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Abstract 

The semantic system makes up an integral part of how we perceive and interact with the 

world, yet its structure and location in the brain are not clear. Recently, a semantic map of 

brain activation was presented, based on fMRI (Huth et al., 2016). In the map, the brain is 

divided into voxels, which are activated by different concepts and semantic categories. This 

thesis investigates how brain activation and categorization in this brain map relate to active 

word categorization. Data of 12 previous card sorting studies that looked into this connection 

were merged and analysed, to investigate the similarity between concept relations found in the 

brain map and those obtained with active word categorization. The results showed that active 

word categorization relates to the categories found in the semantic brain map, and also 

showed a link to within-voxel relations in the map. To confirm these results, a new card 

sorting study was performed. This study also investigated a possible geometrical structure of 

semantic space. In the new card sorting study, concept bridges between voxels were analysed 

based on the possible geometrical structure between concepts. Overall, the results connect to 

the hub-and-spoke model for semantic memory. 

 

Keywords: semantic cognition, categorization, brain activation, voxel, card sorting, 

hub-and-spoke model, conceptual space, concept bridge 
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1. Introduction 

Our brain’s semantic system is central to our ability to describe the world and learn 

from our environment (Binder, Desai, Graves, & Conant, 2009). A great part of our 

conceptual knowledge is represented in language and is the foundation of our understanding 

of word meanings. By seeing and interacting with objects we gain knowledge about their 

characteristics such as shape, colour, taste, smell, movement etc. In other words, we infer and 

connect concepts based on experience. What is special here is that the acquired knowledge 

over time becomes independent of the circumstances in which we learned about those 

characteristics (Yee, Chrysikou, & Thompson-Schill, 2013). For example, we know that 

strawberries are red, but we generally do not link this knowledge to the time we first saw a 

strawberry. The learned features of an object become further interconnected in our brain so 

that we can specify which features an object has, and which it does not. This illustrates the 

great capacity our brain has for learning and storing knowledge about the world we live in.  

However, it is not yet clear where the semantic system and its conceptual knowledge 

are located in the brain and how it is structured. An important theory in this respect is the hub-

and-spoke theory, which provides one idea of how semantic memory could be structured in 

the brain (Patterson & Lambon Ralph, 2016). The theory assumes a multimodal semantic 

centre (hub) that has bidirectional connections to unimodal spokes. With the spokes being 

distributed across the cortex, the central hub integrates incoming modal-specific information 

into one general concept. For example, conceptual knowledge about the word “dog” entails 

modal-specific features such as its shape and colour, the feel of its fur, its movements, the 

sound of barking, and so forth. 

The brain study conducted by Huth, de Heer, Griffiths, Theunissen, and Gallant 

(2016) could give more insights into whether the hub-and-spoke theory indeed fits the 

structure of the semantic system. In this study, participants listened to stories and their brain 

activity related to a large set of words in the stories was measured. On the basis of the brain 

activity related to these words, a semantic brain map was created, distributed over both 

hemispheres. This semantic map included 11 different word categories and further showed the 

brain divided into voxels (a small unit of the brain that can be understood as a 3-dimensional 

pixel (Torre, 2017)) related to the activation of a cluster of words. Furthermore, based on 

statistical analysis, each word could be assigned to one of the 11 word categories. Linking the 

hub-and-spoke theory to the results of Huth et al. (2016), it could be possible that voxels or 

categories from the brain map represent spokes as described in theory. That is, voxels could 

be related to spokes because voxels in the Huth map would typically be involved in 
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processing information from the same modality (e.g., visual or auditory), which would 

enhance the possibility that the concepts they represent are related to each other in terms of 

these modalities. This corresponds to the observation that most words in a voxel belong to the 

same category in the Huth map. However, in Huth there are also different voxels that 

correspond with the same category. In terms of the hub-and-spokes theory, this would entail 

that all voxels that belong to the same category would be interconnected by a hub 

representation. 

In this thesis, the relation between voxels and categories in the Huth map, and their 

interpretation in terms of the hub-and-spoke theory, will be investigated using the technique 

of card sorting. A further tool to analyse concept relations in a semantic map is provided by 

van der Velde (2015), who analyzed card sorting data based on creativity concepts in terms of 

geometrical conceptual spaces. The geometrical conceptual space describes a third way of 

representing information besides symbolic and neuronal representations and was introduced 

by Gärdenfors (2000) (as cited in Xiao et al., 2019). For the analysis, van der Velde used a 

distance function to investigate the relations between concepts within the maps. The results 

showed that the distance function could be applied to words within concept clusters but not to 

words between concept clusters. This finding could indicate that a semantic map could 

represent a collection of concept domains, as pointed out by van der Velde. These concept 

domains could relate to the spokes in the hub and spoke model. To investigate this, the 

distance function could be used to analyse Huth et al.’s (2016) semantic brain map, in 

particular, to see if the word categories or the word clusters in the voxels relate to the spokes 

(as further outlined below). 

 The present thesis is not the first study that investigated how Huth et al.’s (2016) 

semantic map and categories support the hub-and-spoke model. Up to now, 12 card sorting 

studies have been conducted to look into the link between Huth et al.’s brain activation results 

and active word categorization. In each of these studies, the Huth et al.’s brain map and word 

categories were investigated using card sorting data based on words from the map. In this 

respect, the use of a card sorting task is thought to actively elicit the participants’ mental 

model of the concepts (as compared to the more passive listening task in the Huth et al. 

study). In this thesis, the 12 Jaccard score datasets obtained from the previous 12 card sorting 

studies will be used to investigate the difference of "within-voxel" and "between-voxel" 

concept relations.  

 To this end, a number of dedicated Python programs were developed to combine and 

analyse the data of all these studies. As noted, the focus was to compare the Jaccard scores of 



MODELLING COGNITIVE PROCESSING AND LEARNING 

7 
 

word relations between words that belong to the same voxel ("within-voxel" concept 

relations) with the Jaccard scores of word relations of words belonging to different voxels 

("between-voxel" concept relations). A higher score for within-voxel concept relations could 

indicate that voxels can indeed be seen as belonging to spokes containing specific semantic 

categorical information, linking them to the spokes in the hub-and-spoke model. However, the 

Jaccard scores could correlate more with the 11 categories proposed by Huth et al., combined 

over different voxels. This would relate more to the combinations of hubs and spokes in the 

hub-and-spoke model. Furthermore, a Python program was developed to apply a distance 

function to the overall data set, in line with van der Velde (2015) to investigate if a 

geometrical structure is present at within-voxel or between-voxel level. In addition, a new 

card sorting study was performed to corroborate the findings of the analyses and to further 

investigate the relation between voxels and categories in the Huth map.  

In the following, the hub-and-spoke model, Huth et al.’s (2016) research, and the use 

of a distance function in a semantic space will be explained in more detail. The three topics 

will be connected in a more detailed description of the aim of the current research. 

 

1.1 Hub-and-Spoke model 

One prominent theory about the structure and cerebral location of semantic memory is 

the hub-and-spoke model (Patterson & Lambon Ralph, 2016; Patterson, Nestor, & Rogers, 

2007). As the name implies, the model hypothesizes that the basis of semantic memory can be 

described by a system of a central hub connected to various spokes. The hub is thought to be a 

multimodal representational resource that interacts with the unimodal spokes to form concepts 

in the brain. This is realized by the integration of different modal inputs (verbal, auditorial, 

somatosensory etc.) to produce a more abstract and generalizable representation of a concept. 

The hub mediates interactions between these inputs and encodes a deeper level of 

representation that merges modal specific information into the overarching concepts received 

from the spokes (Binney & Ramsey, 2020). 

Figure 1 by Binney and Ramsey (2020) illustrates how the modality-specific cortex 

areas (spokes), distributed across the brain, are bidirectionally connected with the semantic 

hub in the bilateral anterior temporal lobes (ATL). 
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Figure 1. Hub-and-Spoke architecture (Binney & Ramsey, 2020). The left image part shows 

the location of the central hub (red) in the bilateral anterior temporal lobes and the spokes 

distributed over the cortex. The right image indicates the different modal inputs that reach the 

multimodal centre.  

 

 

Till now neuropsychological research has accumulated extensive evidence for a 

central semantic hub at the ATL. Especially research into the disorder of semantic dementia 

(SD) has been valuable (Patterson & Lambon Ralph, 2016; Pobric, Jefferies, & Lambon 

Ralph, 2010). As described by Hoffman and Lambon Ralph (2011), SD impairs conceptual 

knowledge due to the atrophy of the ATL. In a further study, SD patients completed category 

learning tasks to investigate how ATL affects learning new concepts (Hoffman, Evans, & 

Lambon Ralph, 2014). The task included categorizing abstract visual stimuli into two groups. 

Because the groups conformed to family resemblance, the participants should have created 

concept representations incorporating multiple features instead of individual ones. The results 

showed that participants were not able to form the required comprehensive concept 

representations.   

 Further effects of this impairment, including verbal and non-verbal comprehension 

deficits, can be observed in persons during expressive and receptive semantic tasks that 

include speech, writing, motor coordination, olfaction, taste, and picture tasks (Binney & 

Ramsey, 2020; Bozeat, Lambon Ralph, Patterson, Garrard, & Hodges, 2000). Therefore, 

ranging across all modalities. This could confirm the neural location of the central hub, which 

takes in different modal information from the spokes to form a concept and its relations. Since 

SD causes damage to the ATL, resulting in defective conceptual knowledge, the existence of 

the central semantic hub at this location in the brain does seem plausible. 
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1.2 Huth et al. (2016): Semantic map across the cortex 

In order to find out more about the semantic system and how it is spread across the 

cortex, Huth et al. (2016) aimed at creating a brain map that illustrates these locations. 

Furthermore, they analysed the semantic selectivity of the respective brain areas. The 

semantic map was created based on results from functional magnetic resonance imaging 

(fMRI), which recorded whole-brain blood-oxygen level-dependent (BOLD) responses of 7 

participants. Participants listened to 10 narrative stories with a length of 10-15 minutes each 

during the recordings. The technique of voxel-wise modelling (VM) was applied to calculate 

the semantic selectivity of the cortex areas. With this, Huth et al. created a brain map divided 

into voxels, each containing a cluster of words indicating the semantic selectivity across the 

brain. The associated word clusters are thought to predict brain activation in the respective 

voxel they belong to.  

Next to the voxel analysis, all included words were also categorized into 11 overall 

categories. These were named: “tactile”, “visual”, “number”, “outdoor”, “body part”, “place”, 

“violence”, “person”, “mental”, “time”, and “social”. The resulting map can be seen in figure 

2. It turns out that the cluster of words that reliably activates a voxel typically belongs to the 

same overall category. However, an overall category activates more than one voxel. So, 

voxels and (overall) categories are related but not equivalent.  

Huth et al.’s (2016) brain map suggests that the semantic system is well organized and 

seems to be consistent among humans. This might depict a brain structure innate to human 

beings. The found patterns indicate that different areas in the system stand for different 

semantic domains made up of related concepts - i.e., it suggests that the semantic system is 

domain-selective, with different brain areas responding selectively to specific categories of 

concepts.  

 As each voxel corresponds to a smaller group of words, which are thought to activate 

the voxel, it could be possible that they represent the spokes from the hub-and-spoke model. 

Similar to the voxels, each spoke stands for a specific information domain. Because both are 

similarly constructed, a resemblance might be found here. However, as noted, the group of 

words that reliably activate a voxel often belong to the same overall category, which 

underlines a correspondence between voxels and categories. Thus, there is a possibility that 

the proposed categories could stand for spokes instead, and that voxels are just a small part of 

it.  
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Figure 2. Semantic map across cortex (Gallantlab.org, n.d). Based on Huth et al.’s (2016) 

fMRI recordings, a brain map was created which was divided into voxels containing a group 

of words. Here, a voxel is selected to see its model performance and word cluster, which is of 

overall category “social” (red). 

 

 

 1.2.1 Studies based on Huth et al. (2016) 

 12 studies from the University of Twente have been conducted to look into the 

connection between Huth et al.’s (2016) results and manual (or 'active') word categorization. 

For this, card sorting tasks were given to participants using concepts (words) taken from Huth 

et al. Card sorting is a method in which participants sort a number of words into groups based 

on how they think they relate to each other. This method is used to investigate and understand 

a person’s mental model (Nawaz, 2012). It is often used when information structures of 

websites are created, based on how participants would group information. An example of 

open card sorting can be seen in figure 3. Here, participants receive the concepts “grass”, 

“airplane”, “bus”, “frogs”, “train”, and “leaf” which are then sorted based on similarities these 

words share. In open card sorting participants do not receive any group labels before sorting 

and are free to create groups however they see fit. Regarding the 12 previous studies, card 

sorting was used to compare participants’ mental models to the 11-word categories proposed 

by Huth et al. 
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Figure 3. Open card sorting example (Interaction Design Foundation, 2016).  

 

 Overall, 348 participants were included, and 393 words have been categorized. 

