
MAY 12, 2022

USING ACTIVITY
RECOGNITION TO IMPROVE
HEART RATE MONITORING
ACCURACY
FINAL PAPER

By:

Maarten Thoonen

mawthoonen@gmail.com

Faculty of Electrical Engineering, Mathematics &
Computer Science
Biomedical Signals & Systems Group
Programme: Embedded Systems

Supervised by:
Y. Wang PhD
Prof. Dr. Ir P.H. Veltink
Dr. F. R. Halfwerk
Dr. Ir. R.W. van Delden



1

Abstract—Heart rate monitoring in continuous automatic vital
signs monitoring often produces false alarms, because alarm
thresholds are static and do not take context into account.
Alarm management could be improved by taking into account
what an expected heart rate would be. This work attemps to
create a data-driven model of the heart rate reponse to various
activities. An experiment was conducted which resulted in a
dataset with 9 participants. In this experiment, participants wore
IMUs (Inertial Measurement Unit, a type of movement sensor)
and a dry electrode ECG recorder and were asked to perform
Activities of Daily Living (ADL). The dataset was used to create a
data-driven model that predicts the heart rate from the current
activity. To do so, a Support Vector Machine (SVM) classifier
with Radial Basis Function (RBF) kernel is used to perform
Human Activity Recognition (HAR). A k-NN regressor is used
to perform heart rate prediction based on the predicted activity,
activity intensity and activity duration. Five-fold cross validation
was used to evaluate system performance. The HAR classifier
had a median accuracy of 87%, with a minimum of 82% and
a maximum of 92%. The heart rate prediction algorithm had a
median absolute error of median 3.82 BPM, minimum 2.94 BPM
and maximum 4.79 BPM. This is deemed an acceptable result
for a preliminary system. Future work includes building a more
practical system to wear, creating a more general model that
does not need to be individually trained and clinical validation.

Index Terms—Human Activity Recognition, Machine Learn-
ing, Heart Rate Monitoring, Vital Signs

I. INTRODUCTION

IN CURRENT care, nurses measure a patient’s vital signs
every eight hours. Usually, at least the heart rate, blood

pressure, temperature and SpO2 are checked [1]. This takes
up a considerable portion of nurses’ time. Additionally, a
patient’s condition can worsen substantially in eight hours.
Therefore, it would be better if the vital signs are checked
more often than that, as that would allow for deteriorating
patients to be caught earlier [2], [3]. Continuous automatic
vital sign monitoring allows constant patient monitoring, so
clinical deterioration is detected on time and the required
interventions can be given earlier. An additional advantage
is that an automatic continuous vital sign monitoring system
is usually more portable than bed-side monitors, and could
therefore be more convenient in challenging areas, such as
field hospitals [4]. However, automatic continuous vital sign
monitoring has proven to be a difficult challenge [5]. Factors
like portability, patient comfort and continuous availability all
have an effect on system accuracy. Consequently, an inac-
curate system would produce false alarms, leading to ‘alarm
fatigue’—i.e., the tendency to ignore alarms when they occur
too often. Nurses ignoring alarms could have potentially lethal
consequences. Nevertheless, research suggests adaptation in
clinical care practices is likely if the incidence of false alarms
is reduced to an acceptable level [6].

To prevent false alarms, the system should deal with
problems that arise during continuous monitoring. Normally,
vital signs are only measured when a patient is at rest.
With continuous monitoring this is not necessarily always
the case, particularly because light exercise is common in
current care, as it accelerates patient recovery [7]–[9]. This
exercise leads to elevated heart rates and motion artefacts. The
system should not raise alarms due to expected higher heart

rates during exercise or due to motion artefacts. A possible
solution is to let a monitoring system take patient activity into
account. Patient activity could be automatically recognized
using Human Activity Recognition (HAR) methods.

HAR has been an active field of research for decades. The
field can be split up into three main categories: HAR using a
network of simple sensors, HAR using cameras and HAR us-
ing movement sensors. A simple sensor network works with a
number of switches and motion sensors embedded in doorways
and objects. A central system then tracks where people are in
the environment and with which objects they are interacting
[10], [11]. Computer vision can be used to detect activities
with very high precision and accuracy [12], [13]. Recent
research suggests that this is also possible with anonymized,
privacy-preserving video data [14]. Activity recognition using
accelerometers goes back a long time [15], and really took
off after Bao & Intille showed that Machine Learning could
be applied for activity recognition from accelerometer data
[16]. Since then, various research has been published trying
different techniques, sensor and settings. Some try different
Machine Learning techniques with wearable movement sen-
sors [17]–[20]. This can also be the movement sensor from a
smartphone [21], [22]. HAR has also been tried with patients,
with good results [23], [24]. Recently the focus has been on
deep learning [25], which can also be used to perform HAR on
datasets containing many different types of sensors, a practice
called sensor fusion [26]–[28].

This work focuses on improvement of heart rate monitoring
in particular. Several mechanisms influence the human heart
rate. The signals that drive the heart muscles are generated by
the sinus node in the heart. The sinus node responds directly to
chemical and mechanical stimuli, but also indirectly to a wide
range of stimuli through the sympathetic and parasympathetic
(via the vagus nerve) nervous systems [29], [30]. Those ner-
vous systems are influenced by various factors—e.g., exercise
[31], stress [32], circadian rhythm and homeostasis. Other
mechanisms that influence the heart rate are the breathing
rate through the Respiratory Sinus Arrhythmia (RSA) and the
baroreflex, which is the response of the heart rate to changes
in blood pressure.

Wearables specifically for measuring vital signs are already
on the market. Recent research indicates they are ready for
clinical use [33], [34]. However, there are some remaining
challenges in decision making. Currently, hospitals have to
manually set alarm thresholds in these systems. These thresh-
olds are static and potentially subjective. By creating a model
of the heart rate for various levels and types of activity, this
work attempts to create a system that compares a measured
heart rate with a predicted heart rate. Comparing the measured
and predicted heart rate values could assist in alarm decision
making. Because of the many factors that influence the human
heart rate, it is difficult to create a comprehensive model
that accurately predicts the heart rate corresponding to a
certain activity. Physiology-based mathematical models are
complicated, computationally intensive and model only the
heart rate in limited situations [35], [36]. Machine Learning
could aid in overcoming these limitations [37]. Therefore,
this work leverages Machine Learning to create a data-driven
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model.

