hand configuration 

(M = 0.023) compared to the practiced hand configuration (M = 0.013), F(1,22) = 20.10, p < 

0.01, ηp
2 = 0.47, and that participants made significantly more errors when they had to count a 
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tone compared to only identifying a distractor tone or ignoring all tones, F(2,21) = 11.24, p < 

0.01, ηp
2 = 0.51 (MDistractorTone = 0.015, MTargetTone = 0.022, MNoCounting = 0.018). Furthermore, 

the error proportions regarding a key position within a sequence differed as well, 

F(4.13,90.90) = 13,22, p < 0.01, ηp
2 = 0.37 (M1 = 0.014, M2 = 0.009, M3 = 0.023, M4 = 0.005, 

M5 = 0.029, M6 = 0.034, M7 = 0.015). Lastly, a Tone counting condition x Key interaction 

revealed that differences between the counting conditions do not seem to be the same for all 

key positions, F(7.32,161.22) = 3.12, p < 0.01, ηp
2 = 0.12. 

 

5. Discussion 

The purpose of Study 1 was to test the predictions that, first of all, reaction times 

(RTs) in the DSP task would get longer when tones have to be counted or an unpracticed hand 

configuration is used for sequence execution and secondly, that counting tones and using an 

unpracticed hand configuration at the same time would lead to an increase in RTs that is 

larger than the sum of RT increases when only one manipulation is applied. The results 

confirmed the prediction that counting tones during sequence execution increases RTs relative 

to executing sequences without counting tones. A similar effect was observed for the use of 

an unpracticed hand configuration in the sense that RTs increased relative to using the 

practiced hand configuration. Furthermore, as expected, the three responses following a tone 

were slowed more than the ones preceding a tone. These results are in line with previous 

research studying the effects of tone counting and using an unpracticed hand configuration 

after extensive practice (De Kleine & Verwey, 2009; Verwey et al., 2010; Verwey et al., 

2014; Verwey & Clegg, 2005; Verwey & Wright, 2004). Still, the expected interaction of tone 

counting and using an unpracticed hand configuration could not be observed, as the increase 

in RTs was additive rather than interactive when both manipulations were applied relative to 

applying only one manipulation (Figure 4). 

Another notable observation in this study was that it mattered which hand 

configuration was used in practice. Figure 3 shows that this was relevant when participants 

used an unpracticed hand configuration, as participants who practiced with two hands were 

slower when using one hand than vice versa. This is also what Verwey and Wright (2004) and 

Verwey et al. (2016) found in their studies. A possible explanation for the difference between 

the use of one or two hands as unpracticed configurations might be the adjustment hypothesis 

which suggests that more practice is needed to adjust to the biomechanical properties of 

fingers from one hand compared to fingers from two hands (Verwey & Clegg, 2005). As 
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participants who practiced with two hands did not have any practice with one hand, this 

biomechanical difference might explain why they were slower using their unpracticed hand 

configuration than participants who practiced with one hand and then used two hands in the 

test phase. 

Overall, despite affirming the slowing effects of tone counting and using an 

unpracticed hand configuration after extensive practice, Study 1 failed to generate further 

evidence supporting the race assumptions of the C-SMB given that the manipulations were 

assumed to eliminate the motor processor and a processor related to central processing from 

the race to trigger the next response. A possible explanation for the missing interaction of tone 

counting and using an unpracticed hand configuration could be that this prediction was based 

on the assumption that S-R translation would contribute little after extensive practice. We 

have already mentioned that a three-processor model including the SR processor does not 

necessarily predict an increased slowing of responses when two processors are presumably 

eliminated from the race of processors. Hence, it would be possible that continued S-R 

translation in the test phase of Study 1 caused RTs in the Hand Switch/Tone Counting 

condition to not increase as much as initially expected. Study 2 investigated whether this 

assumption was likely true or not. 

 

6. Study 2 

The two-processor model assumed that S-R translation would contribute little to 

sequence execution after extensive practice. This assumption might have been wrong given 

the results of Study 1 did now show an interaction of tone counting and using an unpracticed 

hand configuration increasing mean RTs in the DSP task as expected. However, this did not 

necessarily imply that the three-processor model including the SR processor was correct 

either. Hence, the purpose of Study 2 was to investigate (1) whether it is likely that S-R 

translation significantly contributed to sequence execution in the test phase of Study 1 and (2) 

whether significant contribution of S-R translation to sequence execution can explain the 

additive effect of tone counting and using an unpracticed hand configuration in the Hand 

Switch/Tone Counting condition. We will first recap the theoretical assumptions of the three-

processor model (Model 3P) in contrast to the two-processor model (Model 2P) by putting 

them into the context of Study 1 and then, discuss the basic procedure used in Study 2 to 

answer the described research questions. 
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As recent evidence indicates that participants still react to stimuli using S-R translation 

after extensive practice when key-specific stimuli involve a luminance change (Verwey et al., 

2020), and Verwey et al. (2014) have shown that the central processor can be split up to 

perform different parallel processes, Model 3P assumes a partitioned central processor in 

which an SR processor and central-symbolic (CS) processor are working in parallel racing 

against each other and the motor processor (MP) (Figure 1). This partitioned central processor 

stands in contrast to the central processor of Model 2P which behaves like a single unit 

switching between tone counting and sequence execution, for example. While Model 2P 

assumed that tone counting would eliminate the central processor from the race of processors 

as a whole, Model 3P assumes that the central-symbolic processor is eliminated from the race 

while the SR processor can continue contributing to sequence execution.  

Table 1 shows how this logic is applied to the four test conditions of Study 1 with 

regards to which processor is assumed to contribute to sequence execution according to each 

model. As the luminance of key-specific stimuli changed in all four conditions, we expected 

the SR processor of Model 3P to contribute to sequence execution in all four conditions. 

 

Table 1 

Processors involved in each test condition according to both models with ‘vs.’ implying that a 

race of processors took place (MP = Motor processor, CP = Central processor, CS = 

Central-symbolic processor, SR = Stimulus-response translation processor).  

Model Control  Tone 

Counting 

Hand Switch Hand 

Switch/Tone 

Counting 

Model 2P (Study 1) MP vs. CP MP CP CP switching 

Model 3P MP vs. CS vs. SR MP vs. SR CS vs. SR SR  

 

Study 2 examined which of these models, if any, fits the mean RTs observed in the 

four conditions of the test phase in Study 1. This required the simulation of processors and 

races assumed in each test condition as shown in Table 1. By modeling the processors and 

races of each model, we tried to determine which model is better able to predict the results of 

Study 1 and hence, also whether Model 3P could replicate the unexpected additive effect in 

the Hand Switch/Tone Counting condition.  
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On the basis of the RTs in Study 1 we first estimated the processing time distributions 

for each assumed processor that could then be used to model the assumed races of processors 

for each condition.3 To be more precise, we started off using the RT distributions obtained in 

the Tone Counting, Hand Switch, and Hand Switch/Tone Counting conditions of Study 1 to 

estimate the distributions of each processor from Model 3P. For example, as the SR processor 

was the only processor contributing to sequence execution in the Hand Switch/Tone Counting 

condition according to Model 3P, its processor distribution should theoretically be roughly the 

same as the RT distribution of the Hand Switch/Tone Counting condition. Similarly, the 

distribution resulting from the race of SR and CS processors should be roughly the same as 

the RT distribution of the Hand Switch condition.  

For Model 2P, the RT distributions obtained in the Tone Counting and Hand Switch 

conditions were used to estimate the distributions of motor and central processors. However, 

we did not simulate the switching central processor of Model 2P for the Hand Switch/Tone 

Counting condition, as that would have required concrete prior knowledge about how exactly 

this switching works. Hence, we just assumed, but could not reliably test, that the switching 

central processor would replicate the mean RT of the Hand Switch/Tone Counting condition.  

Lastly, all two or three processors of the respective models raced in the Control 

condition, and we determined which, if any, of the models would be able to show the 

respective pattern of mean RTs from Study 1. Ultimately, only a model producing similar 

mean simulated RTs (simRTs) for all four conditions would be successful in reproducing the 

pattern of mean RTs from Study 1. Given that Verwey et al. (2020) have shown that 

participants continue reacting to key-specific stimuli as long as their luminance changes and 

the results of Study 1 were not in line with the predictions of the two-processor model, we 

expected Model 3P to be able to reproduce the pattern of mean RTs suggesting an additive 

effect in the Hand Switch/Tone Counting condition. This would show that significant 

contribution of S-R translation to sequence execution can explain the additive effect in the test 

phase of Study 1.  

 
3 The processing time refers to the time a processor needs to build up a complete representation of a response, so 
the winner of a race between two or more processing times is the processor which can more quickly transmit a 
completed representation, hence having a shorter processing time. The build-up of the representation can be seen 
in a similar way as described by Brown and Heathcote (2008) who developed the linear ballistic accumulator 
(LBA) model. Evidence for a response is accumulated in multiple separate evidence accumulation processes 
until a certain response threshold is met. The first accumulator (similar to processor) that reaches this threshold 
provides the response. 
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However, although we tried to reproduce the mean RTs of the four test conditions 

from Study 1, the basis for the simulations were not the mean RTs from Figure 4. The mean 

RTs from Figure 4 also included the biomechanical slowing due to the use of fingers of a 

single hand as the unpracticed hand configuration (Figure 3). As we did not want the 

biomechanical slowing to skew mean RTs, we only included data of two-handed sequence 

execution for the Hand Switch and Hand Switch/Tone Counting conditions. This led to two 

different modeling approaches which were based on two different datasets that only included 

part of the data for each condition that is summarized as mean RTs in Figure 4. More details 

regarding the datasets can be found in Section 7.1. 

A within-subjects approach (including the data of one half of participants) allowed us 

to reduce individual differences between participants through standardization which further 

reduced skewness in the data. For a between-subjects approach, this was not possible, so 

individual differences remained high. However, the pattern of mean standardized RTs from 

the within-subjects approach suggested an interactive effect in the Hand Switch/Tone 

Counting condition.4 Hence, the between-subjects approach, which included a pattern of mean 

RTs suggesting an additive effect, was still needed to test whether Model 3P can explain the 

additive effect observed in the test phase of Study 1.  

