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Embedded into the Dutch mortgage contract is the option for mortgagors to pre-
pay part of their residential mortgage outside their scheduled contractual payments.
There are three types of prepayments that mortgage providers have to consider,
namely partial, full and arbitrage prepayments. Mortgage prepayments alter the
expected cash flows from the mortgage and due to their stochastic nature it is hard
for mortgagees to make a correct or accurate valuation for their mortgage portfolio
on an aggregate level. We study how different models, determinants and undersam-
pling techniques help predict the observed prepayment rate for the Dutch portfolio
book of Allianz. The current prepayment model at Allianz forecasts a mortgage
prepayment cash flow over the period of 2014-2021 with a total error of -19.3% com-
pared to the actual cash flows seen in the Allianz portfolio. Furthermore, the average
yearly forecasted cash flow error by the Allianz model is 22.1%, which Allianz would
like to reduce. The aim of this thesis is therefore to compute a model which is able
to do so.
We perform a literature research to identify prepayment determinants and use these
determinants to perform a preliminary data analysis on the Allianz mortgage data.
We investigate the relevancy of these determinants on the prepayment rate for all
models. After this we construct three models, namely a logistic regression model,
random forest model and a neural network model, and investigate their ability to
forecast each type of prepayment separately. Furthermore, we explore the ability of
each model in forecasting the average and total prepayment cash flow error.
We undersample the training set in order to decrease the data imbalance towards the
non-prepayment class. Through undersampling the training data set we alter the
data set size multiple times and use these various data sets as training sets for the
model. We create data sets where the prepayment observations (the minority class)
are present for 10%, 20%, 30%, 40% and 50% of the training data set and explore
the effect of undersampling and their ability to help improve the predictive power
of each model. By evaluating each model on multiple portfolio error and loan level
metrics we can deduce which model is able to best replicate the observed conditional
prepayment rate (CPR) for each of the three separate prepayment types, namely
partial, full and arbitrage, present in the Allianz portfolio.
Concerning the models that give insight into relevant prepayment variables we find
that the logistic regression model is the only model to give interpretable and clear re-
lationships between the modelled variables and each of the three prepayment rates.
Furthermore, we find that all models are very imprecise at predicting prepayments
on an individual loan-level and thus we reduce the relevance of these results.
We find that the random forest model trained on the undersampled training set
where the minority class represents 30% of all observations on the basis of weighted
root mean square error (WRMSE) produces the lowest partial prepayment CPR com-
pared to the observed partial prepayment CPR. This model had a WRMSE of 0.205%.
Concerning full prepayments we find that the random forest model trained on the
data set where the minority class (in this case full prepayments) represents 50% of
the training data has the lowest WRMSE error compared to the observed full prepay-
ment CPR, with it being 0.581%. Regarding the arbitrage prepayment CPR (which
takes place when refinancing) we find that the random forest model without under-
sampling performs best with a WRMSE of 0.392%. Reviewing the cash flow esti-
mation we find that the neural network model trained on the original imbalanced
training set, without undersampling, is able to achieve a yearly cash flow error of
17.5% which is the lowest error of all models and 4.5% lower than the benchmark
Allianz model of 22.1%. We therefore achieve the goal of this thesis in computing a
model which has a lower error than the benchmark Allianz model.
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Chapter 1

Introduction

Starting 2021 the total outstanding household mortgage debt of the Netherlands
equalled €748 billion (StatLine - Kerngegevens sectoren; nationale rekeningen). When
comparing European countries by mortgage debt, €748 billion lands the Netherlands
a 4th place spot, allowing only countries such as the UK, Germany and France ahead
(Total residential mortgage lending by country Europe 2020 | Statista). The Netherlands
has a much higher mortgage debt than most other countries in Europe, despite its
relatively small population. This is the result of a political initiative to increase the
owner-occupancy rate in the Netherlands. The aim of the initiative was to make the
mortgage interest rate tax-deductible. With the Netherlands achieving the second
highest share of the population of owner occupancy with a mortgage in Europe the
initiative has shown its value (Europe: owner occupiers with and without mortgage |
Statista).
The purchase of a house is an expense that not many individuals can afford without
extra financing. In order to finance the purchase of a house, an individual must find
an entity that is willing to lend the appropriate amount of money. Such a financing
deal is referred to as a mortgage. The two main parties involved in the financing deal
are the mortgagor, a person who borrows funds in order to purchase a house, and the
mortgagee, the entity that lends the funds. There are many different ways in which
the mortgagor can pay back the mortgagee. This is often done on a monthly basis, in
which the mortgagor pays a part of the principal plus added interest. Although the
details of a mortgage are contract specific, there are ways in which the mortgagor can
deviate from the contract, bringing with it different types of risk for the mortgagee.
The biggest risks the mortgagee faces, concerning the behaviour of the mortgagor,
are default risk and prepayment risk. Default risk implies that the mortgagor is
not able to meet its contractual monthly obligations stated in the contract, meaning
part of the mortgage is not repaid. Prepayment risk is the risk of the mortgagor
prepaying part of the mortgage (or the whole mortgage) earlier than anticipated,
hence, reducing the life of the mortgage. The implication of this is that the mort-
gagee must reinvest the principal in the market, more often for a lower interest rate.
This creates a mismatch for the mortgagee between the expected future cash flows
of its mortgages and actual cash flows. Additionally, prepayment risk brings with
it liquidity risk and interest rate risk. Liquidity risk arises due to the mismatch in
cash flows between the assets and liabilities of the firm whilst interest rate risk is
a consequence due to the mortgagors’ possibility of refinancing. Hence, the mort-
gagee misses out on future interest payments and usually receives lower interest
payments. This again creates a mismatch between the interest payments received
and payments projected. It is important for the mortgage lender to model default
rates and prepayment rates accurately in order to predict the future cash flows cor-
rectly. In turn this will reduce the asset and liability mismatch as the entity can alter
its liability strategy according to the previously predicted future cash flows. In turn
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this improves the risk management side of the entity. It must be noted that prepay-
ment risk arises when interest rates fall, due to more prepayments being made and
when interest rates increase as the number of prepayments decrease.
One such mortgage lender that funds mortgages is Allianz. Allianz entered the
Dutch mortgage market in 2011 and slowly increased their mortgage portfolio in
he Netherlands, acquiring their first €1 billion in mortgages in 2017. From 2017 on-
wards, however, Allianz has greatly increased its mortgage portfolio and as of July
2021 Allianz has an outstanding mortgage portfolio of €6 billion.
Allianz, like many other financial entities, uses a logistic regression model to calcu-
late and predict the prepayment rate. However, the model only uses a small number
of variables and is not able to predict the prepayment rate accurately enough. The
main reason for this is that prepayments rarely occur, making input data for the lo-
gistic regression model highly imbalanced and therefore challenging to model. A
solution must be found in order to reduce or correct for the data imbalance. Further-
more, with the increase in data collection over the past decade, machine learning
algorithms are nowadays seen as viable replacements for the regression models. We
aim to find out if there are machine learning models that, combined with new and
addition data variables, can improve on the benchmark logistic regression model
currently being used by Allianz to predict the mortgage prepayment rate.

1.1 Problem Statement

The current model at Allianz is not able to give accurate results concerning the fore-
casting of the conditional prepayment rate (CPR) and the accompanying prepay-
ment cash flows. The Allianz model currently has an average yearly error of 22%
compared to the actual cash flows of the Allianz portfolio, which they would like to
decrease. It is in the interest of Allianz to improve this model in order to reduce the
error between the observed and model forecasted prepayment cash flows so that the
prepayment liquidity risk can be reduced. We do research into the alternative mod-
els that can replace the benchmark model at Allianz. Furthermore, we investigate
which variables effect each type of prepayment and lastly we look at the impact of
correcting for the data imbalance on the modelled outcomes.

1.2 Research Question

In order to achieve the goal of this thesis we formulate the following main and sub-
questions were. The research question of this thesis states: “Are there any machine
learning models that, when applied to Allianz mortgage data of the Netherlands, can forecast
the prepayment rate more accurately than the benchmark model at Allianz over the time
horizon of 2014-2021?”
We set up several sub-questions that will help us to answer the main research ques-
tion. By answering these questions we get a better understanding of the broader
context. We propose the following sub-questions:

1. What are the main prepayment drivers stated in literature?

2. What are the main drivers of prepayment when analysing the Allianz mort-
gage portfolio?

3. Which machine learning models give insight to (new) variables that are rele-
vant and important for prepayment modelling?
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4. What is the effect of correcting for the data imbalance problem on the various
model results?

5. Which machine learning models can be used to estimate the future prepay-
ment rates?

1.3 Outline

In Chapter 2 we perform a literature study on the main drivers of mortgage prepay-
ment. Furthermore, in this chapter we research what the main prepayment models
are and how prepayment modelling has changed over time, where we focus on the
use of machine learning models within prepayment literature. We follow this chap-
ter by explaining the appropriate technical details of how the various classifying
models to be used in this thesis function. In Chapter 4 we provide information of
the available data set at Allianz, give relevant statistics of this data set and show
how we will calculate the prepayment rate. In Chapter 5 we analyse what the main
drivers are within the Allianz data set. Furthermore, in this chapter we discuss the
effect of altering the data set size and how these changes can be corrected. In this
chapter we also show how we evaluate each constructed model. Chapter 6 shows
the results from the various models. We look at the performance of each model, the
effect of the data set size on these models and lastly discuss if and how each model
is able to provide insight into the important main drivers for prepayment. In the
second to last chapter we give concluding remarks on the results found in Chapter
6, while in the last chapter we review the limitations of this thesis and give recom-
mendations for future research.
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Chapter 2

General Background

This chapter firstly gives general information on different facets of mortgage pre-
payment. This is done by giving a short overview of the Dutch mortgage market,
hereafter we elaborate on determinants of mortgage prepayment and furthermore
give information on previous historical research into prepayment modelling. It is
followed by a section in which we give background information on different ma-
chine learning models and clarify why these models were chosen for this research.

2.1 The Dutch mortgage market

The Dutch mortgage market has changed significantly since the 2008 housing crisis.
The average house price in 2020 was valued at €334,488 which is more than 30%
higher than the average in 2008 (€254,918) (StatLine - Bestaande koopwoningen; gemid-
delde verkoopprijzen, regio). However, during the period between 2010 and 2020 the
total mortgage debt of the Netherlands only increased by 15% (Wonen - Nederlandse
Vereniging van Banken (NVB)).
In 2010 roughly 80% of all outstanding mortgages had been provided by a bank
whereas the mortgage market share of banks decreased to 57% in 2016 (Staat van
de Woningmarkt - Jaarrapportage 2020 | Rapport | Rijksoverheid.nl) (Grootbanken winnen
terrein op hypotheekmarkt). To add fuel to fire, a historic low for bank market share was
reached midway 2020 when only 45% of new mortgages were being provided by the
top 3 biggest banks (Rabobank, ABN Amro and ING) (Marktaandeel grootbanken hy-
potheken bereikt historisch dieptepunt). The decline of the market share of Dutch banks
in the mortgage industry has allowed the market share of insurers, pension funds
and other third party mortgage lenders to increase significantly. ’De Nederlandsche
Bank’ (DNB) shed light on this matter in 2016 (Bank, 2016) mentioning that pension
funds and insurance companies have been incentivized to find long-term invest-
ments with low risk and a favourable yield due to the low interest rate climate. The
confidence of investors in the Dutch mortgage market and the low number of write-
offs has made the Dutch mortgage market attractive to pension funds and insurance
companies.
The Dutch mortgage climate has historically been characterised by a high loan-to-
value (LTV) ratio due to the Dutch tax system allowing for the deductibility of mort-
gage interest payments from taxable income (called ’hypotheekrenteaftrek’ in the
Netherlands). It was considered normal to have an LTV of 110% however, as of 2013
the maximum allowed LTV ratio has gradually been reduced and since 2018 the
maximum allowed LTV for new mortgages is 100%. The reduction in the maximum
LTV ratio has had a positive impact on the average LTV in the Netherlands as the
average LTV of new mortgage loans has decreased from 94% in 2010 to 84% in 2019
(Wonen - Nederlandse Vereniging van Banken (NVB)). Despite this high LTV ratio the
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Dutch households have a good reputation in paying off their debt, ranking amongst
the lowest mortgage default rates in Europe.
Throughout the years the mortgage tax system in the Netherlands has allowed its
inhabitants to deduct a large percentage of mortgage interest payments from their
income (Box 1). The OECD (2011) reported the Netherlands as having the most
generous tax relief system, in regards to house debt financing, of all OECD coun-
tries (Andrews and Sánchez, 2011). However, since 2013 the Dutch government has
gradually been reducing the maximum mortgage interest payments deductible from
taxable income. In 2019 the maximum percentage of mortgage interest payments de-
ductible from a mortgagors income was 49%, every subsequent year since then the
maximum deductible rate has been reduced with 3%. This ends in 2023 with the
maximum deductible rate being 37.05%. Other major changes in the tax system, that
have taken place over the course of the past decade, are with regards to the different
mortgage types eligible for tax deduction. Before 2013 all mortgage types were el-
igible for tax deductibility, however, since then only the mortgages of type annuity
and linear are tax deductible. This has had a drastic effect on the types of mortgages
taken out by Dutch citizens. In the years up to 2013, amortizing mortgages (annu-
ity and linear type mortgages) were accountable for 5% of newly issued mortgage
debt (Uhe, 2019), with the mortgage of type bullet (interest-only) being accountable
for more than half of new mortgages. However, since 2013 the linear and annuity
type mortgages have accounted for more than half of new mortgage debt (Bijlage
Hypotheekschuldmonitor en update aanpak aflossingsvrije hypotheken | Kamerstuk | Ri-
jksoverheid.nl). Data shows that nowadays the most popular mortgage type under
people of the Netherlands is the annuity mortgage (Wonen - Nederlandse Vereniging
van Banken (NVB)).
The three most financed mortgage types since 2013 are: the annuity mortgage, linear
mortgage, bullet (interest-only) mortgage.

• An annuity mortgage entails that the mortgagor pays a fixed monthly amount
for the total duration of the loan. This fixed monthly payment is made up of
an interest component and a principal component. Close to the start of the
mortgage a large part of each monthly payment is made up of interest as the
outstanding principal is still large. Throughout the life of the loan the principal
decreases, hence reducing the interest part of the payment. This means that
a larger portion of the monthly payments will start consisting of payments
towards the principal, and less for the interest. The large interest payments at
the start of the mortgage allow the mortgagor to deduct this from their income,
thus reducing their income tax. However, as the interest component decreases
towards the end of the mortgage so does the deductible portion eligible for the
income tax .

• For a linear mortgage the principal component of the monthly payments stays
fixed throughout the life of the mortgage loan and the interest component lin-
early decreases each month. At the start of this type of mortgage the total
monthly payments are quite high and decrease over the mortgages’ lifetime.
The benefits of such a mortgage are that the total interest expenses over he
whole lifetime are lower than other mortgage repayment types. Furthermore,
the fixed principal component means that the mortgagor is able to start paying
off the total principal relatively quickly, reducing mortgage debt. However,
throughout the life of the mortgage the interest deductible from the income
tax reduces.
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• The bullet mortgage allows the mortgagor to only pay the interest component
each month. However, at the end of the mortgage the mortgagor must repay
the entire principal at once. Due to the high tax incentive this type of mort-
gage was very popular before 2013. This type of mortgage is often linked to
savings account in order to help mortgagors repay the principal at the end of
the mortgage.

2.1.1 NHG

The inhabitants of the Netherlands have the opportunity to take out a mortgage
with an additional insurance called ’Nationale Hypotheek Garantie’ (NHG). This
insurance protects the mortgagor from any residual debt in the circumstance that a
forced sale of their property were to happen due to special circumstances, such as
the death of a partner or a job loss. In the case of a forced sale, amounting to a lower
selling value than the outstanding principal on the mortgage the mortgagee has to
pay 10% of this loss while the rest is covered by NHG. In order to be protected by
this insurance, the mortgagor must pay an upfront fee of 0.9% (90 basispoints) of
the loan value (Bonsema, 2019). Although this fee may discourage mortgagors from
taking the insurance, the reduction in credit risk for the mortgagee results in a lower
interest rate, hence benefiting the mortgagor.

2.1.2 Allianz Mortgages

In 2011 Allianz entered the Dutch mortgage market and has since been able to in-
crease its offering of mortgage products. Due to the low interest rate climate mort-
gagors have been choosing mortgages with a long fixed interest period, such as
the 20-year and 30-year fixed interest rate mortgages. Insurance companies have
a strong presence in these segments as these long term, low risk mortgages fit in
well into their strategy and risk appetite. This has allowed insurers like Allianz
to increase its market share of the Dutch mortgage industry. As of July 2021 Al-
lianz Benelux has roughly 33,000 mortgage clients and a Dutch mortgage portfolio
of roughly €6 billion euros.

2.1.3 Mortgage funding

There are multiple ways of funding mortgage loans. Banks most often fund their
mortgage loans through two different ways, they may finance the mortgage loans
by using the credit balances of the savers’ accounts at the bank or it do so through
the capital market. In the capital market banks go into a ’swap’ agreement with
a counterparty. These swap agreements are based on the market swap rate (also
known as the funding rate). The bank will most often agree to pay the counterparty
a fixed interest rate while the counterparty will supply the bank with the current
market rate (EURIBOR swap rate). If the market rate changes, the parties must pay
the difference depending on whether the market rate increases or decreases.
Insurers, like Allianz, can also fund mortgage loans through internal financing from
available assets which are the result of collected insurance premiums.
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2.2 Mortgage Prepayment

2.2.1 Prepayment option risk

Dutch mortgagors have the option to prepay part of their mortgage. A prepayment
takes place if the mortgagor pays the mortgagee an extra part of the principal above
the contractual payment for that time period, thus decreasing the outstanding mort-
gage debt. The amount of the principal prepaid or the frequency of prepayment is
up to the mortgagor. In the Netherlands, however, mortgagors have the option of
prepaying 10% of the total principal yearly, penalty-free. Although this option is not
stated in any law, most mortgage providers allow for this 10% yearly prepayment
option. Above this amount the mortgagor will receive a penalty. In the situation
that the mortgagor relocates and sells the property, they do not receive a prepay-
ment penalty.
The prepayment option gives the mortgagor the right to prepay the principal loan
before the obligatory termination date. Exercising the prepayment option reduces
the time to termination of the mortgage, in turn decreasing the expected cash flows
for the mortgagee. As mortgagors prepay their mortgage at random moments in
time it is challenging for mortgagees to make a correct or accurate valuation of each
mortgage (Kolbe, 2008).
The prepayment option embedded in the mortgage contract poses different types
of risk for the mortgagee. When a mortgagor prepays part of the mortgage loan,
the outstanding debt is reduced or redeemed altogether if the prepayment is large
enough. This will result in a lower periodic payment for the mortgagor as the mort-
gagor will not have to pay any interest over the prepaid principal. Furthermore, a
prepayment will decrease the life of the mortgage. This will result in different cash
flow payments for the mortgagee than previously expected and calculated. In the
case of a loan redemption the mortgagor has the option to refinance the mortgage at
the current market rate. In the event that the current market rate is lower than the
mortgage rate, the resulting cash flow for the mortgagee will be lower.
Banks hedge this by engaging in interest rate swaps, whereby they exchange a fixed
interest rate in return for the variable market rate. However, in the case of a pre-
payment it may occur that the bank receives lower interest payments from its mort-
gagors than that it has to pay for the swap.

2.2.2 Determinants of mortgage prepayment

There are many determinants that influence mortgagors’ decision to fully prepay
their mortgage. These variables can be grouped into three categories, namely vari-
ables with loan characteristics, borrower characteristics and macro-economic char-
acteristics. Although many determinants for mortgage prepayment have been re-
searched over time, we only give a few of the most common determinants below
(Clapp et al., 2001) (MMI Fund Analysis FY 2005 Appendix A: Econometric Analysis of
Mortgages A-1 Appendix A: Econometric Analysis of Mortgages).