II. METHOD

A. Experiment

The experiment was ethically approved by the Ethics Com-
mittee Computer & Information Science of the University
of Twente (reference number RP 2021-188). Based on prior
experience and comparable literature [38]–[48], 14 participants
were included. All participants are assigned a random integer
number to differentiate between them in the Results section.
To exclude any effects from adverse health, only healthy
participants were considered. All participants were recruited
from around the University of Twente.

The experiment was conducted in the eHealth House. This is
a lab at the University of Twente that resembles natural living
conditions. Facilities include a living room, kitchen, bedroom
and bathroom. In the bedroom are a chair, double bed and a
closet. The living room and kitchen are one large room, where
a seating area for lounging, a kitchen table with chairs and a
large kitchen counter can be found. There is also a control
room that is raised approximately 1 meter above the floor of
the rest of the lab, reachable by stairs. The lab is equipped with
cameras and microphones to monitor and record experiments.
Monitoring can be done through a web interface or from
the control room. Additionally, there is a microphone in the
control room to talk to experiment participants. Therefore,
the researcher does not need to be in the same room as the
participants. This is useful to avoid artificial influences and
during the COVID-19 pandemic to prevent contamination. A
floorplan of the lab can be found in Fig. 1. The bathroom and
briefing/debriefing room are not used during the experiment.

Six main activity classes were considered: standing, sitting,
lying, walking, walking up or down stairs and cycling. These
activities were based on comparable literature [20], [23] and
movements cardiac patients perform on the postoperative
ward in a hospital1. The experiment was split up into three
main parts: controlled, free and cycling. The controlled part
consisted of standing, sitting, lying and walking in a controlled
manner, at a fixed location and for a known length of time.
Walking was done at three different speeds: slow, normal
and fast. The exact speed was open for interpretation by
the experiment participant, so he or she walked in a natural
rhythm. The path was chosen to be as long as possible, and
is indicated in Fig. 1 by the dotted line with arrows. Its total
length is approximately 12 meters. Participants were instructed
to sit on the edge of the bed or on a chair and to lie in a supine
position, as lying prone or on the side might have interfered
with the sensors.

During the free part of the experiment, participants were
given a more general task, like ‘make a cup of tea’ or ‘fetch
an object from another room’. Participants were also instructed
to walk up and down the stairs to the control room at three
different speeds: slow, normal and fast. Again, the participants
chose the exact speed.

1The author spend a morning with the physiotherapists at the postoperative
ward of the Thorax Centrum Twente, the cardiology center of the Medisch
Spectrum Twente hospital in Enschede, The Netherlands.

Figure 1. Floorplan of the eHealth House. In the bedroom are a chair, a
closet and a double bed. In the living room is a seating area with a low
table, couch and comfortable chair. The kitchen has a dinner table with four
chairs and a long kitchen counter. The briefing/debriefing room has a large
meeting table. In the bathroom is a shower, sink and toilet. The control room
has equipment for monitoring the experiment. The dotted line with arrows
indicates the walking path during the experiment. This image is modified
version of the floor map received from the eHealth House contact person,
with permission.

The experiment was ended by 10 minutes of cycling. The
cycling consisted of three parts: three minutes of warming
up at a moderate intensity, six minutes of cycling at a high
power level and one minute of cooling down at a low power
level. The exact intensity (power level in watt of the bicycle)
of each part was different for each participant. Initial power
levels and the heart rate target are based on the American
College of Sports Medicine’s Guidelines for Exercise Testing
and Prescription [49]. Those guidelines specify initial power
levels based on gender and physical condition. A heart rate of
140 BPM was the target for the high power part. Participants
cycled at a cadence of 50 rpm (rotation per minute). The
researcher monitored the heart rate during cycling and adjusted
the power level accordingly. After cycling, participants filled
in a short survey while seated. Therefore, activities such as
sitting, standing and walking also occur during this part. The
questions of the survey were the participant’s age, length and
weight, how often they exercise, whether they think anything
affected their heart rate, whether they think anything affected
their movements and any other remarks. The experiment
protocol was based on Activities of Daily Living (ADL),
similar studies [50] and activities physiotherapists use in a
hospital setting. The complete experiment protocol can be
found in Appendix A.

We applied five IMUs (Intertial Measurement Units) for
physical activity recognition and one ECG (electrocardiogram)
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Figure 2. Photo of the Zephyr BioHarnass and five Xsens IMUs (circled in
red) as worn during the experiment. The resolution of this figure is low, as it
was taken from a video recording. This participant is left-handed.

sensor as the gold standard test for heart rate detection.
The IMUs are of the type Xsens MTw Awinda [51]. These
measure linear acceleration (in m/s2) in three directions and
rotational velocity (in °/s) in three directions. Data collection
was done wirelessly using a base station connected to a
laptop computer. A Zephyr BioHarness [52] was used for ECG
recording. This device records a one-lead ECG at 250 Hz using
dry electrodes, which are more comfortable for participants
than normal ECG electrodes. ECG data collection was done
wirelessly with a Bluetooth connection to a laptop computer.
The sensor positions were chosen based on positions that
yielded high accuracies in literature [20] (chest, upper arm
and upper leg) and positions that are convenient for wearables
(lower arm/wrist and the hip, as devices can be attached to a
belt [53]). The five IMUs were attached to the chest, upper
arm, lower arm, hip and upper leg. The arm sensors were
attached to the participants’ dominant arm, and the leg sensor
to the right leg. The hip sensor was attached to the side of
the hip on the same side as the upper leg sensor. A photo
of all sensors attached to an experiment participant can be
found in Fig. 2. This participant is left-handed, a right-handed
participant would have a mirrored setup for the arm sensors.

B. Data annotation

The data was labelled by the researcher by watching back
the recordings of the experiment using a custom labelling
application. A short explanation of this application can be
found in Appendix B. All labels were synchronized to both the
IMU and ECG data by careful visual inspection of the ECG
and IMU data for recognizable movement influence on the
data and finding the corresponding activity label. Most labels
were based on the video recording, but for walking stairs the
audio recording was used, as this activity occurred outside of
view from the cameras. The data was split into blocks of five
seconds each and each block had an overlap of 50% with the
previous block. This window was chosen as a tradeoff between
activity length and the rate at which the heart rate changes. The

Figure 3. Workflow diagram of the data processing pipeline. ML = Machine
Learning, ECG = electrocardiography, HR = Heart Rate, HAR = Human
Activity Recognition.