As both modeling approaches had certain advantages and disadvantages, we 

considered it to be most useful to simulate Models 2P and 3P for both approaches and test 

whether the models could reproduce the pattern of results suggesting an interactive and/or 

additive effect. While the within-subjects approach could not be used to test whether any of 

the models can reproduce the additive effect observed in Study 1, a replication of the data 

from one half of the participants could still indicate whether S-R translation likely contributed 

significantly to sequence execution or not. Therefore, a separation of the two research 

questions of Study 2 existed given that no model could explain the additive effect in the Hand 

Switch/Tone Counting condition, but we could still determine which model is generally more 

likely than the other.  

 
4 In Study 1, a Hand configuration x Tone counting condition interaction was not found for participants who 
practiced with one hand including responses three to five, F(1.19,13.08) = 1.78, p = 0.21, ηp

2 = 0.14. However, 
the pattern of mean RTs was already closer to an interaction than the results shown in Figure 4. In Study 2, 
reducing individual differences mainly through standardization, but also through cutting off the right tail of the 
RT distributions (reported in Section 7.1), directed the pattern of mean standardized RTs towards an interactive 
effect in the Hand Switch/Tone Counting condition, F(1,11) = 6.33, p = 0.02, ηp

2 = 0.36. Due to a missing value 
for one participant where a target tone was played on the third key position of the sequence, we did not 
differentiate between distractor and target tones for the analysis including the standardized RTs leading to a 
Hand configuration (2: unpracticed vs practiced) x Tone counting condition (2: tone counting vs no counting) x 
Key (3: 3-5) repeated measures ANOVA where all three variables were within-subjects variables. 
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7. Methods 

7.1 Data preparation 

The statistical programming language R was used to conduct the RT simulations, 

using as a basis the RT distributions of the four test conditions from Study 1. An initial 

modeling approach included the data of all participants across all conditions similar to Figure 

4 (Appendix B). This modeling approach showed that the biomechanical slowing of using 

fingers of a single hand as the unpracticed hand configuration most likely slowed the 

simulated central, CS, and SR processors so much that they could almost never win the race 

against the simulated motor processor. As one processor almost always won the race, it 

basically did not matter whether two or three processors were racing in total.  

Hence, we decided to reduce biomechanical differences in the data from Study 1 by 

excluding sequence execution with one hand as the unpracticed hand configuration. This led 

to a within-subjects approach and a between-subjects approach which were based on different 

RTs for the Control and Tone Counting conditions while the used RTs for Hand Switch and 

Hand Switch/Tone Counting conditions were the same for both approaches. The between-

subjects data included RTs of the Tone Counting and Control conditions from participants 

who practiced with two hands and RTs of the Hand Switch and Hand Switch/Tone Counting 

conditions from participants who practiced with one hand. Hence, the between-subjects 

approach only included data of sequence execution with two hands. On the other hand, the 

within-subjects data included RTs of participants, who practiced with one hand, across all test 

conditions.  

Furthermore, we did not include all observed RTs of the chosen dataset for each 

modeling approach. As counting a tone affected only the three responses following it, we only 

considered responses three to five of each sequence (Verwey et al., 2010). Additionally, 

responses faster than 50 ms were removed because they were considered unrealistically fast. 

We also did not differentiate between distractor and target tones for the sake of simplicity.  

Next, as RT distributions usually have an exponential upper tail making them ex-

Gaussian rather than Gaussian (Galloway-Long & Huang-Pollock, 2018), we cut off the right 

tails of the RT distributions in each condition enabling us to use Gaussian distributions 
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instead.5 Hence, we only had to set the means and standard deviations of the simulated 

processor distributions rather than using three parameters of ex-Gaussian distributions. 

Additionally, reducing the right skew of the distributions had the advantage that the mean 

RTs were less skewed by the right tail as well. The removal of the long right tails was done 

manually for the RT distributions of each test condition. There was no strict rule used for 

choosing the individual cut-off points for each RT distribution, as the RT distributions of the 

four conditions differed in several ways not making it possible to choose a reasonable rule 

that would fit all distributions across both modeling approaches. 

Another possibly skewing factor that we tried to reduce in Study 2 were individual 

differences between participants. However, this was not possible for the between-subjects 

approach, as standardizing the RTs of participants who practiced with two hands would have 

indirectly reflected the biomechanical slowing observed when these participants used one 

hand as the unpracticed hand configuration. Hence, no further changes were made to the 

between-subjects data after the removal of the long right tails, so we only reduced individual 

differences in the within-subjects data. Before standardizing the RTs of the within-subjects 

approach, we further reduced the right tail of the distributions on an individual participant 

level. This second cut-off operation was necessary, so the standardization process reducing 

individual differences would not lead to the occurrence of a new right tail. We divided the 

RTs of each participant into the four test conditions and cut off all data points that exceeded 

the mean of a participant’s RTs in the respective condition by 2.5 standard deviations.  

Then, the standardization process followed in which we standardized the RTs per 

participant across all four conditions. This was done through the method of z-score 

normalization which resulted in a mean of 0 and a standard deviation of 1 for each participant 

across all four test conditions.  

Afterwards, the data of each participant was put back into one dataset including all 

participants which was also done for the between-subjects data where no standardization 

occurred. Finally, we split up the remaining (standardized) RTs into the four test conditions 

(Appendices C & D) as basis for determining the distributions of the processors of Models 2P 

and 3P. The mean standardized RTs of the within-subjects approach suggested an interactive 

effect in the Hand Switch/Tone Counting condition like expected in Study 1 whereas the 

 
5 It was seen as unproblematic to use Gaussian distributions, as we assumed that most of the right tail was caused 
by participants not concentrating or being distracted leading to a certain number of slow responses for each 
condition.  
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mean RTs of the between-subjects approach suggested an additive effect like observed in 

Study 1.  

 

7.2 Simulation of processor distributions for Model 3P 

The rnorm function, which is a built-in function of R, was used to produce 10000 

random samples for each processor after mean and standard deviation had been set. The basic 

procedure for both modeling approaches was almost exactly the same. We started with the 

distribution of the SR processor, as it was the only processor assumed to be involved in the 

Hand Switch/Tone Counting condition. The mean and standard deviation were extracted 

directly from the (standardized) RT distribution of the Hand Switch/Tone Counting condition.  

Then, we continued with the Hand Switch condition using a slightly different 

procedure, as the CS processor distribution could not be directly extracted from the 

(standardized) RT distribution of the Hand Switch condition. Model 3P assumed a race of the 

CS and SR processors, so the end product of that race had to match the (standardized) RT 

mean of the Hand Switch condition. Initially, the distribution of the CS processor was given 

two basically random parameters, as we did not know how its distribution looked like yet. But 

as the distribution of the SR processor was already known through the (standardized) RT 

distribution of the Hand Switch/Tone Counting condition, we could determine the distribution 

of the CS processor by tweaking its parameters until the simulated race of SR and CS 

processors yielded the (standardized) RT mean and standard deviation of the Hand Switch 

condition. This was an indirect way of determining the unknown distribution of the CS 

processor through testing whether the simulated processor fulfilled the required condition that 

the (standard) simRT mean resulting from a race with the already known SR processor 

reproduces the (standardized) RT mean of the Hand Switch condition. 

Next, the distribution of the MP was determined by having it race with the simulated 

SR processor until the (standard) simRT mean resulting from that race matched the 

(standardized) RT mean of the Tone Counting condition. There was no difference between the 

approach of simulating the MP and CS processor except that they were based on data of 

different conditions. Appendix C shows the distributions of all three simulated processors for 

the within-subjects approach while Appendix D shows the three processor distributions for 

the between-subjects approach. 

Lastly, Appendix E presents the R-code that was used to carry out the races between 

the simulated processors. Basically, from the list of 10000 random samples of each processor 
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distribution, one value was randomly picked and competed against the random value of 

another processor distribution. The winner of the race was the processor with the shortest 

simulated processing time of two or three processors. This procedure was repeated until all 

10000 values of a processor had competed against the value(s) of the other processor(s), and 

the resulting (standard) simRT distribution was determined. 

 

7.3 Comparison of means 

For the Control condition, in which sequences were executed as practiced, no further 

changes were made to the individual processor distributions of Model 3P. Here, the race 

including all three processors was carried out and compared to the (standardized) RT 

distribution of the Control condition. After that, the (standard) simRT mean of each condition 

was compared to the (standardized) RT mean of each condition and it was possible to say 

whether Model 3P was able to replicate the pattern of results found in Study 1 in terms of 

mean (standardized) RTs. The model was considered successful in replicating the pattern of 

results if each (standard) simRT mean fell into the range of a 95 percent confidence interval 

for the mean (standardized) RT of each condition. 

Next, the motor and central processors of Model 2P were simulated based directly on 

the mean and standard deviation of the (standardized) RTs from the Tone Counting and Hand 

Switch conditions, respectively. We did not simulate the switching central processor for the 

Hand Switch/Tone Counting condition. Then, both simulated processors raced in the same 

way that the processors of Model 3P raced and the resulting (standard) simRT mean was 

compared to the (standardized) RT mean of the Control condition to see whether Model 2P 

could replicate the pattern of results in Study 1 in terms of mean (standardized) RTs.  

