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Abstract

Quantifying aboveground biomass (AGB) and carbon sequestration in tropical forests has a significant 
concern within the UNFCC and Kyoto Protocol for the improvement of national carbon accounting as 
well as for addressing the potential areas for carbon credits under REDD.  The aim of this research is 
to estimate AGB and carbon stocks for tropical forest using SAR data in Afram Headwater Forest,
Ghana.

Two radar images: ALOS PALSAR L band (HH, HV polarisation) and ENVISAT ASAR C band (HH 
polarisation), both acquired in 2009 were used in this research. An ASTER image acquired in 2008 
was under fused with ALOS PALSAR using principal component analysis and IHS transformation in 
order to obtain the advantages of both in vegetation studies. DBH was measured in 75 plots stratified 
in three main land-cover types (nature forest, plantation forest and agro-forestry) and then converted to 
AGB using available allometric equations. The correlation of biomass value measured in each plot and 
the radar backscatter extracted from different bands and polarisation of radar images, as well as fused 
data were assessed by the Pearson correlation coefficients. Regression modelling was applied to 
estimate AGB for the whole study area and the estimated result was validated using validation data
collected in the field.

The strongest correlation was identified between L band HV cross-polarization and AGB in the nature 
forest. Very weak correlations were found in agro-forestry and in plantation forest.  Statistical analysis 
also indicated a poor potential of like-polarized L band and C band in correlation with AGB. Similarly, 
a weak correlation was found for the radar and optical fused data and AGB. An application of multi-
linear regression model of L band cross-polarized and like- polarized radar backscatter for natural
forest area showed an enhancement in the relationship with AGB. 

The results found in this research agree with previous research in radar application. It indicates the 
ability of long wavelength cross-polarized radar image to estimate AGB accurately and simply for 
tropical forests in which optical imagery application are restricted by cloud and weather conditions. It 
also provides a proof that the fusion of radar and optical image cannot be used to estimate AGB. The 
unexpected result in plantation forest can be explained by the influence of different management and 
tree age in plantation forest of the study area. Further research is needed to investigate how strong 
these factors affect on the relationship between AGB and radar backscatters as well as to develop a 
appropriate method to estimate AGB and carbon stocks in plantation forest in future.          

Keywords: above-ground biomass, estimation, mapping, carbon stock, radar backscatter, cross-
polarisation, regression analysis
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1. Introduction

1.1. Background

Green house gas (GHG) emission has been one of the most urgent issues of concern worldwide as the 
main anthropogenic cause of climate change. Global efforts to reduce the concentration of GHG have 
been marked by the establishment of international agreements. For instance, the article 4 of United 
Nations Framework Convention on Climate Change (UNFCCC) mentioned the reduction and 
prevention of anthropogenic emissions of GHG. The Kyoto Protocol specifically required countries to 
limit or reduce the directly human induced emissions of GHG. 

Forest covers nearly one-third of the earth’s land surface and accounts for almost half its terrestrial 
carbon pool (CPF, 2008). This important role of forest in the global carbon cycle was pointed out in 
several articles of Kyoto Protocol (Brown, 2002). Among these, the issue of deforestation and 
degradation of tropical forests, which caused 15-25 % annual global GHG emission, is recognized. 
Recently, UNFCCC has considered the need to reducing carbon emissions from deforestation and 
forest degradation in developing countries (REDD) as one of the central efforts to combat climate 
change (Gibbs et al., 2007). Moreover, the decision 2/CP13 of UNFCCC also mentioned approaches 
to simulate action for REDD (UNFCC, 2008).

Defined as “organic material both above ground and below ground, and both living and dead, e.g. 
trees, crops, grasses, tree litter, roots, etc …”(FAO, 2004), biomass is important for many purposes as 
resource use and environmental management (Chen et al., 2003; IPCC, 2006). Especially, biomass
assessment is needed for inferring to carbon sequestration. As the carbon stored in the aboveground 
living biomass of trees is typically the largest pool, estimating above ground forest carbon and biomass 
is the most critical step in quantifying carbon stocks and fluxes from tropical forests (Gibbs et al.,
2007).

The IPCC Guideline for national Green House Gas inventories (IPCC, 2006) mentioned two ways,
directly and indirectly, to derive aboveground biomass. In another research, (Lu, 2006) mentioned 
approaches to estimate biomass based on field measurements, remote sensing and GIS. Although 
providing the best accuracy, the traditional techniques based on field measurements are also very 
costly and time consuming (de Gier, 2003). Satellite imagery based techniques provide an alternative 
to traditional methods by providing spatially explicit information and enable repeated monitoring, 
even in remote locations, in a cost-effective way (Patenaude et al., 2005; Rosillo-Calle et al., 2007).
With the advantage of capability to provide spatial, temporal, and spectral information (Brown, 2002),
remote sensing can of be used as a tool to estimate carbon to meet the requirements of the Kyoto 
Protocol (Rosenqvist et al., 1999). Additional ground based data collection is required because no 
remote sensing instrument can measure directly (Rosenqvist et al., 2003).

1.2. Research conceptual framework

Tropical forest is the second major land cover type in Ghana after the comprising savannas (Blay et 
al., 2007; Appiah et al., 2009). Therefore, the need for quantification of aboveground biomass and 
carbon sequestration in these forests has a significant concern within the UNFCC and Kyoto Protocol 
in general and for the improvement of national carbon accounting as well as addressing the potential 
areas for carbon credits under REDD for Ghana in particular. 

Despite the advantages of less expensive and efficiently accurate measurement (Patenaude et al.,
2005), remote sensing methods for biomass estimation are more successful in boreal and temperate 
forests or young forest with lower forest carbon densities rather than tropical forest (Rosenqvist et al.,
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2003). Because the carbon rich and the structurally complex ecosystems cause the optical remote 
sensing signals to be saturated quickly, the tropical forests have been hindered in carbon stock 
estimation. The sources of uncertainty consist of: lack of completeness, the used model, lack of data, 
lack of representativeness of data, statistical random sampling error, measurement errors, mis-
classification etc. (IPCC, 2006) .

Research on forest and radar remote sensing in the past two decades showed that SAR images with 
multiple wavelengths, polarizations and incident angles have the potential to extract the needed 
information of biomass in complex areas such as tropical forests (Henderson and Lewis, 1998). With 
physically based radar backscatter models and appropriate inversion procedure, it is possible to use 
multi-frequency polarimetric SAR data to map biomass and overcome the limits imposed by the 
saturation effect using optical data (Henderson and Lewis, 1998; Fernandez, 2002).

As an inherent characteristic of a radar system, the presence of speckles which produces salt and 
pepper appearance in the radar image can effect adversely the visual and digital processing of radar 
imagery. The technique used for extracting the homogenous radar backscatter value from the radar 
image could strongly affect its correlation with the above ground biomass. Processing techniques like 
filtering and multi look processing are popular in reducing speckle effects but also cause the loss of the 
texture information (Fernandez, 2002). Accuracy of results can increase when structure is defined by 
segmentation of vegetation types (Dobson et al., 1995). The integration of radar and optical sensor 
data also has the potential to reduce the mixed pixels and data saturation problems and incorporates 
radar information, and therefore, to improve above ground biomass estimation results (Lu, 2006).

The radar backscatter models can be divided into three groups - physical, empirical and semi –
empirical models (Hoekman, 1990). The physical models provide an insight into the relationship of 
backscatter and structure parameter of the forest which is supportive for other models. The empirical 
models have been restricted by the lack of physical understanding of the backscatter mechanism. 
Therefore, semi empirical models seem to be a promising approach to model the above ground 
biomass. Among these, the classical regression modelling is unbiased in explaining the relation of 
observed forest biophysical parameters and response value from remote sensing data (Lu, 2006).

1.3. Research Problem

The lack of information about global biomass due to uncertainties in accuracy and cost has limited our
knowledge about global carbon budget and its changes over the years. Therefore, the need for accurate 
estimation of biomass and carbon stocks in tropical ecosystems with high relevance for understanding 
the global C cycle, the formulation and evaluation of global initiatives to reduce global warming, and 
the management of ecosystems for C sequestration purposes (Sierra et al., 2007) implies a demand for 
precise quantified assessment methods. 

1.4. Research Objectives

This research focused on estimation of Above Ground Biomass (AGB) and carbon stocks for tropical 
forest using SAR data. The Afram Headwater Forest in Ghana is used as a case study in this research.

Specific objectives:
1- To analyse the relationship between the forest stand parameters (diameter at breast height, tree 

height, crown cover) and the multi-polarised radar backscatter
2- To analyse the correlation of extracted backscatter value from multi-polarised radar imagery

and ABG biomass
3- To assess the geometric sensitivity of extracted backscatter value from radar imagery in the 

correlation with AGB biomass.
4- To assess the correlation between fusion data of optical and radar images and AGB biomass 
5- To estimate and validate the AGB biomass for tropical forest based on regression model 
6- To map tropical forest biomass and carbon stocks in the study area.
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1.5. Research questions

1- How strong is the relationship between the forest stand parameters (diameter at breast height, 
tree height, % cover) and the multi-polarised radar backscatter?

