
1

Comparing communication network topologies for
low power microcontrollers

Dennis Matena
s2163047

d.h.matena@student.utwente.nl

Abstract—This research discusses the design and evaluation
of two communication network topologies, in which the ESP32
microcontroller is used as a network node. These networks are de-
signed to create a communication system across multiple Electric
Vehicle (EV) charging stations. The investigated topologies are
the hierarchical network and the mesh network. These network
topologies are evaluated on multiple aspects: the hardware usage
(RAM and Flash storage), the time needed for a node to send
data, the time needed for an entire send and receive cycle and
the effects of the network size on those timings.
The hierarchical network is faster with sending data than the
mesh network and the hierarchical uses less RAM as well, but
the mesh network is more suitable for the communication system,
because of network robustness.

Keywords— Microcontroller, Hierarchical Network, Mesh Net-
work, Smart Grid

I. INTRODUCTION

Sustainable energy is becoming the standard nowadays. Whereas
30 years ago, fossil fuels were being used for almost all of the
production of electricity, more and more households are being
powered by solar energy and other sustainable means. Not only the
production of electricity is becoming more sustainable, cars are also
switching to more environmentally friendly ways. While cars used
to solely drive on diesel and petrol, numerous cars are nowadays
being powered by electricity.
The main issue with the increase of electric cars, is that they need
to be charged often. Many cars are being charged after a working
day of the driver. As a working day ends around the same time for
most people, they all plug their car into the electrical grid around
the same time. This causes the problem of peak power usage around
that time and barely any power usage later in the night, when the
car battery has been fully charged. The current electrical grid is not
able to cope with the influx of electric vehicles[4].
A solution to this problem is by performing smart measurements to
control the charging behavior. This has been implemented by using
energy efficient microcontrollers[1], which is able to distribute the
power load over the course of the night. Now that chargers are able
to calculate their individual ideal power distribution, the next step is
to get multiple chargers to communicate with each other and create
a (stable) network. This way, they are able to send their data to the
other chargers, and thus create the best charging pattern for all the
chargers. This leads to the following question:
RQ: Which network topology delivers the best network stability,
while maintaining high data throughput for smart Electric Vehicle
(EV) charging?

To better understand the problem and to start working towards
a solution, background info is provided in Section II. After the
background information, multiple suitable communication networks
for this problem are described in Section III. After an explanation of
the networks, their implementation of the algorithm are explained in
Section IV, as well as the hardware and software utilized in Section
V. The benchmark methods are described in Section V and the results

of those benchmarks in Section VII. The results are followed by the
conclusion in Section VIII and future work in Section IX.

II. BACKGROUND

Gerards et al. [6] describe a way to perform energy managment
using profile steering efficiently. They first present drawbacks of
using energy prices as steering signals. They conclude that using
price steering can cause problems in power quality and a loss in
efficiency.
After price steering, they proposed to use flat power profiles instead
of energy prices and compare the flat power profiles to price steering
and uniform pricing. The flat power profiles resulted in a better
power quality and lower distribution losses. When comparing to
uniform pricing, it resulted in a reduction of distribution losses of
48%.

Böhmer [1] developed an algorithm which only uses a single core
of the ESP32 microcontroller to determine the most efficient power
planning for an EV charger. The algorithm uses measurements
from set intervals, after which it will calculate when it is best to
turn on the charger and to set the power level of the charger. [1]
also concludes that the ESP32 microprocessor is better than the
ESP32-S2 and ESP8266 counterparts, in terms of speed of the
algorithm.

Hoogsteen et al. [4] present a stress test to test if the current
electrical grid can cope with the expected power usage in 2025.
The simulated this by stress testing the electrical grid in Lochem.
They came to the conclusion that the current electrical grid cannot
cope with the estimated usage in 2025 without measures, such as
Demand Side Management (DSM).

III. NETWORKS

This section covers the operation method of the communication
network topologies used to discover the solution of the research
question. Two different types of networks are used and evaluated.
These networks are the hierarchical network and the mesh network.