 

7.4 Goodness-of-fit 

While the mean was the main criterion to determine the accuracy of the simulated 

processor distributions, we also compared the resulting (standard) simRT distributions of 

Model 3P with the (standardized) RT distributions of the test conditions as a goodness-of-fit 

criterion. However, the (standardized) RT distributions were still not Gaussian after cutting 

off the right tail, so a more typical goodness-of-fit test like the two-sample Kolmogorov-

Smirnov test (Smirnov, 1939) basically always indicated that the simulated Gaussian 

distribution and standardized RT distribution were significantly different.  
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As the two-sample Kolmogorov-Smirnov test was identified as being too sensitive for 

our skewed data, we chose to use the location-scale Cucconi test which can be used for two-

sample location-scale problems including skewed distributions (Marozzi, 2013). The Cucconi 

test is a rather unknown nonparametric test that can determine whether the location and scale 

of two distributions are equal (Marozzi, 2009). We used the Cucconi test to determine 

whether the location and scale of the resulting (standard) simRT distributions of Model 3P 

differed from the (standardized) RT distributions of each test condition. Additionally, the 

goodness-of-fit for each condition was determined graphically with the expectation that the 

(standard) sim RT distribution should roughly fit the (standardized) RT distribution it was 

compared to.  

 

8. Results 

8.1 Interaction: Standardized RTs of within-subjects approach 

8.1.1 Data preparation 

The within-subjects data included responses three to five from participants who 

practiced with one hand and hence, used one hand for sequence execution in Control and 

Tone Counting conditions while using two hands in Hand Switch and Hand Switch/Tone 

Counting conditions. From the initial dataset of participants who practiced with one hand, a 

total of 11.2 percent of data points were removed across all four conditions. Excluding all 

RTs below the threshold of 50 ms led to the removal of 1.1 percent of data points across all 

conditions. The first cut-off operation increased this percentage of removed data points across 

all conditions to 10.1 percent and the second cut-off operation (using the exclusion criterion 

of data points that exceed the mean of a participant’s condition by 2.5 standard deviations) 

increased the percentage to 11.2 percent.  

Next, all three measures combined had the following impacts on each individual 

condition. The reported upper thresholds are those used for the first cut-off operation. For the 

Hand Switch/Tone Counting condition, all RTs above the threshold of 520 ms were removed 

with 11.5 percent of data points excluded in total for this condition. For the Hand Switch 

condition, all RTs above the threshold of 430 ms were removed with 12.1 percent of data 

points excluded in total for this condition. For the Tone Counting condition, all RTs above the 

threshold of 400 ms were removed with 11.1 percent of data points excluded in total for this 

condition. For the Control condition, all RTs above the threshold of 330 ms were removed 

with 10.3 percent of data points excluded in total for this condition.  
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8.1.2 Comparison of means 

After the SR processor distribution (M = 0.7, SD = 1.2), CS processor distribution (M 

= 0.3, SD = 1.0), and MP distribution (M = 0.2, SD = 0.8) had been determined and races 

between the processors were simulated, we compared the resulting pattern of standard simRT 

means to the pattern of mean standardized RTs from the test phase of Study 1. Figure 5 shows 

the mean standardized RTs for each test condition in comparison to the standard simRT 

means of Models 2P and 3P. The standard simRT means of Model 3P were all in close 

proximity to those found in the test phase of Study 1 and replicated the pattern of mean 

standardized RTs. On the other hand, Model 2P was not able to replicate the mean 

standardized RT of the Control condition through the simulated race of motor and central 

processors. Model 2P produced a different pattern of results where the standard simRT mean 

for the Control condition was significantly lower than observed suggesting an additive rather 

than the interactive effect that was found after standardizing the data of participants who 

practiced with one hand. 
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Figure 5 

Mean standard simRTs of Models 3P and 2P as well as mean standardized RTs from Study 1 

including participants who practiced with one hand with error bars representing 95 percent 

confidence intervals. Separated by the use of unpracticed and practiced hand configurations 

in addition to whether tones had to be counted or not. (Conditions (initials used): 

Tone/Unpracticed: HS/TC, No Counting/Unpracticed: HS, Tone/Practiced: TC, No 

Counting/Practiced: CC; Models 2P and 3P: Processors and races simulated for each 

condition according to Table 1 with the exclusion of the HS/TC condition for Model 2P) 
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8.1.3 Goodness-of-fit 

Figure 6 shows the comparison of distributions for each condition of the test phase 

between standardized RTs and standard simRTs of Model 3P. The resulting standard simRT 

distributions of Model 3P seemed to roughly fit the standardized RT distributions found in the 

test phase of Study 1 for participants who practiced with one hand.6 The Cucconi test affirmed 

that by showing that location and scale of the resulting standard simRT distributions for 

Model 3P seen in Figure 6 were equal to location and scale of the standardized RT 

distribution of the Hand Switch/Tone Counting condition, C = 3.6, p = 0.4, the standardized 

RT distribution of the Hand Switch condition, C = 4.5, p = 0.3, the standardized RT 

distribution of the Tone Counting condition, C = 3.4, p = 0.7, and the standardized RT 

distribution of the Control condition, C = 4.8, p = 0.3.   

 
6 A left tail can be seen throughout all distributions resulting from a race of processors, as a number of low 
values of the SR and CS processors (Appendix C) almost always won the race against the values of the MP and 
each other’s higher values. Hence, the rest of each simulated distribution is shifted a bit to the right to 
compensate for the low values that were not present in the standardized RTs of the four test conditions. 
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Figure 6 

Density plots of the four test conditions for the standardized RTs of Study 1 including 

participants who practiced with one hand (black line) and the standard simRT distributions of 

Model 3P (red/dashed line) with the included processors as well as races between those 

processors (‘vs’) indicated in the legend. 
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8.2 Additive effect: RTs (without standardization) of between-subjects approach 

8.2.1 Data preparation 

The between-subjects data included responses three to five of the Tone Counting and 

Control conditions from participants who practiced with two hands and responses three to five 

of the Hand Switch and Hand Switch/Tone Counting conditions from participants who 

practiced with one hand. From the initial dataset including sequence execution using two 

hands across all conditions, a total of 14.3 percent of data points were removed across all four 

conditions. Excluding all RTs below the threshold of 50 ms led to the removal of 1.3 percent 

of data points across all conditions. Cutting off the long right tails increased this percentage of 

removed data points across all conditions to 14.3 percent. 

 

Participants who practiced with one hand and used their unpracticed hand configuration 

Excluding extremely slow and fast responses had the following impacts on Hand 

Switch and Hand Switch/Tone Counting conditions. The reported upper thresholds are those 

used for cutting off the right tail. For the Hand Switch/Tone Counting condition, all RTs 

above the threshold of 450 ms were removed with 15.6 percent of data points excluded in 

total for this condition. For the Hand Switch condition, all RTs above the threshold of 380 ms 

were removed with 14.7 percent of data points excluded in total for this condition.  

 

Participants who practiced with two hands and used their practiced hand configuration 

Excluding extremely slow and fast responses had the following impacts on Tone 

Counting and Control conditions. The reported upper thresholds are those used for cutting off 

the right tail. For the Tone Counting condition, all RTs above the threshold of 370 ms were 

removed with 17.3 percent of data points excluded in total for this condition. For the Control 

condition, all RTs above the threshold of 300 ms were removed with 9.6 percent of data 

points excluded in total for this condition.  

 

8.2.2 Comparison of means 

After the SR processor distribution (M = 242.2 ms, SD = 96.4 ms), CS processor 

distribution (M = 259.7 ms, SD = 124.2 ms), and MP distribution (M = 213.9 ms, SD = 92.1 

ms) had been determined and races between the processors were simulated, we could compare 

the resulting pattern of mean simRTs to the pattern of mean RTs from the test phase of Study 

1. Figure 7 shows the mean RTs for each test condition from purely two-handed sequence 
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execution in comparison to the simRT means of Models 2P and 3P. Neither Model 2P nor 

Model 3P could replicate the pattern of mean RTs seen in Figure 7, as the simRT means for 

the Control condition differed from the observed RT mean of the Control condition. 

Moreover, the result of the simulated race of motor and central processors for Model 2P (M = 

133.6 ms) had roughly the same distance to the RT mean of the Control condition (M = 142.1 

ms) as Model 3P (M = 148.9 ms).   
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Figure 7 

Mean simRTs of Models 2P and 3P and mean RTs (ms) from Study 1 including RTs from 

purely two-handed sequence execution with error bars representing 95 percent confidence 

intervals. Separated by the use of unpracticed and practiced hand configurations in addition 

to whether tones had to be counted or not. (Conditions (initials used): Tone/Unpracticed: 

HS/TC, No Counting/Unpracticed: HS, Tone/Practiced: TC, No Counting/Practiced: CC; 

Models 2P and 3P: Processors and races simulated for each condition according to Table 1 

with the exclusion of the HS/TC condition for Model 2P)  
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8.2.3 Goodness-of-fit 

The Cucconi test showed that location and scale of the resulting simRT distributions 

for Model 3P were equal to location and scale of the RT distribution of the Hand Switch/Tone 

Counting condition, C = 9.1, p = 0.5, the RT distribution of the Hand Switch condition, C = 

18.6, p = 0.9, and the RT distribution of the Tone Counting condition, C = 4.8, p = 0.6. 

However, location and scale of the resulting simRT distribution from a race of three 

processors were different than location and scale of the RT distribution of the Control 

condition, C = 101.4, p < 0.001. A graphical evaluation of the goodness-of-fit can be found in 

Appendix D. 

 

Further modeling approach 

A further modeling approach can be found in Appendix B. This initial approach 

included the mean standardized RTs of all participants across all conditions similar to Figure 

4 in Study 1. Neither model was able to replicate the pattern of results in terms of mean 

standardized RTs and produced standard simRT means for the Control condition that were 

significantly higher than the standardized RT mean. The main cause for the results was 

probably the biomechanical slowing that was still included for this approach and slowed all 

simulated processors except the motor processor of each model. As a result of that, both 

models produced a seemingly interactive effect for the Hand Switch/Tone Counting 

condition. The results of this initial approach led to the part approaches reported above.  