2- How strong is the relationship between AGB and the multi-polarised radar backscatter?
3- How sensitive is the extracted backscatter value from radar imagery to its geometry in 

affecting the correlation with AGB biomass?
4- Is the fused data of optical and radar images correlated with ABG biomass? 
5- How accurate can the AGB in this study area be estimated using polarised radar backscatter by 

regression model?
6- Can forest biomass and carbon stocks be mapped using radar images?

1.6. Research Hypothesis

1- The biophysical parameters have a strong correlation with the cross-polarized radar 
backscatter.

2- The AGB has a strong correlation with the cross-polarized radar backscatter.
3- The geometric sensitivity affects significantly to the correlation of AGB and radar backscatter.
4- The fused data of optical and radar images does not have a strong correlation with AGB

biomass.
5- The AGB can be estimated and mapped using polarised radar backscatter by regression model 

with reasonable accuracy.
6- Forest biomass and carbon stocks can be mapped using radar images.

1.7. Thesis structure

The thesis comprises seven chapters as follows:

Chapter 1 – Introduction: introduces the background, conceptual framework of this research as well as 
describe research problem, objectives, questions and hypothesis.

Chapter 2 – Remote sensing approaches to estimate ABG biomass: briefly reviews the application of 
remote sensing data for biomass estimation in term of using optical and radar data.

Chapter 3 - Description of study area: describes in details the characteristics of study area.

Chapter 4 - Description of Method and dataset: defines the methods used in this research to answer 
research questions and achieve the research objectives as well as provide information about data and 
materials used in this research.

Chapter 5 - Results: summarised the results obtained during the data analysis.

Chapter 6 - Discussion: discussed about the result in Chapter 5.

Chapter 7 - Conclusion: derive conclusions from the discussion in the previous chapter and links to the 
research objectives and questions in the first chapter.
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2. Remote sensing approaches to estimate 
AGB

Remote sensing techniques provide an alternative to traditional methods in estimating biomass 
production or carbon dynamic of forest and plantation. With the abilities of capturing spatially explicit 
information and repeatable monitoring even in remote area in a cost effective way, these have become 
popular for estimating growing stock of biomass or its productivity area (Rosillo-Calle et al., 2007).

In past decades, several researches focused on developing the relationships between such structural 
parameters of forests or plantation such as basal area, biomass, crown cover, tree height or diameter at 
breast height (DBH) and the response value of the electromagnetic radiation. The comparison of these 
relationships in different types of forest stand structures and environment conditions (soil moisture, 
species, crown geometry, canopy structure, etc.) is effective to evaluate the forest potential in biomass 
production. Despite that, the lack of a clear understanding in the relationship of these parameters and 
reflected value from satellite images caused poor results. However, significant developments in 
technologies recently have allowed a more accurate measurement at a lower cost that would support 
researcher to face this challenge.  

In this chapter, the application of remote sensing for biomass estimation will be described and 
reviewed in terms of data from different sensors used.

2.1. Applications of optical remote sensing

2.1.1. High spatial resolution of optical remote sensing 

With growing demands for detailed forest information, high spatial resolution remote sensing has 
become a valuable source of information for assisting forest management (Culvenor, 2003). The term 
“high spatial resolution” is subjective depending on the context of application. Here, it is refer to both 
airborne (digital aerial photograph) and space-borne such as IKONOS and QuickBird with spatial
resolution less than 10 m (Wulder, 1998).

Fine or high spatial resolution remote sensing data are frequently used for modelling tree parameters 
or forest canopy structures (Lévesque and King, 2003). Many approaches have been used to extract 
biophysical parameters from this type of data summarized by (Culvenor, 2003) which are bottom - up
algorithm (valley-following and directional texture), a top-down algorithm (multi- scale edge 
segments, threshold-based spatial clustering, a double-aspect method, and vision expert system), and 
template matching (Lu, 2006).

The advent of aerial photography catered to the basic requirement of location capabilities and is one of 
the most widely used forms of remote sensing of forest cover. The applications of aerial photography 
are the simplest and the oldest forms of aerial sensors used for remote sensing of the earth’s surface 
features. Cameras can be of different types, namely single lens mapping, multiple lens mapping, 
panoramic and digital. The spatial resolution of camera lenses is more important than spectral 
information (Rosillo-Calle et al., 2007). The usage of aerial photograph has both advantages and 
disadvantages which are summarized in Table 2-1 below. 

Interpretation of aerial photographs has been used for wide range of applications such as the one 
related to forest inventory since the late 1940s. This technique has proven useful, especially for 
stratification and timber volume estimation. Photo interpretation can measure various forest 
characteristics, such as tree height, crown diameter, crown closure, and stand area. For example, 
(Tiwari and Singh, 1984) used aerial photographs and non-harvest field sampling for forest biomass 
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mapping in India. (De Jong et al., 2003) used digital airborne imaging spectrometer (DAIS) data to 
estimate biomass using stepwise linear regression analysis in southern France.

Table 2-1 Advantages and disadvantages of the use of aerial photographs - (Rosillo-Calle et al., 2007)

Techniques used for extraction of biophysical parameters from aerial photography can also be used in 
high spatial-resolution satellite images (Rosillo-Calle et al., 2007). An overview of high resolution 
satellite is shown in Table 2-2.

The fine spatial resolution and associated multi-spectral characteristics may become an important data 
source for AGB estimation such as in research of (Thenkabail et al., 2004), which used IKONOS data 
to estimate AGB of oil palm plantations in Africa. It also can be useful as reference data for validation 
or accuracy assessment for medium and coarse spatial-resolution data applications. 

Table 2-2 Overview of high resolution satellite (Rosillo-Calle et al., 2007)

Satellite Type of sensor Resolution

CARTOSAT-1 (IRS-P5)
RESOURCESAT (IRS-P6)

EROS A1
IKONOS

IRS-1C
IRS-1D

QuickBird

SPIN 2

OrbView 3

Panchromatic
LISS IV

Panchromatic
Panchromatic
Multispectral
Panchromatic
Panchromatic
Panchromatic
Multispectral
Panchromatic
Panchromatic
Multispectral

2.5m
5.8m
1.8m
1m
4m

5.8m
5.8m

0.61m
2.44m

2m
1m
4m

However, (Lu, 2006) already indicated the drawbacks of using this type of data:  high spectral 
variation and shadows caused by canopy and topography which create difficulties in developing AGB 

Adavantages

• covers a large area of the land at approximately the same scale;
• high resolution;
• better interpretation of features with stereoscopic vision;
• can be used for places which are ordinarily inaccessible;
• easy to make copies and store;
• easier availability of conventional photographs;
• measurements are possible if the scale is known;

Disadvantages

• absence of geo-referencing makes digitization difficult;
• may have tilts and errors, such as relief displacement;
• positional location and scale are approximate;
• ground features may be obscured by other features;
• lack of contrast in colours;
• cost can prove to be high for small-scale projects;
• relatively long time required to obtain final prints.
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estimation models; the lack of a shortwave infrared image, which is often important for AGB 
estimation; the need for large data storage and the time required for image processing prohibit its 
application in large areas and, last but not least, much more expensive cost , and time requirement to 
implement data analysis than medium spatial resolution images. 

2.1.2. Medium resolution of optical multi-spectral remote sensing

Optical remote sensing is a passive sensing system, using visible and near- infrared reflectance from 
the earth, which forms the basis for most of current global scale mapping. Optical measurements have
been widely used in studies that link AGB measurement from the field to satellite observation that 
based on the sensitivity of the optical reflectance to variations in the canopy structure. But these 
measurements have not proven to be consistent over large areas because surface conditions may 
change more rapidly than the repeat time of the cloud free satellite observations and producing 
artefacts in the derived maps (Scott et al., 2009).

Optical remote sensing makes use of visible, near infrared and short wave infrared sensors to form 
images of the earth’s surface by detecting the solar radiation reflected from targets on the ground. 
Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be 
differentiated by their spectral reflectance signatures in the remotely sensed images. 

Optical sensors are characterized by spectral, radiometric and geometric performance. Satellites are 
usually classified according to their spatial resolution into environmental satellites (Meteosat, GOES, 
NOAA), medium-resolution satellites (Landsat MSS, IRS1, JERS1); and high resolution satellites 
(Landsat TM, SPOT, ERS-1, IKONOS, etc.). 

The time-series Landsat imagery has become the primary source in many applications, including AGB 
estimation at local and regional scales (Sader et al., 1989; Roy and Ravan, 1996; Fazakas et al., 1999; 
Nelson et al., 2000; Steininger, 2000; Mickler et al., 2002; Foody, 2003; Phua and Saito, 2003; 
Calvatildeo and Palmeirim, 2004; Zheng et al., 2004; Lu et al., 2005). The major approaches include 
linear or nonlinear regression models, K nearest-neighbour, and neural network (Lu, 2006).