Combining this amount of card sorting data would allow to further look into the Jaccard score 

differences with increased reliability. As previous studies only did comparisons between the 

card sorting clusters and Huth et al.’s (2016) categories, the current thesis will use their data 

to look further into voxel details. The goal here is to take all scores and analyse the 

differences in the card sorting data for within-voxel concepts (words coming from the same 

voxel) and between-voxel concepts (words picked from different voxels). This is done first to 

look if voxel location is indeed important, next to the Huth category, and adds to the observed 

word relations obtained from card sorting.  

 So, the main motivation of this work concerns whether the found word relations in the 

card sorting only correspond to Huth et al.’s (2016) categories or if belonging to the same 

voxel also has an (additional) influence. A stronger relation (i.e., higher Jaccard score) for 

within-voxel concepts might be observed as compared to same-category words between 

voxels. Furthermore, the card sorting data will be analysed in terms of a distance function 

related to a geometric concept description. Before presenting the research questions of this 

thesis, the distance function and its relation with a geometric concept description will be 

described below.   

 

1.3 How to represent information: Semantic maps as geometrical spaces 

 Gärdenfors (2000) (as cited in Xiao et al., 2019) introduced geometrical spaces as a 

third way to represent concept relations. This approach has aimed to create a bridge between 

symbolic and connectionist representations, which are seen as the main approaches to 

represent concepts and their relations. Each of these will be discussed in the following. 



MODELLING COGNITIVE PROCESSING AND LEARNING 

12 
 

 1.3.1 Symbolic and connectionist representations 

The symbolic approach to modelling information has traditionally shaped cognitive 

science and with that artificial intelligence (AI) (Smolensky, 1987). As the name implies, 

information is represented by symbols, which are manipulated based on pre-set rules 

(Gärdenfors, 1997; Xiao et al., 2019). The foundation to this approach is connected to Good 

Old Fashioned AI, which holds the assumption that human reasoning can be described 

explicitly by symbolic computation. Methods for achieving computations are logic formulas, 

theory of formal languages and discrete mathematics (Flasiński, 2016). Because of the use of 

specified rules, the symbolic approach of information representation excels in situations that 

require clear-cut methods, but not in situations where these methods are difficult to find. Xiao 

et al. note for example the process of perception or common-sense language use, which 

cannot be modelled by symbols since these are limited to logical reasoning and its set rules. 

Consequently, modelling knowledge in these situations becomes complex as the required 

(some even unknown) rules increase. 

 Here, the neuronal or connectionist approach could work more successfully when 

modelling knowledge in such situations. This approach proposes that human cognition is 

distributed, parallel and interactive (Zhao, 2017). Learning, information representation and 

processing are embedded in an interconnected network of various processing units working 

simultaneously (Clark, 1997; Xiao et al., 2019: Zhao, 2017). Most popular is the use of 

Artificial Neural Networks (ANN) that integrate layers of nodes as neurons to process input 

information (Bajada, 2019). The great benefit of a connectionist approach is that learning 

proceeds by observing or training with (unstructured) data. Interaction with such data then 

allows for the adaptation of network connections. Thus, no rules need to be given as the 

network finds them on its own in the data, making it easier to model knowledge. However, 

this comes with the downside of a lack of explanatory insights into the modelling process 

(Xiao et al., 2019). Thus, it is difficult to fully understand how the network works and arrives 

at its results.  

 

 1.3.2 Geometrical conceptual spaces 

 Next to symbolic and connectionist/neural representations, Gärdenfors (2000) (as cited 

in Xiao et al., 2019) introduced geometrical conceptual spaces as a third approach. This is 

thought to be able to compensate for the difficulties of the symbolic and neural approaches 

when illustrating concept relations (van der Velde, 2015). Conceptual spaces define 

perceptual concepts and are based on “quality dimensions”. As Gärdenfors explains, quality 
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dimensions correspond to the way stimuli are judged to be similar or different. The 

geometrical structure of the space is given by a collection of quality dimensions for one or 

more domains (Raubal, 2014). The domains are made up of a set of unique dimensions 

distinct from other dimensions. The example of the domain colour is given here by Raubal, 

which is made up of the dimensions brightness, saturation, and hue. Furthermore, the 

conceptual space extends when new concepts are learned. Based on the learned content, new 

quality dimensions can be added to the space. Therefore, concept learning and modelling is 

aided by the geometrical structure of the space (Xiao et al., 2019). As every object has a 

specific point in the space, (dis)similarities can be represented by distance calculations 

between points. The structure of the space is thus linked to how distances between objects are 

calculated (van der Velde, 2015). 

Gärdenfors’ (2000) (as cited in Xiao et al., 2019) conceptual space offers an 

intermediate level between symbolic and neural representations. Semantic maps show a more 

linguistic form of representation but can also be localized in the brain (van der Velde, 2015). 

Huth et al. (2016) illustrate this with their semantic brain map created based on natural 

language. Because of these similarities, there is a possibility to apply distance calculations as 

found in Gärdenfors’ geometrical conceptual space to semantic maps. Van der Velde (2015) 

investigated semantic maps related to creativity and applied such a distance metric to analyse 

the relations between concepts. The semantic maps were based on two card sorting studies 

and heatmaps were created to look into the word clusters. The used distance function d(a,b) 

describes the distance between points a and b in a space.  

A distance function is characterized by four properties (Hartenstein, 2014):  

 

1. The distance between two points a and b has to be non-negative:     0 < d(a,b) <  

2. The distance between the same point has to be zero:                         d(a,a) = 0 

3. The distances from a to b and from b to a are equal (symmetric):    d(a,b) = d(b,a) 

4. The triangle inequality is fulfilled:                       d(a,b)  d(a,c) + d(c,b) 

 

In Euclidian geometry, triangle inequality describes the property that in any triangle the 

length of one side does not exceed the sum of the lengths of the other two sides as given by 

d(a,b)  d(a,c) + d(c,b) (Khamsi & Kirk, 2011). For a distance function this property needs to 

be fulfilled to have a meaningful metric and be able to analyse the different points in space. 
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 Based on the heavily right-skewed heatmap scores obtained from the two card sorting 

studies, van der Velde (2015) applied the function: 

 

  d(a,b) = −log(x)  for x = CST(a,b)/S 

 

With CST(a,b) describing the card sort score for two concepts a and b, and S describing the 

maximum score, which equals the number of participants included in the card sorting task. 

(Also, in the card sorting data it is assumed that CST(a,a) = S.) This function fits the data as it 

is sensitive to differences in lower scores. Heatmap scores of 0 were substituted by 1 as log(0) 

is not defined. Property 1 and 2 are thus satisfied, and the distance scores range from d(a,a) = 

-log(1) = 0 to -log(1/S). The symmetry of the heatmap fulfills property 3. Van der Velde then 

looked further into violations of the triangle inequality (property 4). A violation of this 

property means that at least one of the distances between three concepts a, b, and c is larger 

than the sum of the other distances, which then does not fulfil d(a,b)  d(a,c) + d(c,b). While 

violations were found by van der Velde, they only concerned scores between word clusters. 

Within a cluster, a geometrical structure was given but it diminishes beyond that. This finding 

could indicate that semantic maps are made up of several concept domains that each have a 

geometrical structure as compared to Gärdenfors’ proposal. In turn, this could give more 

insights into how the semantic system is represented in the brain.  

 The ideas discussed above could be applied to the Huth map as follows. Huth et al.’s 

(2016) semantic map proposes 11 overall word categories and further shows the brain divided 

into voxels as word clusters. It could be assumed that voxels belong to spokes in the hub-and-

spoke theory, with each voxel related to a category. However, a given category in Huth relates 

to multiple voxels. In terms of the hub and spoke theory, a category would then consist of 

multiple voxels (in the same or different spokes) interconnected by a hub representation. A 

question in this respect is the relative importance of individual voxels in the representation of 

a category. That is, whether word relations are stronger when the words belong to the same 

voxel, or whether word relations are influenced by category membership only. This question 

could also be investigated by using the distance function defined in van der Velde’s (2015). In 

particular, these distance calculations might also show that triangle inequality violations occur 

only between voxels and not within.  
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1.4 The current research 

Huth et al.’s (2016) semantic brain map gives an indication of how the semantic 

system is localized and structured in the brain. It seems to align with hub-and-spoke model 

that describes semantic memory in terms of various modal-specific spokes connecting to a 

central semantic hub. In addition to that, van der Velde’s (2015) findings regarding distance 

calculations suggest that semantic maps entail a collection of concept domains. The analysis 

of Jaccard score data based on concepts from Huth et al. could give more insights into the 

question of whether the relations between words are influenced by belonging to the same 

voxel, or by just belonging to the same overall category. Since voxels are based on brain 

activation and Jaccard scores on manual categorization the relationship does not seem 

apparent at first. However, if belonging to the same voxel in general (compared over all 

categories) does result in a stronger relation, indicated by a higher Jaccard score, it would 

support Huth et al.’s map as a representation of semantic space. Meaning that, besides 

existing word categories, location in the brain would be an important factor for the strength of 

concept relations. So that concepts located close together (i.e., within the same voxel) have a 

stronger relation comparable to how a short distance between two words in a semantic space 

indicates a high semantic similarity between them. (Groups of) voxels would then represent 

own concept domains.  

Furthermore, the investigation of whether relations among words coming from within 

the same voxel are stronger than other relations among words belonging to the same category 

would further show how categories are represented in terms of the hub-and-spoke theory. 

Thus, giving more insight into how the semantic system is structured in the brain. Therefore, 

this thesis poses the following main research questions:  

 

1. Is active word categorization with card sorting related to word categorization based on 

brain activity during natural speech understanding, as found in Huth et al. (2016)? 

2. Is active word categorization with card sorting different for within-voxel versus 

between-voxel concept relations of the same category in Huth et al. (2016)?  

3. Are triangle violations as measured with the distance function different for within-

voxel versus between-voxel concept relations of the same category in Huth et al. 

(2016)?  

 

To answer these questions, two research phases will be conducted. In a first study, 

data from the 12 card sorting studies will be merged and analysed with the help of tools 
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created in Python. The Jaccard scores for within-voxel and between-voxel concepts will be 

compared to see if participants’ mental model shows similarities to Huth et al.’s (2016) brain 

map. This is done to see what the role of voxels is in the strength of word relations. 

Furthermore, the data will be analysed using distance calculations to check if violations of the 

triangle inequality occur for between-voxel concepts only. Secondly, a new card sorting study 

will be conducted to further investigate the difference between within-voxel word relations 

and word categories in Huth et al. to add to the first study. So, in the following the meta-

analysis based on the 12 previous studies (Phase 1) will be presented first and after that the 

new card sorting study (Phase 2) will follow. 

 

 

2. Phase 1: Meta-Analysis 

2.1 Data analysis tools created with Python 

In order to make use of the previously collected card sorting data, different tools were 

created for data processing and later analysis. For this, Python version 3.7 was used. 

Moreover, libraries “csv” and “numpy” were used when adding and transforming data. For 

illustrating the results, library “panda”, “mathplot.lib.pyplot”, and “math” were imported as 

well.   

 

2.2 Merging datasets into one Mastertable 

 Before doing any analyses, the 12 CSV datasets containing Jaccard scores had to be 

added into one. As each Jaccard score corresponds to two concepts (e.g., “days” and 

“weekend”), the datasets can be compared to an unsorted heatmap in which each axis is 

labelled with the concept names. To ease data analysis, the used dataset format only included 

a first row with each concept name and no additional first column with concept names (i.e., no 

labelled y-axis). As a consequence of card sorting and the similarity to a heatmap, the datasets 

had to be symmetric at the diagonal so that each Jaccard score was noted twice. The diagonal 

score corresponded to the number of participants (N) per card sorting study. As the diagonal 

scores belong to one concept paired with itself (e.g., “days” and “days”) it is assumed that the 

concept will have the highest possible relation with itself. Thus, the number of participants 

was taken since it represents the highest possible Jaccard score. Tables that included a relative 

Jaccard score (converted into scores between 0 and 1) were reconverted into the original raw 

score. This was done by multiplying the relative scores by the respective number of subjects 

(i.e., the diagonal score). The program created for this can be found in Appendix A.  
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 When all datasets had the correct format, they were merged into one overall score 

table (see Appendix B for the program). When a concept already appeared in a previous table, 

the score was added into the previous cell instead of adding a new column with the concept 

label. Additionally, the diagonal subject score had to be added together as well. 0 was filled in 

for concept combinations that had no score. The final table was converted into relative scores 

to account for differences in participant numbers between studies and concepts. To this end, a 

subject table was created with the same format as the overall score table, but instead 

containing the number of participants per concept combination in each cell (Appendix C). 

This allowed to retrieve each subject number behind the Jaccard score of the overall score 

table. In this way, the raw Jaccard scores in the overall score table were divided by the 

respective subject number and all diagonal scores changed into 1 (highest score) as these 

represent a concept combination of the same word. Scores that were 0 stayed 0. This created 

the 'master table' used for analyses. Appendix D illustrates the program created here. 

 

2.3 Creating a dataset with Voxel data 

 To later analyse the scores for within-voxel and between voxel concepts, a dataset 

containing voxel locations was created. The program for this (Appendix E) takes a table 

including all voxel coordinates per concept and based on that sorts the Jaccard scores from the 

master table into two lists, one for scores for two concepts belonging to the same voxel and 

one for scores for concepts coming from different voxels. Scores of 0 were only included if 

they were based on real scores, meaning the subject number for this had to be at least 1.  

