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Abstract

The field of Explainable Artificial Intelligence is a re-
sponse to the increase in use of Artificial Intelligence
and lack of insights into the reasonings behind a model’s
decisions. Prototypical parts have been suggested as ex-
planations that are easy to interpret by humans, and
generative models as being able to give more insight
into the classification of Out-of-Distribution data. We
introduce a model, ProtINN, that combines a genera-
tive model with prototypical part explanations, to give
insightful explanations on its predictions. ProtINN seg-
ments the input images, and uses a pre-trained Invertible
Neural Network to get the segments’ activations. These
activations are used for clustering to create prototypes,
and to calculate the similarity between the prototypes
and the segments of the to-be classified images. These
similarity scores are then translated to class prediction
scores by a single linear layer. To explain the class pre-
diction scores, we present visualisations which show the
prototypes, similarity scores, prediction layer weights,
and input image segments. Our experiments on the Im-
ageNet dataset show that, while we have some loss in
accuracy, we gain a lot of insights into the predictions
with our visualisations.
Code: https://github.com/Michiexb/ProtINN

1 Introduction
With the growing importance of deep neural networks for
decision making, the interest in interpretability of those net-
works has increased. There is research on both the build-
ing of interpretable models and methods [3, 13, 9, 12, 7],
as well as on what an explanation should look like accord-
ing to social science studies [20]. Explanations on a neural
network’s decisions are important for finding bias, and for
creating trust [9]. If someone uses a neural network to make
high stakes decisions, it might be useful for them to see how
the network came to its conclusion, so that they can validate
the decision, or maybe even learn from it.

There are two ways to add these explanations to a model;
post-hoc, and intrinsically. Post-hoc explanations try to un-
cover the reasons for a prediction without knowing the inner
workings of the model [17]. Models that by themselves have
interpretable elements are called intrinsically interpretable
models [7]. While intrinsically interpretable models might
have to compromize on prediction accuracy [9], an impor-

tant advantage is that they give insights into the actual deci-
sion making rather than an approximation, and are thus less
likely to mislead the user [17].

Humans often use case-based reasoning to solve prob-
lems. This is the method of solving a new problem by look-
ing at similar past cases [1]. Similar objects or cases can be
represented by a so-called prototype [14]. For image data, a
prototype is an image representing an entire class or a sub-
set of a class. Prototypical parts, sometimes also called pro-
totypes [22, 6], are images representing only a part of the
class object. The prototypical parts of a car might be wheels,
mirrors, and headlights.

Most Explainable Artificial Intelligence (XAI) research
has focused on discriminative classifiers, because these have
always been more accurate than generative classifiers when
it comes to complex data [24, 4]. Recently, Mackowiak et al.
[18] have created a generative classifier that is on par with
the state-of-the-art discriminative classifiers. They show that
the generative model can provide an explanation for some
cases that are not always explainable by a discriminative
model [18]. Figure 1 [18] shows how a discriminative classi-
fier cannot tell the difference between a case where an image
has similar scores for multiple classes because all classes are
relevant, and the case where neither class is relevant. This is
because a discriminative model only models the boundaries
between classes, while a generative model learns the data
distribution of each class (see Figure 2) [32].

Prototypical methods for discriminative models visualize
their prototypes by showing an image of their training data
which is closest to the prototype in the latent space of the
model. If a generative model is able to create sensical im-
ages from latent space representations that do not belong to
an existing image of the given dataset, the actual prototypes
can be visualized. To sum up, a generative model with pro-
totypical learning has the following advantages:

• The model is intrinsically interpretable.

• Prototypes could be generated rather than sampled from
the training data.

• Well modelled generative classifiers can be more repre-
sentative of the data than their discriminative counter-
parts.

• Out-of-Distribution data can be recognized as such.

https://github.com/Michiexb/ProtINN


Figure 1: Example of the main advantage of a generative
classifier compared to a discriminative classifier: More in-
sight into Out-of-Distribution data predictions. Image from
Mackowiak et al. [18].

Therefore, we introduce ProtINN; a model that combines the
use of prototypes and the Invertible Neural Network (INN)
of Mackowiak et al. [18]. This architecture is an intrinsically
interpretable model that can provide explanations for situ-
ations that cannot be properly explained by discriminative
models. We aim to answer the following research questions:
• How can a generative classifier and prototypical learn-

ing be combined to develop an intrinsically interpretable
model?

• How does the new interpretable model compare to the
used black box INN, considering accuracy, and inter-
pretability for Out-of-Distribution data?

To answer the first question, we develope an architecture that
combines approaches from several studies. We then evaluate
this model to answer the second question.

We first discuss some existing research on explanations,
prototypes and generative models in Section 2. Then, in Sec-
tion 3, we describe the architecture of ProtINN in detail.
Section 4 discusses some important features for the visu-
alisation design, and Section 5 explains the setup that we
used for our experiments. The results of these experiments
are discussed in Section 6, and conclusions and future work
can be read in Section 7.

2 Related work
There has been a lot of research within the field of XAI, with
many different types of explanations [3, 9, 12, 7, 13]. The
choice for a specific type depends on multiple factors, which
we discuss in Section 2.1. In Section 2.2, we discuss differ-
ent studies that use prototypical explanations, and in Sec-
tion2.3 and 2.4 discuss a state-of-the-art generative model
and studies that have combined generative models and pro-
totypes.

2.1 Considerations for explanations
Within explanation methods, there are some aspects that in-
fluence which type of explanations is suitable. Firstly, it is

Figure 2: Difference between a discriminative model and a
generative model. A discriminative model only models the
boundaries between the classes. A generative model models
the data distribution. A new data points (yellow) that lies far
away from both data distributions might not be recognized
as such by a discriminative model.

important to decide on whether the explanation should be
global, i.e. explain the model as a whole, or local, i.e. ex-
plain the decisions for a specific input. Secondly, the amount
of time that the user has to look at the results and under-
stand them influences the level of complexity and detail that
the explanation can encompass. And lastly, the nature of the
user expertise should be taken into account [9]. Hohman
et al. [12] organize Artificial Intelligence (AI) users into
three non-mutually exclusive groups: Model developers and
builders, model users, and non-experts. Model developers
and builders might need the explanations for debugging, and
would need a different type of explanation than users that do
not have a strong understanding of the inner workings of
neural networks. Model users have some understanding of
neural networks, and need to be able to perform tasks such
as training smaller-scale models. Non-experts have no prior
knowledge on machine learning.

Explanations aimed at non-experts are not only useful for
them, but also for model users and model builders [12]. Al-
though these more specialized groups would also need ad-
ditional information that might not be useful or even un-
derstandable by non-experts, the less detailed explanations
could still give them some initial insights. Therefore, we will
aim our explanations at non-experts, creating a basis that is
useful for all types of users.