Spectral signatures or vegetation indices are often used for AGB estimation. Most studies involve 
deriving a relationship between a commonly used vegetation index such as NDVI (normalized 
difference vegetation index) with biomass or some forest biophysical parameter. A large number of 
protocols can be used to develop biomass estimates (Rosillo-Calle et al., 2007). Vegetation indices 
have been recommended to remove variability caused by canopy geometry, soil background, sun view
angles, and atmospheric conditions when measuring biophysical properties (Elvidge and Chen, 1995; 
Blackburn and Steele, 1999). However, not all vegetation indices are significantly correlated with 
AGB. In general, vegetation indices can partially reduce the impacts on reflectance caused by 
environmental conditions and shadows, thus improve correlation between AGB and vegetation 
indices, especially in those sites with complex vegetation stand structures (Lu et al., 2004).

Image texture also has shown its importance in AGB estimation (Lu et al., 2005; Lu, 2006).
Individually, pure image textures or spectral responses are insufficient to establish highly accurate 
AGB estimation models. A combination of spectral and spatial information extraction techniques 
shows promise for improving estimation performance of forest stand parameters (Wulder, 1998; Lu 
and Batistella, 2005).

Different degrees of success for AGB estimation have been obtained in previous research. (Foody et 
al., 2001) found that neural networks were useful for the AGB estimation using Landsat TM data in a 
Bornean tropical rain forest. In Finland and Sweden, Landsat TM data were used to estimate tree 
volume and AGB using the K nearest-neighbour estimation method (Halme and Tomppo, 2001).
(Nelson et al., 2000) analysed secondary forest age and AGB estimation using Landsat TM data and 
found that AGB cannot be reliably estimated without the inclusion of secondary forest age. The 
complex forest stand structure, the impact of shadows caused by canopy and topography, and the 
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complex environments influence AGB estimation performance (Steininger, 2000; Lu and Batistella, 
2005).

Research in the moist tropical forest in the Brazilian Amazon has indicated that image textures are 
more important than spectral responses for AGB estimation in the forest sites with complex vegetation 
stand structures (Lu and Batistella, 2005). However, in the forest sites with relatively simple 
vegetation stand structure, spectral signatures play a more important role than image textures. The 
roles of spectral responses and image textures in AGB estimation depend on the characteristics of the 
study area, i.e. the complexity of forest stand structure(Lu et al., 2005). One critical step is to identify 
suitable image textures that are strongly correlated with AGB but are weakly correlated with each 
other. Identifying suitable image textures involves the determination of appropriate texture measures, 
moving window sizes, image bands etc. (Chen et al., 2004). Not all texture measures can effectively 
extract biomass information because image textures vary with the characteristics of the landscape 
under investigation and images used. More research is needed to develop techniques for identification 
of suitable image textures for biomass estimation (Lu and Batistella, 2005).

2.1.3. Hyperspectral optical remote sensing imagery

Imaging spectroscopy or hyperspectral remote sensing is defined as the simultaneous acquisition of 
images in hundreds relatively narrow, contiguous and/or non-contiguous spectral bands throughout the 
ultraviolet, visible and infrared portions of the spectrum, facilitating greatly detailed study of the 
earth’s resources (Rosillo-Calle et al., 2007). Therefore, data can be acquired anywhere, globally, at 
low cost to the end user. Space-borne sensors can provide year-round temporal data. 

A review from (Treitz and Howarth, 1999) stated that emphasis applying hyperspectral remote sensing 
in vegetation studies was placed on monitoring and estimating biophysical parameters which related to 
forest ecosystem processes and health since this is seen as the area of greatest potential contribution.
Narrow-wavelength image could be possible to reduce the saturation problem in biomass estimation 
(Mutanga and Skidmore, 2004). Thus, hyperspectral imagery with large number of spectral bands with 
very narrow wavelengths may improve AGB estimation performance (Lu, 2006). The main benefits to 
end-users are that space-borne hyper-spectral data can provide more detailed and accurate forest 
inventory information, as well as such specialized products as geo-coded maps of forest biomass or 
above-ground carbon maps(Rosillo-Calle et al., 2007).

However, there needs to be a consideration among spatial, spectral and radiometric resolutions in 
hyperspectral remote sensing due to the constraint in data volume (Lu, 2006) and technique difficulties 
of collecting, storing and processing hyperspectral scanner data (Treitz and Howarth, 1999).

2.2. Application of radar remote sensing for biomass assessment

Radar (radio detection and ranging) is an active system which emits radio waves and illuminates the 
surface of the earth and records the energy backscattered from the terrain. ‘Side-looking airborne 
radar’ (SLAR), can obtain images over vast regions to the left or right of the aircraft, two types of 
which being used, ‘real aperture radar (RAR)’, and currently the ‘synthetic aperture radar (SAR)’ 
based on whether the antenna being used is of fixed or variable length, respectively (Rosillo-Calle et 
al., 2007). Characteristics of some selected spaceborne SAR systems can be found in the Table 2-3
below. The most commonly used wavelengths in imaging radar are K (1.19–1.67 cm), C (3.9–7.5 cm), 
S (7.5–15.0 cm), L (23.5, 24.0, 25.0 cm) and P (30.0–100 cm). 

Radar plays a major role for vegetation studies for two reasons: (1) the unique property of microwave 
remote sensing systems to function almost unimpeded by adverse atmospheric conditions (which 
prevent the use of optical systems) and (2) the property of (coherent) microwaves to enable 
measurement of certain object parameters which cannot be assessed through other remote sensing 
systems (Hoekman, 1990).
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Table 2-3 Characteristics of selected Spaceborne SAR systems

Characteristic ERS-2 JERS-1 Radarsat 2 Envisat -1 ALOS PALSAR
Launch date
Waveband
Polarisation
Look angle (degrees)
Resolution (m)

04/21/95
C-band

VV
23
30

02/11/92
L-band

HH
35
18

12/14/07
C-band

HH,VV,HV,VH
10-60
3-100

03/01/02
C-band

HH,VV,HV,VH
14-45

30-1000

01/24/06
L-band

HH,VV,HV,VH
18-55

10-100

In order to exploit the use of radar backscatter to determine ABG biomass of forest stand, the 
relationship between radar backscatter and forest stand parameters (diameter at breast height, tree 
height, Basal area, and stand diversity) is investigated in several studies (Hussin et al., 1991; Le Toan
et al., 1992; Beaudoin et al., 2004). Research also showed the capability of SAR image in 
discriminating various types of forest (Wu, 1990; Van der Sanden, 1997). The relationship between X-
and C- band backscatter and stand parameters is quite poor (Hoekman, 1990). The table 2-4 below
presented some examples of radar application.

Table 2-4 Selected studies on radar applications adapted from (Lu, 2006)

Radar 
dataset

Study area Techniques Reference

SIR-C

SAR L band

AIRSAR 
C,L,P band

JERS-1
SAR L band

JERS-1
SAR L band

AeS-1 SAR 
P- band

South – eastern USA

Les Landes Forest, France

Freiburg, south-east Germany; 
Ruotsinkyla, Finland

Tapajos, Para state and Manaus, 
Amazonas state, Brazil

New South Wales, Australia

Tapajos River region, Para 
state, Brazil 

Multiple regression 
analysis

Adapted theoretical model

Linear regression analysis

Forest backscatter model

Linear regression analysis

Regression models 
(logarithmic and 
polynomial function)

(Harrell et al.,
1997)

(Beaudoin et al.,
1994)

(Rauste et al.,
1994)

(Luckman et al.,
1998)

(Austin et al.,
2003)

(Santos et al.,
2003)

Measuring the orientation (polarisation) of the transmitted and received electromagnetic waves allows 
for further sensitivity to AGB measurements. Extensive analyses with existing SAR sensors, mostly L 
band, suggest the sensitivity of radar backscatter saturation around 100-150 ton/ha (13) (Scott et al.,
2009). HV (horizontal–vertical) polarization in longer wavelengths (L or P band) is most sensitive to 
biomass (Le Toan et al., 1992) because it originates mainly from the canopy volume scattering and 
trunk scattering, and is less affected by the ground surface. Reflection from soil and ground may 
sometimes be recorded as part of the backscatter but can be overcome by using appropriately 
transformed models (Rosillo-Calle et al., 2007).

The availability of multi frequency or multi polarization data provided by airborne or satellite systems 
has brought the capability to separate forest types and improve the radar classification (Cronin, 2004).
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The studies in the combination of high and low frequency showed promising results, especially for 
tropical forests (Van der Sanden, 1997). A higher level of biomass and more accurate results can be 
achieved by using P band combined with C band or L band for a certain type of forest (Ranson and 
Sun, 1994; Fernandez, 2002; Cronin, 2004).

In general, above ground biomass can be estimated using with difference approaches in models 
(directly as linear or non-linear regression models, neural network and K nearest neighbour or 
indirectly as canopy reflectance models), spatial resolutions (fine, medium, coarse) or types of remote 
sensing data (optical, radar or Lidar) (Lu, 2006). Each of these approaches relies on the calibration of 
remote sensing measurement and the in situ estimation of above ground biomass, mostly by using a 
combination of allometric relationships of simple plot-level measurements and AGB (Scott et al.,
2009).