• Loan characteristics: loan age, loan amount, mortgage rate, penalty, geograph-
ical location, property type, loan-to-value (LtV)

• Borrower characteristics: age, income, credit worthiness, employment status,
marital status

• Macro-economic: house prices, mortgage rates, interest rates
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Research by (Alink, 2002), (Charlier and Van Bussel, 2003) and (Elsing, 2019) men-
tion the mortgagor’s age and property type as an important explanatory variable
for forecasting the prepayment rate. (Charlier and Van Bussel, 2003) find a relation
between the mortgagor’s age and property type on the prepayment rate, naming
it the ’upgrading effect’. They find that young people in an apartment have the in-
creasing probability of upgrading their property as time passes and hence prepaying
their mortgage. Although this effect is largely present in young people, the effect is
greatest for mortgagors in their mid-thirties and forties.
(Alink, 2002) mentions the LTV as an important explanatory variable for the prepay-
ment rate. This is backed by (Elsing, 2019) and (Sirignano, Sadhwani, and Giesecke,
2015), who empirically show that the mortgagors with a low LTV have a higher
probability of prepaying. The reasoning behind this is, according to Elsing, that
mortgagors with a low LTV are more likely to have additional money available to
make a prepayment.
In regards to the Dutch mortgage market multiple empirical studies present different
findings. (Bussel, 1998), (Charlier and Van Bussel, 2003) and (Hayre, 2003) mention
seasonality as being an important determinant for mortgage prepayment. This is
also mentioned by (LaCour-Little, Marschoun, and Maxam, 2002), but is not spe-
cific to the Netherlands. Seasonality is the effect in which prepayments take place
closer to the end of the year. Possible reasons for more prepayments being made in
the months November and December are due to the inflow of extra salary, which is
often gifted as bonuses to employees (called ’13e maand’ in the Netherlands). Fur-
thermore, it can also be fiscally beneficial for households to receive the prepayment
penalty (achieved if you prepay more than 10% of the principal) so that this can be
deducted from their yearly income. For these reasons the prepayment rate is lower
in the months January and February.
All papers examined by (Jacobs, Koning, and Sterken, 2005) name refinancing incen-
tive as a key determinant for mortgage prepayment. (Charlier and Van Bussel, 2003)
even name it the most important determinant for prepayment. As also mentioned in
other prepayment literature (not specific to the Netherlands) the decrease in mort-
gage market rates creates an incentive for the mortgagor to refinance (LaCour-Little,
Marschoun, and Maxam, 2002). This determinant looks at the difference between the
mortgage rate of the mortgagor and that of the market rate. If the current mortgage
rate is far enough below the contract rate the mortgagor will most likely refinance
their mortgage, which means ’trading’ in their current mortgage for a new mortgage
with a new principal and differing interest rate. Although there is no correct interest
rate difference at which to refinance, the rule of thumb lenders suggest is refinanc-
ing if you can reduce the interest rate by at least 1%. In the case of the Netherlands,
mortgagors will have to pay a refinancing penalty. However, not all mortgagors
will optimally refinance in the event that refinance incentives are available. This is
known as the burnout effect.
The burnout effect takes into account that not all mortgagors will behave rationally
when presented with a refinancing incentive. The most aware mortgagors will re-
finance immediately when the mortgage rate drops to a level far below their own
mortgage rate (Charlier and Van Bussel, 2003). The other mortgagors may not be
aware that a refinancing opportunity has been presented, or they may be slow to re-
act, thus acting irrationally1 in the eyes of the researchers. The burnout effect takes

1This behaviour is called irrational in literature when in fact the behaviour depicted is only sub-
optimal. Researchers do not take external factors such as job change, divorce and illness into account
that may be of importance. In this thesis we will use the term ’irrational’ in order to stay consistent
with literature.
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into account that mortgagors, who have been given refinancing incentives in the
past, will be slower to prepay when presented with these incentives in the future
(Gan and Gan, 2009) .
Lastly, all the papers analysed in (Jacobs, Koning, and Sterken, 2005) mention sea-
soning as a key determinant for mortgage prepayment. Seasoning explains the be-
haviour between the prepayment rate and the age of the loan. It is stated in literature
that this relationship often has a s-shaped curve (Hayre, 2003). The number of pre-
payments after the inception of a mortgage usually remains low due to factors such
as the interest rate, family composition and employment staying unchanged. Over
time, however, the number of prepayments will gradually increase until they reach
a stable state and remain constant (Charlier and Van Bussel, 2003). The prepayment
rate is said to have reached a "seasoned" level.

2.2.3 Conclusion sub-question 1

1. What are the main prepayment drivers stated in literature?

In section 2.2.2 we state all the relevant determinants found in literature specific
to prepayment modelling. Although not all determinants were found in literature
specific to the Netherlands most, if not all of these determinants can be applied to
the Dutch mortgage market. Below we summarise all the relevant determinants and
classify them into loan, borrower and macro-economic characteristics:

• Loan characteristics: loan age, loan amount, mortgage rate, penalty, geograph-
ical location, property type, loan-to-value (LtV), seasonality, refinancing incen-
tive, burnout effect

• Borrower characteristics: age, income, credit worthiness, employment status,
marital status

• Macro-economic: house prices, mortgage rates, interest rates

2.2.4 Prepayment models: optimal vs. exogenous

(Kau and Keenan, 1995) write in their overview article on mortgage option pricing
that prepayment can be considered as an American-style call option, as the borrower
has the right to gain the whole house at any time by paying off the entire mort-
gage. As with prepayment, defaulting can also be regarded as an option, namely
that of a European put option. According to the article, prepayment can be sepa-
rated into two distinct classes, namely as an optimal (endogenous) prepayment and
an exogenous prepayment. An optimal prepayment takes place as a result of the
borrower minimizing the market value of the loan, independent of the borrowers
individual characteristics. (Bussel, 1998) investigates this model and finds that opti-
mal prepayment behaviour is based on external drivers such as the market interest
rate and mortgage rate available to the mortgagor. The prepayment behaviour as-
sumption van Bussel makes is that a borrower prepays a loan when "the present
value of the loan exceeds the outstanding debt plus any transaction costs" (Bussel,
1998). (Kuijpers and Schotman, 2007) applies the optimal prepayment theory to the
Dutch mortgage market, developing a model for the valuation of limited callable
mortgages, taking into account the yearly penalty fee.
However, empirical results found by (Bussel, 1998) show that the mortgagors do
not always follow optimal prepayment behaviour, which is also mentioned before
in subsection 2.2.2. This was already acknowledged by (Dunn and Mcconnell, 1981)
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who find that mortgagors do not optimally call the prepayment option, sometimes
exercising their option when the market interest rate is above the mortgage rate
stated in the contract. Dunn and McConnell state the reason for mortgagors exercis-
ing sub-optimal calls is often due to job relocation or other behavioural variables2.
The stochastic nature of prepayments, which is due to existence of borrower-specific
variables such as job relocation, has led to the development of exogenous mod-
elling for prepayments. This type of modelling looks at the relationship between the
prepayment rate and different explanatory variables. The availability of borrower-
specific variables which are loan specific has allowed researchers to investigate the
prepayment on a loan level. Furthermore, by pooling the loan level data researchers
can find the prepayment rate on a portfolio level.

2.2.5 Prepayment modelling over time

Literature on prepayment modelling started with research towards the optimal pre-
payment model. (Dunn and Mcconnell, 1981) make a model in which prepayments
are only interest rate driven and base it on the Cox-Ingersoll-Ross (CIR) term struc-
ture model. Dunn and McConnell further incorporate some non-financial termi-
nation features into the model through a Poisson-driven process. (Brennan and
Schwartz, 1985) build on this model by incorporating sub-optimal prepayment be-
haviour into it. Furthermore, they extend on the model by using a two factor model
to value both the mortgage and the prepayment option. (Bussel, 1998) builds on this
framework and applies it to the Dutch mortgage market using a nonlinear and non-
parametric model. Although these models are all based on the optimal prepayment
model, every researcher finds that mortgagors, to some extent, exhibit irrational be-
haviour.
With many optimal model researchers mentioning the role of irrational behaviour
in mortgagors, research shifted towards exogenous prepayment modelling that in-
corporate a behavioural framework. The field of exogenous prepayment modelling
can be further subcategorized into two alternative models, the logit model and a
range of survival models. The most commonly used survival model is the propor-
tional hazard model, which was first developed by (Cox, 1972). The first to im-
plement this model for prepayment modelling were (Green and Shoven, 1986), in
which they measure the time until termination of a mortgage, based on one predictor
variable, namely the refinancing incentive (interest rate). Although no specific loan
or borrower characteristics are incorporated in the model, the (Green and Shoven,
1986) mention that these characteristics are the primary determinants for prepay-
ment, but due to lack of data the researchers are unable to research them. (Schwartz
and Torous, 1989) extend on the model by (Green and Shoven, 1986) and add more
explanatory variables, such as seasoning, seasonality and other demographic vari-
ables to name a few. (Charlier and Van Bussel, 2003) build on the model by (Green
and Shoven, 1986) by incorporating more explanatory variables and by applying the
model to the Dutch mortgage market.
The availability of detailed loan-level data has allowed researchers to incorporate
more explanatory variables and research whether certain loan and borrower char-
acteristics are important determinants for mortgage prepayment, which was previ-
ously often not possible due to insufficient data. Towards the end of the 1990’s the
first publications of prepayment modelling using a logit model are published. Pub-
lications such as (Archer and Ling, 1993), (Archer, Ling, and McGill, 1996)(Archer,

2In the eyes of researchers such variables are deemed as irrational even though such variables are
perfectly rational and normal.



Chapter 2. General Background 11

Ling, and McGill, 1997) and (Green and Lacour-Little, 1999) are among the first to
model the probability of mortgage prepayment using a binary outcome. They model
the prepayment rate, incorporating a multitude of loan- and borrower-specific char-
acteristics. The first extensive research modelled with Dutch mortgage data is done
by (Alink, 2002), who uses SNS bank data in the period from 1993-2001 in his logit
model (Jacobs, Koning, and Sterken, 2005).

2.3 Machine Learning models

The logit type models have become the main baseline model within risk manage-
ment departments of mortgage providers due to the easy interpretability, imple-
mentation and efficiency (“Forecasting Loan Default in Europe with Machine Learn-
ing*”). However, the popularity of machine learning models has increased greatly
over the past few decades due to the increase in abundance and affordability of
computational power. The increase in data collection and improvement in computa-
tional power has allowed machine learning algorithms to become viable options for
all types of financial forecasting, including modelling prepayment behaviour. Some
examples in which alternative algorithms for prepayment modelling are used are
(Sirignano, Sadhwani, and Giesecke, 2015), (Saito, 2018) and (Habib, 2020). A logis-
tic regression model can be regarded as a simple machine learning algorithm accord-
ing to the definition given by (Samuel, 1959), yet there are more complex models that
are viable replacements for the logit type models.

2.3.1 Random Forest

Logistic regression is often an easy technique to implement and to interpret. How-
ever, one disadvantage is the assumption of linearity between the dependent and
independent variables. A deep learning study performed by (Sirignano, Sadhwani,
and Giesecke, 2015) uncovered a nonlinear relationship between the dependent vari-
able, prepayment behaviour, and the independent variables. Empirically they find
that in their data, variables such as the refinance incentive, unemployment rate and
LTV ratios are non-linear with the prepayment rate (to name a few). Furthermore,
they find that the non-linearity in some cases is caused by variable interactions. A
complex relationship between the dependent and independent variables is hard to
obtain using a logistic regression and for such cases one is better off using a different
algorithm that is able to take this relationship into account. For example, a study
on Brazilian loan default data using various machine learning techniques finds that
the random forest classification technique outperforms the baseline logistic regres-
sion model (Aniceto, Barboza, and Kimura, 2020). Not only does the study show
that the random forest classifier performs better that the logistic regression model, it
performs better that other tested machine learning models. (Aniceto, Barboza, and
Kimura, 2020) suggest that banks can improve default prediction models by investi-
gating different machine learning algorithms.
A study performed by (Luo, 2019) compares the random forest classifier with five
different models including, the Artificial Neural Network, Support Vector Machines
and logistic regression and considers the random forest as the best classifier due
to it having the lowest error rate on the data. The advantages of a random forest
classifier are that it has excellent predictive power and that no user prespecification
is needed between the dependent and independent variables. This characteristic is
regarded to be beneficial as previous literature stated the irrational behaviour seen
in mortgagors (Dunn and Mcconnell, 1981) (Charlier and Van Bussel, 2003) (Brennan
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and Schwartz, 1985). For these reasons this thesis will use a random forest model to
predict the mortgage prepayment rate.

2.3.2 Neural Network (NN)

The last classifier that will be considered in this research is the neural network (NN).
Research done by (Riksen, 2017) on mortgage prepayment prediction finds that the
neural network classifier was able to capture the relation between the explanatory
variables and the prepayment rate. Although neural networks have gained popular-
ity in the past few years, research published in 1998 already examined the predictive
capability of neural networks. This study performed on the prepayment of residen-
tial mortgages finds that the neural network model was able to predict prepayments
with over 70% accuracy while the logit model only achieved a 50% accuracy rate
(Waller and Aiken, 1998). When applied on differing credit risk data sets, the neural
network classifier gives high accuracy predictions when compared to other statisti-
cal classifiers (Damrongsakmethee and Neagoe, 2019) (Assef et al., 2019). Further-
more, (Luo, 2019) states that the neural network is only beaten by the random forest
classifier when considering the error rate as evaluation metric. Artificial neural net-
works perform well with complex and nonlinear data and do not require specified
relationships among the dependent and independent variables. Hence, it is a vi-
able option for modelling mortgage prepayment behaviour. Thus, besides using the
logistic regression and random forest model, we will also use model the NN and
compare the results between the three models.

2.4 Summary

This chapter started out by giving an introduction on the mortgage market of the
Netherlands. We share some statistics that characterise the Dutch mortgage market
and give a short explanation on the three main types of mortgages. We give some
insights on Allianz and explain the different ways mortgagees can fund mortgages.
Next we elaborate on the prepayment option risk that is embedded into mortgage
contracts before we perform a literature research on the determinants of prepay-
ment, answering the first sub-question of this research. We follow this by literature
over prepayment modelling over time and lastly we state the past research done
on the usage of the machine learning models random forest and neural network in
combination with mortgage prepayment.
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Chapter 3

Technical Background

This chapter describes the inner workings of all three the models to be used in this re-
search, namely that of the logistic regression, random forest and the neural network.
We give the relevant mathematical formula’s regarding each model and further elab-
orate on different properties of each model. This is done so that the reader is familiar
with each model.

3.1 Logistic Regression

A logistic regression is a useful predictive algorithm that can be used to classify the
dependent variable into one, or more, categories. The output is bounded between
zero and one, whereas the linear regressor predicts continuous values for the de-
pendent variable. For this thesis we consider the logistic regression as the baseline
model for which the other models will be compared to. A logistic regression fits
into our situation well as we want to predict if the mortgagor makes a prepayment
(classified as one) or does not make a prepayment (classified as zero). The proba-
bility of a prepayment taking place is denoted as follows, P(Yi,t = 1|Xi,t), which is
the conditional probability of a prepayment Yi,t (independent variable) taking place
given the set of explanatory independent variables Xi,t. Furthermore, we denote
each mortgage i at time t. The following equation is called the logistic function:

log(
P(Yi,t = 1|Xi,t)

1− P(Yi,t = 1|Xi,t)
) = βXi,t (3.1)

The left side of the equation is considered the logit function or log-odds and β are
the independent variable coefficients. If we solve for P(Yi,t = 1|Xi,t) we get:

P(Yi,t = 1|Xi,t) =
eβXi,t

1 + eβXi,t
=

1
1 + e−βXi,t

(3.2)

which is a sigmoid function in which the output resembles that of a binomial proba-
bility distribution with an output between 0 and 1. As a logistic regression predicts
probabilities, we can use the maximum likelihood estimator (MLE) to estimate the
parameters of the regression. For a more detailed explanation please refer to Ap-
pendix A.1.

3.2 Random Forest

The subsequent model that will be used for forecasting the prepayment rate is the
random forest classifier. The random forest model operates by constructing a multi-
tude of decision trees and combining them to one final classification.
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3.2.1 Decision Trees

A decision tree is a supervised learning algorithm that uses a tree like structure to
predict for the dependent variable Y using multiple splits on the input variables
X1, X2...Xn. A decision tree resembles that of a flowchart in which we make deci-
sions to eventually reach a class label of the dependent variable. The splits in the
dataset of a decision tree take place at the tree nodes. At every node we ask our-
selves a question in order to split up samples with similar characteristics. One such
split regarding mortgage data that we could ask at a node would be is the mort-
gage principal more that €300,000?. The ’yes’ or ’no’ flows from this node we call the
branches. Eventually after asking many questions, related to different attributes, we
end up with a subset of the original dataset which represent the path we took from
the starting node until the end. This we call a leaf node. The goal of the decision tree
is to separate data samples that have similar characteristics with the same classifi-
cation label (dependent variable). The higher percentage of the same classification
label we have at the leaf node, the better the predictive power of the decision tree.
An example of a simple decision tree for playing tennis is given in figure 3.1.

FIGURE 3.1: A schematic representation of a decision tree for playing
tennis, based on the outside weather (Waiganjo Wagacha, 2003).

3.2.2 Random Forests

The random forest classifier works by constructing multiple decision trees and pool-
ing the results. This technique of creating multiple models and combining them to
improve results is called an ensemble learning method. The random forest classifier
makes use of the ensemble method called bagging, in which each decision tree is
modelled on a ’new’ training data set. This data set is chosen by taking a random
sample with replacement of size N from the available training data set. Thus, each
decision tree is modelled on ’different’ data. Bagging decorrelates each tree from one
another. In addition to using the bagging ensemble method, the random forest uses
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a different method to split the tree. Whereas a decision tree considers every predic-
tor (independent variable) p at a split, the random forest considers a random sample
of m predictors from the available p predictors as possible split candidates. A new
sample of m predictors is taken at each split. The rule of thumb for how many pre-
dictors m are chosen from the total number of p predictors is m =

√
p. This rule of

thumb is backed by (Breiman, 2001). Thus, at each split the algorithm is not allowed
to consider a majority of the available predictors (James et al., 2013).
Choosing a random sample of in total m =

√
p predictors is what distinguishes the

random forest classifier from a group of decision trees that have been enhanced with
the bagging ensemble method. Suppose we have one very strong predictor. By only
using bagging, most (if not all) decision trees would use this strong predictor in the
top split. Consequently, all trees would be similar to one another and hence all the
predictions would be highly correlated. Bagging on its own, will in general not lead
to a substantial reduction in variance over a single decision tree in this setting (James
et al., 2013).
(Breiman, 2001) introduces a notation Θk for all the random choices which are made
when fitting the kth tree. This notation takes into account both the random selection
of data and the random selection of predictors, giving the following notation for
each classifier:

h(x, Θk) (3.3)

where k = 1, 2, ...., K, x is an input vector, and {Θk} are independent identically
distributed random vectors (Breiman, 2001). For each classifier h(x, Θ1), h(x, Θ2), ...,
h(x, ΘK) a prediction is made for the dependent variable Y using input data drawn
from the explanatory variables X. From this prediction we can define the margin
function as follows

mr(X, Y) = PΘ(h(X, Θ) = Y)−max
j 6=Y

PΘ(h(X, Θ) = j). (3.4)

The margin function is the probability of correct predictions minus the maximum
probability of incorrect predictions. Thus, the larger the margin, the more certain
the prediction. From the margin function we can define the generalization error as
follows

PE∗ = PX,Y(mr(X, Y) < 0) (3.5)

where the subscripts X, Y indicate that the probability space is over X, Y (Breiman,
2001). The probability given in equation 3.5 gives the probability of switching from
one class to another for different random samples of the data set. Thus, a high prob-
ability means that the assigned class of the data is not stable for different samples.
After this, (Breiman, 2001) proves that the generalization error converges to the pop-
ulation generalization error as the number of trees are increased. This is given in the
following formula:

PX,Y(PΘ(h(X, Θ) = Y)−max
j 6=Y

PΘ(h(X, Θ) = j) < 0) (3.6)

which gives the probability of switching from one class to another. It is implied by
(Breiman, 2001) that as the number of trees in a random forest increases, the random
forest is less likely to overfit the data.
(Amit and Geman, 1997) state that the accuracy of a random forest depends on the
strength of each tree classifier and the correlation between each tree. As stated by
(Breiman, 2001), the strength of a set of classifiers is given by
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s = EX,Ymr(X, Y) (3.7)

which is the expected value of the margin function, whereby a high value is pre-
ferred. Furthermore, (Breiman, 2001) shows that there is an upper bound for the
generalization error

PE∗ ≤ ρ̄(1− s2)

s2 (3.8)

where ρ̄ is the average correlation between the trees of the random forest. Equa-
tion 3.8 shows how the upper bound depends on the strength and correlation, as
previously mentioned by (Amit and Geman, 1997). Decreasing the upper bound is
desirable and can be achieved when the strength, s, is close to 1. Furthermore, a
lower correlation between the trees also decreases the upper bound.
In summary, by showing the theory developed by (Amit and Geman, 1997) and
(Breiman, 2001) we show that the generalization error does not increase when the
random forest is comprised of a larger number of trees. Furthermore, the increase
in trees of the random forest does not overfit the data. These reasons show that by
increasing the number of trees in a random forest, there are no negative side effects.

3.2.3 Splitting Criteria

When growing a classification decision tree we are interested in predicting the class
proportions of the training data at every particular terminal node region. In growing
the tree we split the tree using binary recursive splitting, which means we start at
the top of the tree and go down the tree level by level according to the splitting
logic. Literature shows that there are two popular measures that can be used as
splitting criteria, namely the Gini index and the cross-entropy (Nembrini, König,
and Wright, 2018) (Hamza and Larocque, 2005). Both evaluation criteria are very
similar to one another. This thesis will use the Gini index as splitting criterion as it is
computationally faster than the cross-entropy criterion. This is because the formula
for the cross-entropy is more complex than the Gini index. The formula for the Gini-
index is defined by

G =
K

∑
k=1

p̂mk(1− p̂mk) (3.9)

where p̂mk is the proportion of training observations in the mth region that are from
the kth class (James et al., 2013). The formula is a measure of the total variance across
the K classes. The Gini index will take on a small value if a tree contains nodes
with a high purity, meaning that the labels (prepayment versus non-prepayment)
are homogeneous.

3.3 Artificial Neural Network

An artificial neural network is a machine learning algorithm that resembles the func-
tions of a human brain in the sense that it contains a network of neurons (also known
as nodes) in which an incoming signal is transformed into an output signal. A neural
network often consists of an input layer, one or more hidden layers and an output
layer. A schematic representation of such a neural network can be seen in figure
3.2. The signals from all the nodes in the previous layer are sent to each node in the
subsequent layer.
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The artificial neural network consists of two distinct phases concerning the flow of
information through the network, namely the forward propagation phase and back
propagation phase.

FIGURE 3.2: A schematic representation of an artificial neural net-
work.