  

2.4 Calculating the distance function 

 Based on van der Velde (2015), the function d(a,b) = -log(x) (presented above) was 

used for calculating the distance function on the card sorting data. The program (Appendix F) 

applies this function to every relative Jaccard score. For real scores of 0 (subject number at 

least 1) the function used -2*log(0.0001) as -log(0) is not defined. This score gives a very 

large distance between concepts with card sorting score 0. Default zero scores, which are not 

based on any ratings by participants, were changed into -1 and ignored in further calculations. 

A specific aim of applying the function was to look into violations of the triangle inequality 

d(a,b)  d(a,c) + d(c,b). All violations were collected in a list and saved into a text document. 
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3. Results 

3.1 Jaccard score data analysis 

 3.1.1 Same-category vs different-category scores 

 In order to answer the first research question, the Jaccard scores were analysed for all 

concept relations within the same category and all concept relations between different 

categories. This was done to compare the relation strength between concepts in both 

conditions. If concepts from the same category show significantly stronger relations (higher 

Jaccard scores) it would show that participants frequently grouped these concepts together 

and perceive a similarity between them. Thus, if Huth et al.’s (2016) word categories based on 

brain activity can be replicated to a significant extent in card sorting tasks it would show that 

there exists a relation between both categorization procedures. If concepts from different 

categories show significantly stronger relations, therefore deviating from Huth et al.’s results, 

or if there is no difference found between the conditions, it would show that there is no 

relation between active categorization and categorization based on brain activity. 

 The results showed that the number of same-category concept relations amounted to 

7,563 while for different-category relations this number was 45,386. Furthermore, the mean 

score for relations between concepts coming from the same category was 0.32 (SD = 0.29). 

For relations between concepts coming from different categories, the mean score was 0.05 

(SD = 0.12), indicating a difference of 0.27 between both groups of concept relations. To test 

if this difference is statistically significant, an independent t-test was conducted in SPSS 

statistics 27. The result showed that there was a significant difference in scores with 

t(8010.11) = -78.886, p < 0.001. 

 To illustrate the results, histograms were created in Python and presented in figure 4. 

Here, the results indicate higher scores for same-category concept relations. Especially for 

scores above 0.1 the number of relations appear to be higher than for different-category ones. 

However, what needs to be noted is the difference in scales of the histograms. There are many 

more different-category concept relations than same-category concept relations. This makes it 

hard to compare the scores in the histograms and furthermore doesn’t allow for a detailed 

analysis of the different-category data. So, in order to have a more useful comparison, the 

scores were converted into percentages relative to the total number of same- and different-

category relations respectively (Figure 4a). This already shows the difference in distributions 

between both groups, with same-category scores being more spread between 0 and 1 while 

different-category scores centre around approximately 0.05. For more details, the histograms 

were also created only for Jaccard scores above 0.5 for each condition (Figure 4b).  Especially 
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for this range in scores, the difference between both conditions is underlined. The number of 

same-category relations peaks at about 1.76%. However, the number of different-category 

relations stays close to 0, which explains the large difference in mean Jaccard scores between 

the conditions. 

 

 

Figure 4. Jaccard scores illustrated for same- and different-category concept relations. 

 

 

Figure 4a. Relative Jaccard scores illustrated for same- and different-category concept 

relations. The y-axis shows the percentage of relations relative to the total amount of relations 

per group. 
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Figure 4b. Relative Jaccard scores above 0.5 illustrated for same- and different-category 

concept relations. The y-axis shows the percentage of relations relative to the total amount of 

relations per group. 

 

 

 3.1.2 Within-voxel vs between-voxel scores 

In regard to the second research question, the overall Jaccard scores were also 

compared for within-voxel concept relations and between-voxel concept relations. Similar to 

the previous section, this analysis was applied to compare the relation strength between 

concepts in both conditions, this time at voxel level. Finding a significantly stronger relation 

(higher Jaccard score) for concepts from within the same voxel would indicate that 

participants grouped these concepts together more often. This could indicate that voxel 

location in the brain influences the relation strength between concepts. A significantly 

stronger relation for concept relations between voxels or no difference between the conditions 

would show that location in the brain does not play a role in relation strength. 

The results showed that the number of within-voxel relations was 1,000 and 51,949 for 

between-voxel relations. To analyse the difference in mean scores, an independent t-test was 

conducted. The results of Levene’s test for Equality of Variances showed that the variances 

for within- and between voxel scores were not equal, F = 1039.70, p < 0.001. Therefore, the t-

test results with equal variance not assumed were included. These showed that the Jaccard 

scores for within-voxel concept relations (M = 0.40, SD = 0.29) significantly differed from 

those for between-voxel concepts (M = 0.08, SD = 0.17) with t(1012.72) = 33.83, p < 0.001. 
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The Jaccard score distributions per voxel condition were transferred into histograms, 

presented in figure 5. For both histograms, the scores ranged from 0 to 1. One can see that for 

the two graphs the data is right-skewed, with 0 being the most frequent score. About 53 

within-voxel and 23,000 between-voxel concept relations had a score of 0. Further, the 

within-voxel scores centre around 0.4 while between-voxel scores centre around 

approximately 0.1. Thus, the differences in overall score distributions would show generally 

higher scores for within-voxel concepts.  

In figure 5a this difference can be further observed. Here, the scores were converted 

into percentages relative to the total number of relations per group. Especially the zero scores 

are prominent, showing that about 44% of between-voxel relations had a score of 0 while for 

within-voxel relations this amount was below 10%. Furthermore, the distribution of within-

voxel relations is more consistently spread up to the highest score of 1. For between-voxel 

relations it seems the higher the Jaccard scores get the closer the number of relations gets to 

0%. Figure 5b was therefore added to give a more detailed view of the relative scores showing 

a range from 0.5 to 1. This clearly shows the difference in scores between both groups as 

between-voxel scores in the area above 0.5 never amount to more than 0.3%, while within-

voxel scores here reach up to 3.3% of the total amount of relations. 

 

 

 
 

Figure 5. Histograms per voxel location illustrating Jaccard score distributions. 
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Figure 5a. Histograms per voxel location illustrating relative Jaccard scores. The y-axis 

shows the percentage of relations relative to the total amount of relations per group. 

 

 

 

 
 

Figure 5b. Histograms per voxel location illustrating relative Jaccard scores only above 0.5. 

The y-axis shows the percentage of relations relative to the total amount of relations per 

group. 
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 3.1.3 Same-category: Within-voxel vs between-voxel scores 

 As noted in section 1.4, voxels and categories are closely related in the Huth map. In 

particular, most words within a voxel come from the same category. But a given category is 

distributed over multiple voxels. Therefore, in order to complement the previous analysis, the 

difference in Jaccard scores per voxel location was also investigated for concept relations only 

coming from the same category. Within-voxel relations only from the same category 

amounted to 948, while same-category between-voxel ones amounted to 6,615. The mean 

scores here were 0.40 (SD = 0.29) for within-voxel relations and 0.31 (SD = 0.29) for 

between-voxel ones. In comparison to the between-voxel scores for all relations (M = 0.08), 

noted in section 3.1.2, the between-voxel mean score for only same-category concept pairs 

was about 0.23 higher. Despite this increase, the independent samples t-test again showed that 

the strength of within-voxel relations was significantly higher than for between-voxel ones 

with t(7561) = -9.972, p < 0.001. 

 Histograms presented in figure 6 show the overall scores for both groups. As only 

same category concepts were included the number of zero scores is greatly decreased to about 

750 for between-voxel relations. Moreover, figure 6a provides the results converted to 

percentages. These showed that the percentage of within-voxel relations with scores higher 

than 0.2 is about twice the number of between-voxel relations within the same category. 

Figure 6b illustrates the results again for scores ranging from 0.5 to 1. What can be clearly 

observed is that overall, within-voxel relations show higher scores than between-voxel ones, 

even when coming from the same category.  
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Figure 6. Histograms showing same category Jaccard scores for within-voxel and between-

voxel relations. 

 

 

 

Figure 6a. Histograms showing relative same category Jaccard scores for within-voxel and 

between-voxel relations. The y-axis shows the percentage of relations relative to the total 

amount of relations per group. 
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Figure 6b. Histograms showing relative same category Jaccard scores above 0.5 for within-

voxel and between-voxel relations. The y-axis shows the percentage of relations relative to 

the total amount of relations per group. 

 

 

 3.1.4 Between voxel: Same category vs different category scores 

 Furthermore, the above between-voxel scores for same category relations can also be 

compared to between-voxel scores for concepts only coming from different categories. The 

number of between-voxel relations coming from the same category was 6,615 and it was 

45,334 for relations coming from different categories. Here, the between-voxel mean score for 

different-category concepts was about 0.26 lower with 0.05 (SD = 0.21) than the mean score 

for same-category concepts with 0.31 (SD = 0.29). The independent samples t-test showed 

that this difference in scores was statistically significant with t(6956,813) = -71,073, p < 

0.001. Figure 7 illustrates the distribution of Jaccard scores for both groups. Again, the scores 

were converted into percentages relative to the total number of relations per condition to have 

a more useful comparison which can be seen in Figure 7a. In general, it can be observed that 

between-voxel scores within the same category show fewer zero scores and are more spread 

up to the highest score of 1. Which explains the higher mean score in comparison to between-

voxel relations from different categories. In figure 7b this difference can be further 

investigated when displaying the relative Jaccard scores above 0.5. While the number of 

between-voxel for same-category concept pairs reaches up to approximately 1.6%, the 

number for different-category ones stays below 0.13%. 
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Figure 7. Histograms showing between-voxel Jaccard scores for same category and different 

category concept relations. 

 

 

 

 
Figure 7a. Histograms showing relative between-voxel Jaccard scores for same category and 

different category concept relations. 
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Figure 7b. Histograms showing relative between-voxel Jaccard scores above 0.5 for the same 

category and different category concept relations. The y-axis shows the percentage of 

relations relative to the total amount of relations per group. 

 

 

 3.1.5 Scores per category and voxel location 

 Besides for the overall Jaccard scores, the differences between within-voxel scores and 

between-voxel scores were also analysed for each of the categories separately. Here, all 11 

categories from Huth et al. (2016) were present, namely “tactile”, “visual”, “number”, 

“outdoor”, “body part”, “place”, “violence”, “person”, “mental”, “time”, and “social”. Table 1 

shows the mean Jaccard scores per voxel level for each category. For each, an independent 

samples t-test was executed to test if the differences at voxel level are statistically significant. 

In addition to that, table 1a provides a detailed overview of the t-test results for each category. 

The results show that for the categories “place”, “person”, “visual”, “number”, “mental”, 

“time”, and “tactile” the Jaccard score was significantly higher for within-voxel concept 

relations. The difference in relation strength for these concepts ranged from 0.1 to 0.18. Only 

for the category “violence” the between-voxel concept relations were stronger. No statistically 

significant differences in scores were seen for categories “outdoor”, “body part”, and “social”.  
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Table 1 

Mean Jaccard Scores per Category and Voxel Location. Underlined values indicate a higher 

score at within-voxel level. 

 

Category Within voxel Between voxel  

 M SD M SD t-test 

place .48 .29 .30 .24 p < 0.001 

violence .40 .22 .53 .21 p < 0.001 

person .41 .28 .27 .29 p < 0.001 

visual .35 .28 .20 .21 p < 0.001 

      

number .62 .30 .44 .33 p < 0.001 

mental .34 .23 .16 .17 p < 0.001 

time .38 .34 .25 .31 p < 0.001 

tactile .41 .25 .31 .24 p < 0.001 

      

outdoor .19 .20 .25 .24 ns 

body part .45 .32 .42 .34 ns 

social .34 .33 .35 .33 ns 

 

 

 

Table 1a 

Detailed Results Independent Samples T-Test per Category. Underlined categories indicate a 

higher score at the within-voxel level. 

 

Category F t df Sig. (2-tailed) 

place 6,795 -5,32 101,411 .000 

violence ,116 3,51 391 .000 

person 3,433 -6,00 1595 .000 

visual 11,429 -3,07 39,712 .000 
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number 7,336 -5,19 129,714 .000 

mental 21,986 -7,58 136,656 .000 

time 1,613 -3,07 827 .000 

tactile ,445 -4,92 1077 .000 

     

outdoor 3,407 1,88 666 .061 

body part 4,544 -.672 68,237 .504 

social 1,642 .296 827 .767 

 

 

 

3.2 Violations regarding triangle inequality 

 Based on van der Velde (2015), distance calculations were applied to the Jaccard score 

data. More specifically, the function d(a,b) = -log(x) was used to look into violations of the 

triangle inequality given by d(a,b)  d(a,c) + d(c,b) (Table 2). The violations were compared 

for within-voxel and between voxel concept relations to test if voxels have an additional role 

in the formation of categories, as indicated in the results presented above. As suggested by 

van der Velde’s findings, triangle inequality violations would then occur more with between-

voxel concept relations compared to within-voxel concept relations. 