Reflection from soil and ground may sometimes be recorded as part of the backscatter but can be 
overcome by using appropriately transformed models (Rosillo-Calle et al., 2007). There are different 
kinds of backscatter models, namely, radiative transfer models, regression models and conceptual 
models. These models considered the effect of general canopy and terrain characteristics to predict the 
value of radar returned (Fernandez, 2002). The scattering behaviour of the waves is decompressed 
according to interaction models (Ulaby et al., 1990) . Because of the high degree of complex 
interaction, the inversion of scattering models for estimation or prediction biomass directly is still not 
possible (Fernandez, 2002).

The saturation problem is a common problem in radar data (Balzter, 2001). The saturation levels 
depend on the wavelengths (i.e. different bands, such as C, L, P), polarization (such as HV and VV), 
and the characteristics of vegetation stand structure and ground conditions(Lu, 2006).

2.3. Application of Lidar remote sensing data

‘Laser’ is an acronym for ‘light amplification by stimulated emission of radiation’. It is another type of 
active remote sensing sensor. The laser sensor system used for remote sensing is called ‘lidar’ (light 
detection and ranging) (Rosillo-Calle et al., 2007). Like radar, lidar is based on the concept of actively 
sensing the vegetation using a pulse of energy, in this case from a laser operating at optical 
wavelengths (rather than at radio wavelengths) (Scott et al., 2009).

Lidar is an active system offering tremendous potential for monitoring forest biomass with the major 
advantage as the acquisition of three-dimensional data of the forest structure, and data on canopy cover 
characteristics, leaf area index, crown cover and volume, etc. The ability of the laser altimeters to 
penetrate forest canopies through to the ground level is a further benefit (Rosillo-Calle et al., 2007).

Previous research has indicated that use of lidar data is a promising approach for biophysical 
parameter estimation (Drake et al., 2002; Hyde et al., 2005). Lidar data alone, as well as in 
combination with other sensor or ancillary data, will provide an important data source for forest 
parameter estimation. Examples of the application of lidar data to forest studies includes: estimate 
timber volume (Næsset, 1997) and stand height (Næsset, 1997), estimate tropical forest biomass
(Drake et al., 2002), Douglas fir western hemlock biomass (Lefsky et al., 1999), temperate mixed 
deciduous forest biomass (Lefsky et al., 1999), tree height and stand volume (Nilsson, 1996), tree
crown diameter(Nilsson, 1996), and canopy structure (Lovell et al., 2003). Long-wavelength radar 
data have the advantage in AGB estimation for complex forest stand structure and lidar data have the 
potential to provide vertical structure information(Zimble et al., 2003).

However, the lidar data were captured through airborne sensors which cost more than spaceborne (Lu, 
2006). Moreover, the complexity of data analysis requires skills, knowledge and specific software. As 
a result, applications of lidar were only in typical study areas and not extensive to AGB estimation in 
regional and global scale yet.
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2.4. Constraints and difficulties for remote sensing application in biomass 
assessment

Remote sensing has developed into an important tool for monitoring and evaluation, and as a 
subsequent decision-making tool for various bioenergy and carbon sequestration projects. The 
feasibility of the use of remote sensing for monitoring of carbon stocks and flows in a project has been
assessed by (Vine et al., 1999).

Finding an optimum combination of accuracy of measurements and the cost of the technology is often 
a major challenge in projects using remote sensing for estimating forest or plantation biomass and 
carbon sequestration. Among the remote sensing techniques available, estimation of biomass and 
detection of biomass change can be best achieved using SAR data. Studies have shown that SAR data 
can detect the half of the tree trunks removed by selective logging. Modelling biomass production or 
carbon sequestration, however, needs both optical and SAR data to be combined. Changes in land use 
can be obtained only by optical data (Scott et al., 2009). No single sensor or any satellite mission, 
whether radar, lidar or optical, can be expected to provide consistently infallible estimation of biomass 
but use of these measurements in a synergistic fashion can potentially overcome the limitation of each 
(whether radar saturation, lidar sampling modes or optical temporal matches).

Quantification of the uncertainties associated with biomass calculations and optimization of remote 
sensing techniques to reduce uncertainties is required. Considerations of issues of accessibility and 
affordability of data should be addressed at global and particularly project scales.
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3. Description of the study area

Due to the availability of such characteristics of a typical tropical forest in Africa and the data (map 
and remote sensing data), accessibility, the chosen study area for this research was Afram Headwater 
Forest Reserve. This chapter describes briefly main characteristics of this study area in terms of 
location, topography, climate, etc.

3.1. Geographic location and settlement

The Afram Headwaters Forest Reserve extends from 1o32’ W to 1o48’W and 6o45’N to 7o25’ N in 
Offinso District, Ashanti region of Ghana. The Kumasi- Techiman trunk road which links the northern 
part of Ghana to the Southern part run through the eastern part of the reserve. The northern part is 
linked to Sekye Dumasi district with the capital in Ejura which is one of the largest agriculture towns 
noted for cultivating yam and maize in the country. With the size of 20100 hectares, this area is within 
the transaction zone of forest and savannah, comprising both natural and plantation forest, and legal
farms which are admitted by the Reserve Committee. Figure 3-1 showed location map of the study 
area. 

Figure 3-1 Ghana and a zoom to the Afram Headwaters Reserve in Google Earth

The communities living in this area are predominantly migrant people who depend on the forest 
reserve for their livelihoods. They are engaged in various forms of activities such as farming, hunting, 
palm wine tapping and livestock rearing. The traditional farming practice as slash and burn is one of 
the main reasons causing the area turning to grassland and high vulnerable to fire. There are five towns 
near the boundary of the reserve: New Offinso (36,190 people), Akomadan (14,018 people), Abofour 
(11,177 people), Nkenkaasu (10,014 people) and Afrancho (7,727 people). The main religious groups 
are Christians, Islam and Traditional Religion.



ESTIMATION AND MAPPING OF ABOVE GROUND BIOMASS FOR THE ASSESSMENT AND MAPPING OF CARBON STOCKS IN TROPICAL 
FOREST USING SAR DATA - A CASE STUDY IN AFRAM HEADWATERS FOREST, GHANA

12

3.2. Topography and drainage

Figure 3-2 Slope map (generated from geological dataset of Ghana

The topography of this area is relatively flat or gently undulating with the altitude ranging from 300 m 
to 400m above the sea level. The slope mostly is less than 5%, some from 5% to 10%. However, some 
limited areas in the eastern part have steeper slopes (from 10-15%).
The two main streams in the area are the Afram in the east and the Brimu in the west part of the study 
area. One of the main roles of Afram Headwater reserve is to protect these major water sources for 
domestic and industrial consumption for the whole district of Offinso.

3.3. Climate

With the semi-equatorial conventional climate, the study area has two rainfall seasons: the major one 
from April to July and the minor one from September to mid November. This results in a high annual 
rain fall ranging from 1500 mm to 1700mm. Relative humidity is generally high ( around 80%). The 
maximum temperature is 30oC in March and April and average monthly temperature is about 27oC. 
Prevailing winds are south-westerly during wet season and north easterly during dry season. Table 3-1
showed the average temperature and rainfall in the study area over 7 years (from 2000 to 2007). 
During the dry season from December to March, forest fires usually happen in this area. 

Table 3-1 Average temperature and rainfall in Afram Headwater Reserve (2000-2007)

Jan Feb Mar April May June July Aug Sept Oct Nov Dec
Max temp. (o C) 32.8 33.8 33.9 32.6 31.8 30.1 28.7 28.1 29.4 31.1 32.0 31.8
Rainfall (mm) 35.2 42.6 114 170 170 190 143 68.8 188 189 61 27.4

3.4. Geology and geomorphology

The main geological type is sandstone which accounted for 70% study area. Granitoid only remains in 
the 20% area of the North Western part. While as, the smallest area in the South has Phyllite, Schist, 
Tuff and Greywacke. The western part of the area overlies with the upper and lower Birrimian series 
while elsewhere the area overlies with the voltaic sandstones. The geological map of the study area is
shown on Figure 3-3.
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Figure 3-3 Map of Geological types (created from geological dataset of Ghana)

3.5. Soils

Soil is generally uniform with most of the reserve consisting of reddish brown sandy loams and 
occasionally patches of clay do sometimes occur. Main soil types in the study area include: Acrisol, 
Leptosol and Lixisols which are shown in the soil map of Afram Headwater reserve in Figure 3-4.

Figure 3-4 Soil map (generated from geological dataset of Ghana)

Acrisol is clay-rich and associated with humid, tropical climates. This type of soil often supports 
forested areas. Acrisol is common in the West area of Afram Headwater Forest while Leptosols of soil 
remains in the Southern East of the study area. This is a very shallow soil that is extremely gravely
and/or stony. These soils are particularly common in mountain regions. Leptosols are unattractive soils 
for agriculture. They could have some potential for tree crops or extensive grazing. Leptosols are best 
kept under forest.
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Lixisols are soils with subsurface accumulation of low activity clays and high base saturation. They 
develop under intensive tropical weathering conditions. This type has the largest area among the three 
and distribute in the North and East part of Afram Head water forest (FAO, 2003).