50% overlap ensured there was enough resolution to consider
short activities, whereas the window length of five seconds
ensured there were enough heart beats to calculate a BPM
value from. Each data block was assigned a label based on the
activity label that corresponded to the data in the middle of
the data block. For cases where many short activities followed
each other, we made the assumption that the activity in the
middle of the data block is most relevant for the entire data
block.

C. Data processing & Analysis

All data analysis was done in Python, using the Pandas [54],
[55], SciPy [56] and NumPy [57] packages. A full overview
of the data processing pipeline can be found in Fig. 3. The
following sections elaborate on this pipeline.

1) IMU data: In case there were missing values in the IMU
data due to connection issues, they were filled in using linear
interpolation. Feature selection was done by reasoning what
the expected signals were. When an experiment participant
is stationary, all accelerometers have a constant acceleration
due to gravity and all gyroscopes have a constant velocity of
0. When the participant is moving, the accelerometer signals
change due to shifting positions and the gyroscopes respond
in a certain way. A summary of how each sensor responds to
each activity can be found in Appendix D. The conclusion of
the analysis was that 24 features are sufficient to distinguish
between all activities. All features can be found in Table I.
These come from the chest sensor and either the upper leg or
the hip sensor. Each sensor has six signals: linear acceleration
in the x-, y- and z-axis (Acc X, Y and Z in the table) and
rotational velocity around the x-, y- and z-axis (Gyr X, Y and
Z in the table). Both the average value of and the variation in
the signals were necessary to describe all activities, as both
average position values due to gravity and dynamics resulting
from activity have to be considered. Therefore, for each signal
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Table I
OUTLINE OF THE IMU DATA FEATURES.

Sensor Signal Features

Chest Acc X Mean, Standard Deviation
Acc Y Mean, Standard Deviation
Acc Z Mean, Standard Deviation
Gyr X Mean, Standard Deviation
Gyr Y Mean, Standard Deviation
Gyr Z Mean, Standard Deviation

Upper leg Acc X Mean, Standard Deviation
or Hip Acc Y Mean, Standard Deviation

Acc Z Mean, Standard Deviation
Gyr X Mean, Standard Deviation
Gyr Y Mean, Standard Deviation
Gyr Z Mean, Standard Deviation

Acc X, Y, Z = accelerometer signal in the
x, y and z axes.
Gyr X, Y, Z = gyroscope signal around the
x, y and z axes.

the mean and standard deviation were calculated. All features
were normalized to have zero mean and unit variance as this
is required for many machine learning estimators from SciKit-
Learn [58].

2) ECG data: For heart rate detection, the R peak of the
QRS complexes in the ECG signal was used as the fiducial
point for beat detection. The detection algorithm is based on
the paper by Pan & Tompkins [59]. The original algorithm
was modified in several ways to better fit the needs of this
research, the signal from the BioHarness and to take advantage
of modern hard- and software. The algorithm was verified with
the MIT-BIH Arrhythmia Database [60] and the European ST-
T database [61].

The first change compared to the original algorithm is the
band pass filter. It has a different passband and is implemented
in a different way, to better fit the noise characteristics of
the ECG signal from the BioHarness and because modern
hardware allows for better filters. The ECG signal was band
pass filtered using an Infinite Impulse Responds (IIR) filter
consisting of three second order filter sections. The passband
ranged from 15 Hz to 30 Hz. This allowed the R peaks to
pass, while movement artifacts and power line noise were
removed. Then, the difference between all samples was taken
and the resulting signal was squared. These steps ensure all
peaks are positive and the sharp R peak slopes are emphasized.
A moving average filter over 25 samples was then employed
to ensure that the rising and falling edges of the R peak are
combined into one large peak. The original moving average
filter is 30 samples long, but a 25-sample filter improved
noise rejection performance based on visual inspection. Longer
windows caused R peaks to merge with noise peaks, which
caused the time at which the beat was detected to shift. The
signal was capped to a maximum value, as larger values are
always caused by artifacts and those outliers unjustly modified
the detector thresholds.

Noisy sections of the ECG signal were identified by count-
ing all peaks of a certain prominence within a 1-second

interval. By visual inspection of the raw and preprocessed
ECG signals, it was determined that if the preprocessed signal
contained more than five peaks per second, that section of
the signal corresponds to a noisy ECG that is not suitable for
beat detection. This peak counter was not in the original Pan-
Tompkins algorithm, but is an addition used for this work.

The detector works by first checking if a certain sample
is a peak—i.e., the sample is a local maximum. If that was
the case, it was checked whether that peak is above a certain
threshold and if the last R peak is a realistic amount of time
in the past (one fifth of the average of the last five R-R peak
distances, or 0.3 seconds for very high heart rates, as the
maximum heart rate was assumed to be 200 BPM). If those
conditions were met, the peak was labelled as an R peak. If the
peak was not above the R peak threshold, but the last detected
R peak was more than 1.4 times the average of the last five
R-R peak distances in the past, a lower threshold was used
to check whether peaks are R peaks. Some thresholds were
different than the original Pan-Tompkins algorithm, but they
were verified with the MIT-BIH Arrhythmia Database and the
European ST-T database. When a peak was classified as an
R peak, the detector thresholds were updated. If a peak was
classified as not an R peak, it was classified as a noise peak and
the noise threshold was updated accordingly. By continuously
updating those thresholds, the algorithm adapts to the ECG
signal. BPM values were calculated for every detected R peak.
The BPM value corresponding to a certain R peak was defined
as the average of the last eight R-R peak distances. In case
there were noisy sections causing R peaks to be missed, the
average BPM values of the sections before and after the noisy
section were used to interpolate BPM values for the noisy
section.

D. Machine Learning

Machine learning was applied for two parts of this research:
HAR and heart rate prediction. The Python package SciKit-
Learn [62] was used to implement the machine learning
algorithms. Five-fold cross validation was used to verify all
machine learning algorithms. This means five different splits
of the data into 80% training data and 20% testing data were
created. All performance scores are the average score for the
five different splits. This meant a separate validation dataset
was unnecessary. This validation strategy was chosen as it
is often used for datasets of this size in combination with
classical machine learning methods.