In the forward propagation phase the input nodes of the neural network receive nu-
merical data from an outside data set and pass the information through to the hidden
layer of neural network, where all the computations take place. Each neuron in the
first hidden layer receives an input signal, multiplied by a weight, from the neurons
of the previous layer. The summation of these signals is then passed through the
activation function and then leaves the node as an output signal, which in turn is
used as an input signal for the nodes in the next layer, where the whole process is
repeated. Figure 3.3 shows the computational process that happens at every node
of the hidden layer. The net input for every node can be given by the following
equation

aj = ∑
i

xiwij + β j (3.10)

where xi is each input, wij is the weight given to the input between node i to j and
β is the bias, the term given for unknown parameters. The weighted net input is
then passed through the activation function before leaving the node as output. The
activation function h(·) is shown in the equation below

z = h(aj). (3.11)

The weights for each input are found by the neural network during training, how-
ever, the activation function must be chosen by the user. Without an activation func-
tion the neural network would essentially turn into a linear regression model. The
activation function is needed for non-linear transformations and allows the neural
network to perform complex tasks.
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FIGURE 3.3: A schematic representation of the computational pro-
cesses in each node of a neural network.

3.3.1 Activation function

There are a number of activation functions which can be chosen by the user. These
activation functions can be chosen for both the hidden layers in the neural network
and the output layer. It should be noted that the chosen activation function should
be differentiable, as this property will be needed for the back propagation phase of
the training process.

• Sigmoid function

The sigmoid activation function returns an S-shaped curve in the range [0, 1] and is
essentially the same output function present in a logistic regression. The formula is
given below

h(aj) =
1

1 + e−aj
. (3.12)

The sigmoid function is a popular activation function due to its easy to use nature
and interpretability. Furthermore, it is a non-decreasing function with a smooth
output. Small changes in the node weights will not affect the output significantly,
which is a desirable property as later on we change the node weights in order to
improve the model during training runs.
However, the model has problems during the backpropagation phase (this phase is
explained in subsection 3.3.4) in which the sigmoid activation function will tend to
saturate at both tail ends, where the values reach 0 and 1. Secondly, the fact that the
sigmoid function is not zero-centered means that the neural network training time
increases.

• Hyperbolic tangent function

The function takes in a real-valued input and squashes the range to [−1, 1] and is
given by the formula

tanh(aj) =
sinh(aj)

cosh(aj)
=

eaj − e−aj

eaj + e−aj
. (3.13)
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The hyperbolic tangent function is zero-centered and hence is an improvement to
the sigmoid function. However, it should be noted that the function will still sat-
urate at both tail ends 0 and 1, thus this problem will still persist when using this
activation function. This function is considered useful when performing a classifica-
tion prediction between two distinct classes. The comparison between the tangent
activation function and the sigmoid function can be found in Figure. 3.4.

FIGURE 3.4: A graph depicting the difference between the hyperbolic
and sigmoid activation functions

• Rectified Linear Unit

The rectified linear unit (ReLu) function rectifies the saturation problem persistent
in the sigmoid and tangent functions. The formula is given as

h(aj) = max(0, aj). (3.14)

This function simply has a threshold at zero and is linear with slope 1 when aj is
above zero. This function is found to accelerate the gradient descent compared to the
sigmoid and tangent function. Furthermore, the function involves simple operations
making it a highly efficient function, which is not the case for the other functions.
The disadvantage of the ReLu is that many nodes can have zero activation due to
the negative input values not passing through the threshold. If this is the case, the
node is considered ’dead’. Once a node has a zero output it cannot recover due to
the zero gradient threshold of the ReLu function.

• Leaky ReLu

The Leaky ReLu tries to fix the ’dying’ problem found in the ReLu function. Instead
of having zero for x < 0 the leaky ReLu will have a small negative slope. This is
given by the following formula

h(aj) =

{
aj aj > 0
αaj aj ≤ 0

. (3.15)

Where α is usually a small number such as 0.01. Although people have reported
successes with this activation function, the results are not always consistent.

• Softplus activation function
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The softplus function is largely similar to the ReLu and is much smoother around
zero than the ReLu function. This function has gained popularity in the past years
and is often used for K-class classification problems. The function is characterized
by the following formula

h(aj) = ln(1 + eaj). (3.16)

Although it has gained popularity, the softplus is computationally inferior to the
ReLu function due to the more difficult exponential calculation term.

In this thesis we opt for the sigmoid function as we regard interpretability and easy
use higher than the additional training time that is needed. Furthermore, the smooth
output given by this activation function is a quality that is needed during model
training.

3.3.2 Output function

The output layer is the last layer of the neural network and is responsible for the
final output. It is the rightmost layer in Figure. 3.2. The output layer also has an ac-
tivation function, which is dependent on the purpose for which the neural network
was built for. Most often it is dependent on the type of cost function. However, for
a classification problem the softmax activation function is usually preferred.

3.3.3 Loss function

In order to assess each neural network model we make use of something known as
a loss function. This function allows us to measure the performance during each
training run. With a loss function we look at the difference between the predicted
values and the correct values. The lower the loss, the better the predictions made by
the model. The default loss function used for classification problems is the binary
cross-entropy loss function (Brownlee, 2016). This loss function works well with
a sigmoid activation function. We give the formula for binary cross-entropy loss
function below.

Hp(q) = −
1
N

N

∑
i=1

yilog(p(yi)) + (1− yi)log(1− p(yi)) (3.17)

In which yi represents the actual class, which in this case would be a prepayment,
and p(yi) is the probability of that class.

3.3.4 Backward propagation

Backpropagation is an algorithm that is used to minimize the error from the loss
function. During the backpropagation phase we in essence travel back from the
output layer to the hidden layer(s) to change the weights w at each node in order to
decrease the prediction error of the output layer given by the loss function. The delta
change of the weights leads a different loss function error. This algorithm works by
calculating the gradient of the loss function, known as gradient descent. As we have
multiple weights the gradient is a vector of partial derivatives with respect to the
weights (Reducing Loss: Gradient Descent). The backpropagation process is repeated
until we reach our desired output.
As mentioned we calculate the gradient of the loss function during backpropagation.
However, activation functions such as the sigmoid and the hyperbolic tangent will
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tend to saturate at tail ends 0 and 1. At these tail end the local gradient for the
gradient descent is (close to) zero meaning that nearly no signal will flow through.

3.4 Summary

In this chapter we shed light on the technical details of the three models to be used in
this thesis, namely the logistic regression, the random forest and the neural network.
For each of the three models we firstly explain how they work and then elaborate
on the mathematical formula’s each model uses in order to predict the dependent
variable.
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Chapter 4

Data

This chapter will elaborate various aspects of the data set which will be used to
train and test the model on. In depth information will be given about the data on a
portfolio-level and loan-level. Furthermore, details will be given on the relationship
between the explanatory variables and the dependent variable. The final section in
this chapter will focus on the various processing steps taken in order to balance the
data set.

4.1 Portfolio Data Properties

The data set to be used for this research is provided by Allianz Benelux. As men-
tioned in section 2.1.2 Allianz only started issuing mortgages in 2011, making it a
relatively young mortgage provider. The implication of this is that a full mortgage
cycle has not yet taken place. This does not have to be a negative thing, however,
most prepayment literature is based on a full mortgage cycle, which can take up to
thirty years. Therefore, there might be differences between the relationships of some
explanatory variables with the prepayment rate for the Allianz data compared to
literature.
The data that will be used for this thesis consists on various monthly data files which
all contain different contract specific variables. The data time period to be used is
from June 2012 up to July 2021. The data prior to June 2012 was discarded due
to incomplete data files. Since 2011, Allianz has seen a substantial growth in its
mortgage portfolio. In June 2012 the outstanding portfolio balance amounted to
€33 million whereas in July 2021 this amounted to roughly €6 billion. In this same
time period the number of loan parts increased from 380 to roughly 60,0001. This
growth is depicted in figure 4.1. It must be noted that the outstanding balance at
the beginning of 2018 was roughly €1.2 billion, meaning in the time period between
2018 and July 2021 the outstanding balance has quadrupled in value. Although this
growth is a great achievement, the down side is that the large production of mort-
gages decreases the average loan age even further for an already young mortgage
portfolio. We consider this a downside because the mortgage portfolio will be less
mature, also called less ’seasoned’ (this will be further elaborated in subsection 5.1
under the header ’Seasoning’). A less seasoned portfolio will most often lead to less
prepayments. As mentioned in literature and noted in subsection 2.2.2 the number
of prepayments at mortgage inception is usually low due to factors such as the inter-
est rate, family composition and employment status remaining unchanged. In that
respect the Allianz data will differ to that of other big Dutch mortgage lenders such
as the ING and ABN AMRO. These competitors have fully matured portfolios in

1The Allianz portfolio currently consists of just under 60,000 loan parts, this number is not to be
mistaken with the total number of loan parts shown in table 4.2, which shows the total number of
unique loan parts in the whole data set ranging over multiple years.
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which mortgage cycles are constantly ending and restarting. These portfolio’s will
most likely have higher prepayment rates that are more representative for the Dutch
population. The models in this research that will be modelled using the Allianz data
will most likely be biased towards lower prepayment rates when compared to that
of fully matured mortgage portfolios.
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FIGURE 4.1: The outstanding balance of the Allianz Benelux mort-
gage portfolio over time.

4.1.1 Loan Level Properties

The available data at Allianz consists of various monthly files which all contain
different contract specific variables. The various monthly files are monitored and
new variables are added regularly. Since inception in 2011, the number of reported
monthly variables has increased. Currently the monthly files consist of 631 vari-
ables. We can discard a large portion of these variables due to irrelevance (examples
of such variables would be house number, house number addition and ending date
of mortgage) or highly incomplete data (as such variables, for example, have only
been introduced in the reporting files in recent months). Collecting all the monthly
data observations and discarding all irrelevant variables we end with a complete
data set consisting of 1, 660, 000 observations and 57 variables. This data set consists
of 34, 984 unique contracts with 63, 830 unique loan parts. To this data set we add
additional macro-economic data such as the house price index (HPI) per month (as
reported by the Dutch bureau of of statistics CBS), the unemployment rate and the
monthly number of houses sold as these have been mentioned by literature to be
important determinants of mortgage prepayment (as previously mentioned in sub-
section 2.2.2. In table 4.1 we give the average and maximum values for multiple
important mortgage variables for the whole data set.
To further elaborate on monthly mortgage data, mortgagors have the opportunity
to construct mortgage loans consisting of multiple loan parts. Each loan part may
have varying characteristics. For example, each loan part may have a different re-
demption type, interest-rate fixed period (IFP) and capital amount. The combination
of loan characteristics and the application date of the loan all influence the loan part
mortgage rate. Table 4.2 shows the differences between the redemption type and IFP
on the loan part rate.
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Average Maximum
Mortgagor age 41 97

Income e53,150 e1,180,900
Total principal e193,950 e795,000

Remaining capital e108,800 e750,000
Loan age 23 110

Mortgage rate 2.64 6.93
Burnout 6.67 84

Initial LtMV 0.89 1.04

TABLE 4.1: The average and maximum values of multiple mortgage
variables.

IFP class 5 10 15 20 25 30 Total

Annuity (#) 886 4,070 1,695 23,719 1,575 9,816 41,761
Linear (#) 83 409 199 2,695 135 1,146 4,667
Bullet (#) 209 2,288 593 9,049 355 4,908 17,402

Total (#) 1,178 6,767 2,487 35,463 2,065 15,870 63,830

Average

Average
loan part rate

1.42% 2.66% 2.11% 1.94% 1.78% 2.15% 2.0%

Average
loan part capital

€27,436 €96,552 €108,280 €108,946 €102,606 €112,584 €92,734

TABLE 4.2: Various mortgage characteristics for each interest-fixed-
period (IFP) class.

Table 4.2 shows the number of loan parts per interest rate fixed period for mortgages
with different redemption types. Furthermore the average mortgage rate and aver-
age original capital is shown for each inter fixed period. Looking at the total number
of loan parts per IFP we see that the 10-, 20- and 30- years are the most popular. The
reason for this is because Allianz prefers longer maturity mortgages as these have
a better match with their long-term liabilities. Between the redemption types we
see that the annuity type mortgages are chosen most often. This type of redemption
has been the most popular type in the Netherlands for multiple years now as the
monthly costs at the beginning of the mortgage are cheaper than those of a linear
mortgage.
Apart from being contractually obliged to pay monthly costs, comprising of an in-
terest part and a principal part, mortgagors can prepay part of their loan. The three
types of prepayment, partial prepayment, full prepayment and arbitrage prepay-
ment make up the total prepayment. Prepayment is calculated as an annual rate,
called the conditional prepayment rate (CPR). Equation 4.1 shows the formula for
the CPR for month t.

CPRt = 1− (1− SMMt)
12 (4.1)

Where SMM is the single monthly mortality rate (SMM), which is a monthly rate for
the total prepayments. The SMM for a specific month is computed as follows:
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SMM =
e Total amount prepaid

e Total remaining outstanding debt
(4.2)

The total amount prepaid per month is a summation of the amounts prepaid through
a partial, full and arbitrage prepayment. A partial prepayment takes place when the
amount repaid is more than is contractually obliged for that month, but less that
the outstanding balance of the mortgage. A mortgagor may make multiple partial
prepayments over the lifetime of the loan. However, as mentioned in section 2.2.1,
a mortgagor may only partially prepay more than 10% of the principal per year,
penalty free. This type of prepayment is also called a curtailment. As the name
suggests, a full prepayment takes place when the whole outstanding principal is
redeemed in advance. A full prepayment usually only occurs when a mortgagor
divorces, relocates or passes away. The last type of prepayment is not an actual
prepayment. An arbitrage prepayment takes place when a mortgagor refinances
the mortgage, taking advantage of lower market rates. An arbitrage prepayment
has a similar effect as a full prepayment, due to the fact that the old loan is termi-
nated. However, with an arbitrage prepayment the old loan is replaced by a new
loan with a lower mortgage rate. This type of prepayment is not very popular in the
Netherlands as it brings with it additional costs. Table 4.3 shows the total number of
observations per prepayment type. Furthermore, the total amount, average amount
and average loan age are shown.

Number of
observations

Total
amount

Average
Amount

Average
Loan Age (months)

Full prepayment 5,801 €572,034,633 €98,610 40
Partial prepayment 12,199 €85,986,101 €7,049 26
Arbitrage prepayment 911 €95,032,913 €104,317 57

TABLE 4.3: Prepayment statistics of the Allianz data set.

In total we have 18, 911 observations in which some form of prepayment takes place.
From table 4.3 we see that the average amounts of full and arbitrage prepayments
are much larger than the partial prepayments. This is obvious as a full and arbitrage
prepayments payoff the whole remaining principal.
It should be noted that during the time frame in which Allianz has been selling
mortgage products (2011-present) the Dutch mortgage rates have been in extremely
low territory. This is mostly due to the low interest rate climate which, in turn, has
affected the swap rate. An important part of mortgage funding, as explained in
subsection 2.1.3, is based on the swap rate. A lower swap rate will lead to a lower
mortgage rate climate. In figure 4.2 we show the historical mortgage rates in the
Netherlands based on new mortgage contracts with a maturity longer than ten years
(the rates have been published by the DNB). On the same graph we see the 6 months
EURIBOR swap rate denominated in euros. As can be seen from the graph the swap
rate and mortgage rates have been decreasing steadily since 2011. Furthermore, we
see that the mortgage rates have never been as low as August 2021.

4.2 Summary

In this chapter we give information about the data properties of the Allianz data
set, on both the portfolio-level and loan-level. Furthermore, we explain what the
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FIGURE 4.2: A graph showing the mortgage rate for all new contracts
with a maturity longer than ten years, versus the EURIBOR swap rate
over time. Added is the spread over swap which is taken by subtract-

ing the swap rate from the mortgage rate.

conditional prepayment rate (CPR) is and how it is calculated. Lastly, information is
shown on the number of prepayments within the Allianz portfolio.
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Chapter 5

Preliminary Analysis

In this section we perform a preliminary analysis on the Allianz data that will be
used for modelling. We look at the relationship between relevant determinants
found in literature and the conditional prepayment rate. We further elaborate on
data transformations performed, how we account for data imbalance and lastly
show how we will be evaluating the results.

5.1 Explanatory variables

The Allianz data set contains many independent variables which can be subdivided
into variables relating to loan characteristics, borrower characteristics or macroeco-
nomic factors. With a clear overview of the portfolio statistics and an explanation
of the conditional prepayment rate (CPR) this section will analyse the relationship
between different determinants mentioned in literature and the CPR at Allianz, sub-
divided into the various forms of prepayment. This will be done through a visual
aid in the form of line- and bar-plots whereby different types of prepayment will be
analysed. Determinants not shown in this section will be placed in Appendix B.

Property Type

We compute a categorical variable for the various property types used as collateral
by mortgagors. We distinguish between two types of classes, namely between apart-
ment properties and non-apartment properties. Both apartments with and without
garage are classified as apartment properties whereas non-apartment properties are
all other possible collateral types. Collateral types that fall under non-apartment
properties vary greatly and range from house boats to farms. However, nearly all of
the non-apartment properties consist of family homes.
As mentioned in literature in section 2.2.2 by (Alink, 2002) (Charlier and Van Bussel,
2003) (Elsing, 2019) the property type is found to be an important determinant in
forecasting the prepayment rate. This effect can also be found in the loan level data
from Allianz, shown in Figure 5.1. Although the arbitrage and partial prepayments
do not differ greatly between categorical variables, the CPR percentage of full pre-
payments for mortgagors living in an apartment is 2.5% higher. This suggests that
mortgagors living apartments tend to move out and upgrade their homes.
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FIGURE 5.1: CPR(%) for apartment properties versus non-apartment
properties

Mortgagor Age

Many papers in literature also mention the mortgagors age as a determinant for pre-
payment. The mortgagor’s age for contracts with two borrowers is calculated as the
average age of the two. Figure 5.2 shows the relationship between the mortgagors
age and the CPR. Although the total CPR increases for mortgagors age from 20 to
35 the CPR stagnates and does not keep increasing, except for the large spike at a
mortgagor age of roughly 85 years old. The number of mortgagors in the Allianz
portfolio that are older than 80 is relatively small. Furthermore, the remaining capi-
tal on the mortgage loans for these mortgagors is not very high as older mortgagors
do not tend to start new mortgage loans. The reason for more full prepayments
being made by older mortgagors could be related to mortgagors passing away.
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FIGURE 5.2: The CPR (%) for per age of the mortgagor within Allianz.
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Upgrading Effect

The upgrading effect mentioned in 2.2.2 by (Charlier and Van Bussel, 2003) shows
that young people in an apartment have an increasing probability of upgrading their
property and hence prepaying their mortgage. Figure 5.3 shows that this effect is
also somewhat present in the Allianz portfolio. We in fact see that the percentage
of mortgage observations making a form of prepayment that are aged between 25 -
40 is higher for mortgagors living in an apartment than mortgagors living in ’other’
property types. (Charlier and Van Bussel, 2003) mention that the upgrading effect is
greatest for mortgagors in their mid-thirties and forties, which is somewhat the case
for the Allianz mortgagors. From the figure it is clear that between the ages of 30 -
35 the percentage of prepayment observations has the biggest difference.
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FIGURE 5.3: A graph depicting the difference in prepayment observa-
tions between mortgagors living in an apartment and in other prop-

erty types per mortgagor age.

Initial Loan-To-Market-Value

We define the initial LtMV as the total mortgage principal divided by the market
value of the property at loan origination. This is given by the following formula:

Initial LtMV =
Value Total Principal

Market Value Property
(5.1)

The relationship between the intitial LtMV and the CPR is shown in figure 5.4. As
can be seen, the CPR for mortgagors with an initial LtMV of 0.25 is nearly dou-
ble that of mortgagors with a higher original LtMV. There are two possible reasons
mentioned in literature (Elsing, 2019) (Sirignano, Sadhwani, and Giesecke, 2015) as
to why mortgages with a lower initial LtMV have a higher CPR. One reason sug-
gests that mortgages with a high initial LtMV have less opportunities to refinance
due to the large loan outstanding, which would incur a higher refinancing penalty.
The other reason suggests that mortgagors with a lower initial LtMV are more likely
to have additional funds to their disposal, thus can bare the cost or prepaying. Re-
garding the peak CPR at a LtMV of 0.225, we see that it is caused by a higher CPR
for partial prepayment. Looking at the data we find that in the number of mortgages
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with such a low initial LtMV are quite low relative to mortgages with a higher ini-
tial LtMV. Furthermore, the amount of partially prepaid balance is higher. However,
as the numbers are so low, one extra partial prepayment or a larger partial prepay-
ment will have a big influence on the partial CPR. As is this case for the LtMV of
0.225. The outstanding balance for observations with a LtMV of 0.275 is double that
of the observations with a LtMV of 0.225, meaning it is less prone to changes in the
prepayment amounts.
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FIGURE 5.4: The CPR per initial LtMV at mortgage inception.

Seasonality

Literature defines seasonality to be mortgage prepayments made in the months
November and December. This effect is captured using a dummy variable. The per-
centage of observations with prepayment per month are shown in figure 5.5, where
it is obvious that the number of observations for partial prepayments is significantly
higher in the months November and December. Although October is not regarded
as an ’end of year’ month the percentage of partial prepayments made in this month
is also far higher than the months earlier in the year. Possible reasons for the sea-
sonality effect are, as stated in section 2.2.2, the inflow of extra salary due to the
’13th month’ and the fiscally beneficial prepayment penalty being deducted from
mortgagor’s yearly income. Due to the high partial prepayment rate in October we
include this month for the seasonality dummy.
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FIGURE 5.5: Percentage of data observations making a prepayment
for each month of the year.