Miller [20] conducted a social science study, and found
four key features for AI explanations. First, explanations
should be contrastive. This means not just explaining why
a certain class was predicted, but also why another was not.
The second feature is that explanations should be selected.
Often, a classification decision is based on many reasons,
but only a few, if possible the most important ones, should
be shown to the user. Thirdly, it is also important for expla-
nations that they should not just show probability numbers.
Probabilities don’t matter to most people, but only the rea-
sons why a certain class has a higher probability than an-
other. Lastly, explanations should be social. They need to be
part of a conversation or interaction. Creating conversations
in a classifier model is difficult, but interaction can quite eas-
ily be added to the explanations. We will keep this in mind
when creating the visualizations for the classification results.



2.2 Prototypes
A few explanation methods that are often used for image
data are Features Importance, Salient Masks, and Prototype
Selection [9].

With Features Importance, the set of features that is used
by the model serves as the explanation, together with the fea-
tures’ weights. This can give insight into whether the model
looks at objects, patterns, colours, etcetera. Then, it gives a
scale of how important each feature is for the classification
by showing the weight.

Salient Masks highlight the parts of the image that were
most important for the image’s classification. This can be
useful if decisions are sometimes based on smaller parts of
an image.

A prototype is an object that represents a set of similar
objects. This prototype can either be an instance of the set
it represents, or a new instance that summarizes (part of)
the set [9]. This explainability method works well for image
data, since images, and thus the prototypes, can be viewed
directly.

By combining these methods into a prototypical parts
model, we can combine the benefits of each. By using pro-
totypical parts instead of full-image prototypes, and giving
weights to those parts for the classes, we create a model that
uses image parts as features. The weights for these proto-
types, together with some link between the input image and
the prototypes, then show the relevance of the different parts
in the input image for the classification.

There have been multiple studies on prototypical explana-
tions [6, 10, 15, 16, 22, 27, 29].

Chen et al. [6] have created an intrinsically interpretable
deep network architecture, called the Prototypical Part Net-
work (ProtoPNet), which uses prototypical parts to explain
the network’s decisions. During training, the model creates
a set number of prototypes per class and calculates weights
between them. To classify an image, the model searches for
parts in the image that are similar to the class-specific pro-
totypes and combines these similarities and the weights to
retrieve probabilities for the classes. The prototypes are vi-
sualized by the patch of an image from the training dataset
that is most similar to the prototype in latent space. Figure 3
shows a simplified version of the ProtoPNet architecture.

Nauta et al. [22] have made a follow-up on ProtoPNet,
called ProtoTree, by adding an easy-to-interpret global ex-
planation in the shape of a decision tree. In this tree, each
node contains a prototypical part, and based on the similar-
ity score between a prototypical part and the patch in the in-
put image which is most similar to the prototype, the image
will go to either the right or left child node or leaf. Decision
trees, specifically small ones, are easily interpretable by hu-
mans, but also discriminative in nature [9]. For a generative
model we can thus not use a decision tree for classification,
without changing the nature of the results to discriminative.

ProtoPShare is also based on ProtoPNet, but shares its
prototypes among different classes, rather than having class-
specific prototypes [27]. Similar to ProtoPNet, the model has
a seperate layer for obtaining prototypes during training. For
each class, the number of prototypes with non-zero weights,
is the same.

Singh et al. [29] have created another model based on
ProtoPNet; NP-ProtoPNet. This model does not only show
which prototypes are similar to parts of the input image,
but also which prototypes are not similar to any part. This
way, the model also explains why another class was not pre-
dicted. Because of the addition of this negative reasoning,
this model has a better performance than ProtoPNet [29].

We will base our architecture design on the design of Pro-
toPNet [6], but not use class-specific prototypes, just like
ProtoPShare [27], use positive as well as negative reason-
ing like NP-ProtoPNet [29], and use the easily interpretable
ProtoTree as inspiration for the visualization design.

Hase et al. [10] have created a model with prototypical
learning, which uses hierarchical prototypes to classify a
given image at every level in a predefined taxonomy. These
prototypes are not prototypical parts, but full-image proto-
types combined with heatmaps to show the focus. Since we
do not focus on hierarchy or full-image prototypes, we do
not consider this model for our design.

The Bayesian Case Model (BCM) learns prototypes that
best represent clusters in the dataset by joint intergerence on
cluster labels, prototypes and important features [15]. These
prototypes are full images from the training dataset and are
shown together with two important features, such as colour
and shape, to explain a cluster. The model is only used on
simple datasets with few features, such as emoticons with
different colours and facial expressions and the Handwritten
Digit dataset. Since we will use a more complex dataset as
well as prototypical parts, we do not draw inspiration from
this model.

Ghorbani et al. [8] have created a method called Auto-
matic Concept-based Explanations (ACE), which uses pro-
totypical parts to globally explain a class. Although this
method only gives a global explanation of the classes rather
than local explanations about the classification of a specific
image, we can use this method with some adjustments as
the basis for our local explanations. This will be explained
in more detail in Section 3.2. The ACE method uses Simple
Linear Iterative Clustering (SLIC) [2] to create superpixels
for image segmentation, because compared to other super-
pixel algorithms, SLIC has a small runtime while producing
high boundary recall and a low undersegmention error [23].
SLIC segmentation adapts K-Means clustering to generate
the superpixels and reduces the number of distance calcula-
tions by limiting the search space [2]. The size of this search
space is defined by the approximate size of the superpix-
els. Besides location, the distance between two pixels is also
based colour, leading to sensical segments.

A potential risk of segmenting the images before forward-
ing them through a pretrained model, is that the model is not
trained on segments, but rather on full images. For the model
used in ACE [8], however, this was not a problem. We will
therefore also use SLIC as our segmentation method for the
creation of our prototypical parts.

2.3 State-of-the-art generative model
Most research in XAI has been focused on discriminative
models, since generative models are difficult to model well.



Figure 3: Architecture of ProtoPNet. a) The input image. b) The input is forwarded through the CNN. c) Patches of the resulting
latent space for the image are compared to the class-specific prototypical parts. d) These similarity scores are combined with
the weights to retreive the class probabilities.

This usually results in low classification accuracy, especially
for fine-grained images [30].

Recently, Mackowiak et al. [18] developed a new gen-
erative model that is competitive to discriminative models.
This model consists of an Invertible Neural Network with
an affine coupling block architecture, that is built to resem-
ble the well-performing discriminative ResNet-50 architec-
ture [11] as closely as possible. It has a high accuracy for
the fine-grained image dataset ImageNet. Since generative
classifiers can have some great advantages to discriminative
ones, this model is interesting to combine with the existing
explainability methods for discriminative models. For exam-
ple, it can give more insights for cases where the image is
Out-of-Distribution.