1) Human Activity Recognition: The data was split into
a training set and a testing set using a stratified five-fold
splitter with shuffling enabled. Using a stratified split ensured
that each activity class is represented equally in all subsets.
Enabling shuffling ensured that not only consecutive samples
were in each subset, which means all subsets contain data from
the controlled, free and cycling parts of the experiment. Ac-
tivity recognition was attempted for all participants separately,
creating individual classifiers, and with the data aggregated
from all participants, resulting in a general classifier. From
a literature search it was concluded that a Support Vector
Machine (SVM) or a k-Nearest Neighbors (k-NN) classifier
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is most suitable for HAR using IMU signals [17]–[22], [24],
in particular as there are no computing resource constraints
for this exploratory study. From initial testing it became clear
the SVM performed better on this dataset, so this classifier
was optimized.

An SVM gives the best performance if the dataset is linearly
separable. This means that sets of samples are separable by
a hyperplane. In the case of a two-dimensional dataset with
two sample classes, that means a straight line can be drawn
between the two groups of samples in a graph depicting that
dataset. The input samples for the classifier were the 24 IMU
features as explained in Section II-C1, and both the hip and
the upper leg sensor were tried. This dataset was initially
not linearly separable, but a transformation kernel could be
employed to transform the dataset into a linearly separable
dataset. The best performance was obtained with a Radial
Basis Function (RBF) kernel, which can be found in (1).

K(x,x′) = exp

(
−||x− x′||2

2σ2

)
(1)

The value of a transformed sample depends on the distance
between the input sample x and a central sample x′ and on a
free parameter σ. The values of x′ and σ were automatically
found by an algorithm. The algorithm has a parameter gamma
which determines how well the function fits the data. Lower
values lead to inaccurate classifiers, but a too high value
leads to overfitting. To find the best value, a grid search was
used. A grid search is a systematic parameter sweep, each
with a five-fold cross validation. From the results of the grid
search followed that the best value for this parameter was 0.1.
For some individual experiment participants different values
would lead to a slight increase in performance, but the same
value was chosen for all participants to improve comparability
between participants. The SVM also has a regularization
parameter C, which determined the smoothness of the decision
functions. A lower value of C leads to smoother decision
functions, whereas a higher value leads to a better fit to the
training data, at the expense of longer training time. A grid
search was used to decide on a value of 10.0 for the parameter
C. The activity labels from Section II-B corresponding to the
input samples were used as training and test labels.

The performance of the classifier was assessed using the
f1-score. Equation (2) is the definition of the f1-score:

f1-score = 2 · precision · recall
precision + recall

(2)

Precision and recall are defined in (3) and (4):

Precision =
tp

tp+ fp
(3)

Recall =
tp

tp+ fn
(4)

Where tp means true positive, fp means false positive and
fn means false negative. True positive means all correctly
predicted labels of a certain activity class A, false positive
means all instances of another activity class that are incorrectly
predicted to be activity class A, and false negatives are all

instances of an activity class A that are incorrectly predicted
to be from another activity class. From those definitions it
follows that precision means the fraction of times that a sample
was correctly predicted to be class A versus the total number
of samples that is predicted to be class A, correct or not.
Recall means the fraction of all correctly predicted labels from
activity class A versus the total number of samples from class
A. Precision, recall, f1-score, tp, fp and fn all range from 0 to
1.0. A score of 0 means 0% of all predictions are described by
that metric and 1.0 means 100% of the predictions is described
by the metric.

2) Heart Rate Regressor: The heart rate prediction algo-
rithm was implement using a k-Nearest Neighbors regressor.
A k-NN regressor calculates the output by taking the average
of the k most similar training samples. An advantage of a
k-NN regressor is that it is relatively good at capturing non-
linearities in low-dimensional data [63]. Additionally, because
we expect that similar activities at similar intensities lead to
similar heart rates in most cases, a k-NN regressor is a logical
choice. Input data considered for the regressor are activity
labels, activity intensities and activity durations. The regressor
used the same five-second data window with 50% overlap as
the HAR classifier. Activity intensity is defined as the average
of all standard deviation values from Table I, scaled to fit in a
range from 0 to 1. The choice whether the upper leg sensor or
the hip sensor was used, was based on which sensor performed
best for HAR. Activity duration is the amount of consecutive
data windows the current activity has been going on for. The
average measured heart rate during one data window was
used to label each window. Both the manually created activity
labels and the predicted activity labels (the output from the
HAR classifier) were tried with the heart rate regressor. This
way, a best-case scenario could be compared with a real-
world scenario. A five-fold splitter with shuffling enabled
was used to split the dataset into training and testing data.
Whereas the activity classifier had only the six activity classes
as possible outcomes, the regressor has an infinite number
of possible BPM values as possible outcomes. Therefore, a
stratified splitter cannot be used, so the data is only shuffled.
A k-NN regressor has the parameter n_neighbors that
determines of how many samples the average is taken. Using
a grid search with five-fold cross validation, the optimal value
for this parameter was determined to be 14. The regressor is
trained separately for each participant.

The performance of the heart rate regressor was evaluated
with the R2-score, also known as the coefficient of determi-
nation. This metric calculates the proportion of variation in
the output data that is explainable by the input variables. It is
defined in (5):

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(5)

Where ŷ is the predicted output value, y is the true (input
label) value and ȳ is the average of all values y. The subscript
i denotes a certain sample. The R2-score ranges from 0 to 1.0,
where higher is better. A score of 0 means 0% of the variation
of the output is causes by the input, so it is essentially random.
A score of 1.0 means that 100% of the output is explained by
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Table II
TABLE CONTAINING DEMOGRAPHICS OF THE EXPERIMENT PARTICIPANTS.

Age (years) Length (cm) Weight (kg)

Median 22 179 65
Minimum 19 159 45
Maximum 27 193 93

the input, meaning a perfect fit. In addition to the R2-score,
the median absolute error, mean absolute error and maximum
error were used to assess the performance of the regressor.
These values are expressed in BPM.

III. RESULTS

Of the 14 experiment participants, 9 resulted in a usable
dataset. One was excluded because of corrupted IMU data
files. The other four participants were excluded because of
unusable ECG data. This was caused by a faulty sensor strap,
which seemed to operate adequately while the participant
was at rest, but produced excessive clipping artefacts during
activity. One of the participants has less data available, as one
of the sensor batteries died during cycling. Table II contains
demographics of the included experiment participants. Five
participants are female and four are male. Participants were
asked how often they exercised, this ranged from never to
seven times per week. The power level during cycling ranged
from 65 Watt to 130 Watt for the high intensity part. The
intensity was dependent on gender and how often participants
exercised. Notable results from the survey were that one of
the participants remarked that ’you are very aware of what
you are doing’. Factors that participants believed influenced
their heart rate were having a slight hangover, having a cold
or having skipped breakfast that morning.