 For the 393 concepts, 710,280 “real” relations of the kind d(a,b) vs d(a,c) + d(c,b) 

(with a, b, and c being different concepts) were calculated. “Real” here means that all 

distances between the concepts had to have a real Jaccard score given by at least 1 subject. 

Filler Jaccard scores of 0 (standing for subject number of 0) were filtered out. Out of the 

710,280 relations, 76,688 violations of the triangle inequality were found. That corresponds to 

10.8% of the total relations. Further, within-voxel relations amounted to 1,422 out of the 

overall 710,280 relations. Here, 141 violations were found (about 9.8% of within-voxel 

relations). For the remaining between-voxel relations 76,547 violations occurred (about 

10.8% of between-voxel relations), indicating 1% more violations than for within-voxel 

relations.  

 As argued by van der Velde (2015), in particular “significant” violations, for which 

d(a,b) − (d(a,c) + d(c,b))  1, would be informative to assess differences in concept relations. 

Table 2a shows the results for significant violations only. Here, 67,409 significant violations 
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were found overall, making up 9.5% of the total relations. For within-voxel relations, 72 

significant violations were found out of the 1,422 relations, which amounts to 5.1%. At the 

between-voxel level 67,337 significant violations were found. As this corresponds to 9.5%, 

between-voxel relations showed about 4.4% more significant violations than within-voxel 

concept relations. 

 

 

Table 2 

Relations and triangle inequality violations per Voxel 

Voxel Relations Violations % 

Overall 710,280 76,687 10.8 

    

Within 1,422 140 9.8 

Between 708,858 76,547 10.8 

 

 

 

 

Table 2a 

Relations and triangle inequality violations (D  1) per Voxel 

Voxel Relations Violations % 

Overall 710,280 67,409 9.5 

    

Within 1,422 72 5.1 

Between 708,858 67,337 9.5 
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4. Discussion 

 Table 3 provides an overview of the type of results of the current study and relates 

these to the research questions and the respective sections in the text. 

  

Table 3 

Overview of the results. Type of analysis describes which groups were compared; M Jaccard 

Scores describe the mean Jaccard score per group while N gives the number of word 

relations per group. 

Research 

Question 

Section Type of Analysis Results 

M Jaccard Scores* 

N 

RQ1 3.1.1 Same-category vs. 

different-category 

0.32 vs. 0.05 7,563 vs. 45,386 

RQ2 3.1.2 Within-voxel vs. 

between-voxel 

0.40 vs. 0.08 1,000 vs. 51,949   

RQ1/2 3.1.3 Same-category: 

Within-voxel vs. 

between-voxel 

0.40 vs. 0.31 948 vs. 6,615 

RQ1 3.1.4 Between-voxel: 

Same-category vs. 

different-category 

0.31 vs. 0.05 6,615 vs. 45,334 

RQ2 3.1.5 Scores per category 

and voxel location 

  

RQ3 3.2 Triangle inequality 

violations 

  

Note. * indicates p < 0.001 for all results. 

 

 

 

 

4.1 Answering Research Question 1 

 

Is active word categorization with card sorting related to word categorization based on brain 

activity during natural speech understanding, as found in Huth et al (2016)? 
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 Regarding the first research question, the present results indicated that there is a 

relationship between Jaccard scores based on active word categorization and the categories 

proposed by Huth et al. (2016). This was observed in section 3.1.1 which showed the 

significant difference in mean scores between same-category and different-category scores. 

Meaning that participants grouped concepts from the same category more often together, 

therefore aligning with Huth et al.’s results. Here, concept relations within the same category 

were rated about 6.4 times stronger by participants than concept relations between different 

categories. The effect of category membership was also found in sections 3.1.3 and 3.1.4. The 

findings showed that concepts coming from the same category have an increased relation 

strength, regardless of voxel location. Additionally, while same-category concept pairs 

between voxels were significantly weaker than those at within-voxel level (section 3.1.3), the 

same set of scores showed a large difference in strength when compared to different-category 

concept pairs between voxels (section 3.1.4). This supports the fact that different-category 

concept relations overall had the weakest strength and further illustrates the link between 

active word categorization and Huth et al.’s categorization results. 

 What needs to be highlighted is that the method of card sorting applied in the studies 

included in the current meta-analysis appears to have no direct connection to the fMRI 

recordings in Huth et al. (2016). Huth et al.’s brain recordings were based on narrated stories 

that participants listened to while the current thesis’ results were based on manual (active) 

word categorization in which the words were presented without additional context of their 

use. This underlines the lack of connection between both methods. Furthermore, the majority 

of the current participants were European with English as a second language. Despite these 

substantial differences with Huth et al.’s study, a similarity between both results was present, 

which is a remarkable finding.  

 

4.2 Answering Research Question 2 

 

Is active word categorization with card sorting different for within-voxel versus between-

voxel concept relations of the same category in Huth et al. (2016)?  

 

 Looking into voxel differences only, the results in section 3.1.2 showed that generally 

within-voxel concept relations had a significantly higher Jaccard score compared to between-

voxel ones. To answer the second research question, this difference was further investigated 

in section 3.1.3 for concept relations coming from the same category. While the score 

difference between within-voxel and between-voxel relations decreased for this condition, 
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within-voxel scores remained significantly higher. In addition to that, this result was also 

found for 7 out of the 11 word categories proposed by Huth et al. (2016), analysed in section 

3.1.5.  

 When comparing the results of sections 3.1.1, 3.1.2, and 3.1.3 the highest strength 

between relations is given for within-voxel concept relations, also on top of category 

membership. This illustrates the link of voxel location and Jaccard scores. Further, the 

similarity in means between sections 3.1.2 and 3.1.3 can be explained by the taken sets of 

scores. The sample difference was only minimal since most within-voxel concepts also come 

from the same category, which therefore results in a similar mean Jaccard score giving an 

additional insight into the effect of voxel location besides category membership.  

 Together these findings indicate an influence of voxel location on the strength of 

relations between concepts, which provides an answer to how Jaccard scores relate to voxel 

differences within the same category. So, not only did Jaccard scores obtained from card 

sorting relate to the categories from Huth et al. (2016), but these also showed a relation 

within-voxel concepts inside these categories. 

 

4.3 Discussing Research Question 3 

 

Are triangle violations as measured with the distance function different for within-voxel 

versus between-voxel concept relations of the same category in Huth et al. (2016)?  

 

 For the violations of triangle inequality (section 3.1.2), one can see that there was a 

small difference of 1% between within-voxel concepts and between-voxel ones. However, for 

significant violations this difference increased to more than 4%, meaning the violations for 

between-voxel relations were nearly twice as high as for those at within-voxel level. This 

finding gives a first answer to the third research question and corresponds to van der Velde’s 

(2015) results suggesting higher violations for relations between concept domains which 

would relate voxels to an own domain. Since the number of concept relations in this study 

was quite large it was not feasible to look into these violations at a more detailed level. 

Therefore, the third research question cannot be answered completely. Therefore, another 

analysis will be performed in the study presented below.  

 

4.4 Limitations 

 One relevant restriction of the given data was the unequal number of concepts per 

voxels and categories. As the current results showed an influence of voxels on concept 
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relations, an additional study with equal concept sample sizes could further support this result 

regarding the question whether active categorization also relates to voxels or just to Huth et 

al.’s (2016) categories. Moreover, testing with an equal number of concepts per voxels and 

category will give more insights into the effect of categories and allows for a more detailed 

analysis of differences. 

 

 

5. Phase 2: Supporting card sorting study 

Purpose of the study 

 The analyses of the results obtained in the 12 previous studies show that concept 

relations, as given by Jaccard scores, are higher for within voxel relations compared to 

between voxel relations (over all categories), even for relations in the same category. The 

present study again investigated whether even in the same category concept relations are 

higher within voxels compared to between voxels. In contrast to the sample of the meta-

analysis in phase 1, the number of concepts per voxel and category are now the same which 

allows for looking into triangle inequality violations for each. Furthermore, using a lower 

number of concept relations makes this analysis, in general, more feasible. And, as explained 

above, the results would answer the research question whether categorization relates to Huth 

et al.’s (2016) categories only or (also) to within-voxel word relations. For this, a card sorting 

task was chosen. The included words were taken from the previous 12 studies based on Huth 

et al. to build on the above results.  

 

5.1 Method 

5.1.1 Design 

 The card sorting was presented online (see below), so the task was executed in one 

round, meaning that the created word-groups by participants were not further split up in 

subgroups. The dependent variable was the relation between concepts, measured by Jaccard 

scores obtained from card sorting. The independent variables were category and voxel 

location with two levels, consisting of “within-voxel” and “between-voxel”. This distinction 

was made to test if participants’ sorting aligns more with voxel locations or just with the 

category of the concepts. More specifically, the aim was to investigate whether the scores for 

within-voxel words are higher than for between-voxel words that belong to the same category. 
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If so, this could indicate an influence of voxel location on concept relations besides belonging 

to category.  

 The concepts in this study came from 6 different categories with two different voxels 

per category. Per voxel either 3 or 4 concepts were chosen, with an equal amount for the two 

voxels for the same category. A more detailed description is given in the Materials section. 

 

5.1.2 Participants 

 In the study, 45 participants participated, with 14 being male and 31 being female. The 

average age was 21.53 years (SD = 3.48). One person had a master’s degree, 8 participants 

had a bachelor’s degree, and 36 had a high school diploma as highest completed level of 

education. The requirement for this study was a sufficient level of English which was noted as 

an eligibility requirement on the website of the study before signing up. Sona was used for 

collecting participants, with that course credits were given as a reward for participation. 

Furthermore, participants in the subject pool provided by Sona came from English-language 

studies of the University of Twente which should fulfil the language requirement. This 

research was reviewed and approved by the BMS Ethics Committee of the University of 

Twente. All participants gave informed consent (see Appendix G for the consent form used). 

 

5.1.3 Materials 

 Due to the Covid-19 situation, the card sorting task was created in Qualtrics as an 

online version administered to participants. The task included 46 words taken from the 

previous studies analysed above. Criteria for choosing the words were a voxel model 

performance of “Good, very reliable” or “Excellent”. A lower performance would mean that 

the voxel is not reliable in its selectivity, consequently these were not included. Further, the 

aim was to use more abstract categories to avoid concepts that are too straightforward and 

thus too easy to categorize. For example, this includes concepts from category “Number” such 

as “zero” or “forty” which are quite direct in their meaning. Hence, six categories were 

chosen from Huth et al. (2016). These are: “tactile”, “outdoor”, “violence”, “mental”, “time”, 

and “social”. Important here was that words from each category had to come from two 

different voxels/brain locations, to be able to compare scores at within- and between-voxel 

level per category. An example are the words “moonlight” and “waves” from category 

outdoor, “moonlight” comes from the left hemisphere with voxel number [18,82,57] while 

“waves” was taken from the right hemisphere with voxel number [15;17;29]. The complete 

list including all voxel locations is presented in Appendix H. 
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5.1.4 Procedure 

 Participants received general information about the study and were informed that they 

could withdraw at any time. Before starting the experiment, participants were asked to give 

informed consent. After that, demographic questions had to be answered and the card sorting 

task followed. Participants had to drag and drop the concepts into group slots the way it made 

most sense to them. It was not required to rank the words or name the groups. This took about 

10-20 minutes. When finished, the participants were thanked for their participation. 

 

5.1.5 Data Analysis 

 For each participant, a Jaccard score table was created. The Jaccard score describes the 

relation between 2 concepts (Schmettow & Sommer, 2016) and is created based on which 

words are grouped together. The chosen 46 words represented both columns and rows of the 

table. For the cells either a 1 or 0 was added if the respective words were members of the 

same group or not. In the end all tables were added together into one.  A vector analysis of 

clusters was used to create an organized heatmap in R, which can be seen in figure 8. 

Appendix I shows the R script for this analysis.  

Moreover, the within- and between-voxel Jaccard scores were compared per category 

to see if there was a significant difference in results and to test the influence of voxel location 

compared to category membership. For this a Mann-Whitney test was chosen and conducted 

in SPSS as the overall scores were skewed to the right. This was done for all within- and 

between-voxel scores and then per word category. 
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Figure 8. Heatmap created from all collected card sorting data. 

 

 

 

6. Results card sorting study 

6.1 Jaccard score data analysis 

 6.1.1 Overall scores: Within-voxel vs. between-voxel 

Table 4 shows the mean Jaccard scores and standard deviations for all within-voxel 

and all between-voxel data. In this study the number of within-voxel relations amounted to 70 

while between-voxel relations amounted to 965. Generally, within-voxel scores were higher 

as compared to between voxel scores with 0.33 (SD = .21) and 0.09 (SD = .12) respectively. 