We will use this model of Mackowiak et al. [18] for our
architecture, as it is state-of-the-art and there are no good
alternatives when it comes to generative classifiers.

2.4 Generative models and prototypes
Some research has been conducted on the combination of
generative models and prototypes [15, 31]. However, these
usually do not focus on using the prototypes for classifica-
tion, and even less work with fine-grained image data. Li
et al. have added additional explainability to a generative
model by using prototypes [16], but added a discriminative
component to their model. They used the encoder part of
an AutoEncoder to create the latent space that connects to
the prototype classifier network, and the decoder to translate
the prototype latent spaces into images. The prototype clas-
sifier network starts with a prototype layer, followed by a
fully connected layer, and at the end a softmax layer, which
means that the model is still trained in a discriminative man-
ner. As they can’t benefit from all advantages of a fully gen-
erative classifier, their results could still be improved. Our

model will be fully generative, to ensure that our model not
only gains the generative benefits when creating the proto-
types, but also presents more insights with its class predic-
tion scores.

3 ProtINN
In this section, we present the design of our model. We start
with a short overview, and go into more details for each part
in the next subsections.

3.1 Model overview
A visual overview of the model can be seen in Figure 4.
The training phase (Figure 4a) focuses on creating proto-
types and training a mapping from these prototypes to the
classes of the dataset. The classification phase (Figure 4b) is
used to classify any image and give a visual explanation on
the reason for the classification.

Training phase. In order to classify images with proto-
types, we first need to create those prototypes and find their
relation to the classes. This is done in the first stage with the
following steps:

a. Segmentation of the input data (Section 3.2).
b. Forward pass through the INN base model (Section

3.4).
c. Prototype generation (Section 3.5).
d. Training the prediction layer (Section 3.6).

Classification phase. After all steps of the training phase,
the model is ready to be used for classification. This happens
as follows:

a. Segmentation of the input data (Section 3.2).
b. Forward pass through the INN base model (Section

3.4).



c. Similarity calculation (Section 3.7).
d. Forward pass through the prediction layer (Section

3.6).
e. Visualization of the prediction output (Section 4).

3.2 Segmentation
Since we use prototypical parts, rather than full-image pro-
totypes for our explanations, we first segment the input im-
ages. Similar to ACE [8], we use SLIC superpixels [2] for
the segmentation. In ACE, the images are segmented at three
different resolutions: 15 segments per image for the larger
objects, 50 segments per images, and 80 segments per im-
age for patterns. To save on runtime and memory, we seg-
ment our images at 15 and 50 segments per image. Since the
superpixels all have different shapes and sizes, but a neu-
ral network is always trained for one specific input shape
and size, the segments need to be resized and padded. In
ACE, the segments are padded with a shade of grey. Since
the model is not trained on a dataset with grey backgrounds,
we instead use the bounding box of the segment to crop our
segment to a rectangle, which is then resized to 224x224 to
fit the base model’s input requirements. A downside of us-
ing patches instead of padding the segments with a single
colour, is that some parts of the image might appear in more
patches, depending on the shapes of the segments created by
SLIC. See Appendix C for some results of experiments for
the different types of segment padding.

3.3 Base model
We use IBINN, an Invertible Neural Network by Mackowiak
et al. [18] as our base model to retrieve the latent space of
the input images.

IBINN uses an IB objective to balance the training of their
model between invertibility and classification. Given some
features Z of a network, inputs X , and ground-truth outputs
Y , the IB loss is calculated by using the mutual information
I , and balanced with β̂:

LIB = I(X,Z)− β̂I(Y,Z) (1)

A model with β̂ = 0 only focuses on invertibility during
training, while a model with β̂ = ∞ only focuses on the
prediction accuracy. Since, by design, an INN preserves all
information of the original image, using an IB objective does
not automatically work. Therefore, very low noise is added
to the inputs when training the model [18].

For β̂ = 8, Mackowiak et al. [18] mention an accuracy
of 74.59% for their model trained on the ImageNet dataset.
However, the checkpoint file of this fully trained model is
not available. Instead, a file for a shortly trained model with
an accuracy of 0.12% is available. Training this model for
an additional 20 epochs gives an accuracy of 67.85%, which
is sufficient for our research.

3.4 Retrieving latent space
An INN needs to have the same number of input as output
features in order for the data to be invertible, but in order
to generalize the data for classification, fewer layers are re-
quired. Therefore, for the last layers, IBINN splits the data

into two parts: zfc and zconv. The model learns to put the
relevant information for classification into zfc and the rest
of the information that is only needed for the reproduction
of the image in zconv. We use the output of zfc to cluster the
data, since this part contains the generalized information.

3.5 Prototype generation
To create the prototypes, we cluster the latent representa-
tions of the training data segments, as was done to create the
concept groups in ACE [8]. We use Mini-Batch K-Means
clustering, an adaptation of the popular K-Means cluster-
ing algorithm, since this method is really fast, even on large
datasets [28]. After clustering, we remove clusters that con-
tain less than 15 segments since we argue that such a small
cluster does not serve as a significant representation for the
data, given a dataset of 1300 images per class.

K-Means returns the cluster centers, which we use as the
prototypes. Since K-Means clustering needs to know the
number of clusters beforehand, we run our experiments for
different numbers of clusters, and compare the prediction
accuracies and runtime to find out which number of clus-
ters gives a good compromise between the two. We only do
this for a data subset of 20 classes. To visualize the proto-
types, we test whether invertion can give sensical images for
not-real datapoints, by using interpolation. As can be seen
in Figure 5, where interpolation is performed between two
images with 15 steps, even a single step already results in a
completely noisy image. More invertibility experiments can
be found in Appendix B. Since the invertibility cannot be
used to visualize the prototypes, we will use the training im-
age segment which is closest to the cluster mean in latent
space. Since this image segment will then be shown as the
prototype in the explanation visualization, we will also use
the latent space for this image for the similarity calculations.
Otherwise, the explanation might be confusing when a test
image segment seems very similar to the shown prototype
but a low similarity score is shown.

3.6 Prediction layer
When we have the prototypes, we need to map their rela-
tions to the classes. We do this by training a single linear
layer without bias, since this keeps the model interpretable.
In the end, we want to be able to give a full image as in-
put for our architecture. Therefore, we also need a mapping
from the full image to the prototypes. For this, we use simi-
larity scores. For each training image, we segment the image
and get the segments’ latent representations. For each exist-
ing prototype, we then find the input image’s segment that is
closest to it in latent space, and the similarity score between
the two (explained further in Section 3.7) is then used as the
input for the prediction layer’s node belonging to that proto-
type. With these similarity mappings as input, and the actual
labels of the full images as target, we train this prediction
layer until convergence.