 

9. Discussion 

 The purpose of Study 2 was to investigate (1) whether it is likely that S-R translation 

significantly contributed to sequence execution in the test phase of Study 1 and (2) whether 

significant contribution of S-R translation to sequence execution can explain the additive 

effect of tone counting and using an unpracticed hand configuration in the Hand Switch/Tone 

Counting condition. We aimed to replicate the results of Study 1 in terms of mean 

(standardized) RTs by simulating the distributions of the assumed processors of two different 

models as well as simulating races between these processors. In two modeling approaches, the 

3P model including the MP, SR, and CS processors was compared to the 2P model only 

including central and motor processors to determine which model was better able to predict 

the results of each modeling approach.  
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The within-subjects modeling approach showed an interactive effect in the Hand 

Switch/Tone Counting condition after individual and biomechanical differences were 

reduced. Model 3P was able to replicate the pattern of results in terms of mean standardized 

RTs whereas Model 2P failed to do so (Figure 5). Additionally, the standard simRT 

distributions of Model 3P roughly fitted the standardized RT distributions suggesting that the 

processors and races were simulated in a roughly accurate way (Figure 6). In addition to these 

findings, Verwey et al. (2020) found that key-specific stimuli cannot be ignored when a 

luminance change occurred making a three-processor model including the SR processor more 

likely than a two-processor model. However, this does not necessarily mean that Model 3P 

can also explain the additive effect observed in the Hand Switch/Tone Counting condition, as 

Model 3P replicated an interactive effect for the within-subjects approach. 

The between-subjects approach, where only biomechanical differences were greatly 

reduced, revealed that neither Model 3P nor Model 2P could replicate the pattern of mean 

RTs suggesting an additive effect in the Hand Switch/Tone Counting condition (Figure 7). 

Hence, although it is likely that S-R translation significantly contributed to sequence 

execution in the test phase of Study 1, significant contribution of S-R translation to sequence 

execution cannot explain the additive effect in the Hand Switch/Tone Counting condition. 

Moreover, the pattern of mean simRTs that Model 3P produced, seemed to suggest an 

interactive effect in the Hand Switch/Tone Counting condition similar to the within-subjects 

approach. Consequently, despite significant contribution of the SR processor in all four test 

conditions, the three-processor model would have still expected an interaction of tone 

counting and using an unpracticed hand configuration in Study 1. This, of course, begs 

several questions that will be discussed in the following sections. 

 

10. General discussion 

The present study was based on the cognitive framework for sequential motor 

behavior (C-SMB) and its underlying assumption of multiple processors that race in parallel 

to trigger the next response of a sequence of movements (Verwey et al., 2015). We 

investigated to what extent responses are slowed after extensive practice when two processors 

are presumably eliminated from the race of processors (Study 1). Additionally, we tried to 

determine whether two or three processors were likely participating in the race by comparing 

two models that differed in terms of whether stimulus-response translation contributed 

significantly to sequence execution or not (Study 2). 
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 Study 1 used the DSP task where, after extensive practice with a particular hand 

configuration, participants had to count tones, use an unpracticed hand configuration, do both 

of those things at the same time, or execute sequences as practiced leading to four different 

conditions in the test phase. We assumed that tone counting would eliminate a processor 

related to central processing and found that tone counting did slow responses. The use of an 

unpracticed hand configuration was assumed to eliminate the motor processor from the race, 

and we observed that responses were indeed slowed relative to using the practiced hand 

configuration. However, the main result of Study 1 was that the increase in RTs was additive 

rather than interactive when tone counting and the use of an unpracticed hand configuration 

were combined.  

As this contradicted the predictions of the two-processor model including the motor 

and central processor, we assumed that the contribution of reacting to key-specific stimuli 

through the stimulus-response translation (SR) processor was still relevant for sequence 

execution and might have been responsible for the missing interaction of tone counting and 

using an unpracticed hand configuration in the test phase of Study 1. Study 2 compared the 

two-processor model from Study 1 (Model 2P) with a three-processor model (Model 3P) 

including the central-symbolic (CS), motor, and SR processors. We simulated the processors 

of both models as well as races between the processors to model the (standardized) RT 

distributions of the four conditions in Study 1. The results suggested that a three-processor 

model is more likely than the two-processor model assumed in Study 1, as, in contrast to 

Model 2P, Model 3P could replicate the mean standardized RTs of one half of participants 

where individual and biomechanical differences were reduced (Figure 5). However, the three-

processor model still produced a pattern of results for the four conditions that suggested an 

interaction while aiming to model an additive effect (Figure 7). Hence, the contribution of the 

SR processor alone could not explain the additive effect observed in the test phase of Study 1.  

 

10.1 Implications 

Overall, the results of both studies partially support the race assumption of the C-SMB 

that eliminating a processor from the race to trigger the next response slows responses in the 

DSP task. Even though no model could fully explain the additive effect observed in Study 1 

on its own, it is more likely that three processors contributed to sequence execution in the test 

phase rather than two processors. Study 2 showed that an increased slowing of responses 

should still be expected given that two processors are eliminated from the race compared to 
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just one processor. However, it seems like this theoretical assumption should be tested in an 

experimental setting where the effects of still unknown factors unrelated to the cognitive 

model are reduced. 

One such factor was the biomechanical slowing due to the use of fingers of one hand 

as the unpracticed hand configuration, whose effect we reduced in Study 2. The 

biomechanical slowing might have been one cause for the additive effect in Study 1 by 

possibly slowing responses so much that tone counting did not further slow responses as 

much as expected (Appendix B). On the other hand, as Verwey et al. (2016) have stated, it 

could also be the case that adjusting to the biomechanical properties of an unpracticed hand 

configuration was the actual main cause of slowed responses in Study 1 instead of the use of 

motor chunks being inhibited by using an unpracticed hand configuration. This would imply 

that the use of an unpracticed hand configuration never eliminated the motor processor from 

the race. In that case, an alternative manipulation would be required, so the effect of 

eliminating the motor processor from the race can be studied in future research. As the 

findings of Sobierajewicz et al. (2017) also raise doubts as to whether motor learning is 

effector-dependent and hence, affected by a change of effectors, this should be further 

investigated.  

Next, reducing individual differences through standardization for one half of the 

participants led to a pattern of mean standardized RTs showing an interaction. This interaction 

was replicable by Model 3P (Figure 5). On the other hand, the RTs for purely two-handed 

sequence execution could not be standardized without indirectly reflecting the biomechanical 

slowing. Hence, individual differences were still high which can also be seen in the RT 

distributions in Appendix D. As the non-standardized RTs for purely two-handed sequence 

execution showed a pattern of mean RTs suggesting an additive effect while an interaction 

was observed for the standardized mean RTs, we assumed that individual differences between 

participants might have been partly responsible for the missing interaction in Study 1. A 

logical conclusion would be that with greatly reduced biomechanical and individual 

differences, an interaction of counting tones and using an unpracticed hand configuration 

should be expected rather than the observed additive effect in Study 1. However, this 

assumption requires further testing to confirm, so possible alternative explanations that might 

also account for the results of Study 1 can be excluded.  
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10.2 Future research 

To test whether the theoretical findings of Study 2 hold true in an experimental setting, 

a future study could investigate whether a repetition of Study 1 produces the expected 

interaction with the following adjustments. Verwey et al. (2020) found that key-specific 

stimuli cannot be ignored when the luminance of the stimuli changes, so a future study could 

repeat Study 1 using isoluminant stimuli which can be ignored and hence, might allow a test 

of the two-processor model (Verwey, 2021). Additionally, it is recommended that if two 

different hand configurations are being used with the purpose of eliminating the motor 

processor from the race, both hand configurations should include fingers from two hands to 

reduce the effect of the biomechanical slowing. Furthermore, if a tone counting task is being 

used again as the secondary task, the tones should occur at differing positions within a keying 

sequence to reduce the predictability of tones. In contrast to previous studies (Verwey et al., 

2010; Verwey et al., 2014), Study 1 had tones occur at the same position within a keying 

sequence which might have decreased the slowing effect of tone counting due to the 

predictability of tones. 

Lastly, while Study 2 incorporated the effect of the SR processor, another aspect of 

movement sequence learning, namely associative learning, was still largely ignored. 

Associative learning is assumed to affect sequence execution at all processing levels and is 

independent from motor chunk learning (Verwey & Wright, 2014). Although Model 3P 

theoretically incorporated the possible effect of associative learning despite not differentiating 

it from the other processors, it could be that the addition of an associative processor to the 

model would change the simulated results in a significant way. 7 Hence, it is recommended to 

also consider the effect of associative learning on sequence execution in the DSP task. 

 

 
7 We assume that the Associative Processor (AP) influences sequence execution at all processing levels, so it 
would contribute to sequence execution in each test condition from Study 1 similar to the SR processor. If that 
assumption is not true, the addition of an AP to the model could change the simulated results in a significant 
way. Otherwise, Model 3P theoretically incorporated the possible effect of associative learning because the 
relation of processors racing in each condition does not change with a four-processor model. There may be more 
processors, but the outcome of those processors racing will be the same compared to the processors of Model 3P. 
The reason behind this is that we assume the simulated results to match the observed RT mean in each condition. 
Hence, adding processors means that the processors have to be slower on their own to reproduce the same RT 
mean that a model with less processors can produce. A simple example that might help to understand this logic 
would be look at Table 1 and remove the SR processor of Model 3P from the TC condition. Now, the MP of 
both models would be identical. Although there might still be three processors racing in the Control condition, 
Model 3P and 2P would be almost identical in terms of their simulated results (excluding the HS/TC condition). 
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10.3 Limitations 

The previous two sections have indirectly stated limitations of Study 1 that were in 

part revealed by Study 2, so the focus in this section will be on Study 2 itself. Study 2 was a 

post-hoc simulation study which modeled theoretical processor distributions and races 

between processors based on (standardized) RTs of the conditions from the test phase of 

Study 1. As we fitted the processors and races of processors to three of the four conditions by 

adjusting the processor distributions until mean (standard) simRT and mean (standardized) 

RT of the respective condition were equal, there was only one condition left, namely the 

control condition, where differences between mean (standard) simRT and mean 

(standardized) RT were actually possible. This limited the power of the modeling approach, 

because, for example, it is generally possible that a model including more than three 

processors produces the same result as a three-processor model when the modeling approach 

of Study 2 is used and there is only one condition allowing differences between simulated and 

observed results (Footnote 7). Therefore, we cannot eliminate the possibility that even more 

processors like the associative processor were involved in sequence execution. 