A. Hierarchical Network

A hierarchical network consists of a coordinator node and one
or more subnodes. These subnodes have direct contact with the
coordinator node, but they do not have contact with each other. The
weakest link within this network topology, is the coordinator node.
The coordinator node can fail or lose a link, which results in the
entire network to no longer be operational or a node which cannot
be accessed anymore. A diagram of a hierarchical network is shown
in Figure 1.



2

Figure 1. Diagram of a hierarchical network[5]

Figure 2. Diagram of a mesh network[5]

B. Mesh Network
A mesh network consists of multiple nodes which are connected to

each other, instead of to a coordinator node. This allows for any node
to fail, but still keeping the network fully operational, for example by
re-routing the messages. This in turn results in the stability of a mesh
network to be higher than the stability of a hierarchical network. A
diagram of a mesh network is shown in Figure 2.

IV. ALGORITHMS

This section describes the functionality of the algorithms for both
network topologies. The main goal of the algorithm is to have
one node sending a request, followed by the other nodes sending
a message to the node requesting data. This message is an array,
consisting of 480 float values.

A. Hierarchical network
At first, the coordinator sends a request to one of the nodes,

asking for the node to send its data. Once a subnode has received the
request, it will start sending fragments to the coordinator. Since the
amount of data in a single message is greater than the maximum size
of a single message (250 bytes, which corresponds to a maximum
of 62 float values[2]), the message needs to be fragmented into
smaller fragments. The layout of a fragment is shown in Figure 3. A
fragments consist of the following:
- A sequence number to indicate which part of the message is being
sent in that fragment.
- A variable to determine whether it is the final fragment of the entire
message.
- A flag to determine if the fragment is a request or response.
- Which node is transmitting the data.
- The length of the fragment.
- The size of the entire message.
- The message.
These fragments will be sent one by one until all the fragments have

Figure 3. fragment layout of a hierarchical network

been received. When the coordinator has received a fragment, it will
store the content in an array, which results in the final contents of the
array to be exactly the same as the contents of the total array sent
by the broadcasting subnode.

B. Mesh network
The start for sending messages works different for a mesh

network in comparison to a hierarchical network. Since there is
no coordinator node, a mechanism needs to be designed to avoid
congestion and possible loss of data. This was not mentioned in
the library used for this protocol, thus it had to be implemented
manually. This is done by having one node sending a small request.
This request is the same as a request in a hierarchical network.
Sending this request is achieved by having every node setting a
random timeout. This timeout exists to prevent a node from direct
sending of data and to allow nodes to join the network before a node
sends out a request. This results in the minimum timeout to be set to
10 seconds. The maximum timeout depends on the total amount of
nodes in the network, where 2 seconds are added to the maximum
timeout for each node in the network. For example in a network
with 4 nodes, the minimum timeout is 10 seconds and the maximum
timeout is 10 + 4 · 2 = 18 seconds. A change in the network size (a
node joining or disconnecting from the network) resets this timeout.
For instance if the node was accidentally disconnected, the node has
time to reconnect within that timeout period.
When the other nodes have received the request. They will set a
random timeout to avoid congestion. This timeout will be elaborated
further in Section VII-C2.
Once this timeout has passed for one of the nodes, it will broadcast
a single message to the other nodes, which does not yet contain
any information from the broadcasted array. This allows that
specific node to broadcast the actual message and block other nodes
from simultaneously broadcasting a message, and hence avoiding
collision.
After the initial fragment, the entire message will be fragmented
into smaller fragments. The layout of one of those fragments can be
seen in Figure 4. The only difference between a fragment in a Mesh
network versus a fragment in the hierarchical network is the size of
the array in the fragment. The motivation behind this difference is
that more bytes can be transmitted with the Painlessmesh library
than with the ESP NOW library[7].

The PainlessMesh protocol utilizes Strings to broadcast messages,
which requires the message to be transformed to a String before
broadcasting. This is done by converting the fragment into the JSON
format. After this conversion, the fragment is broadcasted to all
the other nodes in the network. At the receiving end, all nodes
which received the fragments will combine every fragment back
into one single array. If this step has been completed, one node has



3

Figure 4. fragment layout of a mesh network

Table I
SPECIFICATIONS OF THE ESP32 MICROCONTROLLER

RAM 520 KB
Flash storage 4 MB
WiFi WiFi 4(up to 150 Mbps)

successfully sent all its data and the other nodes are allowed to send
next.
Once the entire message has arrived, the nodes who have not yet
broadcasted their message will set a timeout. This is the same random
timeout as the timeout set when the nodes receive a request. The node
which just sent its message will set its timeout to the starting timeout
(between 10 seconds and 10 seconds with 2 extra seconds for each
node in the network). This is to ensure every node to be able to send
the message and refrain a single node from constantly sending the
messages.