A. Human Activity Recognition

The best results were obtained by using the chest and upper
leg sensors. Table IV contains summarized performance results
from the HAR classifier. The lowest f1-score is 82%, the
highest is 92% and the median is 87%. Using the hip sensor,
f1-scores were lowest 78%, highest 93% and median 87%.

The full scores per activity can be found in Table III. The
column ‘Support’ indicates the number of samples for that
activity. Subscores per experiment participant and with mean
heart rate values and the standard devitation of the heart rate
can be found in Appendix C. It is clear that the activity
‘walking stairs’ in particular is underrepresented in the dataset.
Due to the difficulties in labelling that activity (using the audio
recording instead of video recording) and similarity to normal
walking, scores are generally low for this activity. However,
due to the low number of samples, this has only a limited
effect on the general performance scores. This also became
clear by using the hip sensor instead of the upper leg sensor:
although the average scores are quite similar (hip: median
87%, min 78%, max 93% and upper leg: median 87%, min
82%, max 92%), the scores for walking stairs are consistently
lower with the hip sensor than with the upper leg sensor. This

is partly offset by slightly higher scores for sitting and lying.
For the activity ‘lying’ the small amount of samples is less
of a problem, as this activity is well-distinguishable from the
other activities and well-labelled.

For all participants, confusion matrixes were generated to
visualize the performance per activity class. Fig. 4 shows
the confusion matrix for the combined dataset from all par-
ticipants. Fig. 5 shows the confusion matrix for the best
performing participant, which is participant 8. It is clear that
most confusion occurs between the activities ‘standing’ and
‘walking’, and that ‘stairs’ performs relatively bad.
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Figure 4. Confusion matrix for the combined dataset from all participants.
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Figure 5. Confusion matrix for participant 8.

B. Heart rate prediction

The performance results for the heart rate regressor using
the manually annotated activity labels can be found in Table V
and in Table VI the results from using predicted activity labels
can be found. The best performance was achieved by using
all input features, so activity type, activity length and activity
intensity. Both the chest and the upper leg sensors were used
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Table III
PERFORMANCE METRICS FOR HAR PER ACTIVITY.

Activity Precision Recall f1-score Support
median min max median min max median min max)

Standing 0.78 0.66 0.86 0.80 0.67 0.83 0.79 0.68 0.83 1652
Walking 0.79 0.63 0.85 0.81 0.68 0.86 0.80 0.65 0.86 1728
Cycling 0.99 0.98 1.00 0.98 0.97 1.00 0.99 0.98 1.00 2102
Lying 0.99 0.88 1.00 0.86 0.71 0.98 0.92 0.83 0.99 617
Sitting 0.94 0.88 0.98 0.93 0.91 0.98 0.94 0.89 0.98 2245
Stairs 0.71 0.64 0.90 0.62 0.53 0.86 0.64 0.61 0.89 402

Table IV
TABLE CONTAINING PERFORMANCE METRICS FOR HUMAN

ACTIVITY RECOGNITION.

Participant Precision Recall f1-score

1 0.82 0.82 0.82
2 0.86 0.86 0.86
4 0.86 0.85 0.85
5 0.90 0.90 0.90
6 0.88 0.87 0.87
8 0.92 0.92 0.92
11 0.87 0.87 0.87
12 0.91 0.91 0.91
13 0.87 0.86 0.87

All (mean ± SD) 0.88 ± 0.028 0.87 ± 0.029 0.87 ± 0.029
Aggregate 0.87 0.87 0.87

’All’ means the mean and Standard Devation of all the
separate runs, while ’Aggregate’ means the results for the
classifier trained with data from all participants combined.

to determine the activity intensity. For the best-case using the
manual labels, the R2-scores range from 55% to 91% with
a median of 83%. Using the predicted labels, the R2-scores
range from 56% to 88% with a median of 81%. As expected,
the regressor performs slightly worse when predicted labels
are used. This is logical, as the labels are not always correct,
which means the regressor uses wrong information to train
and predict a heart rate. Participant 6 has a considerably lower
score than the other participants. A probable cause of this is
that the battery of one of the IMUs died early during cycling.
Therefore, there is less heart rate data available and in the
data that is available, there is less variation. Participant 1 has
a large maximum error. This is caused by very sudden spikes
in the measured heart rate during walking up or down stairs
that are not captured by the regressor. These spikes seem to
be at least partially caused by movement artefacts.

A boxplot of all errors from the regressor using predicted
labels can be found in Fig. 7. The orange line shows the
median error, the box covers the 25th to the 75th percentile
and the black horizontal lines show the highest and lowest
errors, excluding outliers. A value is considered an outlier
if it is more than 1.5 times the interquartile range (IQR)
removed from the median. As can be seen in the boxplot, the
distribution of errors is concentrated around the median, but
has long tails. As indicated by the fliers, most participants have
many outliers. Most often, this is caused by wrong activity

Table V
TABLE CONTAINING PERFORMANCE METRICS FOR HEART RATE

PREDICTION USING MANUAL ACTIVITY LABELS.

Participant R2-score Mean
absolute
error

Median
absolute
error

Max error

1 0.83 5.21 3.08 68.4
2 0.77 6.32 4.38 38.1
4 0.83 5.60 3.81 39.0
5 0.82 6.05 3.80 46.9
6 0.55 5.99 4.95 31.0
8 0.82 6.07 4.26 35.7

11 0.88 5.25 3.48 30.3
12 0.88 5.33 3.70 36.1
13 0.91 4.90 2.88 33.7

All (mean
± SD)

0.81
± 0.10

5.63
± 0.461

3.88
± 0.620

39.9
± 11.1

Table VI
TABLE CONTAINING PERFORMANCE METRICS FOR HEART RATE

PREDICTION USING PREDICTED ACTIVITY LABELS.