Refinancing Incentive

A very prominent prepayment determinant mentioned in literature is the refinanc-
ing incentive. Some even mentioning the refinance incentive as the most important
prepayment determinant. In order to calculate the refinance incentive we must es-
tablish the market interest rate for each type of mortgage. The first step in this pro-
cess is grouping the mortgages into buckets on the remaining fixed interest rate time
to maturity (IRFP ttm) of the loan. These buckets are shown in the table 5.1.

IRFP ttm buckets IRFP ttm (months)

60 M ≤ 90
120 90 < M ≤ 150
180 150 < M ≤ 210
240 210 < M ≤ 300
360 M > 300

TABLE 5.1

We define the market rate for a certain type of mortgage as the average rate of all the
mortgages with the same redemption type and remaining fixed interest rate time to
maturity. The refinancing incentive for each mortgage is then determined by sub-
tracting the market rate of the previous month from the mortgage rate.
Figure 5.6 shows the percentage of observations with prepayment versus the refi-
nance incentive. There is a clear positive relationship between refinance incentive
and the number of prepayments. Although one would only expect prepayments to
take place for a positive refinance incentive, prepayments are also made for a neg-
ative refinance incentive. We see that there is an arbitrage spike for observations
with a refinance incentive of −0.7. Analysing the data shows that the are very few
observations with a refinance incentive below−0.3. Digger deeper we see that there
are just north of 100 observations with a refinance incentive of −0.7, where one loan
made an arbitrage prepayment. This one arbitrage prepayment is the sole cause for
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the red spike on the left side of figure 5.6. Although speculative, there could be exter-
nal factors at play as to why this loan made an arbitrage prepayment, even though
the interest rate would become higher. Such reasons could be due to illnesses, death
or change in marital status. We see that as the refinance incentive increases so does
the percentage of arbitrage prepayments. This is logical as mortgagors have a chance
to refinance and take advantage of lower mortgage rates.
Furthermore, from figure 5.6 we see that that the percentage of partial prepayments
is more or less independent from the refinance incentive. For mortgages with a high
positive refinance incentive as for a negative refinance incentive we do not see very
big changes. This is logical as the refinance incentive has no influence on the number
of partial prepayments.
The percentage of full prepayments increases steadily with increasing refinance in-
centive. In the period in which Allianz has been issuing mortgages, they have only
been in a decreasing interest rate climate. Reviewing the data we see that the loans
with a higher refinance incentive have a higher loan age, suggesting that these loans
were issued close in the beginning years of of the company. We therefore regard
the loan age as the main cause for the percentage increase of full prepayments. As
mentioned in subsection 2.2.2, literature states that the reason an increased loan age
(mentioned as seasoning) leads to a higher number of full prepayments is because
external factors such as the family composition, employment status and marital sta-
tus, among other things, changes.
The last noticeable point in figure 5.6 is that there are mortgages with a refinance
incentive of bigger than 4%. However, the number of observations with such a high
refinance incentive is very small, being just lower than 100. As the refinance incen-
tive increases further the number of observations decreases even further. We see that
zero percent of these mortgagors made any sort of prepayment. If a mortgagor were
to make a prepayment then this would immediately have a big impact for the curve.
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FIGURE 5.6: Percentage of data observations making a prepayment
based on the refinance incentive (also called the delta rate) of the

mortgage.

Burnout Counter

Mortgagors will for a certain period of time not be aware of the market rate is below
their mortgage rate. Mortgagors that are slow to react when a refinancing incentive
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presents itself will be slow to prepay. The variable burnout counter measures the
number of months the mortgage has been presented with a refinance incentive but
has not taken advantage of the opportunity to prepay. Financial institutions mention
that in the past the golden rule on when to refinance a mortgage was if the market
rate was 2% below the mortgagors’ rate. However, such institutions currently advise
people to refinance if the market rate is 1% below the mortgagors’ rate. Thus, we
start the burnout counter if the market rate is 1% below the mortgage rate. This
effect is also present in the Allianz portfolio. Figure 5.7 shows that once the burnout
counter starts, many mortgagors are slow to react to the refinance incentive. The
burnout counter has a upwards slope with the CPR, which is inline with literature.
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FIGURE 5.7: Percentage of data observations making a prepayment
based on the burnout counter.

Seasoning

The last determinant that is discussed in section 2.2.2 is seasoning. This determinant
looks at the CPR per loan age of each mortgage. Figure 5.8 shows the CPR of the
portfolio based on the loan age. It is clear that the positive effect between the loan age
and CPR. It must be noted that the outstanding principal does somewhat decrease
at a larger loan age, thus every prepayment made will have a larger effect on the
CPR. However, literature states that this relationship should produce an s-shaped
curve. Which is not the case for the portfolio of Allianz. A possible reason for this
is that the Allianz portfolio is still very young and has not matured. If we were to
reproduce this plot in 20 years we should expect the relationship to resemble that of
an s-shape.
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FIGURE 5.8: A graph showing the CPR per loan age, in months, of
the mortgage.

5.1.1 Conclusion sub-question 2

2. What are the main drivers of prepayment when analysing the Allianz mort-
gage portfolio?

We analyse the different drivers of prepayment for the Allianz portfolio in section
5.1. Here we find that there multiple determinants for the three different types of
prepayment are visible from the data.
We find that the main drivers for partial prepayments are the initial LtMV and sea-
sonality. We see that for low initial LtMV levels that the partial CPR is at its highest
point and gradually declines as the initial LtMV rises. Furthermore, we see that
during the last months of the year the percentage of partial prepayments increases
greatly, showing that seasonality has a big effect on the number of partial prepay-
ments.
There are a number of determinants that, through analysis of the Allianz data, can
be considered the main drives for full prepayments. These are the property type,
mortgagor age, refinancing incentive, burnout and seasoning. We see that the full
prepayment CPR for mortgagors living in an apartment property type is greater than
that of mortgagors living in other property types. Secondly, we find that the mort-
gagor’s age also has an effect on the full prepayment CPR, increasing from the ages
20-35, before decreasing and then staying roughly at the same level. For increasing
refinancing incentive and burnout we see that percentage of full prepayment obser-
vations also increases. Lastly, the increasing loan age (seasoning) also drastically
increases the full prepayment CPR.
As for arbitrage prepayment we find that the mortgagor age, refinancing incentive,
burnout and seasoning are important drivers found in the Allianz data. We find that
as with full prepayments the arbitrage prepayment CPR increases from the ages 20-
35, before decreasing and then staying roughly at the same level. We see that both
increasing refinancing incentive and burnout increase the percentage of arbitrage
prepayments. Lastly, the increasing loan age (seasoning) also increases the arbitrage
prepayment CPR.
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5.2 Data Transformation

We apply a number of data transformations to variables that will be used by all three
classifiers. This is done for two reasons. Firstly, to achieve symmetry in skewed vari-
ables and secondly, in order to achieve linearity between the independent variables
and the logit of the dependent variable. From data analysis we know that the follow-
ing variables are right skewed: total income, age, loan age, refinance incentive, total
principal, remaining loan part principal. Whilst the variable ’number of houses sold’
is left skewed. We transform the right skewed variables by taking the log and the
left-skewed variable by taking the square root. Lastly we transform the ’refinance-
incentive’ variable. Instead of calculating the refinance-incentive by subtracting the
market rate from the mortgage rate we take the logarithm of the mortgage rate di-
vided by the market rate (LaCour-Little, Marschoun, and Maxam, 2002).
We take the logarithm of these variables as this is an easy and common technique
for transforming right-skewed data. Through the logarithm we ’pull in’ more right
tailed data relative to the median and transform the data to a more normal distribu-
tion. One can imagine this is particularly useful for variables such as ’total income’
where most mortgagors have similar total incomes, yet there are enough mortgagors
that have a total income of multiple times the amount of the median total income.
We take the square root of left-skewed variables as this has somewhat the oppo-
site effect of the logarithm, where smaller numbers are inflated and larger numbers
become more stabilised.

5.3 Data Splitting

In order to develop and evaluate a good classifying model we split the total data set
into multiple smaller ones, whereby each data set serves a different purpose. The
first data split that was performed was to create an ’in-sample’ data set and an ’out-
of-sample’ data set. The in-sample data set contains all observations except for latest
two months which are June 2021 and July 2021. Thus the in-sample data set contains
observations from June 2012 up to and including May 2021, while the out-of-sample
data set only contains the observations from June and July 2021.
We perform a second split on the in-sample data, splitting this data set into a training
data set and test data set. The training set contains 80% of the in-sample data while
the test set contains the other 20%. We perform this split on each reporting month,
meaning that 80% of the observations each month are subset into the training set
while the other 20% is subset into the test set. This split was chosen due to two main
reasons, firstly because it is a common split found in literature and secondly because
we require a large training set. We require a large training set as this training set has
multiple purposes. Other than being used for training the each model, the training
set will also function as ’validation’ set for k-folds cross validation. Furthermore, the
training set will also be used for undersampling, which is explained in subsection
5.4. We show the number of observations for each data set in table 5.2. Furthermore
in the table we show the number of partial, full and arbitrage prepayments made in
each data set.
Instead of creating an extra separate validation set (a set used for tuning model-
specific (hyper)parameters) we opt to use k-folds cross validation instead. In doing
so the ’validation’ set in k-folds cross validation is also used for training the model,
thus more training data can be used to train the model which in turn is considered
advantageous. In k-folds cross validation we split the training set into k groups,
also called folds, of roughly the same size. We leave the first fold out, train the
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model parameters on the other k - 1 folds and then validate the model with tuned
hyperparameters on the fold left out. The error rate is then computed for the left out
fold. We repeat this process k times and average out the k error rates. The error rate
for the left out fold is computed as the number of misclassified observations and is
given in the formula below:

CV(n) =
1
n

n

∑
i=1

Erri (5.2)

where Erri = I(yi 6= ŷi). If we were to withhold observations and partition the data
further into a validation set, then the observations from the validation set (common
validation set sizes in literature comprise of 15% of all observations) would never
be used in training the model, which could be considered ’wasteful’. Although we
have millions of data observations, when undersampling the data we reduce the
number of observations greatly. For example, the undersampled arbitrage prepay-
ment training set where 50% of the observations are arbitrage prepayments (which
can also be called the 50% arbitrage prepayment undersampled data set) only con-
tains a total of 1400 observations. With such a low number of observations every
observation counts. For such situations k-fold cross validation is more efficient at
using and re-using the data than constructing a validation set.

Data set name Partial (#) Full (#) Arbitrage (#) Total (#)
Train 9,187 4,243 701 1,239,681

Test 2,245 1,016 154 309,753
Out-of-sample 767 542 56 114,551

TABLE 5.2: A table showing the number of observations present in
each data set for each prepayment type.

5.4 Imbalanced Data

As shown in table 4.3 there have close to 19,000 observations in which a prepayment
occurs. Although this may seem like a lot, we have over 1.6 million data observa-
tions in the whole data set. Thus, a prepayment occurs in just over 1% of observa-
tions. The relative class imbalance between observations with and without a prepay-
ment leads to a skewed class distribution. This is problematic as classifiers tend to
ignore the minority class and pick up the patterns of the majority class. This causes
these classifying models to become biased towards the majority class. The imbal-
anced data problem is not at all uncommon and has elaborately been discussed and
analysed in literature (He and Garcia, 2009). In literature we find an abundance of
papers not only analysing the imbalance problem but also reviewing and proposing
solutions to the problem (Kotsiantis, Kanellopoulos, and Pintelas, 2005) (King et al.,
2001) (Sun, Wong, and Kamel, 2009) just to name a few. There are two popular types
of solutions to the imbalanced data problem, namely methods implemented during
the pre-processing phase on the data level and methods implemented on an algo-
rithmic level. Most papers agree that both approaches are equivalent in addressing
the imbalance problem (López et al., 2012).
The two most popular methods in minimizing the data imbalance on a data level
involve a type of undersampling or oversampling technique. Whereas on an al-
gorithmic level some type of cost-sensitive learning is applied. Each method has
its advantages and disadvantages and analysing each available method would be a
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thesis on its own. We propose two methods to combat the data imbalance, one on
the data level and one on the algorithmic level. These methods have been chosen
due to their interpretability, easy implementation and popularity.
The data level method to reduce the class imbalance will be done using an under-
sampling technique. The main idea behind undersampling is to balance the class dis-
tribution by randomly eliminating the number of majority class observations. This
will in turn balance the data and reduce the relative imbalance between the minor-
ity and majority class, if-not eliminate it altogether. There are two main downsides
to undersampling. Firstly, by eliminating majority class observations we discard
potentially useful data and secondly, by undersampling we alter the probability dis-
tribution and shift it towards the minority class. During undersampling we alter
the prior distribution of the training set resulting in a biased posterior probability of
the classifying algorithm. This problem is called a prior probability shift and can be
corrected, as has been shown in literature (Dal Pozzolo et al., 2015). This correction
will be implemented in this thesis and will be further elaborated below.
The following paragraphs show how to acquire the unbiased probability, p, in order
to correctly classify the unbiased probability after undersampling. Assume we have
a random binary variable s that takes the value of 1 if the observation is in the new
balanced (or undersampled) training sample and 0 otherwise. Furthermore we as-
sume that s is independent from input x given the class y: p(s|y, x) = p(s|y), which
in turn implies p(x|y, s) = p(x|y) meaning that removing observations at random
will not affect the within-class distributions. For each observation in this thesis we
denote y being a prepayment as y = 1 and no prepayment as y = 0. Thus y = 1
represents the minority class and y = 0 represents the majority class. Through Bayes
Rule and using p(s|y, x) = p(s|y) we can write the following equation:

P(y = 1|x, s = 1) =
P(s = 1|y = 1)P(y = 1|x)

P(s = 1|y = 1)P(y = 1|x) + P(s = 1|y = 0)P(y = 0|x) (5.3)

With the knowledge that p(s = 1|y = 1) = 1 we can rewrite equation 5.3 as follows:

p(y = 1|x, s = 1) =
p(y = 1|x)

p(y = 1|x) + p(s = 1|y = 0)p(y = 0|x) (5.4)

As shown in (Dal Pozzolo et al., 2015) we denote β = p(s = 1|y = 0) as the prob-
ability of choosing a negative observation with undersampling. We further denote
p = p(y = 1|x) as the posterior probability of the positive class based on the original
data set and ps = p(y = 1|x, s = 1) as the posterior probability of the positive class
after sampling. We can now rewrite equation 5.4 as follows:

ps =
p

p + β(1− p)
(5.5)

We can rewrite equation 5.5 to get an expression for p:

p =
βps

βps − ps + 1
(5.6)

Which is the posterior probability of the positive class on the original data set as a
function of the posterior probability of the positive class after sampling, ps. β has a
lower bound of N+

N− , where N+ and N− indicate the number of positive and negative
observations in the data set. The upper bound for β is 1. β indicates the degree of
undersampling being done, where β = 1 means all negative observations are used
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in the training sample and β < 1 indicates that a subset of the negative observations
are used in the training sample.
In order to retain the classification accuracy of the model we also have to adjust
the probability threshold, otherwise we would have different misclassfication costs
between the imbalanced and balance data models. From (Elkan, 2001) we let τ be
the threshold for the unbiased probability p.

τ =
βτs

(β− 1)τs + 1
(5.7)

Where we denote τs as the threshold used to classify an observation after undersam-
pling. To summarise, due to undersampling a higher percentage of observations are
predicted as positive. However, undersampling has made the posterior probabilities
biased due to a change in the prior distribution. By obtaining p, found in equation
5.6, as the unbiased probability after undersampling and by using the threshold τ as
the classification threshold we can correctly classify the unbiased probabilties after
undersampling.
We undersample the training data set multiple times to observe the effect of under-
sampling on the loan-level and portfolio evaluation metrics. Not only do we un-
dersample the data set separately for each prepayment type, we undersample it so
that the minority class (the prepayment class) accounts for 10%, 20%, 30%, 40% and
50% of the total number of training observations. We then use these undersampled
data sets as training data for each model. Thus, for each prepayment type we have
five undersampled data sets. Using the different undersampled data sets as training
sets we can evaluate the effect of the data set size for the different models. Table 5.3
shows the number of observations per training set. The first row header indicates
that 10% of the observations account for the minority class (the prepayment class).
For example, the 30% full prepayment training set has a total of 14, 175 rows with
4, 253 of those rows being of the class full prepayment. This represents 30% of the
total observations of that training set.

Minority class
presence (%)

Partial
prepayment
data set

Full
prepayment
data set

Arbitrage
prepayment
data set

10% 91,955 42,546 7,043
20% 46,021 21,271 3,504
30% 30,667 14,175 2,348
40% 23,008 10,657 1,769
50% 18,265 8,428 1,387

TABLE 5.3: A table showing the total number of observations for each
training set for each different degree of undersampling. The row
header indicates which percentage of the training set the minority

class represents.

5.5 Model Evaluation

We perform the model evaluation using R and the packages available within this
environment. R was chosen because it can easily be used for both manipulating
data sets and programming. We distinguish between two models for each machine
learning algorithm; the baseline model and the improved model. The baseline model
for each classifier will use the training data set as input data and will be tested using
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the in-sample test data and the out-of-sample data. As mentioned in subsection 5.4
this training set is highly imbalanced. The improved model for each classifier will
use the various undersampled data sets as input and identical to the baseline model
will also be tested on the in-sample test data and the out-of-sample data. Thus we
will forecast different types of prepayment on in-sample test data and out-of-sample
data.
We can evaluate each model in two separate ways, through loan-level metrics and
secondly through portfolio metrics. On the loan-level we evaluate each classifier on
its forecasting power whilst on the portfolio level we evaluate the overall difference
between the actual CPR and the predicted CPR. We prioritize the portfolio level
results due to their importance for Allianz. The following section will go into greater
detail on these metrics.

Portfolio Level

Predicting the CPR per month for the portfolio is important. We calculate the CPR
by multiplying the forecasted probabilities per prepayment type from each classifier
by each specific prepayment factor. From this we can easily calculate the SMM and
thus also the CPR. The CPR for each model can be evaluated by comparing it to the
actual CPR. There are several metrics that can be used to compare the predicted CPR
from each classifier and the actual CPR.
The root mean squared error (RMSE) is a widely adopted metric that calculates the
square root of the average squared difference between the predicted values and the
actual values. Although useful, it is prone to outliers. The formula gives more
weight to outliers further from the mean. The formula is given below.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ỹi)2 (5.8)

The mean absolute error (MAE), on the other hand, is robust to outliers. It mea-
sures the average magnitude of the errors regardless of its direction and gives all
individual differences an equal weight.

MAE =
1
N

N

∑
i=1
|yi − ỹi| (5.9)

We want to further extend on these metrics by taking into account the large increase
in mortgages from the past few years. We alter the RMSE and MAE metrics into
weighted RMSE (WRMSE) and weighted MAE (WMAE), these are shown below.

WRMSE =

√√√√ N

∑
i=1

wi(yi − ỹi)2 (5.10)

WMAE =
N

∑
i=1

wi|yi − ỹi| (5.11)

Where wi is the weight given to every month with ∑N
i=1 wi = 1. The monthly weight

is calculated by the number of observations for that month divided by the total num-
ber of observations. With this weighted scheme the errors of the monthly CPR from
the past three years will be given a larger weight than those in 2012-2014. This is
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done because the mortgage portfolio from 2012-2014 was very young and thus very
prone to outliers.

Loan level

Although we evaluate the three classifiers on portfolio level we also look at the per-
formance on a loan level, by using different metrics. Each metric serves a different
purpose and can help us find out how well our model is performing. On the loan
level we have a classification problem and would like to forecast whether or not an
observation belongs to one of the prepayment classes or not. We classify an obser-
vation as being a prepayment if the forecasted probability is higher than a certain
threshold. By making use of a confusion matrix we will be able to count the correct
and incorrect predictions per class. A confusion matrix is a visual table that shows
the prediction results of our prepayment classification problem). From the confu-
sion matrix we obtain four values, namely the number of True Positives (TP), False
Positives (FP), False Negatives (FN) and True Negatives (TN). The TP count value
is the number of observations that were predicted by the classifier to be part of the
positive class (1) and were actually part of the positive class (1). FP is the value for
the number of observations that were predicted to be part of the positive class but
are actually part of the negative class. The same metrics are counted for the negative
class, the TN is the number of observations predicted as part of the negative class
and are actually part of the negative class. The FN is the number of observations
predicted to be of the negative class but were actually part of the positive class. The
main outline of the confusion matrix is shown in figure 5.9.

FIGURE 5.9: The confusion matrix gives the number of true positives,
false positives, true negatives and false negatives.

The confusion matrix lays the basis on which many other evaluation metrics can be
derived. One of these metrics is the accuracy and is calculates as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.12)

Although this metric gives a good overview of the number of correctly classified ob-
servations out of the total number of observations, it it has its limitations when using
imbalanced data. If we were to keep the imbalanced data, the cases of prepayment
to no prepayment would be roughly 1:99. If the model were to accurately classify
all the observations as non-prepayment the accuracy of the model would be 99%,
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nearly perfect. However, the aim is to predict if mortgagors will prepay and thus
this classifier would be deemed useless.
The precision metric looks at how many true positives the classifier predicted out of
all predicted positives. However, this metric doesn’t give us any information on the
false negatives. The formula for precision is shown below.

Precision =
TP

TP + FP
(5.13)

To account for the lack of information on the false negatives we use the recall met-
ric. This metric tells us the number of positive observations correctly identified out
of the total number of actual positive cases. Recall and precision have an inverse
relationship, if recall increases the precision will decrease. The formula for recall is
shown below.