3.6. Vegetation cover

The vegetation cover in this study area is moist dry deciduous forest. The forest inventory report for 
1987 identified 173 different species of trees. The forest reserve is described to be of high biological 
diversity and economically valuable in terms class1 timber species. The last forest inventory in 2000 
scored the condition of the forest as highly degraded and required human intervention to restore the 
forest.
There are four types of vegetation cover in this study area: Natural forest, Plantation, Agro-forestry 
and Fallow land which are defined by (FAO, 2000). In this research, only the first three types will be 
dealt with.

Natural forest

The Natural forest inside the reserve contributes a small proportion to the area of the whole reserve 
compared to the area of plantation and taungya system. Most of the forest is degraded with the 
invasive York (Musanga Cecropoides). Figure 3-5 showed images of natural forest from the field trip. 
The list of main native trees in the forest can be found in Appendix-A.
Broussonetia Papyrifera (Paper mulberry) is one of the most serious non-indigeneous woody invasive 
plants. The high concentration of paper mulberry in Afram Headwater forest was caused by extensive 
deforestation and bushfires. It is locally known as ‘York’ the name of the technical officer who 
worked on the plots during the1970s.

 
 

Figure 3-5 Images of natural forest from field work trip (left: secondary forest, right: crown cover of dense York)

Plantation forest:

The study area has experienced repeated burning as a result of accumulation of debris from timber 
havesting in the past. The burnt forest is dominated by pioneer trees of little economic merit and is 
more prone to fire in future. Consequently, part of the reserve is converted to plantation. There are on-
going restoration programs in the reserve through plantation establishment by the monoculture of 
exotic tree species such as cedrela (Cedrela odorata) and teak (Tectona grandis) and mixed stands of 
local tree species. Figure 3-6 showed images of teak plantation and its crown cover taken from the 
field area.
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Figure 3-6 Images of plantation forest from field work trip (left: teak plantation, right: crown cover of teak)

Agro-forestry

Agro-forestry is a collective name for land use system and practices where woody perenial are 
deliberately integrated with crops and/or animalson the same land management unit. The integration 
can be either in spatial mixture or temporal sequence. There are normally both ecological and 
economic interaction between the woody and non-woody component in agro-forestry (Schoene et al.,
2007). Images of agro-forestry in the study area were shown in Figure 3-7 below.

  
Figure 3-7 Images of agro-forestry from field work trip

The plantation development program mainly employed taungya system in which farmers are given 
parcels of degraded forest reserve to produce food crop and help establish and maintain tree resources. 
The main crops are yam, cocoyam, maize, cassava, plantain, okra, palm trees (see appendix C).
Besides, in perennial cropping system in which land was put under plantation of cocoa, oil palm, 
rubber, teak and wood lots which take more than 1 year to mature. The native trees here are left for 
shading for trees in seedling and sapling stages.
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Fallow land

This type of land cover predominant under the cover of Pernnisetum purprureum ( elephant grass ) 
and other tall grasses that grow up to about 3-4 m high. There are two types of fallow land in the study 
area. Old fallow land which is lands intensively logged or farmed in the past and now left for 
regeneration into secondary forest (5-10 years) have more trees and less herbaceous and shrubby
materials and less susceptible to wild fire. The young fallow lands which are agriculture lands that lost 
fertility and abandoned to regain fertility for 4 years. It has herbaceous and shrubby materials for 
example chromolaena odorata which is susceptible to impact of wild fire and influence forest 
regeneration.

  

Figure 3-8 Images of fallow land in Afram Headwaters
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4. Description of method and data used

The main purpose of this chapter is to describe methods and data used in this research.  

4.1. Method  

The method to carry out the research is described in the following flowchart:  

Figure 4-1 Methodology flowchart
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4.1.1. Pre-processing of optical data

The pre-processing procedure aims to correct distorted or degraded image data to create more faithful 
representation of the original scene. This typically involves the initial processing of raw data to correct 
for geometric distortions, to calibrate the data radiometrically and to eliminate noise present in the data
(Lillesand et al., 2004).

The intent of the geometric correction is to compensate for the distortions introduced by paranomic 
distortion, earth curvature, atmospheric refraction, relief displacement and nonlinearities in the sweep 
of sensor IFOV. Geometric correction process normally implemented as two steps considering 
systematic distortion (by applying formulas derived by modelling the source of distortion) and random
distortions (by analysing well distributed ground control points (GCPs) occurring in an image)
(Lillesand et al., 2004).

The radiance measured by the any given system over a given object is influenced by such a factor as 
changes in scene illumination, atmospheric conditions, viewing geometry and instrument response 
characteristics. Sun elevation correction and earth-sun distance correction was carried out for mosaics 
purpose of images taken at different times or studying the changes in reflectance of ground feature at 
different times or location. Atmospheric correction reduces the influence of atmospheric effects to 
solar illumination variation (Lillesand et al., 2004).

The Aster image adapted from ITC was already pre-processed and geo-referenced to the UTM – WGS 
84 coordinate system. To project in Ghana coordinate system, it was rectified to the Ghana 
topographic map using Arc GIS software.

4.1.2. Pre-processing of radar data

To process and extract information from SAR imagery, pre-processing has to be done first to remove
radiometric and geometric distortions. Since SAR transmits and receives from one side of the satellite, 
the return signal bounces off and returns from objects on the ground nearer to the satellite more 
quickly than those further away. This slight delay in return affects the strength of the return beam, 
creating a radiometric distortion, or unevenness in the energy measurements.

Radiometric calibration of SAR is defined by (Curlander and McDonough, 1991) as the process of 
characterising the performance of the end to end SAR system in term of its ability to measure the 
amplitude (and phase) of the backscattered signal. The need for calibration depends on the intended 
data analysis method. Application with a quantitative analysis approach often aims to compare 
backscatter measurements so that calibration is required (Van der Sanden, 1997).

The process of calibration can be separated into a lower process (relative calibration) and a higher 
level process (absolute calibration). Relative calibration provides a common basis for all image pixels. 
A good relative calibration will permit repeatable backscatter measurement in both space and time. A 
good absolute calibration will result in backscatter measurements that are both repeatable and accurate
(Van der Sanden, 1997).

Speckle, a salt and pepper (very high and very low values) appearance on SAR imagery is a common 
radiometric distortion. It is caused by the reflective objects on the ground, positioned in such a way 
that their reflected wave either positively interfere with each other, creating a very bright return- or 
negatively interfere, creating a dim return. Gamma, Lee and Frost filters are often employed to 
minimize this effect (PCI-Geomatics, 2009). The speckle reduction is not carried out here to maintain 
the texture information and will be dealt later with the idea of using the convolution filtering in Erdas 
software.

The next step in SAR processing is generally removing geometric distortions. Radar images suffer 
from significant geometric distortion because they are acquired in a slant range. This slanted image 
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geometry creates carrying pixel dimensions across track, with the worst distortion occurring closer to 
the radar platform. Using a DEM and a computed math model, radiometric terrain correction diffused 
and stretches the return from the slopes facing the sensor (restores mean energy level) and 
concentrates and compresses the return from the back slopes, restoring radiometric uniformity to the 
image (PCI-Geomatics, 2009).

Once the radiometric and geometric distortions have been removed, the radar image is registered or 
spatially related, to other images, a specified coordinate system or GIS base map (Rosich and 
Meadows, 2004). Since the ALOS PALSAR and ENVISAT ASAR obtained from ITC was pre-
processed, only the geometric rectification to local coordinate system is carried out. The DN value was 
converted to radar backscatter using specific equations for different type of sensors.
For ALOS PALSAR, the following equation (Shimada et al., 2009) for product level 1.5 was used����(��) = 10 � 	
�10(��2) +  �

Where NRCS: normalized radar cross section
               DN: Digital number value 

                                                       CF: Calibration factor
The equation from (Rosich and Meadows, 2004) was used to converted DN value of the ENVISAT 
ASAR image to backscatter coefficient

��,�
 = 10 � 	
�10 ����,�2
� sin(��,� )�

Where ��,�
 : backscatter coefficient for pixel (i,j)
 ���,� : Digital number value at pixel (i,j)

                                                     k: Absolute calibration constant
                                                       ��,� : Incident angle

4.1.3. Data fusion of radar and optical imagery

Data fusion is an effective way for optimum utilization of large volumes of data from multiple sources. 
Multi-sensor data fusion seeks to combine information from multiple sensors and sources to achieve 
inferences that are not feasible from a single sensor or source. The fusion of information from sensors 
with different physical characteristics enhances the understanding of our surroundings and provides 
the basis for planning, decision-making, and control of autonomous and intelligent machines (Dong et 
al., 2009).