The Mann-Whitney test indicated that this was a statistically significant difference in scores, 

U(Nwithin-voxel  = 70, Nbetween-voxel = 965) = 8823, z =  -10.42, p < .001. Figure 9 displays the 

scores as histograms for comparison, showing the large number of 0 scores for between-voxel 

relations. To provide a more useful comparison figure 9a shows the Jaccard scores relative to 

the number of relations per voxel level. Based on percentages, the majority of within-voxel 

relations have a score above 0 while the opposite is the case for between-voxel relations. This 

difference becomes especially clear in figure 9b when limiting the relative scores to above 0.5 

for each voxel level. Here, the percentage of within-voxel relations reaches up to 8.5% 

however the number of between-voxel relations barely reaches 0.4% in this range.  
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Table 4  

Mean Jaccard Scores per Voxel for all Scores 

         Within Voxel                             Between Voxel 

 M SD M SD 

All Scores .33 .21 .09 .12 

 

 

 

 

 

Figure 9. Histograms per voxel location illustrating Jaccard score distributions. 
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Figure 9a. Histograms per voxel location illustrating relative Jaccard score distributions. The 

y-axis shows the percentage of relations relative to the total amount of relations per group. 

 

 

 

 

Figure 9b. Histograms per voxel location illustrating relative Jaccard scores only above 0.5. 

The y-axis shows the percentage of relations relative to the total amount of relations per 

group. 
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 6.1.2 Same-category: Within-voxel vs between-voxel scores 

 Moreover, the Jaccard scores were compared further to look for differences at the two 

voxel levels despite coming from the same category. The number of within-voxel relations 

stayed 70 since all within-voxel concepts also came from the same category. For between-

voxel relations only from the same category the number was reduced to 93. When comparing 

the overall within-voxel scores with the between-voxel scores only for same-category 

relations, the latter scores are 0.1 higher than when also taking different-category relations 

into account (Table 5 vs Table 4). Despite that difference the Mann-Whitney test showed that 

within-voxel relations still had a significantly higher score, U(Nwithin-voxel  = 70, Nbetween-voxel = 

93) = 1808, z =  -4,857 p < .001. Figure 10 and 10a display these differences as histograms 

with figure 10a showing the relative scores. For between-voxel relations zero scores were 

again higher than at within voxel level. A difference to the overall between-voxel relations in 

section 5.1.1 is that the distribution is more spread up to a score of 0.9. Especially for the 

range of approximately 0.02 to 0.4 the frequency increased, which explains the difference in 

mean scores to overall between-voxel relations. Regardless of that within-voxel relations 

remained significantly stronger which can also be seen in figure 10b, illustrating relative 

Jaccard scores above 0.5. For this range within voxel concept were nearly three times as high 

as between-voxel ones. 

 

 

Table 5  

Mean Jaccard Scores per Voxel for Same-Category Relations 

         Within Voxel                             Between Voxel 

 M SD M SD 

Same Category .33 .21 .19 .19 
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Figure 10. Histograms per voxel location illustrating same-category Jaccard score 

distributions.  

 

 

 

Figure 10a. Histograms per voxel location illustrating relative same-category Jaccard score 

distributions. The y-axis shows the percentage of relations relative to the total amount of 

relations per group. 
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Figure 10b. Histograms per voxel location illustrating relative same-category Jaccard scores 

above 0.5. The y-axis shows the percentage of relations relative to the total amount of 

relations per group. 

 

 

 6.1.2.1 Scores per category and voxel location  

Looking further into category difference one can see that a higher within-voxel score 

is also true for 4 out of 6 categories namely “mental”, “social”, “tactile”, and “time” (Table 

6). Exceptions to this are categories “outdoor” and “violence”, scores here were similarly high 

for both voxel conditions with scores of above .30. The Mann-Whitney test conducted for 

each category only indicated a statistically significant difference in scores for categories 

“tactile” and “time”. Regarding category “tactile”, the within-voxel score was .29 (SD = .17), 

while the between-voxel added up to .17 (SD = .11), U(Nwithin-voxel  = 20, Nbetween-voxel = 25) = 

136, z =  -2.62, p < .01. For category “time”, the within-voxel score (M = .44, SD = .22) was 

about 4 times higher than for the between-voxel condition (M = .11, SD = .12), U(Nwithin-voxel  

= 20, Nbetween-voxel = 25) = 43, z =  -4.74, p < .001.  

 

 

Table 6  

Mean Jaccard Scores per Category and Voxel.  

Category         Within Voxel                            Between Voxel 

 M SD M SD 
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mental .27 .12 .19 .12 

social .15 .14 .11 .14 

outdoor .34 .32 .38 .33 

violence .35 .25 .36 .27 

tactile .29 .17 .17 .11 

time .44 .22 .11 .12 

 

 

 

 6.1.3 Scores excluding same category between-voxel data 

 Lastly, within-voxel scores were also compared with between-voxel scores excluding 

same-category concepts discussed in the previous section. That means the current between-

voxel scores are only noted for relations between concepts coming from different categories, 

which amounted to 872 relations. Table 7 presents the mean Jaccard scores and shows that 

when taking out same-category relations, the mean score for between-voxel relation is 

decreased by 0.01 (see Table 4). Again, a Mann-Whitney test showed that within-voxel scores 

were significantly higher than between voxel scores, U(Nwithin-voxel  = 70, Nbetween-voxel = 872) = 

7015, z =  -10,840 p < .001. Histograms were created for the scores once more and are 

illustrated in figure 11 and figure 11a with relative scores for comparison. The score 

distributions are similar to those in section 6.1.1 since the sample of different-category 

between-voxel relations was only lowered by 93 instances. Again, the strength of within-

voxel relations can especially be seen when only taking scores above 0.5, shown in figure 

11b. A small difference to section 6.1.1 is that less between-voxel relations received a score 

above 0.5 thus never showing more than about 0.2% in this range. 

 

 

Table 7  

Mean Jaccard Scores per Voxel for all Scores 

         Within Voxel                             Between Voxel 

 M SD M SD 

All Scores .33 .21 .08 .10 
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Figure 11. Histograms per voxel location illustrating Jaccard score distributions. Between 

voxel scores are shown for different-category concept relations. 

 

 

 

Figure 11a. Histograms per voxel location illustrating relative Jaccard scores. Between voxel 

scores are shown for different-category concept relations. The y-axis shows the percentage of 

relations relative to the total amount of relations per group. 
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Figure 11b. Histograms per voxel location illustrating relative Jaccard scores above 0.5. 

Between voxel scores are shown for different category concept relations. The y-axis shows 

the percentage of relations relative to the total amount of relations per group. 

 

 

6.2 Violations regarding triangle inequality 

 The same distance function that was used for the analysis of the data collected in the 

previous 12 studies was applied for the current card sorting. Violations of the triangle 

inequality d(a,b)  d(a,c) + d(c,b) per category and voxel are listed in table 8. A violation of 

the triangle inequality entails that the concept pair a-b is not strongly related even though the 

concept pairs a-c and c-b are. This could suggest that the concepts a and b do not belong to 

the same concept domain (or at least are not often used as a relation). But the strong indirect 

relation between them could be an indication of the existence of 'concepts bridges' between 

the domains to which they belong (see below).   

 Table 8 gives the number of triangle relations (in the columns "Relations") for within 

voxels (summed over both voxels) and for between voxels for each category. For example, in 

the category "social" there are 3 concepts per voxel (see Appendix H). This gives 3 triangle 

relations per voxel and thus 6 summed over two voxels. Likewise, in the category "time" there 

are 5 concepts per voxel. This gives 30 triangle relations per voxel and 60 with two voxels. 

The number of relations for between voxels is calculated in a similar manner by taking all 

possible triangle relations in which at least two concepts belong to two different voxels per 

category.  
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 For the categories “social”, “outdoor”, and “violence” only one violation for within-

voxel concept relations was found. Violations for between-voxel relations ranged from 4-7 

here (7.4-13%). Thus, based on percentages between-voxel relation show less violations. 

However, the low numbers of relations for these categories do not give too much information 

and could make this result rather unreliable.  

 Further, the within-voxel relations for category “mental” had 2 violations (8.3%). In 

turn the between-voxel relations showed 8 violations (5.5%). This shows 2.8% more 

violations for within-voxel relations in category “mental”. Category “tactile” had the lowest 

number of violations with 1 (1.6%) at within-voxel level. And, moreover, had 22 violations 

(7.3%) at between-voxel level. Here the violations at within-voxel level were 5.7% lower than 

at between-voxel level. Lastly for category “time” the within-voxel violations were lower by 

2% with 9 violations and 51 violations for between-voxel concept relations. A Mann-Whitney 

test for every category showed that these differences were not significant.  

 However, of all categories, “tactile” and “time” have significantly higher Jaccard 

scores for within-voxel relations (see Table 6). This could point to individual concept 

domains within the voxels for these categories. Also, these categories have the most within 

and between-voxel relations and with it the most triangle violations (in absolute terms, not in 

percentages). Therefore, it interesting to look at concept bridges that could exist between the 

voxels for each of these categories.  

 

 

Table 8 

Triangle Inequality Violations per Category and Voxel 

Category Within-Voxel            Between-Voxel 

 Relations Violations %  Relations Violations % 

mental 24 2 8.3  144 8 5.5 

social 6 1 16.6  54 7 13 

outdoor 6 1 16.6  54 4 7.4 

violence 6 1 16.6  54 7 13 

tactile 60 1 1.6  300 22 7.3 

time 60 9 15  300 51 17 
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6.3 Concept bridges 

 The categories “tactile” and “time” showed a higher number of violations for between-

voxel relations than for within-voxel, while not statistically significant it is still interesting to 

look further into concept bridges that could exist. A concept bridge describes one concept that 

forms a bridge between two other concepts that seem rather unrelated (van der Velde, 2015). 

So, the bridge concept shows a moderate to strong relation with both other concepts while 

these have only a weak relation between them. For example, the word “apple” could be a 

concept bridge between the concepts “computer” and “fruit”. Because apple is a fruit it will 

have a high relation with the concept “fruit”, but apple is also computer brand which would 

show a high relation with “computer” as well. However, fruit and computer alone seem rather 

unrelated and would have a low relation. In this way the word apple connects two unrelated 

concepts. Below the concept bridges for categories “tactile” and “time” are summed for all 

violations, both within- and between-voxel. 

 

 6.3.1 Category tactile 

 Regarding the card sorting data, for category “tactile” overall 23 violations of the 

distance rule were found (Table 8). It is in particular interesting to look at 'significant' 

violations, defined by the rule d(a,b) − (d(a,c) + d(c,b))  1 (van der Velde, 2015). Of the 

overall 23 violations, 6 violations were found in which the bridge concept had significantly 

stronger relations than the two unrelated concepts, given by this rule. These bridges were only 

found between concepts that came from different voxels. One example here is given by the 

concepts “limbs” from voxel [19;67;77] and “melting” from voxel [21;67;25]. The direct 

relation between these concepts is low with a score of 0. Figure 12 shows that there are 5 

indirect relations, given by significant concept bridges as defined above. Three of these are 

formed by concepts in voxel V1, and two are formed by concepts in voxel V2. A detailed 

overview including the Jaccard scores and distances per relation are found in table 9 for voxel 

1 [19;67;77] and table 10 for voxel 2 [21;67;25]. 
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Figure 12. Indirect relations (bridges) between the concept “limbs” from voxel 1 ([19;67;77]) 

and “melting” from voxel 2 ([21;67;25]) of category tactile. V1 and V2 stand for voxel 1 and 

2 from category tactile. 

 

 

 

Table 9 

Jaccard scores and distances for concept bridges in Voxel 1 [19;67;77] 

a b c CST(a,b) CSTd(a,c) CST(c,b)  d(a,b) d(a,c) d(c,b) 

  grip  10 9   1.50 1.61 

melting limbs thinner 0 8 10  18.42 1.73 1.50 

  technique  6 6   2.01 2.01 

 

 

 

Table 10 

Jaccard scores and distances for concept bridges in Voxel 2 [21;67;25] 

a b c CST(a,b) CSTd(a,c) CST(c,b) d(a,b) d(a,c) d(c,b) 

melting limbs shapes 0 10 8 18.42 1.50 1.73 

  solid  15 6  1.10 2.01 
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 6.3.2 Category time 

 For the category “time” 60 violations were found, as can be seen in table 8. Here, for 

12 violations the rule d(a,b) − (d(a,c) + d(c,b))  1 was valid. 1 out of the 12 bridges was 

found between concepts within the same voxel. In this case the word “weekend” presented a 

bridge between “trip” and “hours” from voxel [6;41;23]. The calculated distance given by 

d(a,b) = -log(x) was 3.1 for “trip” and “ hours”. The distance between “trip” and “weekend” 

was 1.2 and 0.6 for “hours” and “weekend”. This shows that weekend seems to work as a 

bridge within its own voxel (Figure 13). The remaining 11 bridges were formed between 

concepts coming from different voxels. Prominent here were the combinations "apartment-

days" and "rented-days", which both had 4 indirect relations each, as can be seen in Figure 14. 

Here, for both 3 bridges were formed with concepts from voxel [6;41;23] (V1) and 1 bridge 

from voxel [15;75;44] (V2). Furthermore, table 11 presents the Jaccard scores and distances 

between “apartment” and “days” and the found bridges. Table 12 shows these values for 

bridges between “rented” and “days”. 

 

 

 
 

Figure 13. Calculated distances between the concepts “trip”, “hours”, and “weekend” from 

voxel [6;41;23] of category time. This highlights the bridge function of “weekend” within its 

own voxel.  
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Figure 14. Indirect relations between “apartment” and “days” (left), and “rented” and “days” 

(right) from different voxels each in category time. 