Recall =
TP

TP + FN
(5.14)

Specificity, also known as the true negative rate, gives us more insight into the nega-
tives cases. It is calculated by the number of true negatives out of all actual negative
cases. The formula is shown below.

Speci f icity =
TN

TN + FP
(5.15)

From the precision and recall metrics we can calculate the F1 score. The F1 score, is
the trade-off between precision and recall and acts as a harmonic mean between the
two metrics. For this research we would like a high F1 score.

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

(5.16)

Based on the true positive rate (which is synonymous for the recall metric) and the
false positive rate (FPR = 1 - Specificity) we can construct a Receiver Operating Char-
acteristic curve (ROC curve). Which is a useful curve for calculating the area under
the curve (AUC) metric. In essence a ROC curve is constructed by measuring the
true positive rate and the false positive rate for many thresholds. However, doing
so would be time consuming work. Luckily constructing a ROC curve can easily be
done with most programming packages.
We mention that the AUC can b calculated form the ROC curve. This is done by, as
the name suggests, calculating the area under the ROC curve. The AUC metric can
be interpreted as the probability that the model ranks a randomly chosen positive
sample (in which a prepayment takes place) higher than a random negative sample
in which no prepayment takes place. The AUC can range between 0 and 1 where a
higher score is better. For example, a prepayment classifier with an AUC of 0.80 will
be able to distinguish between observations with and without prepayment 80% of
the time.
In addition to the AUC value the Brier score can be used as a supplement. The Brier
score looks as how close the predicted probability is to the actual case. The lower
the Brier score the better the prediction from the classifier. The formula for the Brier
score is given below, where N is the number of observations, ft is the predicted
probability per observation and ot is the actual outcome of the observation where 1
would mean a prepayment and 0 no prepayment.
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BS =
1
N

N

∑
t=1

( ft − ot)
2 (5.17)

5.6 Prepayment Cash Flow Estimation

Apart from testing the models on loan-level metrics and portfolio level metrics we
also estimate the prepayment cash flow from the various constructed models. By
doing so we can compare the cash flow estimation of the Allianz model and our
models to the actual prepayment cash flow of the portfolio.
The actual cash flows for the mortgage portfolio is the addition of the cash flows
from all partial prepayments, full prepayments and arbitrage prepayments. In each
case we have a probability of making a prepayment, which in the case of the Al-
lianz mortgage portfolio is either 0 or 1 for each type of prepayment. Furthermore,
only one type of prepayment can take place per data observation. The amount pre-
paid for a partial prepayment is a certain percentage of the outstanding remaining
capital. We previously mentioned that up to 10% of the remaining capital can be
partially prepaid per year penalty free, hence the percentage of partially prepaid
capital is usually lower than this amount. This differs from full and arbitrage pre-
payments where the total outstanding capital is fully prepaid. The cash flow prepaid
per month for each mortgage j in month t is shown in the formula below:

CFj,t = [P(partial) ∗ P(CPj,t|P(partial) = 1) ∗OCj,t]

+ [P( f ull) ∗OCj,t] + [P(arbitrage) ∗OCj,t] (5.18)

Where OCj,t is the outstanding capital for mortgage j at time t. Summing for all
mortgages per month gives the total actual prepaid cash flow. This equation can
also be used to estimate the cash flows from each constructed model. When doing
so we alter two components of the equation 5.18, namely the probability of each
type of prepayment and the amount prepaid in case of a partial prepayment. Each
constructed model estimates a probability of prepaying for each type of prepayment,
which will be used in the cash flow estimation. This probability is between 0 and
1 instead of having only possible values of 0 or 1. Furthermore, we compute the
percentage of average partial prepayment in relation to the outstanding capital. We
sum all yearly prepayment cash flows of the best performing constructed models
(chosen on the basis of the portfolio metrics) and compare them to that of the Allianz
model and the actual observed prepayment cash flows. We compute the error of
each model relative to the observed cash flows and give the results per year. We
use the same time range as was mentioned in subsection 5.3. However, we exclude
the cash flows from the years 2012 and 2013 as the actual prepaid amounts from
these years are very small which lead to unreliable estimations from the models and
therefore also unreliable results. Lastly, we do not distinguish between the in-sample
and out-of-sample time range in the results.

5.7 Summary

In this chapter we analyse the main drivers of prepayment present in the Allianz
mortgage portfolio. We find multiple drivers present in the Allianz data that have
either a positive of negative relationship with each of the three prepayment types.
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This allows us to conclude the second sub-question of this thesis. Furthermore, we
elaborate on how the different training or testing samples will be split from the over
data available. Information is then given on our answer to the data imbalance prob-
lem, namely undersampling. We give theory into how undersampling effects the
sample probability distributions and show which corrections will be implemented
in this thesis to account for this. Moving on, we elaborate on the different portfolio
level and loan level metrics that will be used in order to determine the performance
of each model. Lastly, we give the formula for the prepayment cash flow estimation
which will help deduce which model is closest to replicating the actual observed
prepayment cash flow.
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Chapter 6

Results

This section will elaborate on the results for each of the three different types of clas-
sification models, namely the logistic regression, random forest and the neural net-
work. For each of these different classifiers we analyse a multitude of metrics in
order to assess the performance of each model on each of the prepayment types.
In the first part of the results we model and forecast for each of the three prepayment
types separately using the binomial logistic regression, random forest and neural
network. All the results will be written following the same order for each different
machine learning model, whereby we start with the partial prepayment forecast-
ing, followed by full prepayment forecasting and end with arbitrage prepayment
forecasting. For each of the prepayment models we firstly use the imbalanced train-
ing data, which as explained in section 5.4 is highly imbalanced towards the non-
prepayment classes. The models trained on the imbalanced training data will be
called the baseline models. The baseline models will then be tested on two different
data sets, which as elaborated in subsection 5.3 are the in-sample test data and the
out-of-sample test data. Both of these sets have the same degree of imbalance as the
training set.
In order to examine the effect of correcting for the data imbalance problem, we re-
train all these models for each prepayment type with the undersampled training
data. These models that are trained on the data sets with the various degree of un-
dersampling will be called the ’improved models’. As explained in section 5.3, the
prepayment type in question for each model will account for 10%, 20%, 30%, 40%
and 50% of the total training observations. The improved models using a differ-
ent degree of undersampling will be called the 10%-, 20%-, 30%-, 40%- and 50%-
undersampled models. However, the same in-sample and out-of-sample testing
data sets will be used for forecasting as with the baseline model. Although the im-
proved models will be trained on a more balanced data set, they will again be tested
on the highly imbalanced in-sample and out-of-sample test data set.
Furthermore, the variables for both the baseline and improved logistic regression
models are chosen using best subset selection and are chosen on the basis of the
lowest Akaike Information Criterion (AIC) score. By using best subset selection we
only use the variables that are statistically significant to train and test the model.
We use the same 19 variables as input for every classifier. The used variables were
chosen based on the literature review performed in section 2.2.2, on the condition
that enough data for each variable was available. In addition to the variables found
in the literature review we add extra variables which we believe may help in pre-
dicting the prepayment rate. Table 6.1 shows all 19 variables used by all models. For
a detailed description of each variable we refer to Appendix C.
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ID Determinant Data type
1 Property Type Dummy
2 Mortgagor Age Numeric
3 Initial LTV Continuous
4 Loan Age (Seasoning) Numeric
5 Refinance Incentive Continuous
6 Seasonality Dummy
7 Geographical Location Dummy
8 Burnout Numeric
9 Starting Loan part Principal Numeric
10 House Price Index Ratio (HPI-ratio) Continuous
11 Marital Status Dummy
12 Risk Class Dummy
13 Remaining Loan Part Principal Continuous
14 Income Continuous
15 Dutch Dummy
16 LTI Continuous
17 Number of Houses Sold Numeric
18 Unemployment Rate Continuous
19 Redemption Type Dummy

TABLE 6.1: Table showing the determinants that will be used by all
models

During the second half of the results we show the results of the prepayment cash
flow estimation for all constructed models and that of the benchmark Allianz model.
We compare these results with the observed prepayment cash flows from the years
2014 until present. We look at the error between the actual and forecasted prepay-
ment cash flows on a yearly basis and furthermore look at the total error of the total
prepayment cash flows over the whole time range of 2014 until present.

6.1 Logit Model

6.1.1 Baseline Logit Model

For each of the three types of prepayment, namely partial, full and arbitrage prepay-
ment, a separate binomial logistic regression was conducted after best subset selec-
tion had taken place. All models are tested on both the in-sample and out-of-sample
data.
Below, we show the coefficients for all used predictor variables for the baseline par-
tial, full and arbitrage prepayment models. The coefficients show the log odds
change in mean partial, full and arbitrage prepayment for each increased unit of
the dependent variable. We note that all variables have been standardized before
regression, which is useful for interpreting numeric variables. Furthermore we ac-
knowledge that binary variables can only increase with one unit, no more.
From table 6.2 we see that the variables ’original capital’, ’loan age’, ’HPI ratio’, ’total
income’ and ’seasonality’ all have a positive log-odds of increasing the mean partial
prepayment, with the HPI ratio having the highest odds. When reviewing the re-
lationship between the HPI-ratio and the partial prepayment CPR we find that for
a higher HPI-ratio the partial CPR increases greatly, nearly doubling for larger HPI
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ratios. A positive log-odds for the variable ’original capital’ makes sense as mort-
gagors with a higher mortgage loan are mostly likely well off and therefore have
extra funds to make a partial prepayment. The positive relationship between season-
ality’ and the partial prepayment rate is not unexpected considering the increased
number of partial prepayments in the November and December, as shown in figure
5.5. Furthermore, we see that the variables ’initial LTMV’, ’delta rate’ (also known
as refinance incentive), ’mortgagor age’, and ’LTI’ all have a negative log-odds with
partial CPR. From figures 5.4 and 5.6 we see that for higher values for these variables
the partial CPR decreases. Thus, the coefficients are in accordance with Allianz port-
folio data analysis. The negative log-odds for the initial LTMV is also in line with
literature, stated by (Alink, 2002) (Sirignano, Sadhwani, and Giesecke, 2015).
Reviewing the coefficients for the full prepayment baseline model, found in table 6.3,
we find that the variables with the highest positive log-odds are ’delta rate’ and ’loan
age’. From figures 5.8 and 5.6 it is evident that the full prepayment CPR increases
drastically as the refinance incentive or the loan age increases. This is not illogical
as the longer the mortgage existed, the more probable external factors such as the
family composition, job location and marital status could change, which could lead
to a full prepayment. A possible reason for the increased CPR for full prepayment
for mortgagors with a higher refinance incentive could be because this refinance in-
centive gives mortgagors an extra reason to move houses. It may be extra appealing
for mortgagors to move houses if mortgage rates are much lower than the one they
are currently paying.
We see that the variable ’mortgagor age’ has the highest negative log-odds, which is
mostly what was seen during data analysis in figure 5.2. We see that as the age of
mortgagors increases that the CPR for full prepayment decreases, with the exception
of mortgagors that are older than 80 years old. After the the age of 35-40 years old
mortgagors have the family composition and the house they want and are able to
afford and often don’t want to move houses. This leads to a decrease in CPR for full
prepayments. This story changes after the age of 80 where there is a high chance
that the massive peak has to do with mortgagors either moving to nursing houses
or because of death. Both of these actions lead to a full prepayment.
Lastly, we analyse the log-odds for arbitrage prepayment, as found in table 6.4. We
see that the refinance incentive has a very high log-odds compare to the other vari-
ables. This is not strange as literature mentions the refinance incentive to be one of
the most important variables (if not the most important variable) for arbitrage pre-
payments. This relationship was also found during our data analysis, where larger
refinance incentives lead to a larger percentage of mortgagors making a arbitrage
prepayment.
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Estimate z value Pr(>|z|)
original capital 0.82 21.12 0.00

initial LtMV -1.38 -20.37 0.00
delta rate -1.36 -12.07 0.00
loan age 0.66 13.99 0.00

total income 0.50 5.60 0.00
age -0.96 -9.62 0.00

married -0.26 -10.43 0.00
LTI -0.32 -19.00 0.00

HPI ratio 1.08 8.20 0.00
seasonality 0.59 27.04 0.00

TABLE 6.2: Coefficient results for the baseline partial prepayment
logit model.

Estimate z value Pr(>|z|)
original capital -0.95 -11.39 0.00

remaining capital 0.25 3.56 0.00
delta rate 2.22 9.77 0.00
loan age 1.20 13.27 0.00

m count burnout -0.01 -3.78 0.00
property 0.39 10.10 0.00

total income 0.37 2.74 0.01
age -1.87 -12.45 0.00

married -0.27 -6.97 0.00
LTI -0.12 -4.98 0.00

HPI ratio 0.75 3.95 0.00
unemployment rate -0.08 -4.22 0.00

seasonality 0.22 6.30 0.00

TABLE 6.3: Coefficient results for the baseline full prepayment logit
model.

Estimate z value Pr(>|z|)
original capital -0.25 -2.00 0.05

delta rate 5.28 12.52 0.00
loan age 1.10 4.73 0.00

total income 2.12 7.26 0.00
age 1.32 3.63 0.00
LTI 0.17 6.88 0.00

unemployment rate -0.48 -7.95 0.00
seasonality 0.21 2.47 0.01

TABLE 6.4: Coefficient results for the baseline arbitrage prepayment
logit model.

Figure 6.1 shows the predicted and actual CPR throughout the years for all three
prepayment types of the baseline logistic regression model. For the actual observed
partial CPR and predicted CPR we see that both lines resemble the same shape how-
ever, the predicted CPR of the logit model underfits the data. Although the model is
able to capture the yearly seasonality component present at the end of the year, the
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model is not able to capture any other differences in CPR throughout the year. The
model is able to somewhat find the general pattern for the full prepayment CPR over
time, it again underfits the data significantly. It is understandable that this happens
as the actual full CPR itself looks to be quite noisy. However, looking at the fore-
casting for the arbitrage prepayment CPR the model has a hard time forecasting the
observed arbitrage prepayment CPR. A reason for this could be that of all the three
arbitrage forms, this form takes place the least amount of times and therefore the
training data is the most imbalanced for this prepayment type. The portfolio level
metrics accompanying the figure 6.1 are shown in table 6.5.
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FIGURE 6.1: Plot showing the partial, full and arbitrage CPR over
time for the baseline logistic regression model.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
Partial 0.317 0.214 0.231 0.172

Full 1.126 0.914 0.988 0.767
Arbitrage 0.558 0.301 0.538 0.361

TABLE 6.5: Table showing the portfolio metrics for the in-sample test
data of the baseline logit model for all types of prepayment.

We do not show the loan-level metrics for the baseline model as no prepayments of
any kind were predicted, leading to a very high accuracy (as only non-prepayments
were predicted) and the precision, recall and F1 metrics being zero.
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Out-of-sample results

We further test the performance of our model on ’out-of-sample’ data which con-
tains two subsequent months that are not present in the training set. As mentioned
in section 5.3 these months are June and July 2021. The portfolio level results are
shown in table 6.6. Examining the metrics we see a lower deviation in the results
when compared to the in-sample results. However, it is the two most recent months
of the entire data set which means it is also the most matured. In turn this would
make these two months easier to forecast, which would explain the lower portfolio
errors. Looking at the portfolio metrics for the partial prepayment, we see that they
are extremely low. This is because the two out-of-sample months are June and July
which, when looking at figure 6.1 dont exhibit much deviance as there is no season-
ality component. The ’out-of-sample’ portfolio performance will mostly be used to
compare the different classifier models with one another.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
Partial 0.026 0.025 0.026 0.025

Full 0.654 0.647 0.656 0.649
Arbitrage 0.505 0.505 0.505 0.505

TABLE 6.6: A table showing portfolio level metrics of the ’out-of-
sample’ results of the baseline logistic regression.

6.1.2 Improved Logit Model

For the improved logit models we undersample the original training set specific to
each of the three prepayment types, so that the minority (prepayment) class takes
up a larger percentage of the training set. As mentioned in section 5.4 we get five
different undersampled training sets for each prepayment type which will be used
for their respective partial, full, and arbitrage prepayment logistic regression mod-
els. By using the undersampled data sets we observe the effect this has on the model
performance. As mentioned in section 5.4 we use a different number of more bal-
anced training sets, using undersampling, best subset selection, and correcting for
the bias made by this process. We look at the effect of this per prepayment type and
and show the results. Additionally we also look at the loan-level metrics for these
improved models.

Partial Prepayment

As we train the model on various different undersampled data sets we do not see a
substantial improvement in the portfolio metrics for partial prepayment on the in-
sample test set. Looking at results in table 6.7 we find that only the model trained
on the 50% undersampled set performs better than the baseline model, but only
fractionally. As for the out-of-sample portfolio scores we see the opposite pattern.
Nearly all models perform better than the baseline model, with the exception of
the model trained on the 50% undersampled data. The models trained on data sets
with a higher degree of undersampling somewhat overfit the data more than the
models trained on lower degrees of undersampling, leading to higher errors in out-
of-sample data. Here the model trained on the 10% undersampled data has the
lowest errors. We show the results from this model in table 6.8.
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RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 0.318 0.218 0.228 0.164
20 percent 0.322 0.220 0.232 0.164
30 percent 0.323 0.218 0.234 0.165
40 percent 0.322 0.215 0.233 0.164
50 percent 0.316 0.214 0.225 0.159

TABLE 6.7: A table showing the portfolio metric results for the under-
sampled data sets for partial prepayment.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 0.019 0.019 0.019 0.019

TABLE 6.8: A table showing the portfolio metric results for the out-
of-sample undersampled data sets for partial prepayment.

Reviewing the loan-level metrics of the partial prepayment model trained on the
50% undersampled data set we see that these metrics are not are overall not spec-
tacular. Table 6.9 shows the loan-level metrics just for the 50% undersampled model
while the loan-level metrics for all other partial prepayment models trained on the
various undersampled data sets can be found in Appendix E.2. From table 6.9 we
see that we have normal scores for accuracy and specificity and very low scores for
the precision metric and a somewhat low score for the recall. Regarding the low pre-
cision and recall scores, we see that the model predicts a larger false positive score
than a true positive score and an even larger false negative score than the true pos-
itive score. As the F1-score is based on a combination of the precision and recall
scores this metric is also very low. We reflect on this in the section 6.4.

Accuracy Precision Recall Specificity F1 AUC Brier
50 percent 0.717 0.011 0.590 0.726 0.011 0.648 0.0001

TABLE 6.9: A table showing the loan metric results for model trained
on the 50% undersampled data set for partial prepayment.

On the basis of the lowest portfolio metrics we choose the model trained on the 50%
undersampled training set to be the best model for the partial prepayment model.
We show the coefficients from this model in table E.3 in the Appendix as they do not
differ greatly to those found for the baseline model in table 6.2.

6.1.3 Full prepayment

Looking at the undersampled results for full prepayment we see that the model
trained on 10% undersampled data performs best and narrowly scores smaller er-
rors on all portfolio metrics than the baseline model. The results for this model can
be found in table 6.10. Looking at the full prepayment CPR over time shown in fig-
ure 6.2 we see that the undersampled models underfit the data less than the baseline
model shown in figure 6.1. The out-of-sample results also perform better than the
out-of-sample baseline portfolio metrics. We show the result of the model trained on
the 10% undersampled data set in table 6.11. Although the loan-level results have
improved compared to the baseline model, the precision and recall scores from the
10% undersampled are extremely low. They are shown in the Appendix in table
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E.6. As for the variable coefficients, they are not very much different to those of the
baseline model and thus are also given in the Appendix, in table E.7.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 1.080 0.877 0.959 0.754

TABLE 6.10: A table showing the portfolio metric results for the
model trained on the 10% undersampled data set for full prepayment.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 0.587 0.585 0.588 0.586

TABLE 6.11: A table showing the portfolio level results for the logistic
regression models trained on the 10% undersampled data set for full

prepayment, tested on the out-of-sample data.
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FIGURE 6.2: Plot showing the full CPR over time for the observed
and undersampled logistic regression models

The model trained on the 10% undersampled model has the lowest portfolio metrics
for both the in-sample and out-of-sample test data. Hence, we choose this to be the
best model.

6.1.4 Arbitrage prepayment

Last but not least we review the results for the improved arbitrage prepayment
model. Likewise as with the full prepayments we see that the model trained on
the 10% undersampled data set performs best, having fractionally smaller portfolio
errors than the baseline model. In order not to become repetitive we only show the
best undersampled model in table 6.12, which is the model trained on the 10% un-
dersampled data set. The full results are found in table E.8 of the Appendix and the
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arbitrage prepayment CPR over time can be found in figure 6.3. However, the same
improvement cannot be seen for the out-of-sample portfolio metrics, which perform
substantially worse than the baseline model.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 0.554 0.295 0.536 0.358

TABLE 6.12: A table showing the portfolio metric results for the un-
dersampled data sets for arbitrage prepayment trained on the 10%

undersampled data set.
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FIGURE 6.3: Plot showing the arbitrage CPR over time for the ob-
served and undersampled logistic regression models

Again we show the accompanying loan-level metrics of the best performing im-
proved arbitrage model (shown in table 6.13). We see that due to the high degree
of imbalance in the test data that we have a high accuracy, but very low precision,
recall and F1-score. This shows that the logistic classifier has a hard time predicting
the true positives out of all predicted positives. Furthermore, the model has a hard
time identifying the the number of true positives out of all actual positive cases.