3.7 Similarity scores
The similarity scores represent to which extent a prototype
is present in the input image. These scores range from zero



(a) Training phase: a) The input is segmented at multiple sizes. b) The segments are forwarded through the INN. c) The resulting latent
spaces for all training image segments are clustered. These clusters result in prototypes. d) The weights between the prototypes and classes
are trained.

(b) Classification phase: a) The input is segmented at multiple sizes. b) The segments are forwarded through the INN. c) The resulting latent
spaces of the image segments are compared to the prototypes. d) These similarity scores are forwarded through the prediction layer to retrieve
class prediction scores. The visualization step (e) is not shown in this image.

Figure 4: Architecture of the model



(1) (2)

· · ·

(8)

· · ·

(14) (15)

Figure 5: Interpolation in latent space between two images
with 15 steps on [zfc, zconv], inverted back to image.

Figure 6: Plot of the similarity score in Equation 2,
with d(p, sfurthest) = 5

to one, where zero means that the prototype is most likely
not present, and one means that it very likely is. To trans-
form the distances between the prototype and input segment
to similarities ranging from zero to one, we use Equation
2, where d(p, sinput) is the Euclidean distance between the
prototype and the given input segment, and d(p, sfurthest)
the Euclidean distance between the prototype and the fur-
thest training segment in the prototype’s cluster. We use this
last term to normalize the score with respect to the size of
the cluster; segments that are close to the cluster center get a
similarity score close to one, while segments that are further
away than the cluster’s furthest training segment get a sim-
ilarity score close to zero. We multiply the distance of the
furthest segment by 1.1 to ensure that input segments that
are near the border of the cluster are also seen as clearly be-
longing to that cluster. Figure 6 shows an example plot of
the equation, where the distance of the furthest segment in
the cluster is five.

sim. score = tanh

−

∣∣∣d(p, sinput)
∣∣∣

1.1 ∗ d(p, sfurthest)

+ 1 (2)

4 Visualization Design
For this visualization, we will look at the most important
features for explanations, according to a social science study
by Tim Miller [20]:
• Contrastivity: explain the event relative to an event that

did not occur.
• Selectivity: don’t show the complete reasoning, but only

a few important causes.

• No probabilities: only the reasons for the difference in
probabilities is important.

• Social: people need to be able to interact with or discuss
the explanations.

To create this desired interactivity, we use Panel Holoviz
[25] in python to create the visualizations. This package
makes it possible to create interactivity for Matplotlib visu-
alizations. With this interactivity, the user can choose which
classes to compare. We will show some visualizations to
demonstrate that our architecture can provide insightful ex-
planations, but our goal is not to find the best visualizations,
but rather only show some possibilities.

5 Experimental Setup
This section discusses the setup we used for our experi-
ments, which includes an explanation on the used dataset,
the model and training parameters, and which metrics we
use to evaluate our model.

5.1 Dataset
We use the ImageNet Large Scale Visual Recognition Chal-
lenge 2012 (ILSVRC2012) dataset [26] for our experiments.
This dataset consists of 1000 object classes of fine-grained
images, and our base model is already trained on this dataset.
Each class in the ImageNet dataset contains 1300 training
images and 50 validation images, and the dataset has a total
of 100.000 test images [26]. These images are hand-labelled
photographs collected from several search engines. Some of
the classes in this dataset very clearly consist of different
objects, such as cars, while other classes like dogs and vol-
canos are less object oriented. For the test images, the labels
are not published, since the dataset is part of a challenge.
Therefore, we will use the validation set for testing instead.
The used INN requires both the training and validation data
to be in the ImageFolder format. Therefore, we place the
validation images, which come in a single directory along
with a text file containing the image labels, in class-specific
directories.

5.2 Model parameters
The prediction layer of our model is a single layer without
bias. For our experiments, we use 20 classes, and 400 clus-
ters or prototypes, giving us 400 input features and 20 out-
put features. This results in 400 ∗ 20 = 8000 weights. Since
the model is trained without bias, the model only consists of
these 8000 parameters.

5.3 Hyperparameters
To control the training process of our prediction layer, we
need to set the hyperparameters.

As criterion for our training loss, we use the sum of the
mean squared error between the output and the target of all
items in the training batch, which we want to minimize.

We use stochastic gradient descent with a learning rate
of 0.1 for our optimizer. To prevent exploding gradients, we
use gradient clipping with a maximum norm of 15 after each
training batch.



After each epoch, we use the same criterion for calculat-
ing the loss on the evaluation data as we use for the train-
ing loss. When the evaluation loss has stopped decreasing
for 10 epochs, we reduce the learning rate with a factor 0.1.
When measuring this descrease in evaluation loss, we use a
threshold of 10−4, meaning that a decrease smaller than this
threshold will not be considered as a decrease.

When the change in evaluation loss has been lower than
10−5 for 5 consecutive epochs, we consider the model to
have converged and stop the training process. To prevent the
model from training endlessly when the model does not con-
verge, we set the maximum number of epochs at 400.

5.4 Evaluation metrics
We evaluate the prediction performance of our model by cal-
culating the accuracy. Even though a main advantage of a
generative model is the fact that the model can recognize
multiple classes in a single image, for this accuracy we only
look at the class with the single highest prediction score and
whether that’s the same class as the actual label.

We also want to evaluate the explanations of the model.
Nauta et al. [21] have proposed a new AI explanation frame-
work; Co-12, a list of 12 explanation quality properties.
Some of these include correctness, compactness, and com-
pleteness. Correctness describes how truthful an explanation
is with regards to the predictive model that it’s trying to ex-
plain. Compactness considers the size of the explanation.
And completeness describes to which extent the predictive
model is explained. These last two should be in balance. An
explanation should not be too big to understand, but should
also not be too incomplete.

These three properties can be measured with Incremental
Deletion. For this, important features according to the ex-
planation are removed one by one, to observe the change in
prediction [21]. Correctness is measured by the decrease in
prediction accuracy when removing the most important fea-
ture. Compactness measures how many features need to be
deleted, in order of the explanation’s shown importance, to
change the prediction. If all features that need to be deleted
for this change are shown in the explanation, the explanation
can be called output-complete.

Since we only use a single linear layer without bias to
make the predictions, removing the weight between a pro-
totype and a class, will always decrease the output score for
that class with exactly weight*similarity. Obscuring a seem-
ingly important part of an input image will have a similar
effect. However, the exact change in output is dependend on
the similarity scores of the next most similar segments for
all prototypes for which the changed image part was most
similar before the perturbation. Therefore, our explanation
is inherently correct.

We can show importance of a feature in different ways
for local or global visualizations. For local explanations, im-
portance of a feature is dependent on to what extent that
feature is present in the image and how much it therefore
contributes to the prediction score. For a global explana-
tion, there are no similarity scores, so the importance of a
feature is determined by the weight. Therefore, we perform
Incremental Deletion for measuring compactness twice: 1)

the weights are sorted by highest weight*similarity score,
since this value determines how important an image segment
was for the prediction, 2) we sort only by the weights, since
this value determines how important the prototype is for the
class.