Participant R2-score Mean
absolute
error

Median
absolute
error

Max error

1 0.79 5.81 3.27 77.7
2 0.75 6.66 4.72 34.9
4 0.81 5.87 3.77 46.6
5 0.75 6.85 4.00 52.2
6 0.56 5.98 4.79 24.9
8 0.81 6.10 4.22 40.3

11 0.86 5.58 3.74 37.3
12 0.87 5.53 3.82 36.1
13 0.88 5.30 2.94 34.7

All (mean
± SD)

0.79
± 0.094

5.96
± 0.5483

3.97
± 0.612

42.7
± 14.3

labels. An exception is participant 6, as there is little heart
rate data for cycling and therefore the training data set does
not contain many high BPM values. Also clearly visible is that
for participant 1, most errors are relatively small (indicated by
the horizontal black lines being close to the median), but the
fliers indicate a large maximum error.

Fig. 6 shows that there is some visible correlation between
the current activity and the current heart rate. We chose
participant 11 for this visualization, as this participant showed
a clear heart rate response to different activities. An R2-score
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Figure 6. ECG recording overlaid on the predicted activities for experiment participant 11.
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Figure 7. Boxplot showing the error in the output from the heart rate regressor
model using predicted activity labels. The orange line shows the median, the
box goes from the 25th to the 75th percentile and the black horizontal lines
show the highest and lowest values excluding outliers. Values are classified as
outliers if they are more than 1.5 times the interquartile range (IQR) removed
from the median. IQR is defined as the distance between the 25th to the 75th

percentile. Outliers are indicated in the plot by fliers—i.e., the black dots.

of 86% confirmed the correlation between the input variables
and heart rate: the score means that 86% of the variation in the
predicted heart rate can be explained by the input variables.

Finally, Fig. 8 shows the predicted heart rate overlaid on the
measured heart rate. As can be seen, the predicted heart rate
follows the general trend of the measured heart rate. This is
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Figure 8. Predicted heart rate from the heart rate regressor model using
predicted activity labels, overlaid on the measured heart rate for participant
11. The predicted heart rate stops slightly earlier than the measured heartrate,
as the activity labels stopped earlier than the ECG recording.

also reflected by the median absolute error value of 3.74 BPM
(min 0 BPM, max 37.3 BPM), which means that the predicted
BPM value is generally close to the measured BPM value.

IV. DISCUSSION

The goal of this study was to find out whether Machine
Learning could be used to create a data-driven model of the
heart rate based on the output of a HAR system. We showed
that it is possible to use a combination of a SVM classifier
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and k-NN regressor to build a system that can predict the heart
rate of healthy participants corresponding to a certain activity
with reasonable accuracy. This was the case for a proof-of-
concept using only a limited amount of data (approximately
30 minutes of training data per experiment participant).

A. Interpretation of results

1) Human Activity Recognition: As visible in the confusion
matrices (Fig. 4 and 5), most activities are well distinguishable.
Most confusion was between standing (median f1-score: 0.79)
and walking (median f1-score: 0.80). The confusion matrixes
show that most misclassifications for walking are standing,
and vice versa. This is within expectation, as the transition
between walking slowly and standing still is often rather
vague. Because activity intensity is also considered for heart
rate prediction, this confusion does not lead to large errors.
The hip sensor gives slightly better results than the upper leg
sensor for sitting and lying down in most cases. However,
for this sensor the positioning is more important than it is
for the upper leg sensor. If the hip sensor is mounted higher
up on the hip, there is less rotation relative to the chest
sensor. This makes distinguishing between sitting and standing
more difficult. Additionally, movement of the legs is better
captured by the upper leg sensor than by the hip sensor. This
is particularly beneficial for distinguishing between walking
and standing, and for recognizing walking up or down stairs.
Performance for walking up and down stairs was often not
satisfactory (median f1-score: 0.64). This was caused by that
activity being similar to normal walking and because of low
labelling accuracy. The latter was caused by the fact that the
stairs were outside of view of the cameras and labelling was
done by listening to the audio recording. The stairs that were
used are also only four steps. However, this is not necessarily
a limitation, as in a hospital setting patients often train by
stepping up and down only a single step. A limitation is
however that dominant leg was not considered. Someone’s
dominant leg might not necessarily be the same as their
dominant arm, and this could have an effect on how well
walking stairs is recognized.

Even though the experiment was conducted in a lab re-
sembling a normal living space and participants were given
freedom in how activities were performed, the experiment was
still somewhat artificial. To illustrate, one of the participants
noted ’you are very aware of what you are doing’. Addition-
ally, because the eHealth House is a new environment for the
participants, they might not perform activities the same way
as they would in their own home.

2) Heart rate regressor: Fig. 8 shows that the regressor
mostly smooths out variations in heart rate. It captures du-
ration effects for longer activities—i.e., walking and cycling,
generally quite well. Because the regressor takes into account
the length of the current activity and the duration of cycling is
relatively long, making a prediction for in-between points is
comparatively straightforward. Transient spikes in heart rate
are often not predicted. A possible reason for this is that
there is limited training data available for such situations,
particularly while walking stairs. Another point of interest is

the very sudden dip in predicted heart rate visible in Fig. 8.
Here the participant stopped cycling for a short period, which
caused the HAR classifier to predict the activity ’sitting’ at that
point. Because the regressor does not consider the previous
activity in predicting a heart rate, it assumes the heart rate
immediately drops to a low heart rate, as most of the training
data shows sitting associated with low heart rates. The plot
might appear to show a larger maximum error than Table V.
This is because the measured heart rate is plotted for every
instant, whereas the regressor only considers the average heart
rate during a single five-second data window.

B. Limitations

The experiment was relatively short and does therefore
not capture long-term influences on heart rate, such as time
of day. The cycling part was also done in one continuous
run. Therefore, the effect of fatigue on the heart rate for
different activities is not captured. While the regressor does
take into account the length of the current activity, it does not
consider the previous activity. A future model might take this
information into account, though it is likely that more training
data is required to cover all situations. The relatively small
population of young healthy participants might also not be
representative for a hospital setting, as patients have different
health conditions and perform vastly different movements [64].
Care should therefore be taken to generalize the conclusions
from this research to a hospital setting. Another limitation is
that the current sensor setup is not comfortable to wear for
longer periods of time. An integrated device, designed with
wearability in mind, should be developed for clinical use. This
device should also be able to extract more information form
the ECG, such as arrhythmias. The current beat detection algo-
rithm is not suitable for clinical use, as it is tuned for healthy
people and the BioHarness. Additionally, the noise detection
algorithm using the peak counter would be dangerous in a
clinical setting, as periods with many peaks could also indicate
serious problems—e.g., atrial fibrillation.