Accuracy Precision Recall Specificity F1 AUC Brier
10 percent 0.981 0.004 0.162 0.981 0.004 0.859 0.000

TABLE 6.13: A table showing the loan metric results for the model
trained on the 10% undersampled data set for arbitrage prepayment.

On the basis of the in sample test data we find the 10% undersampled training set
to be the best model for the arbitrage prepayment. Likewise as with the improved
partial and full prepayment models we show the coefficients for this model in table
E.11. The coefficients for this model differ a bit to those of the baseline full prepay-
ment model. We see that being dutch gives a larger odds for making an arbitrage
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prepayment than non-dutch people. The most logical reason for this could be that
dutch citizens are more informed on the dutch mortgage market and the available
options for refinancing than non-dutch citizens. This is not surprising because non-
dutch citizens most often don’t speak the language and are not familiar with all of
the dutch financial rules, thus they are less likely to refinance and make an arbitrage
prepayment. Lastly, we see that the odds for the ’initial LtMV’ have a large negative
impact on arbitrage prepayments. Thus, a higher LtMV leads to a lower odds of
making an arbitrage prepayment. A reason for this is that mortgagors with a high
initial LtMV most often do not have a lot of extra money to spare for prepayments,
otherwise these mortgagors would have borrowed a smaller loan. To make an arbi-
trage prepayment one must also pay a fine, which might be too high for mortgagors
with a high initial LtMV.

Estimate z value Pr(>|z|)
redemption type Linear 0.36 5 2.41 0.02

original capital -0.91 -2.69 0.01
initial LtMV -1.24 -4.14 0.00

delta rate 5.82 11.52 0.00
loan age 1.26 4.85 0.00

total income 2.59 5.95 0.00
Dutch 1.12 2.31 0.02

LTI 0.22 4.84 0.00
unemployment rate -0.48 -6.95 0.00

seasonality2 0.24 2.29 0.02

TABLE 6.14: A table showing the variables coefficients for the arbi-
trage prepayment model which was trained using the 10% undersam-

pled data set.

6.2 Random Forest

6.2.1 Random Forest Model

As with the logistic regression baseline model we run a random forest model for
each of the three different types of prepayment. Likewise we use the same variables
for the baseline random forest as used in subsection 6.1.1, these are shown in table
6.1. Unlike a logistic regression, the determinants used in a random forest model do
not have coefficients. The variables all receive a ’variable importance’ score which
is based the mean decrease in Gini impurity. This is calculated by the sum over the
number of splits that include that certain feature to the number observations it splits,
more detail is given in subsection subsection 3.2.3.
We show the variable importance scores for all three types of prepayment baseline
models. These are given in figures 6.4, E.1 and E.2 of the Appendix. What is evi-
dent from figure 6.4 is that the most important variable for the partial random forest
model is the remaining capital. Unfortunately, the model does not indicate the rela-
tionship between the variable and the partial prepayment rate. There is no logical
explanation for this variable to be so important. The same can be said for the ’LTI’,
no obvious relationship can be found between the ’LTI’ and the partial CPR. Further-
more we see that the seasonality determinant is one of the least important variables,
even being close to zero. This is odd as figure 5.5 shows that in the months Octo-
ber, November and December the percentage of partial prepayments is significantly
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higher than in other months. The logistic regression for the partial prepayment base
model in section 6.2 did give the seasonality variable a high positive coefficient. Fur-
ther investigating the variable importance results we see that the random forest is
biased towards continuous variables and deems categorical variables to be unim-
portant. We review this problem in Chapter 8.
We see similar results for the variable importance plots for the full and arbitrage
prepayment models. We place these figures and those of the improved models in
the Appendix as the variable plots show unreliable variable importance results that
are not interpretable.
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FIGURE 6.4: A figure showing the variable importance for all vari-
ables used in the baseline partial prepayment model

When comparing the random forest portfolio results, in table 6.15, with those of the
logistic regression baseline model in table 6.5 we see that the all metrics of the base-
line random forest model perform equally well for partial repayment and better for
the full and arbitrage prepayments. This is understandable when reviewing the CPR
over time for both models in figures 6.1 and 6.5, where it is evident that the random
forest model is able to capture the general pattern of all three types of prepayment
better (as opposed to the logistic regression model). We recall that the baseline lo-
gistic regression model severely underfitted the data for both full prepayment CPR
and arbitrage prepayment CPR.
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RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
Partial 0.297 0.235 0.230 0.184

Full 1.183 0.891 1.074 0.834
Arbitrage 0.376 0.211 0.392 0.286

TABLE 6.15: Random Forest baseline model portfolio metrics for all
three types of prepayment
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FIGURE 6.5: Plot showing the partial, full and arbitrage CPR over
time for the baseline random forest model

Out-of-sample results

As with the logistic regression we review the performance of the random forest
model on months the model has never seen before. We see that the model performs
considerably worse on the out-of-sample data, especially for full and arbitrage pre-
payments. This suggests that the random forest overfits the data, leading to much
worse results for out-of-sample observations.

6.2.2 Improved Random forest Model

Likewise as with the logistic regression model we improve the baseline model by un-
dersampling the data set for each prepayment type so that the minority class takes
up a larger percentage of the training set. Through this we observe the effect of un-
dersampling on the model and hopefully improve the performance. As mentioned
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in subsection 5.4 we use a different number of more balanced training sets, using
undersampling, and correcting for the bias made by this process. We look at the
effect of this per prepayment type and and show the results. Additionally we also
look at the loan-level metrics for these improved models.

Partial Prepayment

Reviewing the models trained on the various undersampled data sets we see simi-
lar results as with the improved models for logistic regression partial prepayment,
where a small improvement is seen. The model trained on the 30% undersam-
pled data set performs best of all improved models on the basis of the RMSE and
weighted RMSE, and performs better than the baseline model. From figure 6.6 we
see that the model trained on the 10% undersampled data set (red line) has higher
seasonality peaks and is closer to the observed partial prepayment CPR for the
months November and December. However, the 30% undersampled model (yellow
line) has a lower base partial prepayment CPR throughout the year, which is closer
to the actual observed partial prepayment CPR. The out-of-sample portfolio met-
rics perform even better and outperform the out-of-sample results for the improved
partial logistic regression models.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 0.291 0.223 0.212 0.163
20 percent 0.291 0.208 0.209 0.151
30 percent 0.287 0.199 0.205 0.145
40 percent 0.295 0.196 0.223 0.143
50 percent 0.300 0.190 0.232 0.136

TABLE 6.16: Random Forest improved model loan-level metrics for
partial prepayment
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FIGURE 6.6: Plot showing the partial CPR over time for the under-
sampled random forest models
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Showing the loan level results for best improved model we see similar metrics scores
to that of the improved partial prepayment logistic regression model, however all
metrics seem to be slightly better. What is peculiar is that the brier score is far lower
than any of the previous brier scores we have seen. This is probably due to the
fact that prior probabilities for observations not making a partial prepayment are
closer to 0. With the shifting of the prior probability to the posterior probability this
has decreased even further, leading to a large improvement in the brier score. As
previously pointed out the precision metric is again very small, leading to a very
low F1-score.

Accuracy Precision Recall Specificity F1 AUC Brier
30 percent 0.928 0.050 0.492 0.931 0.090 0.819 0.007

TABLE 6.17: Random Forest improved model loan-level metrics for
partial prepayment

Full Prepayment

We see a big improvement in the portfolio level metrics for the full prepayment im-
proved models. The results shown in table 6.18 show a substantial improvement
as the degree of undersampling in the data sets increases. The model trained on
the 50% undersampled data set performs best, having he lowest errors in all four
metrics. Visually we see the difference between the actual and predicted full CPR
in figure 6.7. Although less clear, we see that as the degree of undersampling in-
creases that the monthly full prepayment CPR decreases and approaches that of the
observed full prepayment CPR, which would explain the decrease in errors seen in
the portfolio metrics.
The same improvement in out-of-sample portfolio metrics cannot be seen. The table
in Appendix E.16 shows that there is great volatility between the models trained on
various undersampled data sets. Overall the models trained on the 20% and 30%
undersampled models show better metrics than the in-sample portfolio metrics but
the other models perform substantially worse.

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 1.137 0.908 0.958 0.748
20 percent 1.048 0.848 0.860 0.668
30 percent 0.993 0.814 0.808 0.645
40 percent 0.914 0.732 0.668 0.637
50 percent 0.876 0.704 0.581 0.582

TABLE 6.18: Random Forest improved model loan-level metrics for
full prepayment
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FIGURE 6.7: Plot showing the full CPR over time for the undersam-
pled random forest models

On the exception of the accuracy metric we see that the improved random forest
model for full prepayment performs better than that of the improved logistic regres-
sion model. Table 6.19 shows these results, where we again see a very low Brier
score compared to that of the improved logistic regression model.

Accuracy Precision Recall Specificity F1 AUC Brier
50 percent 0.669 0.008 0.799 0.669 0.016 0.814 0.003

TABLE 6.19: Random Forest improved model loan-level metrics for
full prepayment

Arbitrage Prepayment

Reviewing the portfolio metrics of the improved arbitrage prepayment model we
see that no improvements are made for all four portfolio metrics compared to the
baseline model shown in figure 6.15. We see from figure 6.8 that the 50% undersam-
pled model is closer to the observed arbitrage prepayment CPR around the end of
2002 and beginning of 2021 than the baseline model shown in figure 6.5. As for the
out-of-sample metrics only the 30% and 40% undersampled data sets perform better
than both the baseline random forest model and the improved arbitrage prepayment
model based on the portfolio metrics.
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RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 0.436 0.263 0.445 0.329
20 percent 0.455 0.258 0.448 0.309
30 percent 0.463 0.256 0.452 0.301
40 percent 0.452 0.243 0.439 0.286
50 percent 0.470 0.273 0.497 0.354

TABLE 6.20: Random Forest improved model portfolio metrics for
arbitrage prepayment
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FIGURE 6.8: Plot showing the arbitrage CPR over time for the under-
sampled random forest models

The accompanying loan metric results for the random forest arbitrage prepayment
model trained on the 50% undersampled data set can be found in table 6.21. In
its totality this model performs best on the loan metrics compared to those of the
improved models for partial and full prepayment. However, we see a very high
recall and low precision. This shows that the model is still predicting to many false
positive cases but on the other hand a much lower number of false negative cases.
Thus, it is able to correctly identify a large portion of positive observations out of the
total number of actual positive observations.

Accuracy Precision Recall Specificity F1 AUC Brier
50 percent 0.825 0.00245 0.863 0.825 0.00488 0.907 0.00050

TABLE 6.21: Random Forest improved model loan-level metrics for
arbitrage prepayment
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6.3 Neural Network

Regarding the neural network classifier we follow the same structure as was done
with the logistic regression and the random forest classifier.

6.3.1 Neural Network Model

The baseline neural network model performs best on all types of prepayment, when
compared to the random forest and logistic regression classifiers, except for arbitrage
prepayment. For arbitrage prepayment we see that the random forest model has
lower errors for all portfolio metrics. The results of the baseline neural network
model are shown in table 6.22. The baseline neural network graph showing the
predicted CPR over time compared to the observed CPR over time is similar to that
of the random forest model.
As for the out-of-sample results, which are shown in table E.21 in the Appendix, they
perform better on the partial and full prepayment portfolio metrics than the logistic
regression out-of-sample portfolio metrics and perform much better on all types of
prepayment than the random forest baseline model.

RMSE (%) MAE (%) Weighted RMSE (%) Weighted MAE (%)
Partial 0.296 0.204 0.214 0.153

Full 0.961 0.768 0.863 0.683
Arbitrage 0.496 0.256 0.497 0.328

TABLE 6.22: Neural network baseline model portfolio metrics for all
three types of prepayment

As with the logistic regression and random forest baseline models we run the neural
network baseline model for each of the three different types of prepayment. Again,
we use the same variables (which are shown in table 6.1). The variable importance
for the neural network model is determined by the absolute value of the weighted
connections between nodes of the model (Gevrey, Dimopoulos, and Lek, 2003). The
variable importance table resembles that of the random forest model in the sense
that most continuous variables have been given a higher variable importance than
categorical variables. We see that the ’loan age’ variable has the highest variable im-
portance. However, from figure 5.8 we see that with increasing loan age the partial
prepayment CPR stays constant. It is therefore odd that this variable is given the
highest variable importance. Making the variable importance plot of the neural net-
work model even less credible is again the fact that the ’seasonality’ variable has a
very low variable importance score. We see similar results for the variable impor-
tance tables for the full and arbitrage prepayment models. Due to this we refer to
the Appendix for these plots.

However, from figure 5.8 we see that with increasing loan age the partial prepay-
ment CPR stays constant. It is therefore odd that this variable is given the highest
variable importance. Making the variable importance plot of the neural network
model even less credible is again the fact that the ’seasonality’ variable has a very
low variable importance score. We see similar results for the variable importance
tables for the full and arbitrage prepayment models. Due to this we refer to the
Appendix for these plots.
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FIGURE 6.9: A figure showing the variable importance for all vari-
ables used in the baseline partial prepayment model.

6.3.2 Improved Neural Network Model

We try to improve the neural network by using a different number of less imbalanced
data sets through undersampling, these are the same undersampled training sets
that were also used for the logistic regression model and the random forest model.
We retrain the neural network models and tune the hyperparameters so that we
have the optimal configuration for each of the undersampled sets. Furthermore,
we do not alter any other variables. The portfolio metrics and the accompanying
loan-level metrics will be shown in the same fashion as was done for the improved
logistic regression model and improved random forest model.

Partial Prepayment

The improved models for the partial prepayment neural network model do not show
any improvement in portfolio metrics relative to the baseline model and thus we
place the portfolio metrics in the Appendix. The results can be found in table E.22
and the accompanying partial prepayment CPR over time can be found in figure
6.10. The same observations can be seen for the out-of-sample data, where the base-
line model outperforms the improved model. These results are shown in table E.23.
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FIGURE 6.10: Plot showing the partial CPR over time for the under-
sampled neural network models

Full Prepayment

Reviewing the improved full prepayment models we find that only the model trained
on the 10% undersampled data set (where the minority class represents 10% of all
observations) performs better than the baseline neural network model. We show this
result below while the other results can be found in table E.25 in the Appendix. The
most likely reason that this model performs best is that the predicted full prepay-
ment CPR is closer to the observed full prepayment CPR at the beginning years of
the portfolio (around 2012-2014), which can be seen from figure 6.11. However, this
model performs much worse on the out-of-sample data, seen in table E.26, leading
to believe that the model somewhat overfits the in-sample data.

RMSE (%) MAE (%) Weighted RMSE (%) Weighted MAE (%)
10 percent 0.927 0.746 0.718 0.671

TABLE 6.23: Neural network improved model portfolio metrics for
full prepayment
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FIGURE 6.11: Plot showing the full CPR over time for the undersam-
pled neural network models

The accompanying loan-level metrics of the 10% undersampled model are shown
below. Where we see similar in that both the precision and recall metrics are very
low whilst the accuracy of the model is very high. The low precision and recall
scores again lead to a low F1-score, which was also the case for the previous loan-
level results. Furthermore, we see that the brier score is very low meaning that the
predicted probabilities are not very far from the observed probabilities.

Accuracy Precision Recall Specificity F1 score AUC Brier
10 percent 0.996 0.044 0.012 0.999 0.009 0.768 0.003

TABLE 6.24: Neural network improved model loan-level metrics for
full prepayment for the 10% undersampled model

Arbitrage Prepayment

The arbitrage prepayment models trained on undersampled data sets are unable to
improve the portfolio level metrics. This is the case for both the in-sample and out-
of-sample portfolio metrics, so we only show these results in Appendix E.3. The
main reason that these results perform worse than the baseline model is because
they predict a higher arbitrage prepayment CPR over time than that of the baseline
model. Although the undersampled models are able to capture some of the arbitrage
prepayment CPR peaks (such as the one at the end of 2017) the average CPR is higher
and seems further away from the observed arbitrage prepayment CPR.
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FIGURE 6.12: Plot showing the arbitrage CPR over time for the un-
dersampled neural network models

6.4 Concluding remarks

Regarding the loan-level results we see a reoccurring pattern in which all models
provide low loan-level scores for the metrics precision and in most instances also a
low recall score. As the F1-score is based on the precision and recall metrics, it is
also low. This shows that our models predict and classify too many observations as
a prepayment while those observations are not actually prepayments. Low precision
values have been seen in previous prepayment modelling research (Saito, 2018). As
the models are tested on the highly imbalanced data sets it seems unpreventable
that many non-prepayment observations are classified as prepayment observations,
which is a common problem in highly imbalanced datasets. A possible reason for the
low precision values could be that prepayment and non-prepayment classes overlap
one another, making it hard for models to distinguish between the two classes. In
order to decrease the separability problem new variables must be found that are able
to distinguish between the two classes in a better manner. The results of this thesis
show that modelling for loan-specific prepayments still give undesirable results and
that the models used for this thesis are not precise enough to classify individual
prepayments.

6.5 Concluding sub-question 3

3. Which machine learning models give insight to (new) variables that are rele-
vant and important for prepayment modelling?

We give the results to the this question in sections 6.1, 6.2 and 6.3. We find that
the logistic regression is able to give insights into relevant and important variables
for prepayment. This is done through the use of log-odds variable coefficients that
give interpretable results that clearly show the effects of each used variable in the
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model for each of the three prepayment types. Furthermore, due to the use of subset
selection the models only incorporate the variables that are statistically significant
for that prepayment type. Lastly, as already discussed in section 6.1.1 we find the
used variables logical and mostly in line with previous literature and analysis.
The same cannot be said for the random forest model. This model gives a variable
importance score to all variables used. However, the variable importance score does
not state the relationship with the prepayment type, thus the user has to perform
additional analyses in order to find out what kind of effect (positive or negative)
the variables have on the prepayment rate. As already mentioned in section 6.2.1 we
find that the random forest has a bias towards continuous variables. The effect of this
is that binary variables have a much smaller variable importance that continuous
variables. Due to these reasons we find that the random forest does not give any
relevant insight into variables hat are important for prepayment modelling.
Lastly, we find the same results for the neural network models. Again, the variable
importance does not state the relationship each variable has with the prepayment
type and as with the random forest, the model seems to also have a bias towards
continuous variables. Due to the same reasons we also do not find that the neural
network model gives any relevant insight into the variables that are important for
prepayment modelling.

6.6 Concluding sub-question 4

4. What is the effect of correcting for the data imbalance problem on the various
model results?

We implement the technique of undersampling so that the number of non-prepayment
observations decrease, leading to a larger percentage of prepayment observations
in the undersampled training sets. As already mentioned we evaluate all models
trained on the undersampled training data in which the the prepayment class in
question accounts for 10%, 20%, 30%, 40% and 50% of the data set.
The effect of undersampling on the logistic regression models for each of the types
of prepayment was mixed. We see that all partial prepayment models trained on
the undersampled data sets perform worse than the baseline partial prepayment
model with the exception of the model trained on the 50% undersampled data set.
However, this model only fractionally performs better than the model without un-
dersampling. Looking at the weighted RMSE we get 0.231% for the imbalanced
baseline model and 0.228% for the 50% undersampled model. In the case of full pre-
payment we see that the model trained on the 10% undersampled data set shows
smaller errors than the baseline model. However, here again the improvement is
small, with a weighted RMSE 0.988% as opposed to 0.959%. The other full prepay-
ment models trained on a higher degree of undersampling all perform worse. As
with full prepayment, the exact same is seen for arbitrage prepayment where only
the model trained on the 10% undersampled data set performs better than the base-
line model.
Looking at the effect of undersampling on the random forest models we see that the
results are mixed. All partial prepayment models trained on the undersampled data
sets perform better than the baseline model, we see that the weighted RMSE for the
30% undersampled model is 0.205% whereas that of the baseline model is 0.230%.
The effect of undersampling is even bigger for full prepayments where the baseline
model has a weighted RMSE of 1.074% whereas the 50% undersampled model has a
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weighted RMSE of 0.581%. However, reviewing the results for arbitrage prepayment
we see that undersampling does not improve the portfolio level results.
Lastly, for the neural network models we see that undersampling again shows mixed
results. We find that undersampling does not improve the error for both the partial
prepayments and arbitrage prepayments. Whereas for full prepayment the model
we see that only the model trained on the 10% undersampled data set is fractionally
better than the baseline full prepayment model.
To conclude we find that the effect of undersampling is mixed. It has a positive, al-
beit small, effect for the logistic regression model. For the random forest the positive
effect is substantial for both partial and full prepayments, however does not have
a positive effect for arbitrage prepayments. Lastly, we find that the effect of under-
sampling is the smallest on the neural network in which only the full prepayment
model saw a small improvement in the error metrics.

6.7 Concluding sub-question 5

5. Which machine learning models can be used to estimate the future prepay-
ment rates?

On the basis of the best portfolio metrics for the in-sample results we see that the
random forest partial prepayment model trained on the 30% undersampled data set
performs best at forecasting the partial prepayment CPR on the basis of the RMSE
and weighted RMSE. Concerning full prepayment we find that again the random
forest classifier performs best, with the model being trained on the 50% undersam-
pled data set showing the lowest error (again on the basis of the RMSE and weighted
RMSE) and being able to replicate the observed full prepayment CPR the best. The
story repeats itself for arbitrage prepayment, where the random forest classifier per-
forms best. However, here the baseline random forest models shows the lowest
errors. The best models from each classifier for each of the three types of prepay-
ment are given in tables 6.25, 6.26 and 6.27. We want to add that the neural network
model comes close for both the partial and arbitrage prepayment CPR.