The number of features shown by our explanation can be
easily adjusted, so we can use the results from the Incre-
mental Deletion experiment to determine the number of fea-
tures needed for an explanation that’s almost always output-
complete.

Since better insight into predictions for Out-of-
Distribution data is one of the main advantages of a
generative classifier, we will also look at the models ability
to recognize multiple classes within a single image, as
well as images that do not belong to any of the classes
that the model was trained on. To demonstrate multiple
class recognition, we will use an image from the dataset
which contains two classes, as well as augment an image by
adding a prototype with a high weight for a class with an
initially low prediction score for the given image.

6 Results
In this section, we discuss our model’s performance, the cre-
ated explanations and the results of our evaluations. Figure
7, 8 and 9 show global explanations for the model, and Fig-
ure 10 shows a local explanation for a given image.

6.1 Predictive performance
We trained our model on a subset of Imagenet with the fol-
lowing 20 classes: ’slide rule’, ’web site’, ’green lizard’,
’balance beam’, ’gong’, ’radio telescope’, ’Granny Smith’,
’ladle’, ’television’, ’cliff’, ’bullfrog’, ’file’, ’basketball’,
’pizza’, ’cicada’, ’Bouvier des Flandres’, ’cuirass’, ’toilet
seat’, ’rapeseed’, and ’moped’.

Training until convergence gives us a model accuracy of
72.3%, and Figure 7 shows a bar chart with the prediction
accuracy per class, as well as which other class the class is
mostly misclassified as and how often. IBINN has a predic-
tion accuracy of 82.4% on the same 20 classes.

6.2 Interpretability
Global explanations Figure 7 gives a quick insight into
which classes the classification of the model is best and
worst for. We see that class ’balance beam’, for example,
is very often misclassified as ’basketball’. We can look into
why this happens by looking at other visualizations. Figure 8
shows a visualization for which two classes can be selected
to compare. This visualization shows that both classes (’bas-
ketball’ and ’balance beam’) have some prototypes with
body parts in their top 10, and the fifth most important pro-
totypes for both are the same, but with a higher weight for
the ’basketball’ class. The model bias towards ’basketball’
rather than ’balance beam’ can be seen in Figure 9, which
shows that the total sum of the weights for ’basketball’ is
higher than that of ’balance beam’, mostly due to a higher
sum of positive weights.



Figure 7: Global explanation which shows the prediction ac-
curacy per class, and for each class which class it is mostly
misclassified as, followed by the number of times this has
happened.

Local explanations To demonstrate the use of the local
explanations, we take an image of class ’balance beam’
which is misclassified as ’basketball’. Figure 10 shows that
the image not only has a high score for ’basketball’, but also
for its actual class. The bottom plot in the figure shows that
the reason for the high ’basketball’ score is most likely due
to all the body parts in the image, which are important for
’basketball’ images. Even though body parts are also impor-
tant for class ’balance beam’, the weights for the most con-
tributing ’basketball’ prototypes are higher than the weights
of the ’balance beam’ prototypes.

Incremental Deletion We run Incremental Deletion on
our model for the subset of 20 classes. The results are shown
in Table 1. By looking at the mean values, we can assume
that only the one or two most important features are usu-
ally needed to explain a prediction. But even the maximum
of four features will probably not compromize the compact-
ness of the explanation too much, while making sure that,
at least for the evaluation dataset, the explanation is always
output-complete.

Out-of-Distribution detection We demonstrate the capa-
bility of our model to detect Out-of-Distribution data in Fig-
ure 11 and Figure 12. Figure 11a from the Imagenet evalua-
tion dataset [26] shows an image of class ’green lizard’ and
its prediction scores by our model. Our model clearly clas-
sifies the image as the correct class. Figure 11b shows the
same image, but augmented by adding the most important
prototype of the class ’slide rule’ to the image before the seg-
mentation process, since this class has a very low prediction

sorted by sim ∗ w sorted by w
mean 1.337 1.354
std. 0.620 0.632
min 1 1
max 4 4

Table 1: Results of Incremental Deletion: Number of most
important features that need to be removed to change the
prediction outcome, where feature importance can be mea-
sured by sim ∗ w or only w.

score for the original image. This image has approximately
the same prediction scores as the the original image, except
for the class ’slide rule’, which has a very high prediction
score. This shows that our model recognizes both the green
lizard, as well as the slide rule in one image.

To quantify this, we select 5 images per class, thus 100
images in total, to which we add one of the five segments
closest to the cluster centroid of the most important proto-
type for one of the five classes with the lowest prediction
score. For 36% of the images, the prediction score of the
added class has exceeded the prediction score of at least one
other class that was previously higher. The average number
of classes that the selected class has surpassed is -0.93. Some
additional augmented images and their change in prediction
can be found in Appendix H.

Figure 12 shows two images from the Imagenet evalua-
tion dataset [26], followed by the predictions for those image
by our own model, as well as the predictions of the black-
box IBINN model. IBINN outputs the predictions as dis-
tances, which are shown in the third row (Figure 12e and
12f), where the image is classified as the class with the low-
est distance. These scores are all very high, and therefore
need to be zoomed in on, to be able to clearly see the pre-
diction differences. Since the distances for different images
are not normalized to the same scale, we can only inspect
the differences in class scores per image, and not between
the different images. We use Equation 3 to invert these dis-
tances to something similar to our similarity scores, while
highlighting the differences between the scores for the dif-
ferent classes. Image 12g and 12h show these transformed
scores for the two used images.

scorei = −disti +max(dist) (3)

Figure 12a shows an collage-image of class ’Granny
Smith’, which also contains images of pizza. Figure 12c
shows that our model recognizes both ’Granny Smith’ and
’pizza’ in the image. IBINN also recognizes both classes in
the image (see Figure 12g). To show that our model can also
recognize images from classes that the model is not trained
on as Out-of-Distribution data, we use an image of class
’mushroom’ (Figure 12b). Figure 12d shows that our model
can indeed tell that the image most likely does not belong
to any of the classes. Since the IBINN scores have no good
normalization over all classes, Figure 12h only shows that
there are not really any classes that are a lot more likely than
other classes, but not whether the image falls under all or
none of the classes (note that the y-axis only goes to 17.5,



Figure 8: Global explanation for comparing most important prototypes for two selected classes; ’balance beam’ and ’basketball’.

Figure 9: Global explanation for comparing total sum of positive and negative weights of the prototypes for two selected classes;
’balance beam’ and ’basketball’. The model is thus, compared to ’balance beam’, biased towards ’basketball’.