 

 

Table 11 

Jaccard scores and distances for concept bridges between “apartment” and “days”. Concept 

“school” marks the singular bridge from voxel 2 [15;75;44]. 

a b c CST(a,b) CSTd(a,c) CST(c,b)  d(a,b) d(a,c) d(c,b) 

 

 

apartment 

 

 

days 

next  

 

0 

3 16   

 

18.42 

2.71 1.03 

weekend 4 28  2.42 0.47 

trip 13 5  1.23 2.20 

school 18 7  0.92 1.86 

 

 

Table 12 

Jaccard scores and distances for concept bridges between “rented” and “days”. Concept 

“school” marks the singular bridge from voxel 2 [15;75;44]. 

a b c CST(a,b) CSTd(a,c) CST(c,b)  d(a,b) d(a,c) d(c,b) 

 

 

rented 

 

 

days 

next  

 

0 

4 16   

 

18.42 

2.42 1.03 

weekend 3 28  2.71 0.47 

trip 14 5  1.17 2.20 

school 8 7  1.73 1.86 
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7. Discussion card sorting study 

7.1 Further answering Research Question 2  

 

Is active word categorization with card sorting different for within-voxel versus between-

voxel concept relations of the same category in Huth et al. (2016)?  

 

 The present results add further to the findings of the first study in regard to the second 

research question. Section 6.1.1 showed again that within-voxel relations were significantly 

stronger than between-voxel relations. More specifically, this result was also found for 

concept pairs of the same category in section 6.1.2. Between-voxel concept pairs of the same 

category further showed a stronger relation than when coming from different categories 

(Section 6.1.3). When looking at the individual categories it was found that not for all within-

voxel relations were rated significantly stronger. Here, only categories “time” and “tactile” 

had a significant difference in relation strength per voxel location. Interestingly, categories 

“social”, “outdoor”, and “violence” did also not show significantly higher rated within-voxel 

relations in the meta-analysis, which was analysed in section 3.1.5. A reason for this overlap 

in results could be the higher degree of abstractness of concepts from these categories. 

Because of that, the effect of voxel location could be reduced when using the card sorting 

method since concepts are presented without context. In this case, it might only be possible to 

have general active categorization based on the respective categories. Despite this additional 

result, the finding of a relation between Jaccard scores and within-voxel concept relations 

cannot be rejected. 

 

7.2 Answering Research Question 3 

 

Are triangle violations as measured with the distance function different for within-voxel 

versus between-voxel concept relations of the same category in Huth et al. (2016)?  

  

 Section 6.2 illustrated that for categories “tactile” and “time” the triangle inequality 

violations were higher for between-voxel relations. The found differences were not 

statistically significant but could give some indication for individual concept domains for 

these voxels, based on van der Velde’s (2015) research. Moreover, the missing difference in 

violations for categories “social”, “outdoor”, and “violence” overlaps with the result that 

within-voxel relations were not significantly stronger either for these groups (Section 3.1.5 

and 6.1.2.1). Because of that, the effect of triangle inequality violations could look different 
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when including all categories with significantly stronger within-voxel relations. Furthermore, 

the number of triangle relations at within-voxel level were quite small, which could also affect 

the results. So, while between-voxel concept relations generally showed more violations 

(Section 3.2) the same result was only found in two cases for concepts of the same category 

which were also not statistically significant. Therefore, it could be further studied taking 

larger samples (that still allow for a feasible analysis) and looking at other categories from 

Huth et al. (2016), specifically those that had stronger within-voxel relations. 

 Furthermore, concept bridges were analysed for the categories that showed higher 

(significant) triangle violations (> 1) at between-voxel level. The results in section 6.3 showed 

that, apart from one relation in category “time”, all significant bridges were formed between 

the voxels of the same category. The voxel differences found for category “tactile” and “time” 

could thus indicate that voxels relate to spokes with their own concept domain as described in 

the hub-and-spoke theory. Such that the concepts represented by voxels in a specific area are 

related in terms of the respective modality. This is supported by stronger relations for within-

voxel concept pairs as compared to between-voxel pairs coming from opposite locations. The 

found concept bridges between voxels would further illustrate the hub connection between 

both.   

 This result suggests the importance of individual voxels which add something to the 

relation strength between concepts, besides category membership. A word category would 

then consist of an interconnection of various voxels in different spokes by a central hub, in 

which word relations are stronger when belonging to the same voxel. This can also be seen in 

Huth et al.’s (2016) brain map where the different categories are distributed over the brain. 

Furthermore, one concept can also be found in different voxels, which adds to the description 

of different modality specific areas (spokes) responding to the same concept.  

 This finding provides more information about how and where semantic knowledge 

could be stored and aligns Huth et al. (2016) results with the hub-and-spoke theory. However, 

since the concept bridges of only two categories were investigated there is still a need for 

future research to look into the other categories proposed by Huth et al. 
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8. General Discussion 

 The semantic system makes up an integral part of how we perceive and interact with 

the world, yet its structure and location in the brain are not clear. Because of that, the current 

thesis aimed at creating a better image of how conceptual knowledge is represented in the 

brain. For this, it was investigated how brain activity based on natural speech understanding 

relates to active word categorization. More specifically it was looked into how word 

categorization relates to categories and individual voxels as taken from Huth et al.’s (2016) 

brain map and what this tells about the semantic system in the brain. The hub-and-spoke 

model was included as a basis for a possible structure of the semantic system since it shares 

similarities with Huth et al.’s proposed map. 

 The present results showed a strong relation between active word categorization by 

participants and the categories from Huth et al. (2016). Overall, the relations for concepts 

from the same category were approximately 6.4 times stronger than concepts from different 

categories. This gives a clear positive answer for the first research question and shows that 

there exists a relation between active word categorization and Huth et al.’s categories. This 

finding is especially outstanding since the methods used in both studies were vastly different. 

The current study used card sorting data based on grouping of singular words with no context 

while Huth et al. measured brain activity of participants listening to stories containing the 

selected concepts. Despite this significant difference, a large overlap was found between both 

results.  

 Secondly it was investigated if active word categorization differs for within-voxel and 

between-voxel concept relations of the same category in Huth et al. (2016). Here, the results 

of both the meta-analysis and supporting card sorting study showed that active word 

categorization significantly relates more to within-voxel concept relations than to between-

voxel ones. This shows that besides category membership voxel location adds to the relation 

strength between different words. Overall, concepts coming from the same category and the 

same voxel showed the strongest relations between all conditions.  

 Lastly, it was looked into if triangle inequality violations differ for within-voxel and 

between-voxel concept relations of the same category in Huth et al. (2016). This was based on 

van der Velde’s (2015) research which applied the distance function to Jaccard score data. 

The current results of the meta-analysis indicated more significant violations for different-

voxel concept relations. However, in the supporting card sorting study that analysed these 

differences for selected categories of Huth et al., no statistically significant differences were 

found between the voxel levels. Categories “time” and “tactile” showed notably more 
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violations for different-voxel concept pairs, which were then further analysed with regard to 

concept bridges. This analysis further added to the previous results as all but one bridge was 

formed between concepts from different voxels. Despite that it needs to be acknowledged that 

the findings for each category were not statistically significant. Therefore, the third research 

question cannot be answered confidently and only an indication for future research can be 

given. Currently, it is suggested that different-voxel relations show more violations depicting 

(groups of) voxels as own concept domains, which would align with van der Velde’s results.  

 The current results give a first indication that voxels on top of category membership 

play a role in active word categorization and in turn could show how the semantic system is 

structured. The hub-and-spoke model illustrates the semantic system as being composed of 

different modal areas (spokes) that are linked through a multimodal hub. The present findings 

in connection to Huth et al.’s (2016) brain map support this theory. The different concepts 

were not only related because of the overall category they come from but additionally also 

based on their voxel. Furthermore, the majority of concept bridges were created between 

different voxels and not within. Based on that, semantic categories could then be made up of 

different voxels representing the spokes from the theory which are interconnected by the 

central hub. What adds to that is the overall distribution of categories over the brain, as seen 

in Huth et al.’s map, and the fact that concepts activate several voxels at different locations. 

This could illustrate a network of different modal aspects of a concept that are elicited when 

encountering the respective word. Besides modal aspects, relations to other concepts are also 

present since a voxel is not only activated by a singular concept but a cluster of words. This is 

similar to Zhang, Han, Worth, and Liu’s findings (2020). Like Huth et al. their study used 

fMRI results from participants listening to narrated stories. The authors highlight that their 

semantic categories and relations are not represented by a singular cortical region. The results 

rather suggest that individual categories are represented by overlapping spatially distributed 

cortical networks. Each network is thought to connect different attributes of a domain by 

linking the regions that encode these attributes. This overlaps with the present results in which 

a category would encompass various interconnected voxels that are distributed over the 

hemispheres. However, one difference in Zhang et al.’s semantic system was the connection 

of different multimodal areas, therefore deviating from the hub-and-spoke model in which a 

multimodal hub connects modality-specific areas. 

 Another different approach to studying semantic cognition was applied by Jackson, 

Rogers, and Lambon Ralph (2021) and adds to the current results. In this article, reverse-

engineering was used to uncover the most favourable structure that best supports the semantic 
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system’s functions. A number of neural networks with different types of connections were 

tested. The used connections included were: Direct Spoke Connections, Bimodal Hubs 

Connections, Multimodal Hub Connections and Shortcut Connections. The results showed 

that a network with a shared multimodal hub was the best to learn a cross-modal semantic 

structure, which is in line with the hub-and-spoke model that was also suggested in the 

present thesis (Rogers & Lambon Ralph, 2022).  

 In summary, the results answer the first two research questions and are able to provide 

a direction regarding the last question. Active word categorization relates to the categories 

proposed by Huth et al. (2016) and further also showed a relation to within-voxel relations. 

Triangle violations and concept bridges between voxels could depict different facets of a 

category that are connected through hub relations. However, this needs to be studied further 

since this finding was not significant. One reason for that could be that the number of concept 

relations per category were too small to gain reliable results. The choice of selecting only 3-5 

concepts per voxel was made to have a feasible analysis of triangle violations but it could also 

reduce the precision and reliability of the findings. This marks a limitation of the current 

research. 

 

8.1 Limitations and future research 

 As mentioned above the number of concept relations for some categories were too 

small for a reliable data analysis when comparing triangle inequality violations. Therefore, it 

is essential to choose an appropriate number of concepts per voxel in further research to avoid 

that. Besides the main findings, a smaller result was that categories “social”, “outdoor”, and 

“violence” had no significant differences in concept relation strength between voxel locations. 

This was found for both studies. One reason for this result could be that these categories 

specifically were more abstract than the other ones, which made it more difficult to categorize 

their concepts in a card sorting task. In comparison to Huth et al.’s (2016) listening task, card 

sorting misses context information and is therefore not able to add nuances to the respective 

concepts. Because the selected words were not presented in a sentence, participants can have 

different interpretations about the same concept and thus apply it in a different way. However, 

increasing the number of concepts that need to be sorted and providing additional information 

on how the word is used in a sentence greatly increases the time and effort participants need 

to put in the task. Therefore, administering a card sorting task might not be fitting anymore 

and another method needs to be chosen.  
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 Since this thesis was not able to answer the third research question regarding triangle 

inequality violations, future research could look into this again, also for categories from Huth 

et al. (2016) that were not included in the second study. This could give more insights into the 

geometrical structure of the conceptual domains as indicated by van der Velde (2015). 

Especially for categories “social”, “outdoor”, “violence”, and “mental”, which were more 

abstract, it was not possible to thoroughly analyse the geometrical structure within these 

categories. Therefore, it is not clear if the small sample size or the abstractness of the 

categories explains the result of less violations for between-voxel relations. Furthermore, 

Zhang et al. (2020) hypothesize that the brain encodes semantic relations as vector fields in a 

continuous semantic space. Since their study was similar to Huth et al.’s this gives an 

additional reason for looking into the geometrical structure in Huth et al.’s brain map as a 

semantic space. 

 

8.2 Overall conclusion 

 The aim of the present thesis was to find out how brain activity relates to active word 

categorization to gain more insights into the structure of the semantic system in the brain. 