Microwave data is particularly sensitive to structural content of the object. Optical data provides useful 
spectral information in relation to object characterisation and its penetration capabilities over 
complement surface view provided by microwave system. Combination of optical with microwave 
data can lead to an improved separation of classes within an area and can also enable identification of 
additional classes. 

Fusion can be categorised into 3 main types: pixel based, feature based, and decision based. Fusion 
techniques procedure at pixel level, require that the data input registered with high accuracy of half an 
pixel. Feature based fusion first required that feature are identified and extracted from the separate 
input dataset and these extracted features are then combine to form the output. Decision based fusion 
requires independent classification of all input datasets. A fusion result is then generated base on the 
probability that each object are correctly identified in each of the separate classification (Pohl and Van 
Genderen, 1998).
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Preparation (data selection and pre-processing) steps are crucial to the eventual result of fusion and 
any errors committed in the early stage will have compounding effect in all subsequent processing. 

There are four levels of data fusion (Dong et al., 2009)
(1) Signal level fusion. In signal-based fusion, in which signals from different sensors are combined to 
create a new signal with a better signal-to noise ratio than the original signals.
(2) Pixel level fusion: Pixel-based fusion is performed on a pixel-by-pixel basis. It generates a fused 

image in which information associated with each pixel is determined from a set of pixels in source 
images to improve the performance of image processing tasks such as segmentation. 
(3) Feature level fusion: Feature-based fusion at feature level requires an extraction of objects 
recognized in the various data sources. It requires the extraction of salient features which are 
depending on their environment such as pixel intensities, edges or textures. These similar features 
from input images are fused. 
(4) Decision-level fusion: It consists of merging information at a higher level of abstraction, combines 
the results from multiple algorithms to yield a final fused decision. Input images are processed 
individually for information extraction. The obtained information is then combined applying decision 
rules to reinforce common interpretation. 

There are several remote sensing fusion techniques that have been used in different researches such as: 
transformed based, statistical and numerical, filter fusion, fusion based on inter-band relations and 
wavelet decomposition (Vega et al., 2006) which were summarized by (Pohl and Van Genderen, 1998)
and (Dong et al., 2009). In this research, two fusion techniques were IHS and Principle Component 
Analysis (PCA) were selected to employ.

The PCA transform converts inter-correlated multi-spectral (MS) bands into a new set of uncorrelated 
components. To do this approach first we must get the principle components of the MS image bands. 
After that, the first principle component which contains the most information of the image is 
substituted by the panchromatic image. Finally the inverse PC transform is done to get the new RGB 
(Red, Green, and Blue) bands of multi-spectral image from the principle components (Dong et al., 
2009) .

IHS transformation method separates the Intensity (I), Hue (H) and Saturation (S) components of a 
RGB image in order to reduce dimensionality of the input data set by concentrating information into a 
smaller number of output channels (Abdikan et al., 2008).

To combine the information from ALOS PALSAR with optical ASTER imagery, a fusion procedure 
was carried out (described in Figure 4.2). First of all, an IHS fusion was used to converts the color
composition of HH, HV and the ratio of HH/HV polarisation from the RGB space into the IHS color 
space. PCA technique was employed to combine the 9 bands of ASTER into three band namely PCA1, 
PCA2, PCA3. The RGB composition of these bands then was converted to IHS color space.  After 
that, the intensity (I) band of the optical IHS image was replaced by the intensity (I) band of the IHS 
radar image in the fusion to make a new IHS dataset combining all information from radar and optical 
image. A reverse- IHS transform is then performed on this new data set, resulting in an RGB fused 
image with 3 bands ( after this will be known as Band A, Band B and Band C).
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Figure 4-2 Fusion procedure of optical and radar image

4.1.4. Image classification

The objective of classification operation is to automatically identify and categorize all pixels in an 
image into classes by using the analysis of multispectral image data and the application of statistically 
based decision rules to determine land cover identity of each pixel in the image (Lillesand et al.,
2004).

The supervised classification procedure consists of 3 stages (Lillesand et al., 2004):
- Training stage: to identify representative training areas and develop a numerical description of 

the spectral attributes of each land cover type of interest in the scene.
- Classification stage : to categorise each pixel in image data set into the class which it most 

closely resembles using predefined decision rules
- Output stage: to present the result after the entire data set has been categorised.

The Maximum Likelihood algorithm was employed to assign each pixel to one of the four classes that 
has the highest probability with the assumption that they are normally distributed (Lillesand et al.,
2004).

The pixel based supervised classification (PBC) was used to segment the optical and radar fused image 
into 4 main cover types: Natural Forest, Plantation, Agro-forest, Bare ground. The classification result 
was validated using ground data points obtained from the field.

4.1.5. Field work

The purpose of fieldwork phase was to measure the aboveground biomass from the study area. This 
data later will be used as the ground truth data for both of estimation and validation work of modelling 
biomass. However, in executing a forest inventory, we need to establish a relationship between 
directly measurable tree or stand characteristics (e.g. DBH, height) and other forest stand parameters 
such as volume or biomass which is impossible to be measured directly (Husch et al., 2003).
Therefore, the stand parameters of tropical forest will actually be measured from the field and then 
used for biomass calculation by allometric equations. 
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Pre-fieldwork

Before the trip collecting data from the field, a lot of reference data were prepared based on the 
available data collected about the study area (see Chapter 3). A stratified random sampling approach 
was applied to be followed in selecting sampling plots for the fieldwork by subdividing the forest area 
into subdivisions called strata on the basis of some criteria such as topographical features, forest types, 
density classes or volume, height, age or site classes.

The purpose of stratification is to reduce the variation with the forest subdivision and increase the 
precision of the population estimate (Husch et al., 2003). Stratified random sampling in forest 
inventory has the following advantages over simple random sampling:
- Separate estimates of the means and variances can be made for each of the forest subdivisions
- For a given sampling intensity, stratification often yield more precise estimates of the forest 
parameters than does a simple random sample of the same size.

On the other hand, the disadvantages of stratification are that the size of each stratum must be known 
or at least a reasonable estimate be available and that sampling unit must be taken in each stratum if an 
estimate for that stratum is needed (Husch et al., 2003). This can be achieved if the established strata 
result in a greater homogeneity of the sampling unit within a stratum than for the population as a 
whole (Spurr, 1952).

A land cover map was established to facilitate the stratification and ensured that samples are 
distributed randomly in each stratum with the number due to its size. A routine and navigation 
facilities were also prepared for the field trip. 

Data collection from the field 
A visit reconnaissance was made to bring the first impression about the study area and adjust the field 
schedule. After that, the data was collected in 75 plots during 3 weeks. 

Different shapes of plots were used in the field base on the cover type (see Figure 4.3). The circle plot 
was employed in the forest and plantation with the radius 12.62 meters and only trees with DBH larger 
than 10 cm is measured using diameter tape. Circular plots have been used widely since the radius, a 
single dimension, can be use to define the perimeter (Husch et al., 2003). The square plot with size 
30x 30 m was employed in the agro-forestry because the trees in these plots were less dense than in the 
forestry and the topography was quite flat. 

Figure 4-3 Circular plots (left) and Square plots (right)
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The measurement of biophysical parameters such as DBH (cm), tree height (m), and crown cover (%)
was collected. For the areas that having slope higher than 5%, the slope correction was used. Time, 
budget and also weather conditions were main factors that affected the field work.

Field work data analysis

Allometric equations were used to calculate the ABG biomass from volumetric or structural 
dimensions and most of them are based on tree diameter at breast height and tree height (IPCC 2003).
Various allometric equations have been developed for tropical rain forest (Brown, 1997; Araújo et al.,

1999; Chambers et al., 2001; Chave et al., 2005; Basuki et al., 2009). However, due to literature 
review, no allometric equation to estimate AGB biomass from bio physical parameters is available 
locally for Ghana. 

Therefore, the following equations from IPCC 2003 were adapted to convert field data to AGB per 
tree.

)(2035.0)/(
)(153.0)/(

3196.2

382.2

bDBHtreekgY
aDBHtreekgY

��

��

Where Y: aboveground biomass per tree
            DBH: measured tree diameter at breast height 
From these equations (a) is used for Teak plantation and (b) for the others.

The AGB per tree is then summed over all the trees to obtain a stand-level AGB estimate. After that, 
the expansion factor is used to calculate the AGB per ha for each plot. Because of the difference in the 
size and shape of plots measured in different land cover types, different factors were use: 199 for 
circular plots and 11 for square plots.

4.1.6. Modeling above ground biomass 

4.1.6.1. Correlation analysis

Correlation analysis measures the degree of association between two or more variables. Correlation 
expresses the joint property or relationship between two or more variables to see how closely they are 
associated. When correlation exists, the size of the measurements of one variable is related to the sizes 
of the measurements of another variable (Husch et al., 2003).

The measure of the degree of association between two variables is called the correlation coefficient.
It takes value between -1 and 1, where -1 indicate a perfect negative relation, +1 a perfect positive 
relation and the value of 0 indicates absence of relation (Stein et al., 1999).