A further issue might have been that we manually cut off the right tails of the RT 

distributions to transform ex-Gaussian distributions into Gaussian distributions. There was no 

reason for us to believe that this was problematic for the within-subjects approach where 

standardization of RTs without cutting off the tails seemed to produce a relatively similar 

pattern of results compared to the results shown in Figure 5. However, the pattern of mean 

RTs of the four conditions for the between-subjects approach did relatively change due to 

cutting off the long right tails. Hence, differently chosen cut-off points might have produced a 

different pattern of results in favor of one or the other model limiting the between-subjects 

approach in general.  

Lastly, we do not truly know whether it was unproblematic to mix between-subjects 

data and treat it like within-subjects data. It could be that one half of participants was 

generally faster than the other half regardless of the used hand configuration which would 

mean that between-subjects differences in addition to individual differences skewed the 

modeling approach.  

 

10.4 Conclusion 

The present study affirmed the slowing effects of tone counting and using an 

unpracticed hand configuration for sequence execution in the DSP task after extensive 
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practice. However, new evidence supporting the race assumptions of the C-SMB that parallel 

processors race to trigger each next movement could not be found in Study 1. While Study 1 

initially assumed that the contribution of stimulus-response translation to sequence execution 

would be small, Study 2 found that stimulus-response translation most likely still contributed 

to sequence execution in Study 1 in a significant way. This is also in line with recent evidence 

stating that key-specific stimuli cannot be ignored when a luminance change occurs. Our 

modeling approach in Study 2 has shown that the elimination of two processors from the race 

to trigger the next response should theoretically still lead to an increased slowing of responses 

relative to the slowing when one processor is eliminated. This was not observed in Study 1 

when the use of tone counting and an unpracticed hand configuration were combined and 

each manipulation was assumed to eliminate a processor, namely the motor processor or a 

processor related to central processing, from the race. Our findings have also shown that 

researchers should be careful regarding biomechanical and individual differences when 

testing the cognitive assumptions of the race model in the future, as these differences might 

have skewed our results to not show the expected results. Hence, future research should aim 

to find the expected results of the model given that these external factors are not affecting 

reaction times, so the race assumptions of the C-SMB including the motor, central-symbolic, 

stimulus-response translation, and possibly also associative processors can be affirmed.  
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Appendix A 
Script SPSS for Study 1 

#The first two Anovas can be used for both the reaction times and error proportions 

# Repeated measures Anova for the practice phase  

 

GLM B1.1 B1.2 B1.3 B1.4 B1.5 B1.6 B1.7 B2.1 B2.2 B2.3 B2.4 B2.5 B2.6 B2.7 B3.1 B3.2 

B3.3 B3.4 B3.5  

    B3.6 B3.7 B4.1 B4.2 B4.3 B4.4 B4.5 B4.6 B4.7 B5.1 B5.2 B5.3 B5.4 B5.5 B5.6 B5.7 B6.1 

B6.2 B6.3 B6.4  

    B6.5 B6.6 B6.7 BY HandsUsedPract 

  /WSFACTOR=Block 6 Polynomial Key 7 Polynomial  

  /MEASURE=Reaction_Time 

  /METHOD=SSTYPE(3) 

  /PLOT=PROFILE(Block Key Block*Key Block*Key*HandsUsedPract 

Block*HandsUsedPract Key*HandsUsedPract) 

  /EMMEANS=TABLES(Block) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Key) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Block*Key) 

  /PRINT=DESCRIPTIVE ETASQ 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=Block Key Block*Key 

  /DESIGN=HandsUsedPract. 

 

# Repeated measures Anova for the test phase 
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GLM DCD1 DCD2 DCD3 DCD4 DCD5 DCD6 DCD7 DCT1 DCT2 DCT3 DCT4 DCT5 

DCT6 DCT7 DNC1 DNC2 DNC3 DNC4 DNC5  

    DNC6 DNC7 SCD1 SCD2 SCD3 SCD4 SCD5 SCD6 SCD7 SCT1 SCT2 SCT3 SCT4 

SCT5 SCT6 SCT7 SNC1 SNC2 SNC3 SNC4  

    SNC5 SNC6 SNC7 BY HandsUsedPract 

  /WSFACTOR=DiffSame 2 Polynomial Count 3 Polynomial Key 7 Polynomial  

  /MEASURE=Reaction_Time 

  /METHOD=SSTYPE(3) 

  /PLOT=PROFILE(DiffSame*Key Key*DiffSame DiffSame*Key*HandsUsedPract Count 

Key DiffSame HandsUsedPract Count*HandsUsedPract Key*HandsUsedPract 

DiffSame*HandsUsedPract  

    Count*DiffSame*HandsUsedPract DiffSame*Count DiffSame*Count*HandsUsedPract 

Count*DiffSame Key*HandsUsedPract*DiffSame DiffSame*Count*HandsUsedPract 

Count*Key) 

  /EMMEANS=TABLES(Count) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Key) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(DiffSame) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(DiffSame*Count)  

  /EMMEANS=TABLES(HandsUsedPract*DiffSame*Count)  

  /PRINT=DESCRIPTIVE ETASQ  

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=DiffSame Count Key DiffSame*Count DiffSame*Key Count*Key 

DiffSame*Count*Key 

  /DESIGN=HandsUsedPract. 
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# Repeated measures Anova for the test phase including only responses 3 to 5 (can also be 

used for the same Repeated measures Anova including only participants who practiced with 

one hand, but the between-subjects variable ‘HandsUsedPract’ has to be removed for that) 

 

GLM DCD3 DCD4 DCD5 DCT3 DCT4 DCT5 DNC3 DNC4 DNC5 SCD3 SCD4 SCD5 

SCT3 SCT4 SCT5  

    SNC5 SNC3 SNC4 BY HandsUsedPract 

  /WSFACTOR=DiffSame 2 Polynomial Count 3 Polynomial Key 3 Polynomial  

  /METHOD=SSTYPE(3) 

 /PLOT=PROFILE(DiffSame*Key Key*DiffSame DiffSame*Key*HandsUsedPract Count 

Key DiffSame HandsUsedPract Count*HandsUsedPract Key*HandsUsedPract 

DiffSame*HandsUsedPract  

    Count*DiffSame*HandsUsedPract DiffSame*Count DiffSame*Count*HandsUsedPract 

Count*DiffSame Key*HandsUsedPract*DiffSame DiffSame*Count*HandsUsedPract 

Count*Key) 

  /EMMEANS=TABLES(Count) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Key) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(DiffSame) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(DiffSame*Count)  

  /EMMEANS=TABLES(HandsUsedPract*DiffSame*Count)  

  /PRINT=DESCRIPTIVE ETASQ  

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=DiffSame Count Key DiffSame*Count DiffSame*Key Count*Key 

DiffSame*Count*Key 

  /DESIGN=HandsUsedPract. 
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# Repeated measures Anova used for planned comparison separating keys before (3-5) vs 

keys after a tone (2,6,7) 

 

GLM DCDB DCTB DNCB DCDA DCTA DNCA SCDB SCTB SNCB SCDA SCTA SNCA 

BY HandsUsedPract 

  /WSFACTOR=DiffSame 2 Polynomial BefAft 2 Polynomial Tone 3 Polynomial  

  /METHOD=SSTYPE(3) 

  /PLOT=PROFILE(BefAft Tone BefAft*Tone Tone*BefAft) 

  /EMMEANS=TABLES(BefAft) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Tone) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(BefAft*Tone)  

  /PRINT=ETASQ  

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=DiffSame BefAft Tone DiffSame*BefAft DiffSame*Tone BefAft*Tone 

DiffSame*BefAft*Tone 

  /DESIGN=HandsUsedPract. 

 

# Repeated measures ANOVA for the mean standardized RTs of Study 2 including responses 

3-5 of participants who practiced with one hand with no distinction between distractor and 

target tones (mean of both values was computed; see Footnote 2) 

 

GLM DT3 DT4 DT5 DNC3 DNC4 DNC5 ST3 ST4 ST5 SNC3 SNC4 SNC5 

  /WSFACTOR=DiffSame 2 Polynomial Count 2 Polynomial Key 3 Polynomial  

  /METHOD=SSTYPE(3) 

  /PLOT=PROFILE(DiffSame*Key Key*DiffSame Count Key DiffSame Key  
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    DiffSame*Count Count*DiffSame Count*Key) 

  /EMMEANS=TABLES(Count) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(Key) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(DiffSame) COMPARE ADJ(BONFERRONI) 

  /EMMEANS=TABLES(DiffSame*Count) 

 /PRINT=DESCRIPTIVE ETASQ 

  /CRITERIA=ALPHA(.05) 

  /WSDESIGN=DiffSame Count Key DiffSame*Count DiffSame*Key Count*Key 

DiffSame*Count*Key. 
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Appendix B 
Modeling approach based on RTs of all participants across all conditions including responses 

three to five 

The methodology did not change relative to Study 2 except for what was specific to 

the RTs of all participants across all conditions which is described below. 

 

Data preparation 

From the initial dataset of all participants across all conditions including responses 

three to five, a total of 10.6 percent of data points were removed. Excluding all RTs below the 

threshold of 50 ms led to the removal of 1.1 percent of data points across all conditions. The 

first cut-off operation increased this percentage of removed data points across all conditions 

to 7.4 percent and the second cut-off operation (using the exclusion criterion of data points 

that exceed the mean of a participant’s condition by 2.5 standard deviations) increased the 

percentage to 9.1 percent. The remaining data was standardized in the same way as the RTs of 

the within-subjects approach except that all participants were included. After standardization, 

a third cut-off operation was used to cut off the remaining right tails of the distributions which 

were still quite long. This increased the percentage of removed data points across all 

conditions to 10.6 percent. 