V. TEST PLATFORM

The microcontroller used for the creation of the communication
network is the ESP32 microcontroller by Espressif [3]. The
specifications which are of interest for this research are shown in
Table I. Even though the maximum amount of RAM is 520 KB and
the maximum amount of Flash storage is 4 MB, the operable range
for the ESP32 is 320 KB RAM and 1 MB Flash storage.

For the programming environment, Visual Studio Code in collab-
oration with PlatformIO [8] has been used.

VI. EVALUATION METHOD

This section explains how both network topologies will be
evaluated to discover the best performing network. In total the
topologies will be benchmarked regarding three separate topics.

The first benchmarking method is hardware performance. This
benchmark assesses the resources used of the microcontrollers and
compares them to the maximum resources which can be allocated
to the algorithm. The focus of hardware usage monitoring is the
RAM usage and the Flash storage being used by the algorithms.
Both of these can be evaluated by the Project Inspection tool from
PlatformIO.

The second benchmarking method is algorithm performance.
With algorithm performance, the timings of the algorithm will be
evaluated. These timings consist of the time it takes for a single
fragment of data to be created and sent to the node which requested
the data as well as the time taken for all the fragments to be created
and sent.

Table II
HARDWARE BENCHMARKS

RAM Usage [KB] Flash storage [KB]
Hierarchical
Network
Coordinator

225.3 (70%) 854.6 (67%)

Hierarchical
Network
Subnode

233.2 (73%) 857.7 (67%)

Mesh
Network 253.8 (79%) 816.3 (64%)

The third and final benchmarking method is network size. This
benchmarking method is utilized to evaluate the increment of extra
time taken to get a message from every single network as the size
of the network increases. There are a total of four nodes in the test
setup, so the benchmarks were evaluated for one, two and three nodes
to send data to the requesting node.

VII. RESULTS

This section will contain all results achieved by performing the
benchmark methods, which are described in section VI.

A. Hardware performance benchmarks
The broadcasted arrays used to evaluate the hardware performance

of the algorithm are the same arrays described in section IV. In other
words, the arrays consist of 480 float values, which corresponds
to 1920 bytes. During these benchmarks, the programs are being
evaluated on both the RAM usage and the Flash storage usage. The
maximum amount of RAM available is 320 KB and the maximum
amount of Flash storage available is 1 MB. The results can be seen
in Table II. The percentages indicate how much of the maximum
available RAM/Flash storage is being utilized.

B. Algorithm performance benchmarks
The second benchmarking approach investigates the time needed

for a node to start creating a fragment of the original message and
broadcast that fragment to the other nodes (a planning iteration).

1) Hierarchical network: While testing, it came to light that
the microcontrollers could not cope with using the maximum size
of a fragment (250 bytes). Trying to utilize the full size resulted
in a lack of memory. Because of this, the amount of float values
sent in one fragment was adjusted to 40 values (160 bytes, 176
bytes in total for one fragment). This resulted in twelve fragments
being created for every message. This benchmark was performed ten
times. The timing was the same for every benchmark and concluded
to an average of 100 ms per fragment including sending and the
total time for the message came down to 1162 ms.

2) Mesh network: While testing, the same problem as with the
hierarchical network came to light, which was the limited RAM. It
was necessary to create multiple fragments of the original message.
However, since more data can be sent with the mesh network in
contrast to the hierarchical network (as is shown in Figures 3 and 4),
only six fragments need to be created for every message. This test
was performed ten times and the timing for these planning iterations
are shown in Table III.