This was analysed by looking into how card sorting results related to the categories and 

voxels from Huth et al.’s (2016) brain map. The results were then applied to the hub-and-

spoke model to analyse the structure of the semantic system. The findings indicated that 

besides category membership voxel location plays an important role in the relation strengths 

between concepts. This could illustrate the structure of semantic categories as being made up 

of multiple voxels in different spokes interconnected by a central hub as given by the hub-

and-spoke model. 
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10. Appendices 

Appendix A 

Python Code Converting Decimal Jaccard Scores 

 

""" 
03.2021 

 
Program for converting a table with jaccard score decimal fractions into 

raw scores 

 
Note: csv tables have to be symmetrical at the diagonal and only the first 

row should contain labels (no column) 

 
Author: Pia Elsasser 
""" 

 
 
 
 
import csv 
import numpy as np 

 
 
def csv_to_lists(filename): 
    infile = csv.reader(open(filename)) 
    table = [] 
    for row in infile: 
        table.append(row) 
    for r in range(1, len(table)): 
        for c in range(len(table[0])): 
            table[r][c] = float(table[r][c]) 
    return table 

 
 
tableDec = csv_to_lists("path/filename.csv") 

 
 
 
data = {"column header": tableDec[0],  # concept names from table1 
        "array": np.array(tableDec[1:])}  # jaccard scores from table1 

 
 
 
participants = 30 # needs to be adjusted for the respective table 

 
 
 
for concept in data["column header"]: 
    cIndex = data.get("column header").index(concept) 
    for secConcept in data["column header"]: 
        cIndexSec = data.get("column header").index(secConcept) 
        if concept == secConcept: 
            data["array"][cIndex][cIndexSec] = participants 
        else: 
            data["array"][cIndex][cIndexSec] = 

round(data["array"][cIndex][cIndexSec]*participants, 2) 
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### write data into new csv file 

 
outfile = open("converted_file.csv", "w", newline='') 
writer = csv.writer(outfile) 

 
 
# turn "data" dictionary into list of lists 

 
finalTable = data["array"].tolist() 
finalTable.insert(0, data["column header"]) 

 
 
for row in finalTable: 
    writer.writerow(row) 
outfile.close() 

 

 

 

 

Appendix B 

Python Code Merging CSV Tables 

 

""" 
02.2021 

 
Program for combining different csv tables into one mastertable 
Note: csv tables have to be symmetrical at the diagonal and only the first 

row should contain labels (no column) 

 
The program is used for tables that contain jaccard scores of different 

concept combinations. From each table these 
values are added into a mastertable twice (mirrored), for the diagonal 

score the value is only added once as it is only 
one cell that has the value. 

 
Author: Pia Elsasser 
""" 

 
import csv 
import numpy as np 

 
 
### read csv data into a table(list of lists) and change values from type 

string to float 

 
def csv_to_lists(filename): 
    infile = csv.reader(open(filename)) 
    table = [] 
    for row in infile: 
        table.append(row) 
    for r in range(1, len(table)): 
        for c in range(len(table[0])): 
            table[r][c] = float(table[r][c]) 
    return table 
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# create tables from csv files 
table1 = csv_to_lists("path/filename.csv") 
table2 = csv_to_lists("path/filename.csv") 
table3 = csv_to_lists("path/filename.csv") 
table4 = csv_to_lists("path/filename.csv") 
table5 = csv_to_lists("path/filename.csv") 
table6 = csv_to_lists("path/filename.csv") 
table7 = csv_to_lists("path/filename.csv") 
table8 = csv_to_lists("path/filename.csv") 
table9 = csv_to_lists("path/filename.csv") 
table10 = csv_to_lists("path/filename.csv") 
table11 = csv_to_lists("path/filename.csv") 
table12 = csv_to_lists("path/filename.csv") 

 
# put all tables into a list which can be iterated later 
allTables = [table1, table2, table3, table4, table5, table6, table7, 

table8, table9, table10, table12] 

 
 
# create start data which takes all data from the first given file, later 

data from other files will be added 
data = {"column header": allTables[0][0],  # concept names from table1 
        "array": np.array(allTables[0][1:])}  # jaccard scores from table1 

 
 
### add tables together into one 

 
# iterate through all tables starting at the second one (first was already 

read into the "data" variable) 
for table in allTables[1:]: 

 
    # go through the concept names, index 0 always entails a list of 

concepts in our tables 
    for concept in table[0]: 
        # if the concept is not in "data" yet add a new column + row 
        if concept.lower() not in data["column header"]: 
            data.get("column header").append(concept.lower())  # add new 

concept to "data" 
            data["array"] = np.pad(data.get("array"), ((0, 1), (0, 1)), 
                                   "constant")  # create new column and row 

filled with zeros 

 
    # iterate through concept names, per concept add all jaccard scores to 

"data" 
    for concept in table[0]: 
        cIndex = data.get("column header").index(concept.lower())  # get 

index of first concept in "data" 

 
         # iterate again through concepts to get scores, with each new loop 

skip already added scores 
        for secConcept in table[0][table[0].index(concept):]: 
            cIndexSec = data.get("column header").index(secConcept.lower())  

# get index of second concept in "data" 
            cellBoth = table[table[0].index(concept) + 1][ 
                table[0].index(secConcept)]  # cell in table with score 

between 2 concepts 

 
            # add jaccard score of two concepts, done twice at different 

positions (if second concept is different) 
            data["array"][cIndex][cIndexSec] += cellBoth  # add jaccard 

score 
            if concept != secConcept: # avoid adding own jaccard score 
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twice when concept and secConcept are the same 
                data["array"][cIndexSec][cIndex] += cellBoth  # add score 

again at opposite cell in "data" 

 
 
 
### write data into new csv file 

 
outfile = open("#ConceptMastertable.csv", "w", newline='') 
writer = csv.writer(outfile) 

 
# turn "data" dictionary into list of lists 
finalTable = data["array"].tolist() 
finalTable.insert(0, data["column header"]) 

 
for row in finalTable: 
    writer.writerow(row) 
outfile.close() 

 

 

 

Appendix C 

Python Code Creating Subject Table 

 

""" 
04.2021 

 
Program for making a subject file 

 
Note: csv tables have to be symmetrical at the diagonal and only the first 

row should contain labels (no column) 

 
The program is used for tables that contain jaccard scores of different 

concept combinations. From each table only the diagonal subject score is 
taken and filled in for each concept combination twice (mirrored). If one 

of the two concepts in the combination has a smaller subject number, the 
smaller number is filled in. 

 
The resulting file helps later when calculating distance functions. 

 
Author: Pia Elsasser 
""" 

 
 
import csv 
import numpy as np 

 
 
 
### read csv data into a table(list of lists) and change values from type 

string to float 

 
 
def csv_to_lists(filename): 
    infile = csv.reader(open(filename)) 
    table = [] 
    for row in infile: 
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        table.append(row) 
    for r in range(1, len(table)): 
        for c in range(len(table[0])): 
            table[r][c] = float(table[r][c]) 
    return table 

 
 
 
# create tables from csv files 

 
table1 = csv_to_lists("path/filename.csv") 
table2 = csv_to_lists("path/filename.csv") 
table3 = csv_to_lists("path/filename.csv") 
table4 = csv_to_lists("path/filename.csv") 
table5 = csv_to_lists("path/filename.csv") 
table6 = csv_to_lists("path/filename.csv") 
table7 = csv_to_lists("path/filename.csv") 
table8 = csv_to_lists("path/filename.csv") 
table9 = csv_to_lists("path/filename.csv") 
table10 = csv_to_lists("path/filename.csv") 
table11 = csv_to_lists("path/filename.csv") 
table12 = csv_to_lists("path/filename.csv") 

 
 
 
 
# put all tables into a list which can be iterated later 

 
allTables = [table1, table2, table3, table4, table5, table6, table7, 

table8, table9, table10] 

 
 
 
# create start data which takes all data from the first given file, later 

data from other files will be added 

 
data = {"column header": allTables[0][0],  # concept names from table1 
        "array": np.array(allTables[0][1:])}  # jaccard scores from table1 

 
 
data["array"][data["array"] != 0] = 0  # keep the size of the array but 

change all values to 0 

 
 
for table in allTables: # go through all tables and add the subject numbers 

to "data" 

 
 
    # go through the concept names, index 0 always entails a list of 

concepts in our tables 

 
 
    for concept in table[0]: 
        # if the concept is not in "data" yet add a new column + row 
        if concept.lower() not in data["column header"]: 
            data.get("column header").append(concept.lower())  # add new 

concept to "data" 

 
 
            data["array"] = np.pad(data.get("array"), ((0, 1), (0, 1)), 
                                   "constant") 
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    for concept in table[0]: 
        cIndex = data.get("column header").index(concept.lower())  # get 

index of first concept in "data" 

 
 
         # iterate again through concepts to get scores 
        for secConcept in table[0]: 
            cIndexSec = data.get("column header").index(secConcept.lower()) 

# get index of second concept in "data" 

 
 
            # get subject number of first concept in table 
            subjects1 = table[table[0].index(concept) + 1][ 
                table[0].index(concept)] 

 
 
            # get subject number of second concept in table 
            subjects2 = table[table[0].index(secConcept) + 1][ 
                table[0].index(secConcept)] 

 
 
 
            if subjects1 < subjects2:    # always add the smaller subject 

number for a concept combination 

 
 
                data["array"][cIndex][cIndexSec] += subjects1 
            else: 
                data["array"][cIndex][cIndexSec] += subjects2 

 
 
 
 
### write data into new csv file 

 
 
outfile = open("#VoxelSubjectTable.csv", "w", newline='') 
writer = csv.writer(outfile) 

 
 
# turn "data" dictionary into list of lists 
finalTable = data["array"].tolist() 
finalTable.insert(0, data["column header"]) 

 
 
for row in finalTable: 
    writer.writerow(row) 
outfile.close() 
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Appendix D 

Python Code Converting Raw Jaccard Scores 

 

""" 

03.2021 

 
Program for converting a table with raw jaccard scores into decimal 

fractions 

 
Note: csv tables has to be symmetrical at the diagonal and only the first 

row should contain labels (no column) 

 
Takes 2 tables: Raw score table and subject table 

 
Values are divided by number of participants. Values of 0 stay 0, diagonal 

scores are changed to 1 

 
Author: Pia Elsasser 
""" 

 
 
import csv 
import numpy as np 

 
 
### read csv data into a table(list of lists) and change values from type 

string to float 

 
 
def csv_to_lists(filename): 
    infile = csv.reader(open(filename)) 
    table = [] 
    for row in infile: 
        table.append(row) 
    for r in range(1, len(table)): 
        for c in range(len(table[0])): 
            table[r][c] = float(table[r][c]) 
    return table 

 
 
 
filename_concepts = "#VoxelCardSortingSum.csv" 
filename_subjects = "#VoxelSubjectTable.csv" 
tableRaw = csv_to_lists(filename_concepts) 
subjectTable = csv_to_lists(filename_subjects) 

 
 
data = {"column header": tableRaw[0],  # concept names from tableRaw 
        "array": np.array(tableRaw[1:])}  # jaccard scores from tableRaw 

 
### convert values 

 
# iterate through concepts 

 
 
for concept in data["column header"]: 
    cIndex = data.get("column header").index(concept) 
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    # iterate again through concepts to get scores, with each new loop skip 

already converted scores 

 
    for secConcept in data["column header"]: #[data.get("column 

header").index(concept):]: 
        cIndexSec = data.get("column header").index(secConcept)  # get 

index of second concept in "data" 
        nParticipants = subjectTable[subjectTable[0].index(concept) + 1][ 
                subjectTable[0].index(secConcept)]   # number of subject 

for concept combination 

 
 
        if nParticipants == 0: # keep value of 0 
            continue 

 
 
        # convert values by dividing them by the respective number of 

participants 

 
 
        else: 
            data["array"][cIndex][cIndexSec] = 

round(data["array"][cIndex][cIndexSec] / nParticipants, 4) 

 
 
 
 
 
### write data into new csv file 

 
outfile = open("#VoxelDecimal.csv", "w", newline='') 
writer = csv.writer(outfile) 

 
 
# turn "data" dictionary into list of lists 

 
finalTable = data["array"].tolist() 
finalTable.insert(0, data["column header"]) 

 
 
for row in finalTable: 
    writer.writerow(row) 
outfile.close() 
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Appendix E 

Creating data set with voxel locations 

""" 

05.2021 

 

Program for making a file that contains the location/voxel for concept 

combinations and their score 

Note: csv tables have to be symmetrical at the diagonal and only the first 

row should contain labels (no column) 

Voxeltable has to consist of 2 rows, header with labels and second row with 

voxels 

 

The program sorts concept combinations into 2 lists based on if their 

locations are the same or not. Concept names, 

voxels and scores are collected. 

Additionally a list is created that denotes each combination with either 0 

or 1 and their respective jaccard score. 

This is done to be able to use the data in spss. 