Next, all four measures combined had the following impacts on each individual 

condition. The reported upper thresholds are those used for the first and third cut-off 

operation with the removed RTs referring to the first operation and the removed standardized 

RTs referring to the third operation. For the Hand Switch/Tone Counting condition, all RTs 

above the threshold of 680 ms and all standardized RTs above the threshold of 3.3 were 

removed with 9.7 percent of data points excluded in total for this condition. For the Hand 

Switch condition, all RTs above the threshold of 620 ms and all standardized RTs above the 

threshold of 2.5 were removed with 9.6 percent of data points excluded in total for this 

condition. For the Tone Counting condition, all RTs above the threshold of 450 ms and all 

standardized RTs above the threshold of 1.4 were removed with 12.5 percent of data points 

excluded in total for this condition. For the Control condition, all RTs above the threshold of 

360 ms and all standardized RTs above the threshold of 0.7 were removed with 10.8 percent 

of data points excluded in total for this condition.  
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Standardized RT distributions 

Figure B1 

Density plot showing the standardized distributions of the obtained RTs for each of the four 

conditions of the test phase in Study 1 from all participants across all conditions including 

responses three to five. (CC = Control condition, TC = Tone Counting condition, HS = Hand 

Switch condition, HS/TC = Hand Switch/Tone Counting condition).  
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Simulation of processor distributions 

SR processor distribution (M = 0.8, SD = 0.9), CS processor distribution (M = 1.0, SD 

= 1.3), and MP distribution (M = -0.3, SD = 0.7) had been determined through the same basic 

way as for the two other approaches by using the standardized RT distributions of each 

condition as basis. 
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Figure B2 

Density plot showing the three processor distributions for Model 3P based (in)directly on the 

standardized RT distributions from Figure B1 (MP = Motor processor, CS = Central-

symbolic processor, SR = Stimulus-response translation processor). 
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Comparison of means 
No model was able to replicate the pattern of results in terms of mean standardized 

RTs for this approach. The result of the simulated race of motor and central processors for 

Model 2P (M = -0.6) was closer to the standardized RT mean of the Control condition (M = -

0.7) than the result of the simulated race of MP, CS, and SR processors for Model 3P (M = -

0.54). Although Model 2P got closer to the mean of the Control condition than Model 3P, this 

should not be overvalued, as the data of all participants across all conditions also included the 

biomechanical slowing of using one hand for sequence execution as the unpracticed hand 

configuration. Model 2P was generally always faster in the Control condition than Model 3P, 

so it would always have an advantage if both models produced a mean that is higher than the 

observed one. In this case, the biomechanical slowing increased the simulated means of both 

models and was probably the main reason why this modeling approach failed. 
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Figure B3 

Mean standard simRTs of Models 2P and 3P as well as mean standardized RTs from Study 1 

including RTs from all participants across all conditions with error bars representing 95 

percent confidence intervals. Separated by the use of unpracticed and practiced hand 

configuration in addition to whether tones had to be counted or not. (Conditions: 

Tone/Unpracticed: HS/TC, No Counting/Unpracticed: HS, Tone/Practiced: TC, No 

Counting/Practiced: CC; Models 2P and 3P: Processors and races simulated for each 

condition according to Table 1 with the exclusion of the HS/TC condition for Model 2P) 

 



57 

 

Goodness-of-fit 
The Cucconi test showed that location and scale of the resulting standard simRT 

distributions for Model 3P were equal to the RT distribution of the Hand Switch/Tone 

Counting condition, C = 1.8, p = 0.4, the RT distribution of the Hand Switch condition, C = 

2.7, p = 0.9, and the RT distribution of the Tone Counting condition, C = 7.0, p = 0.6. 

However, location and scale of the resulting standard simRT distribution from a race of three 

processors were different than location and scale of the RT distribution of the Control 

condition, C = 214.9, p < 0.001. 

We used quantile-quantile (Q-Q) plots to compare the resulting distributions of Model 

3P with simulated normal distributions based directly on the mean and standard deviation of 

the standardized RT distribution of each test condition (Figure B5). Hence, the Q-Q plots 

were more relevant for conditions that involved a race as, for example, the SR processor was 

already a simulated normal distribution that was based directly on the parameters of the RT 

distribution of the Hand Switch/Tone Counting condition. The normal distributions for 

comparison were also simulated using the rnorm function with 10000 random samples based 

on the RT mean and standard deviation of the respective condition.  
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Figure B4 

Density plots of the four test conditions for both standardized reaction times of Study 1 

including all participants (black line) and the standard simRT distributions of Model 3P 

(red/dashed line) with the included processors as well as races between those processors 

(‘vs’) indicated in the legend. 
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Figure B5 

Q-Q plots of the four test conditions with simulated processors or results of race of 

processors of Model 3P on the x-axis and simulated normal distribution based on mean and 

standard deviation of standardized RTs of each condition from Study 1 including all 

participants across all conditions on the y-axis. The line represents x=y.  
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Appendix C 
Extended results for the within-subjects approach of participants who practiced with one 

hand showing an interaction in the Hand Switch/Tone Counting condition 

 

Standardized RT distributions 

A clear right skew, that we could not remove without the exclusion of a significant 

number of further data points, was still present for the standardized RT distributions of the 

Hand Switch/Tone Counting and Hand Switch conditions where two hands were used as an 

unpracticed hand configuration.  
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Figure C1 

Density plot showing the standardized distributions of the obtained RTs for each of the four 

conditions of the test phase in Study 1 from participants who had practiced with one hand 

including responses three to five (One hand used: CC = Control condition, TC = Tone 

Counting condition; two hands used: HS = Hand Switch condition, HS/TC = Hand 

Switch/Tone Counting condition).  
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Simulation of processor distributions for Model 3P 

Although the MP had the lowest mean of all three, CS and SR processors both had 

lower minimum values than the MP. Consequently, these minimum values always won the 

race against the MP and persisted after each race. The minimum values were caused by the 

high standard deviation of CS and SR processors which was a result of the still skewed 

standardized RT distributions of Hand Switch/Tone Counting and Hand Switch conditions 

(Figure C1). 
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Figure C2 

Density plot showing the derived three processor distributions for Model 3P based 

(in)directly on the standardized RT distributions from Figure C1 (MP = Motor processor, CS 

= Central-symbolic processor, SR = Stimulus-response translation processor). 
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Goodness-of-fit 
We used quantile-quantile (Q-Q) plots to compare the resulting distributions of Model 

3P with simulated normal distributions based directly on the mean and standard deviation of 

the standardized RT distribution of each test condition. Hence, the Q-Q plots were more 

relevant for conditions that involved a race as, for example, the SR processor was already a 

simulated normal distribution that was based directly on the parameters of the standardized 

RT distribution of the Hand Switch/Tone Counting condition. The normal distributions for 

comparison were also simulated using the rnorm function with 10000 random samples based 

on the standardized RT mean and standard deviation of the respective condition.  

Larger deviations can only be seen in the Control condition where the left tail caused 

by the SR and CS processors persisted while the right tail was mostly eliminated through the 

race. Hence, the simulated distributions of Model 3P deviated from the simulated normal 

distributions based directly on the standardized RTs, as the race of processors caused the 

resulting distribution to become less Gaussian and have a slight left skew. Apart from that, all 

four distributions of Model 3P seemed to mostly align with the simulated normal distributions 

based on mean and standard deviation of the standardized RTs of each condition. 
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Figure C3 

Q-Q plots of the four test conditions with simulated processors or results of race of 

processors of Model 3P on the x-axis and simulated normal distribution based on mean and 

standard deviation of standardized reaction times of each condition from Study 1 including 

participants who practiced with one hand on the y-axis. The line represents x=y.  

 

 



66 

 

Appendix D 
Extended results of the two-handed between-subjects approach showing an additive effect in 

the Hand Switch/Tone Counting condition 

 

RT distributions 

The RT distributions were still heavily skewed by individual differences and did not represent 

Gaussian distributions. 
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Figure D1 

Density plot showing the distributions of the obtained RTs for each of the four conditions of 

the test phase in Study 1 from two-handed sequence execution including responses three to 

five. (Participants who practiced with two hands: CC = Control condition, TC = Tone 

Counting condition; Participants who practiced with one hand: HS = Hand Switch condition, 

HS/TC = Hand Switch/Tone Counting condition).  
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Simulation of processor distributions 

Figure D2 

Density plot showing the three processor distributions for Model 3P based (in)directly on the 

RT distributions from Figure D1 (MP = Motor processor, CS = Central-symbolic processor, 

SR = Stimulus-response translation processor). 
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Goodness-of-fit 

Figure D3 

Density plots of the four test conditions for both reaction times of Study 1 from two-handed 

sequence execution (black line) and the simRT distributions of Model 3P (red/dashed line) 

with the included processors as well as races between those processors (‘vs’) indicated in the 

legend. 
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We used quantile-quantile (Q-Q) plots to compare the resulting distributions of Model 

3P with simulated normal distributions based directly on the mean and standard deviation of 

the RT distribution of each test condition. Hence, the Q-Q plots were more relevant for 

conditions that involved a race as, for example, the SR processor was already a simulated 

normal distribution that was based directly on the parameters of the RT distribution of the 

Hand Switch/Tone Counting condition. The normal distributions for comparison were also 

simulated using the rnorm function with 10000 random samples based on the RT mean and 

standard deviation of the respective condition.  
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Figure D4 

Q-Q plots of the four test conditions with simulated processors or results of race of 

processors of Model 3P on the x-axis and simulated normal distribution based on mean and 

standard deviation of RTs of each condition from Study 1 including two-handed sequence 

execution on the y-axis. The line represents x=y.  
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Appendix E 
Script R for Study 2 

# libraries (not all might be needed; some might require import of library from Github using 

devtools) 

library(tidyverse) 

library(rstanarm) 

library(mascutils) 

library(brms) 

library(GGally) 

library(bayr) 

library(readxl) 

library(BBmisc) 

library(Rmisc) 

library(reshape2) 

library(nonpar) 

library(papaja) 

 