All decisions regarding the null hypothesis are based on probability, not so absolute certainty. 
Consequently it is necessary to indicate the probability level on which the decision to reject the null 
hypothesis is based. The probability is called the level of significance. Statement of significance have 
conventionally been given in terms not significant, significant and highly significant (Husch et al., 
2003).

Table 4-1 Probabilities of Different Significance Levels (Husch et al., 2003)

Significance level
Probability of Occurence

P 1 out of n chances
Not significant

Significant

Highly significant

Greater than 0.05
Less than 0.05 but not less than 0.01

Less than 0.01

Greater than 1 out of 20
Less than 1 out of 20 but not less than 1 
out of 100
Less than 1 out of 100
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In this research, correlation analysis was used to assess the correlation of biophysical parameters, AGB 
with radar backscatter and DN value from fusion data as shown in Figure 4-4.

Figure 4-4 Correlation analysis approach

4.1.6.2. Geometric Sensitivity of radar backscatter data extraction from radar images

This research also is concerned about the effect of geometry to the correlation of AGB and radar 
backscatter. The procedure to test the sensitivity of radar geometry to correlation with AGB is
described in Figure 4-5 below.

Figure 4-5 Geometric sensitive analysis of radar backcatter in relation to sampling plots location on the ground

Since the spatial resolution of ALOS PALSAR was 12.5 m, the area of 1 pixel was nearly equal to 1 
circular plot measured from the field. However, it could happen that the central of the plots was not the 
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central of the pixel nearest to it. In that case, it was needed to consider the position of plot central on 
the radar image especially if the geo-referencing procedure could bring some errors to the matching 
between image pixels and ground sampling plots. Moreover, the GPS receiver which was used to 
define the location of the center of the sampling plots could also have some positioning error.

Therefore, the radar backscatter value extracted from the image was tested in 3 situations: the nearest 
pixel, the 4 nearest pixels and the 9 nearest pixels. Average value in each situation then was analyzed 
in the correlation with AGB and compared to see the geometric effect.

4.1.6.3. Regression models 

The objective of regression analysis is to quantify the relationship between dependent variable and one 
or more independent variables. Regression implies a cause and effect relationship in which a change in 
the value of an independent variable will result in an expected average change in the dependent 
variable. The quantitative relationship is expressed by an equation and its graphic representation
(Husch et al., 2003). The square value of the correlation coefficient (r2) is called the coefficient of 
determination. It can be interpreted as indicating the percentage of variation in one variable that is 
associated with other variable (Husch et al., 2003).

Regression analysis is a common way to develop AGB estimation models (Lu, 2006). After analysing 
the correlation of AGB and backscatter (see 4.1.6.1), it seems that single regression did not show a 
significant correlation. Therefore, a multi-linear regression was decided to use for modelling.

The result of previous step also indicated that not all correlations in different land cover types were 
strong enough for modelling (see 5.5 and 5.6). For natural forest, two input variables L band HH and 
HV polarised radar backscatter were chosen as an input for the multi-linear regression modelling. In 
plantation, the first two bands of fused image (band A and band B) were preferable to be chosen as 
input. No significant correlation was found in agro-forestry to model AGB in this land cover type. The 
AGB modelling steps for natural forest and plantation were shown in Figure 4-6.

The estimation accuracy is evaluated by using the cross validation. The dataset used to develop the 
multiple regression model of the relationship between backscatter of HV-HH polarisations and forest 
biomass is independent of the data set used to validate the model. The estimates are compared with the 
value observed in the field. The accuracy of result is assessed in term of RMSE and RMSE% 
(Holopainen et al., 2009).

a)Natural forest b)Plantation

Figure 4-6 Modelling steps to estimate AGB using radar backscatter
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4.1.7. Mapping biomass and carbon stock

The adjusted relation multi-linear regression equation derived above then was used to calculate the 
biomass and the carbon for the whole area.
The biomass value w converted to carbon stocks using a conversion factor with the equation (IPCC, 
2003)

C = B · CF 
where C = carbon stocks (t), 

B = dry biomass (t), 
                                   CF = carbon fraction of biomass (=0.5)

4.2. Material description

4.2.1. Dataset

4.2.1.1. ENVISAT ASAR data

The ASAR (Advanced Synthetic Aperture Radar) is an advanced version of the synthetic aperture 
radar from the ERS-1 and 2 missions. It operates at C-band (5.331 GHz) and incorporates a number of 
imaging modes that provide a variety of resolutions, polarisations and swath widths. Generally, the 
swath width is 100km with the exception of wave mode (5km) and wide swath width and global 
monitoring (400km) products. ASAR ensures continuity with the image mode (SAR) and the wave 
mode of the ERS-1/2 AMI. It features enhanced capability in terms of coverage, range of incidence 
angles, polarisation, and modes of operation. This is provided by significant differences in the 
instrument design: a full active array antenna equipped with indicated transmit/receive modules which 
provides distinct transmit and receive beams, a digital waveform generation for pulse "chirp" 
generation, a block adaptive quantisation scheme, and a ScanSAR mode of operation by beam 
scanning in elevation. Table 4-1 showed the technical characteristics of ENVISAT ASAR sensor
(Richards and Jia, 2006).

Table 4-2 Technical characteristics of ENVISAT ASAR sensor

Technical Characteristics
Accuracy Radiometric resolution in range 1.5-3.5 dB
Spatial Resolution Image, Wave and Alternating Polarisation modes: approx 30x30m

Wide Swath mode: approx 150x150 m
Global Monitoring mode: approx 1000x1000m

Swath Width Image and alternating mode: up to 100km
Wave mode: 5km
Wide swath and global monitoring modes: 400km or more

Wave bands C band, with choice of 5 polarisation mode (VV,HH,VV/HH,HV/HH, or VH/VV

ENVISAT ASAR used in this research was provided by ITC. This ASAR_WSM_1P mode product 
was acquired in March 2009 with only 1 polarisation HH that will be called as C-HH after this.

4.2.1.2. ALOS PALSAR data

ALOS (Advanced Land Observing Satellite) is designed as a follow on to JERS-1 and ADEOS 
(Midori). Besides PRISM (for stereoscopic mapping) and an AVINIR, ALOS carry a phased array L 
band SAR, to be known as PALSAR. The SAR will have a swath width of 70 km and a 2 look spatial 
resolution of 10m in its observation mode, and a swath width of 250-360 km with a spatial resolution 
of 100m in a Scansar (wide swath width) mode (Shimada et al., 2009).
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Table 4-3 ALOS PALSAR characteristics

Content value
Height
Revolution
Inclination
Eccentricity
Orbital determination accuracy
Mass
Solar power
Transmitter
Antenna size
Frequency (MHz)
Bandwidth (MHz)
Sampling frequency(MHz)
Pulse width
Mode

Number of beams
AD converters
Swath width
Gain control

691.5 km
14-27/46 per day, 671 as total orbits
98.16 degree
0.00118
Less than 40 cm 
4000Kg
7000W at the begining
80 TR modules for 2.0 KW
8.9m in azimuth and 2.9 in range
1270
28.0 (FSB and WB2), 14.0 (other mode)
32.0 (FSB and WB2),16.0 (other mode)
27.0 (FBS,FBD,SCANSAR), 17.0 (polarimetry)
Fine Beam Single (FBS), Fine Beam Dual (FBD), Polarimetry 
(PLR), SCANSAR (WB1 and WB2), Direct Single (DSN)
18 for STRIP mode, 5 for SCANSAR
1-Q, 5 bits
70 km on ground (STRIP), 350 km SCANSAR
Manual gain control (MGC) is always used for operation mode 
while automatic gain mode is available

The ALOS PALSAR data used for this research was acquired in January 2009 with 2 polarisation HH 
and HV which after this will be called as L-HH and L-HV.
It was a fine mode product with level 1.5. The features of this product type can be found in the table
below:

Table 4-4 Processing parameters of level 1.5 fine mode

Map projection
Framing
Image direction
Resampling
Geodetic coordinate (Earth mode)
Scene Shift
Window function
Multi –look number
Pixel spacing

UTM
Geo-reference, Geo-code
Map
Nearest Neighbour, Bi-linear, Cubic Convolution
GRS80
-5 to 4
Rectangle
4 looks
12.5m

4.2.1.3. ASTER data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an advanced 
multispectral imager with a high spatial, spectral and radiometric resolutions for EOS-AM1 platform 
that covers a wide spectral region from visible to thermal infrared by 14 spectral bands. Moreover, 
ASTER has a stereoscopic viewing capability by a near infrared band. Excellent observational 
performance can be expected by a pushbroom type visible and near infrared radiometer (VNIR 
subsystem) with a high spatial resolution of 15 m, a pushbroom type short wave infrared radiometer 
(SWIR subsystem) with a high spectral resolution and a whiskbroom type thermal infrared radiometer 
(TIR subsystem) with high spatial, spectral and radiometric resolutions (Fujisada, 1994).
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Table 4-5 Tecchnique characteristics ((Abrams, 1999; Richards and Jia, 2006))

Technical Characteristics
VNIR SWIR TIR

Spatial resolution (m)
Data rate (Mps)
Swath widths

Stereo

15
62
60
Y

30
23
60
N

90
4

60
N

Wavelength region Band Band width

VNIR
1
2
3

0.52-0.67
0.63-0.69
0.76-0.86

SWIR

4
5
6
7
8
9

1.60-1.70
2.145-2.185
2.185-2.225
2.235-2.285
2.295-2.365
2.360-2.430

TIR

10
11
12
13
14

8.125-8.475
8.457-8.825
8.925-9.275
10.25-10.95
10.95-11.65

An ASTER image acquired in March 2008 in was selected for this study. This image was a Level 1-B
product in which the radiometric and geometric calibration was carried.