Partial Prepayment

RMSE (%) MAE (%) Weighted RMSE (%) Weighted MAE (%)
LR 50 percent 0.316 0.214 0.225 0.159
RF 30 percent 0.287 0.199 0.205 0.145

NN baseline 0.296 0.204 0.214 0.153

TABLE 6.25: A table showing the results of the best model for each
of the three classifiers for partial prepayment. The first row is logistic
regression model where a prepayment represents 50% of the observa-
tions. The second row is the random forest model where 30% of the
observations are prepayments and the last row is the neural network

baseline model with no undersampling.
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Full Prepayment

RMSE (%) MAE (%) Weighted RMSE (%) Weighted MAE (%)
LR 10 percent 1.080 0.877 0.959 0.754
RF 50 percent 0.876 0.704 0.581 0.582

NN 10 percent 0.927 0.746 0.718 0.671

TABLE 6.26: A table showing the results of the best model for each of
the three classifiers for full prepayment.

Arbitrage Prepayment

RMSE (%) MAE (%) Weighted RMSE (%) Weighted MAE (%)
LR 10 percent 0.554 0.295 0.536 0.358

RF baseline 0.376 0.211 0.392 0.286
NN baseline 0.496 0.256 0.497 0.328

TABLE 6.27: A table showing the results of the best model for each of
the three classifiers for arbitrage prepayment.

6.8 Cash Flow Estimation results

We examine the results for the portfolio cash flow estimation of various models and
compare it to the portfolio cash flow estimation of the Allianz model and the ob-
served cash flow over time. We estimate the cash flows of every baseline model and
the best undersampled model, meaning we calculate the cash flows for a total of six
models. Reviewing the portfolio metrics for the total prepayment rate for the models
trained on undersampled data sets in tables E.12, E.20, E.31 we see that the models
with the lowest overall errors are the random forest model trained on the 50% un-
dersampled data set, the baseline neural network and the neural network trained on
the 10% undersampled data set.

Year

Allianz
model
error
(%)

Base LR
error
(%)

LR 50%
error
(%)

Base RF
error
(%)

RF 50%
error
(%)

Base NN
error
(%)

NN 10%
error
(%)

2014 20.7 65.4 57.1 74.3 52.9 29.2 35.0
2015 56.0 61.6 56.4 62.8 49.1 37.7 43.1
2016 -0.9 11.5 9.8 28.1 10.5 11.7 11.5
2017 -19.7 -3.7 -3.5 21.3 -3.0 8.7 5.8
2018 -19.2 26.5 28.6 22.8 17.6 23.6 28.4
2019 -12.5 18.2 18.7 15.3 5.7 7.4 13.4
2020 -31.9 -11.5 -7.2 -0.0 -0.7 -10.2 -7.2
2021 -16.2 9.0 16.5 25.0 19.6 11.3 14.4

abs(mean)
without
2012-2013

22.1 25.9 24.7 31.2 19.9 17.5 19.8

TABLE 6.28: A table showing the yearly cash flow estimation error for
multiple models compared to the observed prepayment cash flow.
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Reviewing the table we see that for the year 2014 and 2015 all models have a very
large error compared to the observed prepayment cash flows. This is most likely
due to the young nature of the portfolio. Although prepayments occur, they are
very small in size. This can also be seen by observing a figure such as figure E.4,
where only partial prepayments take place up to midway 2014. Due to the young
nature of the portfolio and the small size of the portfolio the models have a hard
time estimating the prepayment cash flows. As the portfolio seasons over the years
and the portfolio balance grows we see lowers errors in estimated prepayment cash
flows of the model. We calculate the absolute mean of the yearly model errors and
see that there are three models that perform better than the Allianz model. These
models are the random forest model trained on the 50% undersampled data set, the
base neural network and the neural network trained on the 10% undersampled data
set. These models achieve a mean error rating of 19.9%, 17.5% and 19.8% compared
to the 22.1% of the Allianz model. The other three models perform worse on the
yearly cash flow estimation. By taking a weighted mean, based on the number of
loans in each year, we find that all models have a smaller error than the Allianz
model. These results can be found in table E.32 in the Appendix E.4. This suggests
that as the portfolio size increases that the newly constructed models perform better
than the original Allianz model.
We also measure the total prepayment cash flows of each model and compare them
to the observed prepayment cash flows over the range of 2014 until present. These
results can be found in table 6.29, were we see that the Allianz model overall esti-
mates 19.3% less prepayment, over the period between 2014 until present, than was
actually observed. When reviewing the other models we find that their total prepay-
ment cash flow error is much smaller, with the neural network base model having
just a 4% error to the observed prepayment cash flows. The predicted prepayment
cash flows versus the actual prepayment cash flows of both the best random forest
model and the Allianz model are shown in figure 6.13. The left hand plot shows
the observed prepayment cash flows (turquoise) of the Allianz portfolio versus the
predicted cash flows (orange) of the Allianz model while the right hand plot shows
the observed prepayment cash flows (turquoise) of the Allianz portfolio versus the
predicted cash flows (orange) of the neural network baseline model trained on the
fully imbalanced training data set. Observing the left hand plot we see that the Al-
lianz model has been under-forecasting the prepayment cash flows since mid-2018.
Since then the difference between the observed and forecasted cash flows has only
increased, which has lead to the 19.3% error given in table 6.29. The right hand plot
shows that although the baseline neural network model was over-forecasting (al-
though only slightly) the prepayment cash flows from roughly 2015-2020, the error
between the observed and forecasted has decreased, if not gone completely.

Model name Error (%)
Allianz model -19.3
LR base 5.4
LR 50% undersampled 8.2
RF base 14.2
RF 50% undersampled 7.3
NN base 4.0
NN 10% undersampled 7.2

TABLE 6.29: A table showing the estimated prepayment cash flow
error over the range 2014 until present.
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FIGURE 6.13: LHS: Plot showing the observed prepayment cash flow
(turquoise) of the Allianz portfolio versus the predicted cash flow (or-
ange) of the Allianz model. RHS: Plot showing the observed prepay-
ment cash flow (turquoise) of the Allianz portfolio versus the pre-

dicted cash flow (orange) of the neural network baseline model.

6.9 Summary

In this chapter we give the results of the portfolio- and loan-level results for each of
the three prepayment types for the three different machine learning models, namely
the logistic regression, the random forest and the neural network. We start off by
giving the portfolio-level results along with the variable coefficients for the baseline
logistic regression model. We find that the logistic regression shows interpretable
results for the prepayment variable coefficients. We follow with results for the lo-
gistic regression model which has been trained on multiple undersampled data sets
and find that this reduces the portfolio-level errors of the model. In the same order
we analyse the results for the random forest model, first showing the results for the
baseline model and then analysing the results for the random forest model trained
on multiple undersampled data sets. We find that undersampling also reduces the
portfolio-level errors for this model. However, the random forest model does not
show clear and interpretable prepayment variable coefficients. The same report-
ing structure is used for the neural network model. We find that undersampling
only gives a small improvement for the portfolio-level metrics of full prepayment.
Likewise, as with the random forest model, the neural network does not give in-
terpretable prepayment variable results. We find that all loan-level results mostly
improve with undersampling but all show extremely low precision and F1-scores.
This shows that the models have a hard time precisely predicting individual pre-
payments. Last of all we compare the yearly average and total prepayment cash
flow error of the benchmark Allianz model to the best logistic regresion, random
forest and neural network models. We find that the baseline neural network model
performs best in predicting the yearly and total prepayment cash flows.
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Chapter 7

Conclusion

This thesis set out to investigate if there were any machine learning models that,
when applied to mortgage data were able to forecast the prepayment rate more ac-
curately than is currently being done by the benchmark logistic regression model
at Allianz. In order to aid in answering this research question we set up a series
of sub-questions. By performing a literature review we were able to find relevant
prepayment drivers. Furthermore, through a literature search we were able to find
suitable machine learning models that could show promising results for prepayment
modelling. These are the logistic regression, random forest and the neural network.
With the literature in mind we analysed the data to find the main prepayment drivers,
specific to the Allianz mortgage portfolio. After elaborating on the model perfor-
mance metrics, cash flow estimation and choosing undersampling as a suitable method
to adjust for the imbalance in the data set we give the results to all the models. We
find that the logistic regression model is the only model to give insight into variables
that are relevant and important to prepayment modelling. Furthermore, we find that
undersampling has mixed effects on each of the three machine learning models. Un-
dersampling decreases the portfolio-level errors for both the logistic regression and
random forest model, however, only reduces the errors for the neural network for
full prepayment.
Continuing, we find the model with lowest conditional prepayment rate (CPR) error
on the basis of the weighted RMSE for each of the three prepayment types. The ran-
dom forest trained on the 30% undersampled training set has the lowest weighted
RMSE for partial prepayment, with it being 0.205%. Regarding full prepayment we
see that the random forest trained on the 50% undersampled training set has the low-
est weighted RMSE at 0.581% when compared to the actual full prepayment CPR.
As for arbitrage prepayment it is the baseline random forest model with the lowest
weighted RMSE error, being 0.392%.
Lastly we answer the main research question:

“Are there any machine learning models that, when applied to Allianz mortgage data of
the Netherlands, can forecast the prepayment rate more accurately than the benchmark
model at Allianz over the time horizon of 2014-2021?”

This is done by modelling the prepayment cash flow estimation error of each con-
structed model with that of the Allianz logistic regression prepayment model and
to the actually observed prepayment cash flows over time. We look at the absolute
yearly mean prepayment error of each model and to the total cash flow prepayment
error over the time period of 2014-2021. In regards to the absolute yearly mean
prepayment error we find that only the baseline neural network model, the neural
network model trained on the 10% undersampled data and the random forest model
trained on the data set with equal minority and majority class observations (50% un-
dersampled) have a lower yearly error than the Allianz model. The Allianz model
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has an absolute yearly error of 22.1% whereas the baseline neural network model,
the neural network model trained on the 10% undersampled data and the random
forest model trained on the 50% undersampled data have an absolute yearly error
of 17.5%, 19.8% and 19.9% respectively. Reviewing the total prepayment cash flow
error over the lifetime period of 2014-2021 we find that the Allianz model has an
error of −19.3% in regards to the observed prepayment cash flow. All other mod-
els have a smaller error, with the baseline neural network model having the lowest
with a total prepayment cash flow error of 4.0%. This is far below that of the Allianz
benchmark model, achieving the goal set out at the start of this thesis in finding a
machine learning model that is able to forecast the prepayment rate more accurately
than the benchmark Allianz model.
In conclusion we find that the baseline neural network model shows the most promis-
ing results overall. Not only did this model have low errors when predicting for
each individual prepayment type, it also had the lowest yearly mean prepayment
cash flow error when compared to the actual prepayment cash flow and also had
the lowest lifetime total error when compared to the actual prepayment cash flow.
However, the lack of insight into relevant drivers of prepayment for the neural net-
work model make the model less interpretable. This aspect of the model must be
improved in order for the model to become practical and useful.
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Chapter 8

Limitations and future research

In this section we elaborate on the various shortcomings in this research. Further-
more, we comment in which direction future research into prepayment modelling
should point.

8.1 Limitations

This study into prepayment modelling has some limitations, the largest limitation of
this research is the young portfolio book of Allianz. The biggest consequence of this
would be that the Allianz data is not completely representative of the Dutch pop-
ulation. This topic has been a recurring theme throughout this thesis and has been
mentioned multiple times. Although Allianz has been funding mortgagors since
2011, the main increase in outstanding mortgages came after 2017. This means that
a large part of the book is just shy of four years in age. As we previously mentioned
one of the main drivers for prepayment, according to literature, is the seasoning vari-
able. The older the age of the mortgage the larger the chance that external factors
such as the marital status, family composition or job location change for a house-
hold. Such factors contribute largely to mortgagors making a full prepayment. Due
to the young maturity of the Allianz portfolio this change is less visible. If we were
to redo this research in 15-20 years, when the portfolio is fully matured and longer
term mortgages are ending, we would most likely find higher prepayment rates that
would be more representative for the Dutch population. A possible solution in the
meantime would be to find mortgage data that is representative of the Dutch pop-
ulation that has the needed determinants incorporated into the data set and has a
matured data. Analysing this data could give results as to how the prepayment rate
could look like in the future for the Allianz data.
Additionally, having such a young portfolio has its limitations for the effect of cer-
tain determinants for the prepayment rate. Since 2011, when Allianz started started
funding mortgages, mortgage rates have only been decreasing. Thus, we have only
been able to research the effect of decreasing mortgages rates on important determi-
nants as mentioned in literature, such as the refinancing incentive and the burnout
counter. It is important to analyse what happens to prepayment rates once mort-
gages rates start (gradually) increasing. The addition of periods in time where mort-
gage rates have been increasing would be beneficial to study these determinants.
Not only would it be beneficial for analysing the impact on certain determinants, it
would also help with modelling the effect of long-term scenario’s for Allianz. With-
out data containing rising interest rates it is harder to model outlook scenario’s in
which funding rates increase. Thus, with this data one should expect that the mod-
els calculating long-term scenario’s would be more complete.
The big data set proved to be problematic at times during data manipulation and
analysis. However, it should not be perceived as a limitation for this research. On
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the other hand it can be conceivable that the increasing data set size could become
a limitation for future research, mainly because the programming language R does
not have the capabilities to work with very large data sets. Other programs such as
SQL could be more suitable for the data manipulation phase of this research in the
future.
Another problem that hindered the progress of this research was the lack of allo-
cated computational power. Although we made use of special shared servers at
Allianz, the computational heavy models such as the random forest and neural net-
work often took very long to complete and hindered others from using the server
in question. This meant that running the random forest and neural network models
had to done during the evening, night or during weekends so that no other employ-
ees were hindered in the their daily tasks. With the increased number of outstanding
loans the number of data points will only increase at a greater rate in the coming pe-
riod. The data set will most likely double in size as of mid 2022. This will negatively
impact the running time of models as the computational limits of the server will
be tested. A possible and feasible solution for improving the computational power
would be to allocate a special server for this project. Another solution could be to
subset the total data and use samples that are smaller in size but still representa-
tive for the whole data set. A possible sampling technique that could be helpful is
stratified sampling. Although we mention this in the limitations chapter we want
to clarify that this problem only delayed the modelling progress but was not an ac-
tual constraint for the modelling phase. If non of the above mentioned solutions is
implemented then this problem will become a constraint for modelling in the future.
One other limitation that was found during this thesis was the variable importance
bias of random forest models. Analysing this problem we see that a 2007 study
(Strobl et al., 2007) finds that when a random forest model is trained using various
different types of variables that the random forest classifier has a bias towards con-
tinuous variables with a larger scale of measurement. In turn this makes the variable
importance unreliable. This was also observed and mentioned during this research
in the random forest variable importance graphs, where categorical variables were
often given a very low importance score. This was the case with the seasonality de-
terminant, which we know from the preliminary analysis is a very prominent vari-
able for partial prepayment. Something similar was also found in the neural network
models, where continuous variables seemed to be given a higher preference above
categorical variables. Without improving this aspect of the random forest and neu-
ral network models, they will be less interpretable and transparent. In turn this will
hinder the implementation of these models in the financial sector.
In this research we looked at the performance of three different types of models on
prepayment modelling. Furthermore, the effects of undersampling and the data set
size were evaluated for each model. In totality this led to a cornucopia of results and
parameters for each model to train or investigate, meaning that numerous aspects
of each model were not fully optimized due to lack of time, for example. Instead
of reviewing three models and not optimizing or examining every aspect for the
model in great detail, one could opt to examine just two models but also investigate
the effect of different variable importance metrics for the random forest and neural
networks. This might achieve better results for the models in question regarding
not only the loan-level and portfolio metrics but also the results for the main drivers
of prepayment. In the long run this might achieve a better understanding for the
importance of some variables, which would in turn lead to prepayment models that
are more accurate.
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8.2 Future directions

The acceptability of machine learning models in the financial world play a crucial
role in the implementation of these models. For now many financial institutions still
consider machine learning models to be black box models that are not interpretable
and lack explanatory outputs. In order to make them implementable, research must
be conducted at Allianz stating which interpretable requirements are needed for ma-
chine learning models to become implementable. From this a standardized frame-
work must be made constructed stating these requirements so that machine learning
models can be accepted and used for modelling and risk management. This was ev-
ident for both the random forest and neural network models, which lacked explana-
tory output to show the relationship between possible prepayment drivers and the
prepayment rate itself. In order for such models to become implementable in the
future research must be done in order to establish a way to make the relationship
between the variables and the prepayment form interpretable and clear.
Although we performed out-of-sample tests for the portfolio level model results this
was not done with the cash flow estimation. With the addition of a full new year
worth of prepayment data it is necessary to evaluate the performance of each model
and compare it with the benchmark Allianz model for the out-of-sample data. For
the out-of-sample testing we suggest to look at both the yearly estimation error as
the influence on the total error over the whole time range.
In the future we suggest to incorporate the chosen (newly constructed) prepayment
models to help the valuation of mortgage buckets in the future. The idea would be
to use the best prepayment model, including all the chosen determinants, and com-
bine it with a interest rate Monte Carlo simulation over a long time period. This
would help to examine the effect of the interest rate paths on the forward-looking
prepayment rate and also on the future mortgage cash flows. In turn the net present
value (NPV) for certain mortgage buckets can be calculated and compared to the
NPV of different interest rate scenario paths. Incorporating such Monte Carlo sim-
ulations and calculating the NPV of different scenario’s will help Allianz to ’stress
test’ their mortgage portfolio in regards to the prepayment rate. This will help them
gain more knowledge on expected mortgage cash flows in the future under different
interest rate scenario’s, which will help in calculating the mortgage assets. In turn
this should help in reducing the long-term asset and liability mismatch, improving
the risk management side of Allianz.
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Appendix A

Technical Formula’s

A.1 Maximum Likelihood Estimator

We show the formula for the maximum likelihood estimator (MLE) below in formula
A.1:

L(β, Y, X) =
N

∏
i=1

P(Yi,t = 1|Xi,t)
Yi,t(1− P(Yi,t = 1|Xi,t))

1−Yi,t (A.1)

By taking the log-likelihood we can transform this equation into the following:

l(β, Y, X) =
n

∑
i=1

Yi,t(log(P(Yi,t = 1|Xi,t) + (1−Yi,t)log(1− (P(Yi,t = 1|Xi,t)) (A.2)

As we know the formula for P(Yi,t = 1|Xi,t) is:

P(Yi,t = 1|Xi,t) =
eβXi,t

1 + eβXi,t
=

1
1 + e−βXi,t

(A.3)

If we fill in equation A.3 into A.2 we get the following:

l(β, Y, X) =
n

∑
i=1
−log(1 + eβXi,t) +

n

∑
i=1

Yi,t(βXi,t) (A.4)

To find the maximum likelihood estimate we differentiate the log-likelihood with
respect to the parameters B, set the derivative to zero and solve the equation.
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Appendix B

Determinant plots
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FIGURE B.1: Plot showing the House Price Index over time.
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FIGURE B.2: Plot showing the CPR for each indexed actual LtMV.
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FIGURE B.3: Plot showing the CPR for each HPI ratio.
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Appendix C

Variable Description

In this Appendix we give a detailed description of every variable used for modelling
in the logistic regression, random forest and neural network models.

Property Type

A categorical variable that looks at the building type of each observation. This vari-
able only distinguishes between mortgagors with a flat type property (with or with-
out a garage) and the other property types.

Mortgagor Age

This is a continuous variable which looks at the log age of each mortgagor of each
observation. If a mortgage contract has more than one mortgagor linked to the con-
tract the mean age of both mortgagors is calculated.

Initial LtMV

This is a continuous variable which looks at the loan-to-market-value of the obser-
vation at the time of mortgage inception.

Loan age (Seasoning)

This continuous variable counts the log age of the mortgage, in months, since its
inception.

Refinancing Incentive (Delta rate)

The refinancing incentive, also called the delta rate, is a continuous variable that
calculates the logarithm of the mortgage rate divided by the market interest rate for
a mortgage with similar characteristics as the mortgage in question. The refinancing
incentive is positive is positive if the market interest rate is lower than the mortgage
rate in question and negative if the market interest rate is higher than the mortgage
in question.

Seasonality

This categorical variable, which is also called ’seasonality2’, looks at whether the re-
porting date is situated in the months October, November or December. Literature
usually only incorporates the months November and December into the seasonal-
ity variable, however, from figure 5.5 in the preliminary analysis it was visible that
the month October also contained a larger percentage of mortgagors that made a
prepayment.
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Geographical Location

This categorical variable, which is called ’rural’ in the data set, looks at whether the
mortgage is located in a rural province in the Netherlands or in a urban province.
The urban provinces are considered to be ’Zuid-Holland’, ’Noord-Holland’ and ’Utrecht’.

Burnout

This variable is closely linked to the ’refinancing incentive’ variable which was dis-
cussed earlier. It is a continuous variable which counts the number of months in
which the mortgage (and mortgagor) has been given the opportunity to refinance
but has not taken advantage of this opportunity. We say that a refinancing incentive
is possible if the market interest rate is lower than 1% of that of the interest rate of
the mortgage in question.

House Price Index Ratio (HPI-ratio)

A continuous variable that looks at the HPI-ratio between the reporting date at mort-
gage inception and that of the observation of the mortgage in question. For exam-
ple, if the HPI is at 102 at mortgage inception and the observation of that mort-
gage in question has a HPI of 104 then we calculate the HPI-ratio as the following
(104/102) ∗ 100 = 1.019.