C. Future work

Using a photoplethysmogram (PPG) device to measure heart
rate makes the system more comfortable to wear. There is
some research that suggests that a Fitbit has comparable
reliability as the BioHarness for heart rate measurements
[65]. However, PPG is also considerably more sensitive to
movement artefacts than ECG.

Better machine learning methods such as deep learning
and neural networks could potentially be employed to create
more accurate models for HAR and heart rate prediction.
Additionally, a general model might be created that is ap-
plicable for many people instead of just one. Such a model
could be based on relative heart rate instead of absolute heart
rate. It is likely that a more involved experiment is needed
for such a model, with more participants, also in a clinical
setting. Special care should be taken that such a model will
only be trained with typical heart rate data, and not with
data that should lead to alarms, or at least that data should
be treated as such. Creating a general model for heart rate
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prediction is a larger challenge than creating a general model
for HAR. This is due to the fact that the speed with which the
heart rate changes is greatly dependent on physical condition,
whereas the general movements people perform during a
certain activity are similar.

It could be interesting to expand the system to also consider
Heart Rate Variability (HRV) metrics, as they are an important
indicator of cardiac health [66], [67]. However, a PPG device
is not suitable for HRV analysis, as the pulse velocity through
the blood vessels is not constant [29].

V. CONCLUSION

This work has shown that a HAR system can be imple-
mented with simple sensors and classical machine learning
techniques, while still achieving high accuracy (median 87%,
min 82%, max 92%). This HAR system can then be used
to feed a data-driven regressor model that predicts the heart
rate for a certain activity with a certain intensity and duration
with a median absolute error of median 3.82 BPM, minimum
2.94 BPM and maximum 4.79 BPM. This shows there is
potential in using a combined HAR/heart rate prediction
system to assist in continuous automatic heart rate monitoring,
as the system can use the predicted heart rate to decide whether
a measured heart rate is normal or cause for alarm.
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APPENDIX A
EXPERIMENT PROTOCOL

A summary of the experiment protocol is found in Table VII.

Table VII
EXPERIMENT PROTOCOL

Activity Duration Total duration of part

Controlled activities ∼10 min (some extra changing time for
changing between activities)

Standing 30 s
Lying 30 s
Sitting (bed) 30 s
Sitting (chair) 30 s
Standing 20 s
Sitting (chair) 20 s
Sitting (bed) 20 s
Lying 20 s
Standing 10 s
Sitting (bed) 10 s
Standing 10 s
Lying 10 s
Sitting (chair) 10 s
Lying 10 s
Standing 10 s
Sitting (chair) 10 s
Walking (slow) 20 s
Walking (medium) 20 s
Walking (fast) 20 s

Free activities About 15–20 minutes

Walk from bedroom to kitchen, stop, turn around and
walk back (3x)
Fetch a cup from the kitchen and bring it back (3x)
Sit in a chair, walk to the other room and lie down
(3x)
Various other activities, tbd during experiment
Walking up and down stairs (3x)

Cycling – 50 RPM ∼10 minutes

Warmup 3 min
Test – about 140 bpm 6 min
Cooling down 1 min
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APPENDIX B
ACTIVITY LOGGER

To annotate the sensor data, a custom activity logger application was written in Python. A screenshot of the application can
be found in Fig. 9. It works by filling in the starting time timestamp, choosing a file to write the data to (or creating a new
file), pressing start (both in the logger and the experiment recording player) and then pressing the buttons corresponding to the
activity currently performed by the experiment participant. When done, the application is quit by pressing the exit button. All
data is saved in a .csv format. Sitting (bed) and sitting (chair) are both interpreted as sitting. Walking, stopping and turning
are all interpreted as walking. Walking upstairs and walking downstairs are both interpreted as walking stairs, and finally all
types of cycling are interpreted as cycling. In case there were instances of ‘other activity’, they were manually interpreted.

Figure 9. Screenshot of the activity logger app.
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APPENDIX C
FULL RESULTS

The full HAR results per participant, per activity can be found in Table VIII. Also present in this table are average heart
rates during each activity and the standard deviation of the heart rate during each activity.

Table VIII
PER-ACTIVITY PERFORMANCE METRICS FOR HUMAN ACTIVITY RECOGNITION AND

MEAN HEART RATE AND STANDARD DEVIATION OF THE HEART RATE DURING
EACH ACTIVITY.

Participant Activity Precision Recall f1-score Support Mean Heart Standard Deviation of
Rate (in BPM) Heart Rate (in BPM)

1 standing 0.73 0.72 0.72 205 61.5 9.20
walking 0.63 0.68 0.65 210 64.3 14.5
cycling 0.98 0.97 0.98 258 102.5 16.9
lying 0.90 0.77 0.83 73 54.4 8.01
sitting 0.88 0.91 0.89 257 54.4 6.23
stairs 0.68 0.56 0.61 41 73.9 23.2

2 standing 0.78 0.80 0.79 203 76.8 12.7
walking 0.74 0.74 0.74 167 82.7 9.51
cycling 0.99 0.99 0.99 223 108.0 13.3
lying 0.98 0.82 0.90 57 74.5 10.8
sitting 0.90 0.91 0.90 244 71.2 9.14
stairs 0.65 0.63 0.64 38 94.8 8.27

4 standing 0.75 0.80 0.77 196 92.3 10.2
walking 0.69 0.71 0.70 134 90.6 10.4
cycling 0.98 0.98 0.98 236 119.1 12.9
lying 0.88 0.80 0.84 75 74.2 8.66
sitting 0.94 0.92 0.93 270 78.4 9.55
stairs 0.67 0.61 0.64 49 105.9 9.72

5 standing 0.83 0.83 0.83 218 73.0 9.84
walking 0.78 0.83 0.80 210 77.8 11.4
cycling 1.00 0.98 0.99 278 106.7 12.9
lying 0.97 0.96 0.96 99 62.5 9.07
sitting 0.98 0.97 0.98 204 63.6 10.2
stairs 0.71 0.62 0.66 55 86.3 11.1

6 standing 0.79 0.82 0.80 184 98.3 7.02
walking 0.82 0.82 0.82 203 99.1 7.24
cycling 0.98 0.98 0.98 43 109.8 10.5
lying 1.00 0.98 0.99 60 83.9 9.89
sitting 0.95 0.94 0.95 175 85.1 8.58
stairs 0.89 0.84 0.86 49 108.6 6.82