C. Network size benchmarks
1) Hierarchical network: The third and final approach was to

test the time it takes from sending a request to all nodes in the network
one at a time, to receiving all the fragments from the nodes. The
message that needed to be sent to the coordinator is the same message
as the ones used for the other benchmarks. This test was executed
with a network size of two, three and four nodes (of which one node



4

Table III
TIMING OF FRAGMENT SENDING

Test number Average per fragment
[ms]

Total time
[ms]

1 101.6 728
2 101.0 722
3 101.1 724
4 101.0 722
5 101.0 725
6 101.0 722
7 101.8 728
8 101.6 727
9 101.8 727
10 101.1 724
Average 101.4 725

Table IV
TIMING OF THE MESSAGES FOR A HIERARCHICAL NETWORK

Test Number
Time for
one node
[ms]

Time for
two nodes
[ms]

Time for
three nodes
[ms]

Total time
[ms]

1 1171 2351 3534 3541
2 1171 2341 3509 3511
3 1181 2351 3523 3531
4 1171 2341 3509 3511
5 1171 2341 3511 3521
6 1171 2341 3516 3521
7 1171 2341 3511 3511
8 1171 2341 3511 3511
9 1171 2351 3519 3521
10 1171 2341 3509 3511
Average 1172 2344 3515.2 3519

is the coordinator, so one, two and three nodes sending data). This
test was performed ten times and the results are in table IV.

Table IV shows that the addition of multiple nodes cause a linear
increase in time. Every extra node results approximately in an extra
1.17 seconds.

2) Mesh network: As for the effects the size of the network
has on the timings of the algorithm, it behaves differently from
a hierarchical network. Since adding more nodes creates a higher
probability of at least two nodes trying to send data at the exact
same time, thus causing congestion. Congestion can lead to collision
and a loss of data. To avoid congestion, the range of the timeout
needs to be increased along the network size. These benchmarks
start without any timeout (the nodes start sending when a request has
been received). This resulted in constant congestion and loss of data.
After this initial test, multiple intervals were being benchmarked.
When a node received a request, it will set a random interval in
between 0 seconds and a variable maximum timeout. The maximum
timeout was being evaluated at 1 second, 1.5 seconds and 2 seconds
extra for each node in the network. For each of these different
timeouts, 20 benchmarks were performed. During these benchmarks,
both the amount of congestion cases and the time taken were
analysed. Results for timeouts for these three maximum timeouts
are shown in Figures 5, 6 and 7.

For a timeout in range of 0 and 1 second, a total of 6 congestion
cases occurred during 20 tests, which results in a probability of 0.3
for congestion to occur during transmission.
For a timeout in range of 0 and 1.5 seconds, a total of 4 congestion
cases occurred during 20 tests, which results in a probability of 0.2
for congestion to occur during transmission.
As for a timeout in range of 0 and 2 seconds, a total of 1 congestion
case occurred during 20 tests, which resulted in a probability of
0.05 for congestion to occur.
Based on these results, the best timeout to avoid congestion as much
as possible and still keep the time it takes for the nodes to send

Figure 5. Timing of the messages for the mesh network for one node.

Figure 6. Timing of the messages for the mesh network for two nodes.

their messages at a minimum, comes down to a timeout in range of
0 and 2 seconds added for every node in the network.

During the benchmarking of the network size, benchmarks were
also performed regarding a node malfunction. This resulted in the rest
of the network to still be fully operational. The node which failed
did not have any effect on this result.

With these benchmarks, the minimum, maximum and average
values have been calculated. They are shown in Table V.

Table V shows that on average, the time added for each new
node in the network consists of the amount of nodes in a network,
multiplied with the maximum timeout value.

VIII. CONCLUSION

Both the hierarchical network and the mesh network can be utilized
to create a stable communication network for smart EV charging.
However, the communication network topology with the highest
stability, is the mesh network. Since there is no coordinator node, any
node in the network can fail, but it will still be able to successfully
broadcast messages in between other nodes. This adds an extra layer
of robustness to the network in contrary to a hierarchical network.
If the coordinator node fails in the hierarchical network, there is no
method to get the other nodes to communicate with each other, thus



5

Figure 7. Timing of the messages for the mesh network for three nodes.