Marital Status

Also called ’married’, is a categorical value which looks at the marital status of
the mortgagor. We distinguish between ’single’ mortgagors and ’non-single’ mort-
gagors.

Risk class description

A categorical variable which distinguishes between the multiple risk classes of each
mortgage. We distinguish between NHG mortgages and mortgages with different
LTV buckets.

Remaining Outstanding Loan Part Principal

This continuous variable looks at the log remaining principal outstanding of the loan
part in question. This variable is also called ’remaining capital’ in the data set.

Loan part principal

This variable, also called ’original capital’, looks at the log principal of each spe-
cific loan part and not at the total contract capital of the mortgage. This is again a
continuous variable.

Income

This variable calculates the log total yearly income of the mortgagors linked to the
mortgage. If only one mortgagor is linked to the mortgage contract then only this
persons’ income is taken into account. For two mortgagors we add both incomes.
Again this is a continuous variable.
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Dutch

This categorical value looks at the nationality of the mortgagor and distinguishes be
Dutch and non-Dutch mortgagors linked to the contract. All mortgages in question
are all situated in the Netherlands.

LTI

This continuous variable looks at the loan-to-income of the mortgage contract. As
the name already mentions, this continuous variable looks at the ratio of the total
mortgage principal to the total income of the mortgagors connected to the mortgage
contract.

Number of houses sold

This variable looks at the number of houses sold per month in the Netherlands and
take the square root of this number. These numbers are given by the Dutch Bureau
of statistics, also called Centraal Bureau van Statistiek (’CBS’).

Unemployment Rate

This variable looks at the monthly unemployment rate of the the workforce in the
Netherlands. These numbers have been taken from the Centraal Bureau van Statistiek
(’CBS’) of the Netherlands. This is a continuous variable.

Redemption Type

This categorical variable distinguishes between the type of redemption form of each
mortgage. We distinguish between three different types of redemption forms for
each mortgage, namely the linear redemption type, the annuity redemption type
and the bullet redemption type. Each loan part within a mortgage contract can have
a different redemption type.
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Appendix D

Statistics

riskclass description Mortgagor age Partial pp (#) Risk class Fraction (%)
1 >95% MW 38.70 9.00 1595 0.56
2 60% t/m 80% MW 44.64 99.00 13688 0.72
3 80% t/m 90% MW 40.51 12.00 2535 0.47
4 90% t/m 95% MW 40.92 3.00 644 0.47
5 NHG 40.21 11830.00 1612468 0.73
6 t/m 60% MW 55.89 237.00 32815 0.72
7 t/m 80% MW 38.85 9.00 240 3.75

TABLE D.1: Table showing the number of partial prepayments per
risk class. This is also represented as a fraction of all observations for

that risk class.

riskclass description Mortgagor age Full pp (#) Observations (#) Fraction (%)
1 >95% MW 38.70 1.00 1595 0.06
2 60% t/m 80% MW 44.64 28.00 13688 0.20
3 80% t/m 90% MW 40.51 10.00 2535 0.39
4 90% t/m 95% MW 40.92 5.00 644 0.78
5 NHG 40.21 5671.00 1612468 0.35
6 t/m 60% MW 55.89 83.00 32815 0.25
7 t/m 80% MW 38.85 3.00 240 1.25

TABLE D.2: Table showing the number of full prepayments per risk
class. This is also represented as a fraction of all observations for that

risk class.
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Appendix E

Results

E.1 Logistic regression

E.1.1 Partial Prepayment

RMSE MAE weighted RMSE weighted MAE
10 percent 0.019 0.019 0.019 0.019
20 percent 0.023 0.017 0.023 0.017
30 percent 0.021 0.020 0.021 0.020
40 percent 0.022 0.022 0.022 0.021
50 percent 0.031 0.025 0.031 0.025

TABLE E.1: Portfolio metrics for the partial prepayment model
trained on various undersampled data sets. The model was tested

on the out-of-sample data set.

Accuracy Precision Recall Specificity F1 AUC Brier
10 percent 0.993 0.031 0.014 0.998 0.019 0.651 0.0001
20 percent 0.990 0.047 0.021 0.997 0.014 0.651 0.0001
30 percent 0.963 0.030 0.131 0.969 0.024 0.651 0.0001
40 percent 0.854 0.017 0.344 0.858 0.017 0.652 0.0001
50 percent 0.717 0.011 0.590 0.726 0.011 0.648 0.0001

TABLE E.2: A table showing the loan metric results for the undersam-
pled data sets for partial prepayment.
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Estimate Std. Error z value Pr(>|z|)
redemption typeBullet -0.12 0.04 -3.06 0.00

redemption typeLinear 0.61 0.05 12.49 0.00
original capital 0.54 0.05 11.06 0.00

initial LtMV -1.33 0.11 -12.51 0.00
delta rate -1.44 0.17 -8.35 0.00
loan age 0.78 0.07 11.26 0.00

rural -0.10 0.03 -3.17 0.00
total income 0.53 0.11 4.76 0.00

age -0.32 0.15 -2.18 0.03
married -0.12 0.04 -3.31 0.00

Dutch -0.28 0.10 -2.87 0.00
LTI -0.23 0.02 -9.85 0.00

HPI ratio 0.49 0.21 2.34 0.02
amount houses sold -0.57 0.20 -2.84 0.00

seasonality2 0.60 0.03 17.39 0.00

TABLE E.3: A table showing the variables coefficients for the partial
prepayment model which was trained using the 50% undersampled

data set.

E.1.2 Full Prepayment results

RMSE (%) MAE (%) weighted RMSE (%) weighted MAE (%)
10 percent 1.080 0.877 0.959 0.754
20 percent 1.081 0.871 0.964 0.761
30 percent 1.134 0.906 0.995 0.785
40 percent 1.126 0.892 1.070 0.843
50 percent 1.108 0.883 0.961 0.734

TABLE E.4: A table showing the portfolio metric results for the un-
dersampled data sets for full prepayment.

RMSE MAE weighted RMSE weighted MAE
10 percent 0.587 0.585 0.588 0.586
20 percent 0.686 0.685 0.687 0.686
30 percent 0.887 0.885 0.888 0.886
40 percent 0.990 0.989 0.991 0.990
50 percent 0.531 0.529 0.532 0.530

TABLE E.5: A table showing the portfolio level results for the logis-
tic regression models trained on the undersampled data sets for full

prepayment, tested on the out-of-sample data.
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Accuracy Precision Recall Specificity F1 AUC Brier
10 percent 0.996 0.024 0.004 0.999 0.003 0.749 0.000
20 percent 0.974 0.016 0.111 0.977 0.014 0.749 0.000
30 percent 0.902 0.011 0.329 0.904 0.011 0.748 0.000
40 percent 0.804 0.009 0.530 0.805 0.009 0.747 0.000
50 percent 0.659 0.007 0.712 0.659 0.007 0.748 0.000

TABLE E.6: A table showing the loan metric results for the undersam-
pled data sets for full prepayment.

Estimate Std. Error z value Pr(>|z|)
redemption typeLinear -0.22 0.06 -3.41 0.00

original capital -1.01 0.09 -11.32 0.00
remaining capital 0.30 0.08 3.98 0.00

delta rate 2.24 0.25 8.84 0.00
loan age 1.18 0.10 11.73 0.00

m count burnout -0.01 0.00 -3.66 0.00
property 0.40 0.04 9.41 0.00

total income 0.33 0.13 2.62 0.01
age -1.93 0.17 -11.36 0.00

married -0.27 0.04 -6.38 0.00
LTI -0.14 0.03 -5.44 0.00

HPI ratio 1.06 0.23 4.56 0.00
amount houses sold 0.50 0.26 1.93 0.05
unemployment rate -0.06 0.02 -2.85 0.00

seasonality2 0.19 0.04 4.76 0.00

TABLE E.7: A table showing the variables coefficients for the full pre-
payment model which was trained using the 10% undersampled data

set.

E.1.3 Arbitrage Prepayment results

RMSE MAE weighted RMSE weighted MAE
10 percent 0.554 0.295 0.536 0.358
20 percent 0.568 0.304 0.551 0.370
30 percent 0.567 0.297 0.545 0.363
40 percent 0.568 0.302 0.553 0.377
50 percent 0.571 0.308 0.567 0.393

TABLE E.8: A table showing the portfolio metric results for the un-
dersampled data sets for arbitrage prepayment.
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RMSE MAE weighted RMSE weighted MAE
10 percent 0.559 0.559 0.560 0.560
20 percent 0.530 0.530 0.530 0.530
30 percent 0.615 0.614 0.615 0.615
40 percent 0.725 0.724 0.726 0.725
50 percent 0.784 0.782 0.784 0.783

TABLE E.9: A table showing the portfolio level results for the logistic
regression models trained on the undersampled data sets for arbi-

trage prepayment, tested on the out-of-sample data.

Accuracy Precision Recall Specificity F1 AUC Brier
10 percent 0.981 0.004 0.162 0.981 0.004 0.859 0.000
20 percent 0.936 0.004 0.461 0.937 0.004 0.860 0.000
30 percent 0.906 0.003 0.591 0.906 0.003 0.862 0.000
40 percent 0.865 0.002 0.669 0.865 0.002 0.855 0.000
50 percent 0.792 0.002 0.773 0.792 0.002 0.856 0.000

TABLE E.10: A table showing the loan metric results for the under-
sampled data sets for arbitrage prepayment.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -14.72 2.22 -6.63 0.00
redemption typeBullet -0.20 0.11 -1.85 0.06

redemption typeLinear 0.36 0.15 2.41 0.02
original capital -0.91 0.34 -2.69 0.01

remaining capital 0.51 0.31 1.68 0.09
initial LtMV -1.24 0.30 -4.14 0.00

delta rate 5.82 0.50 11.52 0.00
loan age 1.26 0.26 4.85 0.00

total income 2.59 0.43 5.95 0.00
married 0.18 0.11 1.60 0.11

Dutch 1.12 0.49 2.31 0.02
LTI 0.22 0.05 4.84 0.00

unemployment rate -0.48 0.07 -6.95 0.00
seasonality2 0.24 0.10 2.29 0.02

TABLE E.11: A table showing the variables coefficients for the arbi-
trage prepayment model which was trained using the 10% undersam-

pled data set.
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E.1.4 Total Prepayment results

RMSE MAE weighted RMSE weighted MAE
10 percent 1.304 1.070 1.191 0.959
20 percent 1.306 1.067 1.210 0.972
30 percent 1.315 1.075 1.197 0.969
40 percent 1.301 1.051 1.258 1.002
50 percent 1.311 1.076 1.189 0.947

TABLE E.12: A table showing the portfolio level results for the logis-
tic regression models trained on the undersampled data sets for total

prepayment, tested on the in-sample data.

E.2 Random Forest Results
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FIGURE E.1: A figure showing the variable importance for all vari-
ables used in the baseline full prepayment model
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FIGURE E.2: A figure showing the variable importance for all vari-
ables used in the baseline arbitrage prepayment model

RMSE MAE weighted RMSE weighted MAE
Partial 0.791 0.786 0.792 0.788

Full 6.471 6.360 6.497 6.386
Arbitrage 3.447 3.415 3.456 3.424

Total 9.035 8.904 9.069 8.938

TABLE E.13: A table showing the portfolio level results for the base-
line random forest model for all types of prepayment, tested on the

out-of-sample data.

E.2.1 Partial Prepayment Results

RMSE MAE weighted RMSE weighted MAE
10 percent 0.242 0.239 0.242 0.240
20 percent 0.084 0.082 0.085 0.082
30 percent 0.014 0.013 0.014 0.013
40 percent 0.068 0.067 0.068 0.067
50 percent 0.120 0.120 0.119 0.120

TABLE E.14: A table showing the portfolio level results for the ran-
dom forest models trained on the undersampled data sets for partial

prepayment, tested on the out-of-sample data.



Appendix E. Results 93

Accuracy Precision Recall Specificity F1 AUC Brier
10 percent 0.985 0.140 0.199 0.991 0.165 0.828 0.007
20 percent 0.964 0.076 0.360 0.968 0.126 0.825 0.007
30 percent 0.928 0.050 0.492 0.931 0.090 0.819 0.007
40 percent 0.870 0.033 0.596 0.872 0.062 0.816 0.007
50 percent 0.758 0.021 0.718 0.759 0.041 0.810 0.007

TABLE E.15: Random Forest improved model loan-level metrics for
partial prepayment
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FIGURE E.3: Plot showing the variable importance of the 50% under-
sampled partial prepayment model
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E.2.2 Full Prepayment Results

RMSE MAE weighted RMSE weighted MAE
10 percent 1.882 1.873 1.885 1.877
20 percent 0.432 0.417 0.434 0.419
30 percent 0.422 0.422 0.422 0.422
40 percent 1.021 1.021 1.021 1.021
50 percent 1.482 1.480 1.483 1.481

TABLE E.16: A table showing the portfolio level results for the ran-
dom forest models trained on the undersampled data sets for full pre-

payment, tested on the out-of-sample data.

Accuracy Precision Recall Specificity F1 AUC Brier
10 percent 0.994 0.020 0.006 0.999 0.009 0.652 0.005
20 percent 0.977 0.011 0.046 0.981 0.018 0.665 0.005
30 percent 0.931 0.011 0.148 0.935 0.020 0.654 0.005
40 percent 0.854 0.009 0.266 0.857 0.017 0.655 0.005
50 percent 0.655 0.008 0.572 0.655 0.015 0.673 0.005

TABLE E.17: A table showing the loan-level results for the random
forest models trained on the undersampled data sets for full prepay-

ment, tested on the out-of-sample data.

E.2.3 Arbitrage Prepayment Results

RMSE MAE weighted RMSE weighted MAE
10 percent 0.645 0.645 0.645 0.645
20 percent 0.309 0.308 0.309 0.308
30 percent 0.194 0.191 0.194 0.191
40 percent 0.225 0.224 0.224 0.224
50 percent 0.358 0.347 0.356 0.345

TABLE E.18: A table showing the portfolio level results for the ran-
dom forest models trained on the undersampled data sets for arbi-

trage prepayment, tested on the out-of-sample data.

Accuracy Precision Recall Specificity F1 AUC Brier
10 percent 0.980 0.011 0.448 0.980 0.022 0.923 0.0004
20 percent 0.937 0.005 0.649 0.937 0.010 0.919 0.0004
30 percent 0.901 0.004 0.740 0.901 0.007 0.918 0.0004
40 percent 0.862 0.003 0.812 0.862 0.006 0.915 0.0004
50 percent 0.823 0.002 0.864 0.823 0.005 0.909 0.005

TABLE E.19: Random Forest improved model loan-level metrics for
arbitrage prepayment
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E.2.4 Total Prepayment results

RMSE MAE weighted RMSE weighted MAE
10 percent 1.396 1.156 1.232 1.007
20 percent 1.277 1.044 1.095 0.856
30 percent 1.196 0.966 1.011 0.792
40 percent 1.114 0.888 1.017 0.786
50 percent 1.100 0.871 0.989 0.759

TABLE E.20: A table showing the portfolio level results for the ran-
dom forest models trained on the undersampled data sets for total

prepayment, tested on the in-sample data.

E.3 Neural Network Results
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for the baseline neural network model
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FIGURE E.5: A figure showing the variable importance for all vari-
ables used in the baseline full prepayment model
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FIGURE E.6: A figure showing the variable importance for all vari-
ables used in the baseline arbitrage prepayment model

RMSE MAE Weighted RMSE Weighted MAE
Partial 0.126 0.125 0.125 0.125

Full 0.864 0.843 0.867 0.847
Arbitrage 0.854 0.847 0.851 0.844

Total 0.315 0.301 0.314 0.299

TABLE E.21: Table showing the portfolio metrics for the out-of-
sample test data of the baseline neural network model for all types

of prepayment using.
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E.3.1 Partial Prepayment results

RMSE MAE Weighted RMSE Weighted MAE
10 percent 0.296 0.216 0.216 0.160
20 percent 0.301 0.215 0.220 0.163
30 percent 0.303 0.218 0.220 0.164
40 percent 0.291 0.214 0.211 0.160
50 percent 0.299 0.217 0.218 0.166

TABLE E.22: Neural network improved model portfolio metrics for
partial prepayment

RMSE MAE Weighted RMSE Weighted.MAE
10 percent 0.331 0.331 0.110 0.331
20 percent 0.246 0.247 0.246 0.246
30 percent 0.458 0.458 0.458 0.458
40 percent 0.690 0.684 0.688 0.682
50 percent 2.172 2.169 2.170 2.167

TABLE E.23: Neural network improved model portfolio metrics for
partial prepayment tested on out-of-sample data.

Accuracy Precision Recall Specificity F1-score AUC Brier
10 percent 0.980 0.084 0.182 0.986 0.058 0.800 0.007
20 percent 0.966 0.061 0.262 0.971 0.050 0.776 0.007
30 percent 0.922 0.041 0.428 0.926 0.037 0.794 0.007
40 percent 0.862 0.031 0.589 0.864 0.029 0.795 0.007
50 percent 0.763 0.021 0.678 0.764 0.020 0.784 0.007

TABLE E.24: Neural network improved model loan-level metrics for
partial prepayment

E.3.2 Full Prepayment results

RMSE MAE Weighted RMSE Weighted MAE
10 percent 0.927 0.746 0.718 0.671
20 percent 1.022 0.805 0.890 0.692
30 percent 1.134 0.893 0.954 0.711
40 percent 1.097 0.839 1.011 0.754
50 percent 1.001 0.799 0.873 0.668

TABLE E.25: Neural network improved model portfolio metrics for
full prepayment
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RMSE MAE Weighted RMSE Weighted MAE
10 percent 3.000 2.997 9.013 2.999
20 percent 0.575 0.567 0.577 0.569
30 percent 3.016 3.014 3.018 3.017
40 percent 1.097 0.839 1.011 0.754
50 percent 12.135 12.134 12.133 12.132

TABLE E.26: Neural network improved model portfolio metrics for
full prepayment tested on out of sample data

Accuracy Precision Recall Specificity F1 score AUC Brier score
10 percent 0.996 0.044 0.012 0.999 0.009 0.768 0.003
20 percent 0.962 0.015 0.166 0.965 0.014 0.760 0.003
30 percent 0.885 0.011 0.382 0.887 0.011 0.760 0.003
40 percent 0.784 0.009 0.569 0.785 0.009 0.763 0.003
50 percent 0.639 0.007 0.736 0.639 0.007 0.761 0.003

TABLE E.27: Neural network improved model loan-level metrics for
full prepayment

E.3.3 Arbitrage Prepayment results

RMSE MAE Weighted RMSE Weighted MAE
10 percent 0.522 0.288 0.517 0.375
20 percent 0.526 0.298 0.526 0.364
30 percent 0.559 0.309 0.543 0.361
40 percent 0.531 0.287 0.533 0.364
50 percent 0.552 0.311 0.565 0.405

TABLE E.28: Neural network improved model portfolio metrics for
arbitrage prepayment

RMSE MAE Weighted RMSE Weighted MAE
10 percent 0.167 0.163 0.165 0.162
20 percent 0.732 0.728 0.731 0.727
30 percent 1.402 1.402 1.402 1.402
40 percent 3.430 3.424 3.434 3.428
50 percent 4.584 4.575 4.589 4.580

TABLE E.29: A table showing the loan-level results for the neural net-
work models trained on the undersampled data sets for arbitrage pre-

payment, tested on the out-of-sample data.



Appendix E. Results 100

Accuracy Precision Recall Specificity F1 score AUC Brier
10 percent 0.976 0.007 0.318 0.976 0.006 0.871 0.000005
20 percent 0.931 0.004 0.500 0.931 0.004 0.858 0.00001
30 percent 0.896 0.003 0.630 0.896 0.003 0.872 0.000004
40 percent 0.846 0.002 0.721 0.846 0.002 0.868 0.000004
50 percent 0.795 0.002 0.805 0.795 0.002 0.869 0.000004

TABLE E.30: Neural network improved model loan-level metrics for
arbitrage prepayment

E.3.4 Total Prepayment results

RMSE MAE weighted RMSE weighted MAE
10 percent 1.190 0.960 1.214 0.881
20 percent 1.309 1.034 1.205 0.958
30 percent 1.334 1.093 1.183 0.948
40 percent 1.290 1.048 1.242 0.993
50 percent 1.280 1.042 1.182 0.930

TABLE E.31: A table showing the portfolio level results for the neu-
ral network models trained on the undersampled data sets for total

prepayment, tested on the in-sample data.

E.4 Cash Flow Estimation Results

Year
Allianz model
error (%)

Base LR
error (%)

LR 50%
error (%)

Base RF
error (%)

RF 50%
error (%)

Base NN
error (%)

NN 10%
error (%)

2014 0.7 2.5 2.7 2.4 1.7 0.9 1.3
2015 2.4 2.8 2.7 2.8 1.8 1.4 1.8
2016 -0.0 0.4 0.2 1.5 0.2 0.8 0.4
2017 -1.3 -0.5 -0.7 1.4 -0.3 0.1 0.0
2018 -2.2 2.7 2.2 2.4 1.7 2.7 2.6
2019 -2.7 4.2 3.9 3.5 1.4 3.4 3.1
2020 -10.3 -4.2 -3.9 -0.6 -4.3 -3.8 -2.2
2021 -2.1 1.5 2.0 3.6 0.8 1.4 2.4
mean -1.9 1.2 1.1 2.1 0.4 0.8 1.2
Absolute
mean

2.7 2.4 2.3 2.3 1.5 1.8 1.7

TABLE E.32: A table showing the yearly cash flow estimation
weighted error for multiple models compared to the observed pre-

payment cash flow.
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