Figure 10: Local explanation of a given image (top right),
with class prediction scores (top left), and the weights and
contribution scores of the most contributing prototypes and
their closest segment for two selected classes (bottom).

which is the difference between the highest and lowest pre-
diction score, but not an indication of how likely the class
is present in the image). IBINN can thus only give insights
into the presence of a class compared to other classes, but
not compared to other images, while ProtINN can distin-
guish between all classes being present and all classes not
being present in the input image.

7 Conclusion
In this paper, we presented an architecture that is intrinsi-
cally interpretable, and can give both global and local expla-
nations. The architecture can show the difference between
images that are Out-of-Distribution due to it containing mul-
tiple classes or none of the classes, by showing the pre-
diction scores. The explanations can also give insights into
why an image was misclassified by showing the most con-
tributing prototypes and their closest input image segments
for two classes that can be chosen by the user. By choos-
ing the expected class and the predicted class, the user can
deduce what caused the misclassification. By using Incre-
mental Deletion, we discovered that the explanations only
need to show a maximum of four prototypes to be output-
complete. The accuracy of our model is lower than that of
the black box INN that we use in our architecture. We thus
lose a bit of prediction accuracy, but gain additional inter-
pretability on why an image was or was not classified as a
certain class, and on whether an Out-of-Distribution image
belongs to multiple classes or none, while the black box INN
fails to distinguish between these two situations due to how
its prediction scores are normalized.

In the future, user studies could be used to test the user in-
terpretability of the visualizations, as well as to create better
visualization designs.

(a) The original image has the highest prediction score for its actual
class; green lizard, and a low score for class ’slide rule’.

(b) The image augmented with the most important prototype for the
class ’slide rule’, has high scores for both ’green lizard’, as well as
’slide rule’.

Figure 11: By adding the most important prototype for the
class ’slide rule’, the prediction score for this class increases
drastically, while the scores for the other classes stay ap-
proximately the same.

To decrease model complexity, and thus increase inter-
pretability, the model could be trained to decrease the num-
ber of non-zero weights. This way, only a few prototypes
will be active per class, which could drastically decrease the
number of prototypes in the class explanations. The model
could also be trained to only contain positive weights. The
influence of negative weights can now be confusing for the
user, when trying to figure out why a certain prediction was
or was not made.

We also hope that INN’s with better invertibility become
available, to be able to use the actual cluster centers as pro-
totypes, since invertibility was one of the main advantages
to using an INN for our architecture. It would also be inter-
esting to see whether replacing the INN with a CNN with
high prediction accuracy would work in our architecture,
and whether this would yield a better performance for our
model. Another option for re-adding invertibility would be
to replace the INN with an Auto-Encoder (AE), since an AE
trains an encoder to generalize the image information, and a
decoder to invert that generalized information back to an im-
age. Invertibility on cluster means rather than actual images
would still need to be tested.
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class code class name
n04238763 slide rule
n06359193 web site
n01693334 green lizard
n02777292 balance beam
n03447721 gong
n04044716 radio telescope
n07742313 Granny Smith
n03633091 ladle
n04404412 television
n09246464 cliff
n01641577 bullfrog
n03337140 file
n02802426 basketball
n07873807 pizza
n02256656 cicada
n02106382 Bouvier des Flandres
n03146219 cuirass
n04447861 toilet seat
n11879895 rapeseed
n03785016 moped

Table 2: Classes used for the experiments.

A Dataset classes
Table 2 shows the 20 classes from ImageNet that were used
for the experiments, including their class codes.

B Invertibility and choosing IBINN model
We first inspect the invertibility of the IBINN models, by
forwarding an image through the network, and then pass-
ing the results backwards through the network. This re-
sults in the images shown in Figure 13. For β̂ = 16 and
β̂ = 32, the images are completely noisy, while the images
for β̂ = 1, 2, 4 and 8 all seem to have roughly the same qual-
ity. We run the evaluation code by Mackowiak et al. [18],
where we notice that we do not get the same results as stated
in their paper. Table 3 gives an overview of the different re-
sults. This is likely due to incorrect checkpoint files for the
models having been uploaded, which means that there are no
fully trained models for us to use. Instead, we choose to train
the β̂ = 8 model for an additional 20 epochs, which gives an
accuracy of 67.85%. We choose β̂ = 8, because the inverted
image seems very similar in quality as β̂ = 1, 2 and 4, but
it is supposed to have a higher accuracy when trained cor-
rectly.

We use interpolation, as often used to assess GAN mod-
els [5], to test whether our retrained IBINN model can also
invert latent spaces that are not direct outputs from existing
images. We perform interpolation between two images from
the Imagenet dataset, for our retrained β̂ = 8 model, and
the not fully trained β̂ = 8 and β̂ = 2 models for compar-
ison. We use 15 steps in the interpolation to see whether a
latent space close to an existing image can provide a sen-
sical image when a bigger change in latent space cannot.
For each model, interpolation is done on both zfc and zconv

β̂ Accuracy Mackowiak Our accuracy
1 67.30% 25.30%
2 71.73% 0.56%
4 73.69% 0.21%
8 74.59% 0.12%

16 75.54% 0.76%
32 76.18% 36.81%

Table 3: Accuracy for the different values for β̂
as stated by Mackowiak et al. [18] and as found by us by

using their evaluation code.

and for only zfc where all features in zconv are set to zero,
since the prototypes in our model will only consist of zfc.
Figure 14 shows our interpolation results. We see that our
retrained model can only produce sensical images for inver-
tion of the latent space of the actual image, while the not
fully trained models do still produce somewhat sensical im-
ages. However, since the prediction accuries of these models
are below 1%, we cannot use these models. When zconv is
set to zeros, even the latent spaces of the original images do
not invert back to sensical images. For the untrained β̂ = 2
model, the invertion of zfc for all steps in the interpolation
results in images that are not completely noisy, but at least
contain some information about the colour of the image.

We use the not fully trained β̂ = 2 model to test other pos-
sibilities to use as zconv for future studies, if an INN with
both sufficient prediction accuracy and invertibility might
become available. Figure 15 shows a latent space inversion,
where zconv is taken from the latent space of a random seg-
ment, while zfc is taken from a cluster center. This shows
that zconv contains almost all detail information about an
image, since the noisy colour background comes from the
cluster center, while the grass segment lying on top of it
comes from the random segment. It could be a possibility to,
instead of a random segment, use zconv from the medoid.
However, it might not have a big advantage compared to
only using the cluster medoid without the actual cluster cen-
ter.

C Segment types
The segments that are generated by SLIC Superpixels are
often not rectangular. Since an INN needs rectangular input
of a specific size, we need to add padding to the created su-
perpixels. In ACE [8], the superpixels are padded with the
default zero value of the model, which is a specific shade of
grey. Another possibility is to blur the surroundings of the
superpixel within its bounding box to keep some of the sur-
roundings information, but remove details. A third option is
to use the bounding box of the superpixel to cut out a rectan-
gular image patch, which thus not only shows the superpixel
but also some of its surroundings. Some examples for these
three types of segments can be found in Figure 16.