Table V
MINIMUM, MAXIMUM AND AVERAGE TIMINGS FOR THE MESH NETWORK

MIN [ms] MAX [ms] AVG [ms]
1 node
1 sec 2572 5672 3698
1.5 sec 2580 7413 4285
2 sec 2413 7930 4344
2 nodes
1 sec 3016 9208 6980
1.5 sec 3940 13778 8207
2 sec 5646 14804 10335
3 nodes
1 sec 5428 15151 10919
1.5 sec 7422 17335 12615
2 sec 11054 22659 16783

rendering the network unusable. There are two drawbacks of the mesh
network. First of all, the time it takes for all the nodes to send data
is larger than the time it takes for all the nodes to send its data in a
hierarchical network. Furthermore, it also uses more RAM. Despite
these shortcomings, the mesh network is more suited for a stable
communication network between multiple EV chargers, because of
the extra robustness.

IX. FUTURE WORK

Even though the mesh network topology outperforms the hierarch-
ical network topology in robustness, every node added to the network
adds more time to a communication cycle. Some further research can
be done to evaluate a mesh network with a more nodes and observe
the amount of congestion in the network.
Furthermore, both algorithms can still be improved. For example with
loss of data. If a packet gets delivered to the node which sent the
request, it can send an acknowledgment back to show that it has
received the data.
Lastly, the network topologies have only been implemented and
evaluated in a theoretical setup. Therefore, the algorithm still needs
to be evaluated at actual EV chargers.

REFERENCES

[1] Kevin Böhmer. “Model predictive control for electric
vehicle charging using low power microcontrollers”. Uni-
versity of Twente, 2021.

[2] ESP-NOW User Guide. Available at https : / / www .
espressif.com/en/products/software/esp-now/resources.
Espressif Systems. 2016.

[3] ESP32 Series Datasheet. Available at https : / / www .
espressif .com/sites/default /files/documentation/esp32
datasheet en.pdf. Espressif Systems. 2021.

[4] G. Hoogsteen, A. Molderink, J.L. Hurink, G.J.M.
Smit, B. Kootstra and F. Schuring. “Charging electric
vehicles, baking pizzas, and melting a fuse in Lochem”.
In: CIRED: Open Access Proceedings Journal. 2017,
pp. 1629–1633. DOI: 10.1049/oap-cired.2017.0340.

[5] Abhishek Jain. Network Topologies (Its types, Ad-
vantages and Disadvantages). 2017. URL: https : / /
www. includehelp . com / computer - networks / network -
topologies-its-types-advantages-and-disadvantages.aspx
(visited on 28/01/2022).

[6] M.E.T. Gerards, H.A. Toersche, G. Hoogsteen, T. van
der Klauw, J.L. Hurink and G.J.M. Smit. “Demand
side management using profile steering”. In: 2015 IEEE
Eindhoven PowerTech. 2015, pp. 1–6. DOI: 10.1109/PTC.
2015.7232328.

[7] PainlessMesh library. https://gitlab.com/painlessMesh/
painlessMesh.

[8] PlatformIO. Professional collaborative platform for em-
bedded development. 2014. URL: https://docs.platformio.
org/en/latest/ (visited on 26/01/2022).

https://www.espressif.com/en/products/software/esp-now/resources
https://www.espressif.com/en/products/software/esp-now/resources
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://doi.org/10.1049/oap-cired.2017.0340
https://www.includehelp.com/computer-networks/network-topologies-its-types-advantages-and-disadvantages.aspx
https://www.includehelp.com/computer-networks/network-topologies-its-types-advantages-and-disadvantages.aspx
https://www.includehelp.com/computer-networks/network-topologies-its-types-advantages-and-disadvantages.aspx
https://doi.org/10.1109/PTC.2015.7232328
https://doi.org/10.1109/PTC.2015.7232328
https://gitlab.com/painlessMesh/painlessMesh
https://gitlab.com/painlessMesh/painlessMesh
https://docs.platformio.org/en/latest/
https://docs.platformio.org/en/latest/

	Introduction
	Background
	Networks
	Hierarchical Network
	Mesh Network

	Algorithms
	Hierarchical network
	Mesh network

	Test Platform
	Evaluation Method
	Results
	Hardware performance benchmarks
	Algorithm performance benchmarks
	Hierarchical network
	Mesh network

	Network size benchmarks
	Hierarchical network
	Mesh network


	Conclusion
	Future Work