#Data import (RTs below 50 ms filtered out; only responses three to five included) 

#All participants across all conditions 

Bl7 <- read_excel("Bl7bv2.xlsx") %>% 

  filter(Present6SqRT.RT > 50 & LogLevel6 > 2 & LogLevel6 < 6) 

 

#Participants who practiced with one hand 

Bl71 <- read_excel("Bl7bv2.xlsx") %>% 

  filter(Present6SqRT.RT > 50 & LogLevel6 > 2 & LogLevel6 < 6 & NrHandsUsedPract == 

1) 

 

#Participants who practiced with two hands 

Bl72 <- read_excel("Bl7bv2.xlsx") %>% 
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  filter(Present6SqRT.RT > 50 & LogLevel6 > 2 & LogLevel6 < 6 & NrHandsUsedPract == 

2) 

 

#Separation of data into conditions with first cut-off operation already included (order of 

conditions: TC, HS, HS/TC, Control condition) 

#Within-subjects approach for participants who practiced with one hand 

Gl7m <- Bl71 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'count the LOW tones' & 

Present6SqRT.RT < 400)  

Gl7c <- Bl71 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'IGNORE all tones' & 

Present6SqRT.RT < 430) 

Gl7r <- Bl71 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'count the LOW tones' & 

Present6SqRT.RT < 520) 

Gl7n <- Bl71 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'IGNORE all tones' & 

Present6SqRT.RT < 330) 

 

#Between-subjects approach for two-handed sequence execution 

Gl7mns2 <- Bl72 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'count the LOW tones' &  

Present6SqRT.RT < 370)  

Gl7cns2 <- Bl71 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'IGNORE all tones' &  

Present6SqRT.RT < 380)  
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Gl7rns2 <- Bl71 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'count the LOW tones' &  

Present6SqRT.RT < 450)  

Gl7nns2 <- Bl72 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'IGNORE all tones' &  

Present6SqRT.RT < 300) 

 

#Third modeling approach reported in Appendix B 

Gl7m3 <- Bl7 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'count the LOW tones' & 

Present6SqRT.RT < 450)  

Gl7c3 <- Bl7 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'IGNORE all tones' & 

Present6SqRT.RT < 620) 

Gl7r3 <- Bl7 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'count the LOW tones' & 

Present6SqRT.RT < 680) 

Gl7n3 <- Bl7 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'IGNORE all tones' & 

Present6SqRT.RT < 360) 

 

#Example code for second cut-off operation and standardization of within-subjects data 

(similar code was used for data of all participants for the third modeling approach) 

Bl7G <- rbind(Gl7m,Gl7n,Gl7c,Gl7r) 

part1 <- Bl7G %>% 

  filter(Subject == 1) 
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part4 <- Bl7G %>% 

  filter(Subject == 4) 

part6 <- Bl7G %>% 

  filter(Subject == 6) 

part7 <- Bl7G %>% 

  filter(Subject == 7) 

part9 <- Bl7G %>% 

  filter(Subject == 9) 

part12 <- Bl7G %>% 

  filter(Subject == 12) 

part14 <- Bl7G %>% 

  filter(Subject == 14) 

part15 <- Bl7G %>% 

  filter(Subject == 15) 

part17 <- Bl7G %>% 

  filter(Subject == 17) 

part20 <- Bl7G %>% 

  filter(Subject == 20) 

part22 <- Bl7G %>% 

  filter(Subject == 22) 

part23 <- Bl7G %>% 

  filter(Subject == 23) 
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#Separation into conditions of each participant for 2nd cut-off operation (only example for 1st 

participant is provided; similar code used for 11 other participants): Code has to be run first 

like written below to categorize the data. Then, every ‘#’ and the preceding ‘)’ have to be 

removed and code has to be run again to apply rule used for 2nd cut-off operation.  

part1m <- part1 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'count the LOW tones')# & 

Present6SqRT.RT < mean(part1m$Present6SqRT.RT) + 2.5*sd(part1m$Present6SqRT.RT))  

part1c <- part1 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'IGNORE all tones')# & 

Present6SqRT.RT < mean(part1c$Present6SqRT.RT) + 2.5*sd(part1c$Present6SqRT.RT)) 

part1r <- part1 %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'count the LOW tones')# & 

Present6SqRT.RT < mean(part1r$Present6SqRT.RT) + 2.5*sd(part1r$Present6SqRT.RT)) 

part1n <- part1 %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'IGNORE all tones')# & 

Present6SqRT.RT < mean(part1n$Present6SqRT.RT) + 2.5*sd(part1n$Present6SqRT.RT)) 

 

#Putting data of conditions for each participant back together and standardizing RTs 

part1 <- rbind(part1n,part1m,part1c,part1r) 

part4 <- rbind(part4n,part4m,part4c,part4r) 

part6 <- rbind(part6n,part6m,part6c,part6r) 

part7 <- rbind(part7n,part7m,part7c,part7r) 

part9 <- rbind(part9n,part9m,part9c,part9r) 

part12 <- rbind(part12n,part12m,part12c,part12r) 

part14 <- rbind(part14n,part14m,part14c,part14r) 

part15 <- rbind(part15n,part15m,part15c,part15r) 
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part17 <- rbind(part17n,part17m,part17c,part17r) 

part20 <- rbind(part20n,part20m,part20c,part20r) 

part22 <- rbind(part22n,part22m,part22c,part22r) 

part23 <- rbind(part23n,part23m,part23c,part23r) 

 

part1$Present6SqRT.RT <- normalize(part1$Present6SqRT.RT) 

part4$Present6SqRT.RT <- normalize(part4$Present6SqRT.RT) 

part6$Present6SqRT.RT <- normalize(part6$Present6SqRT.RT) 

part7$Present6SqRT.RT <- normalize(part7$Present6SqRT.RT) 

part9$Present6SqRT.RT <- normalize(part9$Present6SqRT.RT) 

part12$Present6SqRT.RT <- normalize(part12$Present6SqRT.RT) 

part14$Present6SqRT.RT <- normalize(part14$Present6SqRT.RT) 

part15$Present6SqRT.RT <- normalize(part15$Present6SqRT.RT) 

part17$Present6SqRT.RT <- normalize(part17$Present6SqRT.RT) 

part20$Present6SqRT.RT <- normalize(part20$Present6SqRT.RT) 

part22$Present6SqRT.RT <- normalize(part22$Present6SqRT.RT) 

part23$Present6SqRT.RT <- normalize(part23$Present6SqRT.RT) 

 

#Putting data of all participants back into one dataset and then, separation into four conditions 

(for third modeling approach, a few more data points were removed here for each condition 

like reported in Appendix B) 

Bl7gs <- rbind(part1,part4,part6,part7,part9,part12,part14,part15,part17,part20,part22,part23) 

Bl7m <- Bl7gs %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'count the LOW tones') 

Bl7c <- Bl7gs %>% 
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  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'IGNORE all tones') 

Bl7r <- Bl7gs %>% 

  filter(HandInstruct == 'DIFFERENT' & ToneInstruct == 'count the LOW tones') 

Bl7n <- Bl7gs %>% 

  filter(HandInstruct == 'the SAME' & ToneInstruct == 'IGNORE all tones') 

 

#Simulation of processors for Models 3P and 2P of within-subjects data 

sr1 <- rnorm(10000, mean(Bl7r$Present6SqRT.RT), sd(Bl7r$Present6SqRT.RT)) 

cs1 <- rnorm(10000, 0.3, 1) 

mp1 <- rnorm(10000, 0.2, 0.8) 

 

mp12P <- rnorm(10000, mean(Bl7m$Present6SqRT.RT), sd(Bl7m$Present6SqRT.RT)) 

cp12P <- rnorm(10000, mean(Bl7c$Present6SqRT.RT), sd(Bl7c$Present6SqRT.RT)) 

 

#Races between processors for TC, HS, and Control conditions (as the order of the list of 

values for each processor distribution is already random, the race is only being further 

randomized for the race of three processors, so the races between SR processors and the other 

two processors are not being repeated in the same way as before) 

gsm <- matrix(c(sr1,mp1), ncol = 2) 

gtc <- apply(gsm,1,min) 

 

gcs <- matrix(c(sr1,cs1), ncol = 2) 

ghs <- apply(gcs,1,min) 

 

gmcs <- matrix(c(sample(sr1),sample(cs1), sample(mp1)), ncol = 3) 
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gcc <- apply(gmcs,1,min) 

 

#Race for Model 2P 

gcm2P <- matrix(c(mp12P,cp12P), ncol = 2) 

gcc2P <- apply(gcm2P,1,min) 

 

#Basic procedure of simulating processors and races for between-subjects and third modeling 

approaches was the same. Below are exact parameters used for MP and CS processor of both 

approaches for Model 3P (other processors always used mean and standard deviation of 

respective condition as parameters) 

#Between-subjects approach 

csad <- rnorm(10000, 260, 125) 

mpad <- rnorm(10000, 214, 92) 

 

#Third modeling approach 

cs3 <- rnorm(10000, 1, 1.25) 

mp3 <- rnorm(10000, -0.315, 0.68) 

 

#Example code for Cucconi test used for Control Condition of within-subjects approach as 

well as code used to determine mean and standard deviation for simulated and experimental 

results of this condition 

cucconi.test(Bl7n$Present6SqRT.RT, gcc, method = "bootstrap") 

 

mean(gcc) 

sd(gcc) 
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mean(Bl7n$Present6SqRT.RT) 

sd(Bl7n$Present6SqRT.RT) 

 

#Example code for creating means plot (Figure 5) of within-subjects approach (similar code 

used for other approaches) 

#Data from Study 1 

Bl7gs2 <- rbind(Bl7n,Bl7m,Bl7c,Bl7r) 

Bls <- Bl7gs2 

Bls <- Bls %>% 

  rename(c("Present6SqRT.RT" = "mean_value")) 

Bls$Hand_configuration <- NA 

Bls$Hand_configuration[grepl("DIFFERENT",  Bls$HandInstruct)] <- "Unpracticed 

(standard. RTs)" 

Bls$Hand_configuration[grepl("the SAME", Bls$HandInstruct)] <- "Practiced (standard. 