 

 

Author: Pia Elsasser 

""" 

 

import csv 

import itertools as itt 

import matplotlib.pyplot as plt 

 

 

### read csv data into a table(list of lists) and change values from type 

string to float 

 

def csv_to_lists(filename): 

    infile = csv.reader(open(filename)) 

    table = [] 

    for row in infile: 

        table.append(row) 

    for r in range(1, len(table)): 

        for c in range(len(table[0])): 

            table[r][c] = float(table[r][c]) 

    return table 

 

 

filename_concepts = "#VoxelDecimal.csv" 

filename_subjects = "#VoxelSubjectTable.csv" 

filename_voxel = "#CardSortVoxelTable.csv" 

tableRaw = csv_to_lists(filename_concepts) 

subjectTable = csv_to_lists(filename_subjects) 

voxelList = [] 

 

# read voxelTable and keep type string 

infile = csv.reader(open(filename_voxel)) 

for row in infile: 

    voxelList.append(row) 

 

 

sameList = [[],[],[]]       # collect concept combinations with same 

location and their scores 

diffList = [[],[],[]]       # collect concept combinations with differing 

locations and their scores 
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voxelCategory = [[],[]]     # notes either a 1 or 0 if combinations have 

the same location or not, also collects scores 

                            # -> can later be used for a dataset in spss 

 

conceptCategory = [] 

 

betweenVonlyCategory = [] 

 

betweenVinterCategory = [] 

 

 

### sort combinations into the respective list 

 

index1 = 0    # counter used as index for first concept, avoids instances 

where a concept is missed because it appears 

              # more than once in voxelList (but with different location) 

 

# iterate through concepts in voxelList 

for concept in voxelList[0]: 

 

    index2 = 0 # counter used as index for second concept, resets every 

loop 

 

    cVoxel = voxelList[1][index1] # get voxel of first concept 

 

    # iterate again through concepts to get scores, with each new loop skip 

already covered concepts 

    for secConcept in voxelList[0][index1:]: 

        cVoxelSec = voxelList[1][index1:][index2]  # get voxel of second 

concept 

        #nParticipants = 41 

        nParticipants = subjectTable[subjectTable[0].index(concept.lower()) 

+ 1][ 

               subjectTable[0].index(secConcept.lower())]   # number of 

subjects for concept combination 

        cellBoth = tableRaw[tableRaw[0].index(concept.lower()) + 1][ 

                tableRaw[0].index(secConcept.lower())]  # cell in table 

with score between 2 concepts 

 

        if nParticipants != 0:   # only use real scores, subject number 

above 0 

 

            if concept.lower() != secConcept.lower():  # skip concept 

paired with itself, e.g apple-apple 

 

                if cVoxel == cVoxelSec:   # if voxel locations are the same 

append concepts to sameList 

 

                    sameList[0].append(concept + "-" + secConcept) # 

concepts names 

                    sameList[1].append(voxelList[1][index1])       # voxel 

                    sameList[2].append(cellBoth)                   # 

jaccard score 

 

                    voxelCategory[0].append(1)                     # note a 

1 if the location is the same 

                    voxelCategory[1].append(cellBoth)              # 

jaccard score 

                    conceptCategory.append(voxelList[2][index1])   # add 

category name 
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                else:    # if voxel locations are different append concepts 

to diffList 

 

                    diffList[0].append(concept + "-" + secConcept) 

                    diffList[1].append(voxelList[1][index1]+ "-" + 

voxelList[1][index1:][index2]) 

                    diffList[2].append(cellBoth) 

 

                    voxelCategory[0].append(0)                     # note a 

0 if location is different 

                    voxelCategory[1].append(cellBoth) 

 

                    if voxelList[2][index1] == 

voxelList[2][index1:][index2]:  # if word category is the same 

                        conceptCategory.append(voxelList[2][index1])           

# add category name 

                        betweenVonlyCategory.append(cellBoth) 

                    else: 

                        conceptCategory.append(0)                              

# add 0 if categories are different 

                        betweenVinterCategory.append(cellBoth) 

 

        index2 += 1 

    index1 += 1 

 

 

 

 

### write data into new csv file 

 

outfile = open("VoxelLocationDataExtra2.csv", "w", newline='') 

writer = csv.writer(outfile) 

header = ["CSameLocation", "SVoxel", "SJaccardScore", "CDifferentLocation", 

          "DVoxel", "DJaccardScore", "Category", "allScores", "Group", 

"betweenVonlyCategory", "betweenVinterCategory"] 

 

writer.writerow(header) 

 

# zip lists so that they appear as columns in the csv file 

rows = itt.zip_longest(sameList[0], sameList[1], sameList[2], diffList[0], 

                       diffList[1], diffList[2], voxelCategory[0], 

voxelCategory[1], conceptCategory, 

                       betweenVonlyCategory, betweenVinterCategory) 

 

for row in rows: 

    writer.writerow(row) 

 

outfile.close() 
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Appendix F 

Calculating the distance function 

 

""" 
Created 29-3-2021 

 
Program for calculating distance function on card sorting data  

Distance function: d(a, b) = -log(x) 
NB: log(x) = ln(x) 
x = relative (weigthed) Jaccard score for (a, b) 
Zero Jaccard score for (a, b): 
Real zero scores:  
d(a, b) = -2*log(0.0001) 

 
Default zero score (no data available): 
Ignore d(a, b) 
""" 

 
import numpy as np 
import pprint 

 
 
N = 343  # number of words in card sorting 

 
DM = np.zeros((N,N))               # distance between items in card sorting 

 
Result = [] # list that collects results 

 
# read cardsorting data 
data = np.genfromtxt('#ConceptMastertableDecimal.csv', delimiter = ",")     

# read data file 
data = np.asarray(data[1:])     # only use jaccard scores, ignore first row 

with concepts 
card_sort = data.copy() 

 
subjectData = np.genfromtxt('#SubjectTable.csv', delimiter = ",")     # 

read subject data file 
subjectData = np.asarray(subjectData[1:]) 
subjects = subjectData.copy() 

 
# Real zero distance (a, b) = 0: 
D_zero  = -2*np.log(0.0001)        # Value distance if  x = 0 

 
 
# Distance based on: -ln(x)  with x = relative score card sorting, 
# check if score is real (based on an actual jaccard score) 
# If not: mark distance (a, b) in DM. E.g. DM(a, b) = - 1. These scores can 

be ignored later on  
for i in range(N): 
    for j in range(N): 
        if subjects[i, j]== 0:  # indicates no data for the word 

combination 
            DM[i,j] = -1 
        elif card_sort[i, j]== 0:  # actual jaccard score of 0 in the table 
            DM[i,j] = D_zero 
        else: 
            DM[i,j] = -np.log(card_sort[i, j]) 
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# Search for violations of rule d(a,b) <=  d(a,c) + d(c,b) 
# Needs adapting: use only real jaccard scores for all three distances 

(none of them = -1) 

 
Distance = 0.0 
Sum = 0.0 
Score = 0  
Count = 0 

 
 
for i in range(N-1): 
    k = i + 1 
    for j in range(N): 
        if j < k:            #DM is symmetrical. Search in lower triangle 

of matrix 
            Distance = DM[k,j] 
            if Distance == -1:   # a score of -1 is not used 
                continue 

 
            for p in range(N): 
                if DM[k,p] == -1 or DM[p,j] == -1:  # a score of -1 is not 

used 
                    continue 

 
                if p!=k and p!=j: 
                    Count = Count + 1 
                    Sum = DM[k,p] + DM[p,j] 

 
                    if Distance > Sum: 
                        Result.append([]) 
                        Result[Score].append(k) 
                        Result[Score].append(j) 
                        Result[Score].append(p) 
                        Result[Score].append(DM[k,j]) 
                        Result[Score].append(DM[k,p]) 
                        Result[Score].append(DM[p,j]) 
                        Result[Score].append(Sum) 
                        Result[Score].append(Distance - Sum) 
                        Score = Score + 1 

 
 
outfile = open('Distance violations.txt', 'w') 

 
outfile.write(" %6s "  % "a") 
outfile.write(" %6s "  % "b") 
outfile.write(" %6s "  % "c") 
outfile.write(" %12s "  % " d(a,b)") 
outfile.write(" %12s "  % " d(a,c)") 
outfile.write(" %12s "  % " d(c,b)") 
outfile.write(" %19s "  % " d(a,c) + d(c,b)") 
outfile.write(" %28s "  % " d(a,b) - (d(a,c) + d(c,b))") 
outfile.write("\n" * 2) 

 
 
for i in range(Score): 
    outfile.write(' %6d '  % Result[i][0]) 
    outfile.write(' %6d '  % Result[i][1]) 
    outfile.write(' %6d '  % Result[i][2]) 
    outfile.write(' %12.4f '  % Result[i][3]) 
    outfile.write(' %12.4f '  % Result[i][4]) 
    outfile.write(' %12.4f '  % Result[i][5]) 
    outfile.write(' %14.4f '  % Result[i][6]) 
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    outfile.write(' %22.4f '  % Result[i][7]) 
    outfile.write('\n') 

 
outfile.close() 

 

 

 

 

Appendix G 

Informed Consent Form 

 

Informed Consent 

  

Dear participant, 

 

This study aims to gain information about how concepts and conceptual spaces are learned. 

Therefore, it involves a card sorting task in which you will sort different words into groups. 

This will take about 10-20 minutes. You can withdraw at any time. 

  

If you have any questions or concerns about this study, you can contact me at 

p.l.elsasser@student.utwente.nl 

  

All data is kept anonymously and personal information will not be passed on to third parties 

under any condition. Under no circumstances will any personal data or identifying 

information be included in the report of this research. Nobody, except the researcher and the 

supervisor will have access to the anonymized data in its entirety. Participation in this study is 

voluntarily and you can withdraw at any time. This research project has been reviewed and 

approved by the BMS Ethics Committee. 
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Appendix H 

Concept List 

Table Voxel Selection 

 

Nr Words Category Voxel Brain area Reliability 

1 loudly mental  [22,20,42] right, prefrontal cortex Good, very reliable  

2 laughing mental [22,20,42] right, prefrontal cortex Good, very reliable 

3 calmly mental [22,20,42] right, prefrontal cortex Good, very reliable  

4 startled mental  [22,20,42] right, prefrontal cortex Good, very reliable  

5 doubtful mental [15,32,75]  Left ventrolateral 

frontal cortex 

Good, very reliable 

6 understood Mental [15,32,75]  Left ventrolateral 

frontal cortex 

Good, very reliable 

7 reasons Mental [15,32,75]  Left ventrolateral 

frontal cortex 

Good, very reliable 

8 lack Mental [15,32,75]  Left ventrolateral 

frontal cortex 

Good, very reliable 

9 refused  social [15,80,27] right, parietal cortex Good, very reliable  

10 died social [15,80,27] right, parietal cortex Good, very reliable 

11 parent social [15,80,27] right, parietal cortex Good, very reliable  

12 attend social [15,86,67] Left occipital lobe Excellent, 

extremely reliable 

13 home social [15,86,67] Left occipital lobe Excellent, 

extremely reliable 

14 visit social [15,86,67] Left occipital lobe Excellent, 

extremely reliable 

15 Halfway Outdoor [18,82,57] Left occipital lobe Good, very reliable 
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16 Moonlight Outdoor [18,82,57] Left occipital lobe Good, very reliable 

17 Scenery Outdoor [18,82,57] Left occipital lobe Good, very reliable 

18 clouds outdoor [15,17,29] right, prefrontal cortex Good, very reliable  

19 waves outdoor [15,17,29] right, prefrontal cortex Good, very reliable 

20 drifting outdoor [15,17,29] right, prefrontal cortex Good, very reliable  

21 suffering violence [9,49,21] Right temporal lobe Good, very reliable 

22 tortured violence [9,49,21] Right temporal lobe Good, very reliable 

23 cured violence [9,49,21] Right temporal lobe Good, very reliable 

24 Innocent  violence [24,25,54] Frontal lobe, left Good, very reliable 

25 Contempt  violence [24,25,54]  Frontal lobe, left Good, very reliable 

26 Harm  violence [24,25,54]  Frontal lobe, left Good, very reliable 

27 grip tactile [19, 67, 77]  LH Excellent 

28 limbs tactile [19, 67, 77]  LH Excellent 

29 thinner tactile [19, 67, 77]  LH Excellent 

30 technique tactile [19, 67, 77]  LH Excellent 

31 blades tactile [19, 67, 77]  LH Excellent 

32 smooth tactile [21,67,25]  right, parietal cortex Good, very reliable 

33 soft tactile [21,67,25] right, parietal cortex Good, very reliable 

34 shapes tactile [21,67,25] right, parietal cortex Good, very reliable 

35 melting Tactile [21,67,25] right, parietal cortex Good, very reliable 

36 solid tactile [21,67,25] right, parietal cortex Good, very reliable 

37 days Time [6,41,23] RH, temporal lobe Good, very reliable 

38 next Time [6,41,23] RH, temporal lobe Good, very reliable 

39 weekend Time [6,41,23] RH, temporal lobe Good, very reliable 
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40 hours Time [6,41,23] RH, temporal lobe Good, very reliable 

41 trip Time [6,41,23] RH, temporal lobe Good, very reliable 

42 Apartment Time [15, 75, 44] RH Excellent 

43 Home Time [15, 75, 44]  RH Excellent 

44 Hotel Time [15, 75, 44]  RH Excellent 

45 Rented Time [15, 75, 44]  RH Excellent 

46 school Time [15, 75, 44]  RH Excellent 

 
 

 

 

Appendix I 

R Script for Vector Analysis of Clusters 

 

# R script to generate a heatmap 

# Call these libraries. They need to be installed as packages 

library(gplots) 

library(RColorBrewer) 

 

# Read the data file  

data <- read.csv("path/filename") 

 

# Transform data in numerical format 

mat_data <- data.matrix(data[,1:ncol(data)]) 

 

# Define colors of heatmap: red for high numbers 

my_palette <- colorRampPalette(c("yellow","red"))(n = 393) 

 

# Call heatmap function (from gplots), with these arguments 

# See:  

https://www.rdocumentation.org/packages/gplots/versions/3.0.1/topics/heatmap.2 

# Note: argument 'main=' gives name of plot 

heatmap.2(mat_data, col = my_palette, density.info="none", trace="none", revC = TRUE, 

main="Name") 

 

https://www.rdocumentation.org/packages/gplots/versions/3.0.1/topics/heatmap.2