To decide which segment type to use, we run some exper-
iments on a small subset of the dataset, which consists of 8
classes (list can be found in Table 4), to compare the perfor-
mance of the different models. These models are trained on



β̂ = 1 β̂ = 2 β̂ = 4 β̂ = 8 β̂ = 16 β̂ = 32

Figure 13: Results of forwarding images through IBINN, and then passing the output through the network in reverse, for the
different available β̂ models.

retrained β̂ = 8 model: · · · · · ·

retrained β̂ = 8 model, with zeros for zconv: · · · · · ·

untrained β̂ = 8 model: · · · · · ·

untrained β̂ = 8 model, with zeros for zconv: · · · · · ·

untrained β̂ = 2 model: · · · · · ·

untrained β̂ = 2 model, with zeros for zconv:

step 1 step 2

· · ·

step 8

· · ·

step 14 step 15

Figure 14: Interpolation results, for our retrained β̂ = 8 model, and the not fully trained (named ’untrained’) β̂ = 8 and β̂ = 2
models. Interpolation is done between two images from the Imagenet dataset, with 15 steps. For each model, interpolation is
done on both zfc and zconv and for only zfc where all features in zconv are set to zero.



Figure 15: Inversion of latent space through IBINN, where
zfc is a cluster center and zconv is that of the latent space of
a random segment.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16: Different segment types for 3 example superpix-
els. The first row (a-c) shows segments where the bounding
box of the superpixel is filled with grey, as used in ACE [8].
In the second row (d-f), segments where the bounding box is
filled with a blurred version of the segment patch are shown.
The third row (g-i) shows segments where the bounding box
of the found superpixel is used to cut out a rectangular patch
from the image.

class code class name
n02106662 German shepherd
n02110341 Dalmation
n02123045 Tabby cat
n02123597 Siamese cat
n02676566 Accoustic guitar
n03272010 Electric guitar
n03445924 Golf kart
n04285008 Sports car

Table 4: Classes used for experiments for different segment
types.

Segment type Accuracy Epochs
Grey background 57.67% 173

Blurred background 65.75% 309
Rectangular patches 82.50% 309

Table 5: Average accuracies and number of epochs until con-
vergence of 3 runs, for three types of segments. Run on 8
classes, with 200 clusters.

class labels, with the number of clusters set to 200.
Table 5 shows the results from these experiments. The

patch segments give significantly better results than the other
two segments, and the blurred background segments give
better accuracy than grey background segments. We hy-
pothesize that this is because grey background segments are
the least similar to the images that the black box INN was
trained on, and patches are the most similar. Because patch
segments have the highest accuracy, we will use these for the
rest of our experiments.

D Target types

Since the blackbox IBINN model was already trained on the
dataset, we hoped that using the knowledge from the model
could help improve or speed up the training of our prediction
layer. Therefore, we did some experiments where we trained
the model on different types of targets to see whether using
the IBINN output together with, or instead of, the actual la-
bels would indeed be better than using only the labels.

We train the model on the following targets: 1) the actual
label, 2) only the IBINN prediction scores, 3) on a multipli-
cation of the two, which gives 0 for everything except the ac-
tual label, which gets the prediction score of IBINN instead
of 1. 4) A weighted balance between the label and IBINN
prediction.

Table 6 shows that training on the actual label reaches the
highest accuracy, with the weighted target of 0.4*IBINN-
output + 0.6*label as a close second. Since training on the
actual label not only has a slightly higher accuracy, but also
uses less epochs to reach this, we use this as the target to
train our model on. Thus, our hypothesis that using the IB-
INN model’s pretrained knowledge could improve or speed
up the training of our model seems incorrect.



Target type Accuracy Epochs
l 72,3 195

bb 48 87
bb*l 63,5 526

0.5*bb + 0.5*l 66 253
0.4*bb + 0.6*l 71 239
0.2*bb + 0.8*l 66,5 75

Table 6: Evaluation accuracies for models trained with 400
clusters, with different targets. Epochs illustrates the number
of epochs needed to reach convergence. ’bb’ stands for the
IBINN blackbox output, and ’l’ for the actual label.

Clusters Accuracy Epochs
50 59,5 311

100 64,4 766
200 68,0 480
400 72,3 195
800 76,3 799

Table 7: Evaluation accuracies for models trained on differ-
ent numbers of clusters. All models are trained on the actual
labels. Epochs illustrates the number of epochs needed to
reach convergence.

E Number of clusters
K-Means clustering needs a set number of desired clusters as
input. Since we do not know the perfect number of clusters
needed for our dataset, we run experiments for 50, 100, 200,
400 and 800 clusters to find the best number. Table 7 shows
the results of these experiments, and Figure 17 shows that
there is a relation between the accuracy and the number of
clusters. More clusters leads to a higher accuracy. However,
we also need to keep in mind the size of our explanations,
which will drastically increase when increasing the number
of clusters, as well as the memory usage and runtime which
will also increase with an increase in clusters. Therefore, we
choose to run the experiments for our paper with 400 clus-
ters, which gives a high accuracy of 72.3%, and only uses
195 epochs to reach this.

Figure 17: Relation between accuracy and number of clus-
ters.

Centroid/medoid Normalized d Accuracy
Centroid no - 8.75%
Centroid yes 1 8.75%
Centroid yes 2.5 12.50%
Medoid yes 2.5 16.75%

Table 8: Prediction accuracy for the model with loss-based
weights for different normalizations. In case of normaliza-
tion, Equation 6 is used.

Weight Accuracy
Count 43.25%

Equation 5 61.0%

Table 9: The prediction accuracy for the count-based
weights model, with and without normalization.

F Weight calculation
Besides training weights through a linear layer, we also try
creating weights based on already present information. For
this, we use the 8-class data subset from Table 4, with 400
prototypes. We calculate weights based on: 1) the IBINN
prediction loss for the cluster center, 2) the number of seg-
ments of a given class in the cluster, 3) tf-idf; where we use
a cluster as the document and a class as the term. For 1) and
2), we also try some normalizations on the loss and segment
count to see whether that improves the prediction accuracy.