RTs)" 

Bls$Hand_configuration <- factor(Bls$Hand_configuration)  

Bls$Counting_conditions <- NA 

Bls$Counting_conditions[grepl("count the LOW tones",  Bls$ToneInstruct)] <- "Distractor or 

Target Tone" 

Bls$Counting_conditions[grepl("IGNORE all tones", Bls$ToneInstruct)] <- "No Counting" 

Bls$Counting_conditions <- factor(Bls$Counting_conditions) 

 

#Data of Model 3P 

sim <- matrix(c(sr1,ghs,gtc,gcc), ncol = 4) 

colnames(sim) <- c("Different/Count","Different/Ignore","Same/Count","Same/Ignore") 
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sim <- melt(data=sim, 

            measure.vars=c("Different/Count", "Different/Ignore", "Same/Count", 

"Same/Ignore"), 

            variable.name="Condition") 

sim$Hand_configuration <- NA 

sim$Hand_configuration[grepl("^Different",  sim$Var2)] <- "simulated Unpracticed (3P)" 

sim$Hand_configuration[grepl("^Same", sim$Var2)] <- "simulated Practiced (3P)" 

sim$Hand_configuration <- factor(sim$Hand_configuration)  

sim$Counting_conditions <- NA 

sim$Counting_conditions[grepl("Count$",  sim$Var2)] <- "Distractor or Target Tone" 

sim$Counting_conditions[grepl("Ignore$", sim$Var2)] <- "No Counting" 

sim$Counting_conditions <- factor(sim$Counting_conditions 

sim <- sim %>% 

  rename(c("value" = "mean_value")) 

 

#Data of Model 2P for three of four conditions 

sim2P <- matrix(c(cp12P,mp12P,gcc2P), ncol = 3) 

colnames(sim2P) <- c("Different/Ignore","Same/Count","Same/Ignore") 

sim2P <- melt(data=sim2P, 

              measure.vars=c("Different/Ignore", "Same/Count", "Same/Ignore"), 

              variable.name="Condition") 

sim2P$Hand_configuration <- NA 

sim2P$Hand_configuration[grepl("^Different",  sim2P$Var2)] <- "simulated Unpracticed 

(2P)" 

sim2P$Hand_configuration[grepl("^Same", sim2P$Var2)] <- "simulated Practiced (2P)" 
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sim2P$Hand_configuration <- factor(sim2P$Hand_configuration)  

sim2P$Counting_conditions <- NA 

sim2P$Counting_conditions[grepl("Count$",  sim2P$Var2)] <- "Distractor or Target Tone" 

sim2P$Counting_conditions[grepl("Ignore$", sim2P$Var2)] <- "No Counting" 

sim2P$Counting_conditions <- factor(sim2P$Counting_conditions) 

sim2P <- sim2P %>% 

  rename(c("value" = "mean_value")) 

 

#Producing summary data including means for Models 2P and 3P as well as standardized RTs 

of within-subjects approach 

simsum <- summarySEwithin(sim, measurevar="mean_value", 

withinvars=c("Hand_configuration","Counting_conditions"), 

                          na.rm=FALSE, conf.interval=.95) 

Blsum <- summarySEwithin(Bls, measurevar="mean_value", 

withinvars=c("Hand_configuration","Counting_conditions"), 

                         na.rm=FALSE, conf.interval=.95) 

simpsum <- summarySEwithin(sim2P, measurevar="mean_value", 

withinvars=c("Hand_configuration","Counting_conditions"), 

                           na.rm=FALSE, conf.interval=.95) 

 

sumsum <- rbind(simsum,Blsum, simpsum) 

 

#Creating the plot and showing it on screen 

compare <- ggplot(sumsum, aes(x=Counting_conditions, y=mean_value, colour = 

Hand_configuration, group = Hand_configuration, linetype = Hand_configuration)) + 
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  geom_line(size = 1) + 

  geom_point(aes(shape = Hand_configuration, color = Hand_configuration), size = 3) + 

  scale_shape_manual(values=c(15, 15,16, 16, 17, 17)) + 

  geom_errorbar(width=.1, aes(ymin=mean_value-ci, ymax=mean_value+ci), data = Blsum) + 

  annotate("text", x = "No Counting", y = -0.66, label = "Model 2P", col = 6) + 

  theme(legend.key.height= unit(1.5, 'cm'), 

        legend.key.width= unit(2.0, 'cm'), legend.key = element_rect(fill = 'white', color = 

'white')) + 

    theme(text=element_text(family="Times New Roman", face="bold", size=12)) + 

  theme(panel.background = element_rect(fill = "white", color = "black")) 

 

compare + ylim(-0.7, 0.8) + labs(x = "Counting conditions", y = "mean standard (sim)RTs") + 

labs(linetype = "Hand configuration", color = "Hand configuration", shape = "Hand 

configuration") 

 

#Code used to create Figure 6 (was also used to create similar figures in Appendices with 

respective data) 

par(family = 'serif') 

par(mfrow = c(2,2)) #This is needed for all figures where a 2x2 design exists. Otherwise, it is 

always a 1x1 design. 

par(mar=c(4, 4, 4, 2)) #default: c(5.1, 4.1, 4.1, 2.1) which was used for all figures that did not 

have a 2x2 design 

 

plot(density(Bl7r$Present6SqRT.RT), xlab = "Standard (sim)RTs", ylab = "Density",main = 

"Hand Switch/Tone Counting", xlim = c(-4.5,5), zero.line = TRUE, cex.lab = 1.5, cex.axis = 

1.5, cex.main = 1.5)#, yaxt="n")#, ylim = c(0,0.005)) 
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lines(density(sr1), col = 'red', lty = 2) 

legend(x = "topright", legend = c("HS/TC", "SR"), lty = c(1, 2), col = c(1, 'red'), lwd = 2, cex 

= 1.5, inset = c(-0.28, -0.08), bty = "n" , xpd=TRUE, seg.len = 1, x.intersp = 0.3, y.intersp = 

0.6) 

plot(density(Bl7c$Present6SqRT.RT), xlab = "Standard (sim)RTs", main = "Hand Switch", 

xlim = c(-4.5,5), zero.line = TRUE, cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5)#, ylim = 

c(0,0.5)) 

lines(density(ghs), col = 'red', lty = 2) 

legend(x = "topright", legend = c("HS", "SR vs CS"), lty = c(1, 2), col = c(1, 'red'), lwd = 2, 

cex = 1.5, inset = c(-0.35, -0.08), bty = "n", xpd=TRUE, seg.len = 1, x.intersp = 0.3, y.intersp 

= 0.6) 

plot(density(Bl7m$Present6SqRT.RT), xlab = "Standard (sim)RTs", main = "Tone 

Counting", xlim = c(-4.5,5), zero.line = TRUE, ylim = c(0,0.6), cex.lab = 1.5, cex.axis = 1.5, 

cex.main = 1.5) 

lines(density(gtc), col = 'red', lty = 2) 

legend(x = "topright", legend = c("TC", "SR vs MP"), lty = c(1, 2), col = c(1, 'red'), lwd = 2, 

cex = 1.5, inset = c(-0.35, -0.08), bty = "n", xpd=TRUE, seg.len = 1, x.intersp = 0.3, y.intersp 

= 0.6) 

plot(density(Bl7n$Present6SqRT.RT), xlab = "Standard (sim)RTs", main = "Control 

Condition", xlim = c(-4.5,5), zero.line = TRUE, cex.lab = 1.5, cex.axis = 1.5, cex.main = 

1.5)#, ylim = c(0,0.65)) 

lines(density(gcc), col = 'red', lty = 2) 

legend(x = "topright", legend = c("CC", "3P Race"), lty = c(1, 2), col = c(1, 'red'), lwd = 2, 

cex = 1.5, inset = c(-0.3, -0.08), bty = "n", xpd=TRUE, seg.len = 1, x.intersp = 0.3, y.intersp = 

0.6) 

 

#Figures that can only be found in Appendices: Figure C1, C2, and similar figures in the other 

appendices were also created using plot(density) and lines(density) for the respective 
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(standardized) RTs or (standard) simRTs. Apart from different data being plotted in each 

figure, differences to the previous figure were only of aesthetic nature  

 

#Example code used to simulate normal distributions based directly on parameters of 

(standardized) RT distributions and Q-Q plots to compare them with distributions of Model 

3P for each condition of the within-subjects approach (Figure B3) 

xhstc <- rnorm(10000, mean(Bl7r$Present6SqRT.RT), sd(Bl7r$Present6SqRT.RT)) 

xhs <- rnorm(10000, mean(Bl7c$Present6SqRT.RT), sd(Bl7c$Present6SqRT.RT)) 

xtc <- rnorm(10000, mean(Bl7m$Present6SqRT.RT), sd(Bl7m$Present6SqRT.RT)) 

xcc <- rnorm(10000, mean(Bl7n$Present6SqRT.RT), sd(Bl7n$Present6SqRT.RT)) 

 

#2x2 design was used again 

qqplot(sr1,xhstc, xlab = "Standard simRTs: SR", ylab = "Simulated normal distribution", 

main = "Hand Switch/Tone Counting", cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5, font = 1) 

abline(0,1) 

qqplot(ghs,xhs, xlab = "Standard simRTs: SR vs CS", ylab = "Simulated normal distribution", 

main = "Hand Switch", cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5) 

abline(0,1) 

qqplot(gtc,xtc, xlab = "Standard simRTs: SR vs MP", ylab = "Simulated normal distribution", 

main = "Tone Counting", cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5) 

abline(0,1) 

qqplot(gcc,xcc, xlab = "Standard simRTs: SR vs CS vs MP", ylab = "Simulated normal 

distribution", main = "Control condition", cex.lab = 1.5, cex.axis = 1.5, cex.main = 1.5) 

abline(0,1) 

 

 

 