8 standing 0.86 0.81 0.83 185 93.2 10.0
walking 0.79 0.85 0.82 215 96.5 7.70
cycling 1.00 1.00 1.00 263 123.9 8.73
lying 0.99 0.86 0.92 81 75.0 9.70
sitting 0.96 0.98 0.97 432 79.6 10.7
stairs 0.81 0.75 0.78 59 104.4 7.06
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Table VIII
(CONTINUED)

Participant Activity Precision Recall f1-score Support Mean Heart Standard Deviation of
Rate (in BPM) Heart Rate (in BPM)

11 standing 0.69 0.67 0.68 157 78.9 8.39
walking 0.79 0.81 0.80 210 80.2 5.46
cycling 0.98 0.98 0.98 258 117.8 11.7
lying 0.99 0.93 0.96 74 69.1 11.7
sitting 0.90 0.93 0.92 295 70.9 9.38
stairs 0.75 0.53 0.62 34 94.5 11.9

12 standing 0.83 0.77 0.80 143 83.0 9.31
walking 0.85 0.86 0.86 213 91.4 6.97
cycling 0.99 0.99 0.99 263 123.4 13.4
lying 0.96 0.96 0.96 67 79.2 10.8
sitting 0.92 0.96 0.94 218 79.5 11.2
stairs 0.90 0.86 0.89 42 106.1 8.97

13 standing 0.66 0.78 0.71 161 81.1 13.4
walking 0.81 0.77 0.79 166 77.3 6.74
cycling 1.00 0.99 0.99 280 115.9 15.0
lying 1.00 0.71 0.83 31 64.9 6.29
sitting 0.96 0.91 0.94 150 65.2 7.07
stairs 0.64 0.60 0.62 35 97.1 9.93

Aggregate standing 0.78 0.77 0.78 1652 81.7 15.1
walking 0.75 0.78 0.76 1728 84.4 14.2
cycling 0.98 0.98 0.98 2102 114.7 15.1
lying 0.94 0.93 0.94 617 70.5 13.0
sitting 0.94 0.93 0.94 2245 72.5 13.1
stairs 0.68 0.61 0.64 402 97.3 15.7

APPENDIX D
FEATURE SELECTION

The following two pages contain the tables used to determine which features were used.



Expected signals 
IMUs 

 

X/Y/Z acceleration gives the same information as current angle, as the acceleration depends on 

gravity (=9.81 m/s^2). 

Lying 
LOCATION X Y Z GYRO DYNAMICS 

CHEST 0 0 9.81 0 Low 
UPPER ARM 0 9.81 0 0 Low 
LOWER 
ARM/WRIST 

0 Depends on 
wrist rotation 

Depends on 
wrist rotation 

0 Low 

HIP ~5 0 ~5 0 Low 
UPPER LEG 0 0 9.81 0 Low 

Sitting 
LOCATION X Y Z GYRO DYNAMICS 

CHEST 9.81 0 0-5 0 Low 
UPPER ARM 9.81 0 0-5 0 Low 
LOWER 
ARM/WRIST 

Low ~9.81 Medium 0 Depends on 
if e.g. typing 

HIP 5-9.81 9.81 0 0 Low 
UPPER LEG 0-5 0 9.81 0 Low 

Standing 
LOCATION X Y Z GYRO DYNAMICS 

CHEST 9.81 0 0-5 (depends 
on bending) 

0, unless 
turning 
around 

Low 

UPPER ARM 9.81 0 ~5 0 Low 
LOWER 
ARM/WRIST 

Depends on if e.g. carrying something 

HIP 0 9.81 0 0 Low 
UPPER LEG 9.81 0 0 0 Low 



 
 

Walking  
LOCATION X Y Z GYRO DYNAMICS 

CHEST 9.81 +-5 0 +- 3 2.5 +- 2 Mostly X, +-50 Periodic, 
mostly in X 

UPPER ARM 9.81 +- 4 0 +- 4 5 +- 2 Mostly X, Z, +-
75 

Arm swings 
once every 
two steps 

LOWER 
ARM/WRIST 

2.5 +- 2.5 9.81 +- 3 -2 +- 2 Low activity Period, but 
depends on if 
carrying smth 

HIP 0 +- 6 9.81 +- 5 0 +- 3 All channels, 
+- 75 

Periodic 

UPPER LEG 9.81 +- 8 0 +- 7 0 +- 10 X +- 350, Y +- 
200 

Periodic 

Walking stairs 
LOCATION X Y Z GYRO DYNAMICS 

CHEST 9.81 +- 6 0 +- 3 1 +- 3 All +- 50 Periodic, 
slower than 
walking 

UPPER ARM 9.81 +- 5 0 +- 3 3 +- 3 X +- 100, Y, Z 
+- 40 

Not as 
periodic as 
walking 

LOWER 
ARM/WRIST 

9.81 +- 7 2.5 +- 3 0 +- 2 Mostly X, Z +- 
150 

Periodic 
mostly in Z 

HIP 0 +- 4 9.81 -5 +10 2.5 +- 2 All +- 75 Periodic 
UPPER LEG 9.81 +- 8 0 +- 8 0 +15 -10 X, Y +- 200, Z 

+- 75 
Periodic 

Cycling 
LOCATION X Y Z GYRO DYNAMICS 

CHEST 9.81 0 0 X +- 30, Y +- 
10, Z +- 20 

Gyro: 
periodic, X 
and Y 
antiphase. 
Acc: medium 

UPPER ARM 7 +- 1 7 +- 1.5 2.5 +- 2.5 X +- 30, Y +- 
15, Z +- 10 

Periodic, Acc 
mostly in Z 

LOWER 
ARM/WRIST 

2 3 9.81 All +- 15 Gyro periodic 

HIP 3 +- 1 9 +- 1 2 +- 2 X +- 40, Y +- 
20, Z +- 20 

Acc Z, Gyro 
periodic 

UPPER LEG 6 +- 6 -3 +- 4 6 +- 2 X +- 60, Y +- 
130 sinusoid, 
Z +- 20 

Periodic 

Conclusions 
Chest and hip or upper leg should discriminate between all activities. Upper arm does not add that 

much, similar info as chest. Lower arm/wrist very much depends on if the person is doing something 

with their hand.  