Since IBINN is already trained on the data, we explore
whether we can use its prediction results for the cluster cen-
troids or medoids as weights. We do this for only the pre-
diction loss, as well as the loss normalized by the size of
the cluster. We use Equation 4, where we use the distance
between the cluster centroid and the most outlying segment
that belongs to that cluster for the cluster’s size. d is an ar-
bitrary value to scale the cluster size down, which ensures
that only prototypes with smaller losses to the class get a
high weight. Table 8 presents the results of the models with
loss-based weights.

w = exp(−loss) ∗ exp(−size/d) (4)

We also try weights, where the weight between a proto-
type and a class is based on the number of segments of that
class in that cluster. For the normalization, we use Equation
5 where the first part creates a function as seen in Figure
18. The numbers are found by looking at the plot and the
observed class counts for the prototypes. For these weights,
we also use exp(−size/d) with d = 2.5 to scale down the
number of large weights. Table 9 shows the prediction ac-
curacy for the count-based weights model, with and without
normalization.

w = 1/(1 + exp(−count/8 + 6)) ∗ exp(−size/d) (5)

We also calculate weights based on the ’term frequency-
inverse document frequency’ (tf-idf), shown in Equation 6
[19], where tf is the number of segments of a given class in
the given cluster, df is the number of clusters that contain



Figure 18: Plot of the first part of Equation 5, which is used
for normalizing the count-based weights.

segments of the class, and N is the total number of classes.
Using the results from this equation as weights, we get an
evaluation accuracy of 22.0%.

tf-idf = tf ∗ log(N/df) (6)

The tf-idf based weights result in a predicton accuracy of
22.0%.

Because of the low prediction accuracies in these experi-
ments, we choose to train the weights as described in Section
3.6 of the paper.

G Blurring most important segment
Our local visualisations show which prototype contributed
most towards the high prediction of the class with the high-
est score. The input image segment that is shown as closest
to this prototype, can be interpreted as stating that that pro-
totype is present in the image. We test whether blurring this
segment will result in a different class getting the highest
prediction score. We use the same 20 classes from Table 2,
with 5 images per class randomly selected from the evalua-
tion data, resulting in 100 images overall. This experiment
results in only 27% getting a different class with the high-
est prediction than before the blurring. This might be due to
the second closest segment often being really similar to the
first closest segment, and thus having a very small change in
similarity score for the prototype after blurring the segment.
Figure 19 and 20 show instances where the predictions do
not change to another class after blurring the most important
segment.

H Adding important segments of other
classes

Figure 21 and 22 show some extra examples of important
segments belonging to another class than the originally high-
est predicted class being added to the image, and how that
affect their prediction scores. Figure 21a shows an image of
a balance beam with low scores for all classes. By adding
the most important prototype for the class ’Granny Smith’,

(a) An image of class ’rapeseed’, which scores really high for its
actual class.

(b) An image of class ’rapeseed’ where the segment, which is clos-
est to the most contributing prototype for its prediction as ’rape-
seed’, is blurred. The prediction scores seem identical.

Figure 19: Blurring a part of this ’rapeseed’ image does not
seem to influence the prediction scores. This is probably due
to many segments of the image being similar to the blurred
image, and thus having minimal change in the similarity
scores of the prototypes that the segment used to be clos-
est to.

(a) An image of class ’green lizard’, which scores really high for
its actual class.

(b) An image of class ’green lizard’ where the segment, which
is closest to the most contributing prototype for its prediction as
’green lizard’, is blurred. The prediction score for ’green lizard’
has decreased, but is still higher than that of the other classes.

Figure 20: Blurring an important part of this ’green lizard’
image decreases the prediction score for that class, but not
enough to change the highest prediction to another class.



(a) The original image does not have the highest prediction score
for its actual class; balance beam, and has low scores for all classes.

(b) The image augmented with the most important prototype for
the class ’Granny Smith’ has a high score for that class, and still
low scores for all the other classes.

Figure 21: By adding the most important prototype for the
class ’Granny Smith’, the prediction score for this class in-
creases drastically, while the scores for the other classes stay
approximately the same.

the prediction score for this class increases drastically, while
the scores for the other classes stay approximately the same
(Figure 21b). The original image in Figure 22a has the high-
est prediction score for its actual class; slide rule, but not
significantly higher than the scores for the other classes. The
prediction scores for both ’basketball’ and ’pizza’ are very
close to zero. Adding the most important prototype for the
class ’basketball’ has an increased score for that class, but
still lower than that for ’slide rule’ (Figure 22b), but adding
the most important prototype for the class ’pizza’ gives a
much higher score for ’pizza’ than for all other classes (Fig-
ure 22c).

I Runtime and memory usage
In this section, we show some statistics about the produced
code. We show the memory usage for some large and im-
portant functions, and the longest runtimes. Table 10 shows
the memory usage for the tasks in the training phase of
the model, Table 11 shows that for the performance eval-
uation, and Table 12 shows the memory usage for the inter-
pretability evaluation, which blurs and augments images as
explained in Appendices G and H.

When running our code on a NVIDIA RTX A6000 GPU,
the runtime for segmenting the images is around 1.5 min-
utes for 50 images. For 20 classes with 1300 images each,
this sums to around 13 hours of segmentation. When running
the training phase for 20 classes with pre-segmented Ima-
geNet images (1300 per class), the runtime can be around
6.5 hours, of which 2.5 is for getting the segment activations,
and 2.5 for creating the 400 clusters.

(a) The original image has the highest prediction score for its ac-
tual class; slide rule, but not significantly higher than the scores for
the other classes. The prediction scores for both ’basketball’ and
’pizza’ are very close to zero.

(b) The image augmented with the most important prototype for
the class ’basketball’ has an increased score for that class, but still
lower than that for ’slide rule’.

(c) The image augmented with the most important prototype for
the class ’pizza’ has a much higher score for that class than for all
other classes.

Figure 22: Adding the most important prototype for the
class ’basketball’ has less impact on the final prediction than
adding the most important prototype for the class ’pizza’.

Memory usage Task
303.1 MiB loading segments as dataset

3480,5 MiB loading IBINN model
163,234.3 MiB getting segment activations

78.8 MiB saving activations to dictionary
763.1 MiB creating concepts / clusters
554.4 MiB saving concept dictionary to pickle file
157.4 MiB getting similarity scores

5625.5 MiB getting evaluation segment activations
469.4 MiB getting evaluation similarity scores

6.5 MiB training prediction layer until convergence

175,379.9 MiB complete training phase
with pre-segmented images

Table 10: Memory usage of the important or large functions
in the training phase.



Memory usage Task
14 MiB loading segments as dataset

6424.5 MiB loading eval segment activations
679.6 MiB loading concepts
149.0 MiB getting similarity scores

0.4 MiB loading prediction layer
0.9 MiB running prediction

7535.8 MiB complete performance evaluation
with pre-segmented images

Table 11: Memory usage of the important or large functions
of the predictive performance evaluation.

Memory usage Task
1171.7 MiB segmenting and loading as dataset
3316.5 MiB loading IBINN model

202.4 MiB getting segment activations
654.9 MiB loading concepts
105.9 MiB getting similarity scores
158.8 MiB adding blur and prototypes to images
162.6 MiB getting predictions of new images

6026.9 MiB complete interpretability evaluation

Table 12: Memory usage of the important or large functions
in the interpretability evaluation.
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