4.2.1.4. Other reference dataset

Besides, there are other reference data provided by ITC that was used in this research, including:
- Topographic Map at 1:50000 scale
- Ghana geo-database (soil type, land cover, geological types, culture area etc.)

4.2.2. Other materials

In addition to the dataset, other materials were used including: 
- Instruments to support for the field work (listed in Table 4-7)
- Software to support data analysis and thesis writing (listed in Table 4-8)

Table 4-6 List of instruments used for field work

Instrument Purpose of usage

iPAQ and GPS
Prismatic compass

Diameter tape 5 meters
Measuring tape 30 meters
Spherical densiometer
Clinometer haga
Fieldwork datasheet

Navigation
Orientation
Diameter measurement
Length measurement

Crown Cover measurement
Height Measurement
Field data record



ABOVE GROUND BIOMASS ESTIMATION IN TROPICAL FOREST FOR ASSESSMENT OF CARBON STOCK USING SAR DATA
- A CASE STUDY IN AFRAM HEADWATER FOREST, GHANA  

29

Table 4-7 List of software used in thesis

Software Purpose of usage

            ArcGIS Destop version 9.3.1 GIS analyzing
            ENVY version 4.7 Remote sensing Image processing
            Erdas Imagine 9.3
            R (Software package for statistical computing)

Statistical analysing           Microsoft Excel
           SPSS
           Adobe Acrobat Professional

Thesis writing and editing
           Microsoft Word

           Microsoft Visio

          Microsoft Project
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5. Results

5.1. Landcover mapping using radar and optical fused image

Fusion data of ALOS PALSAR radar and ASTER optical image (figure 5.1) was classified into 4 main 
land cover types: Natural forest, plantation forest, grassland and agro-forestry using Maximum 
Likelihood Classification algorithm.

Figure 5-1 Fused image of ALOS PALSAR and ASTER

From the classification result, the area of each land cover class and the total area of the study area were 
calculated and presented in Table 5-1 below. 

Table 5-1 Area of each class and total area in the study area

Class Area (ha) 
Grass land     315.7 
Plantation forest   4605.3 
Agro-forestry 10141.6 
Natural forest   4835.0 

Total 19897.6 

The classification result was validated using 64 sampling plots (30 in agro-forestry, 17 in natural 
forest, 2 in grassland and 15 in plantation). From the confusion matrix of errors (see Table 5.2), the 
accuracy of classification was assessed based on Producer’s accuracy, User’s accuracy and Overall 
accuracy represented in Table 5.3.

Natural forest and agro-forestry were classified correctly the most with user accuracy of 87.5 % and 
83.87% respectively and producer accuracy 82.35% and 86.67 % respectively. Grassland classification 
was less correct with 66.67% user accuracy. The overall accuracy of classification result was 81.25%.
The classification result then was used to create land cover map for Afram Headwater Reserve shown 
in Figure 5.2 as below.
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Table 5-2 Confusion matrix of errors for classification

Classification Reference
Agro-forestry Natural forest Grassland Plantation Total

Agro-forestry 26 1 1 2 30
Natural forest 1 14 0 2 17

Grassland 0 0 2 0 2
Plantation 4 1 0 10 15

Total 31 16 3 14 64

Table 5-3 Accuracy assessment of classification

Class Reference 
Total

Classification 
Total

Correct
Total

Producer’s 
Accuracy

User ‘s 
Accuracy

Agro-forestry 30 31 26 86.67% 83.87%
Natural forest 17 16 14 82.35% 87.5%

Grassland 2 3 2 100% 66.67%
Plantation 15 14 10 66.67% 71.43%

Total 64 64 52
Overall accuracy = 81.25 % 

The major land-cover type in this area was agro-forestry which accounting for more than 50% area. 
The area of plantation forest and natural forest only contribute to approximately less than 25 % each. 
Grassland has the smallest area which was less than 5 %.

Figure 5-2 Land cover map of Afram Headwater forest



ESTIMATION AND MAPPING OF ABOVE GROUND BIOMASS FOR THE ASSESSMENT AND MAPPING OF CARBON STOCKS IN TROPICAL 
FOREST USING SAR DATA - A CASE STUDY IN AFRAM HEADWATERS FOREST, GHANA

32

5.2. Descriptive analysis of field data

Measurement of forest stand parameters (average DBH, number of tree, canopy height and crown 
cover) were analysed and presented by box-plots shown in Figure 5.3 for each cover types were forest 
trees are present (i.e. Natural forest, Plantation and Agro-forestry).
As can be seen, average DBH value measured in agro-forestry was the largest with the mean value 
approximately 50 cm and also varied the most in the three main land-cover types. However, in the 
crown cover measurement, natural forest and plantation forest showed a much higher result (60 -80% 
cover) compared to agro-forestry (less than 20%). 
While the trees measured in plantation plots were the shortest (averaging 12 meter) and less variability
than in agro-forestry.  Tree height in agro-forestry varied from 10 to more than 30 meters, higher than 
in natural forest that varied from 13 to 28 meters.

 
a) Average DBH 

 
b) Number of tree in each plot 

 
c) Crown Cover 

 
d) Tree Height 

Figure 5-3 Box-plots of measured parameter in different land cover types

Agro-forestry (a), Natural forest (f), plantation forest (p)

The number of trees in natural forest and plantation plots was similar except a slight smaller in natural 
forest. In contrast, less than 10 trees were found in the agro-forestry plots indicating the smallest 
density in this land cover type. 
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The same trend can be found in crown cover measurement in which natural forest and plantation plots 
had much larger crown cover (70% and 80%) than agro-forestry plots (less than 20%).

AGB per hectare was calculated from the total AGB per tree in each plot using the expansion factor as 
described in chapter 4. The variation and distribution of this was shown in Figure 5.4.

It is clear from figure 5.4 that AGB in natural forest plot was the highest (average 300 ton/ha) and that 
in agro-forestry plot was the lowest (less than 50 ton/ha) among the three land cover types. AGB in
plantation plots was around one third the amount found in Natural forest. 

Figure 5-4 Box-plots of measured AGB in different land cover types

Agro-forestry (a), Natural forest (f), plantation forest (p)

5.3. Descriptive analysis of radar backscatter

To provide the first impression about the appearance of different land cover type ( table 5-4) in 
available radar images, a RGB composition (as shown in Figure 5-5) was created with R= L-HH, 
G=L-HV and B= C-HH. 

Table 5-4 Appearance of different land cover types
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Figure 5-5 Colour composition R=L-HH, G=L-HV,B = C-HH

5.3.1. From ENVISAT ASAR

The radar backscatter value was extracted from image pixel of ENVISAT ASAR that have the same 
coordinates with the central point of field sampling plots. The variation of this value in different land 
cover type is shown using box-plots in Figure 5.6.

Similar trend in all three land cover types can be seen also in the image. Natural forest, plantation and 
agro-forestry were hard to be distinguished clearly from each other. 

Figure 5-6 Box- plot of ENVISAT HH polarised backscatter in different land cover types

Agro -forestry (a),   Natural forest (f),   plantation forest (p)
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5.3.2. From ALOS PALSAR

 
 

 

Figure 5-7 Box- plot of ALOS PALSAR backscatter in different land cover types

Agro -forestry (a),   Natural forest (f),   Plantation forest (p)

The box-plot in figure 5.7 presented the variation of backscatter value extracted from the ALOS 
PALSAR image. Similar to HH polarised ENVISAT ASAR, the backscatter from HH polarised ALOS 
PALSAR did not have much difference between land cover types. While as, box-plots of radar 
backscatter from HV polarised ALOS PALSAR showed distinct different between land cover types. It 
showed the highest scattering in natural forest, and lower in plantation and agro-forestry.

5.4. Correlation analysis of biophysical parameters and radar backscatters

5.4.1. Correlation of Canopy Height and radar backscatter

The relationship of canopy height and radar backscatter was analysed using Pearson's product-moment 
correlation coefficient for all plots measured from the field as shown in the Table 5.3. 

Table 5-5 Pearson's product-moment correlation

HH L band HV L band HH C band
t -0.748 -1.261 0.701

df 65 65 65
p-value 0.457 0.212 0.475

95% confidence interval
-0.325 -0.381 -0.157
0.151 0.089 0.320

Correlation coefficient - 0.092 - 0.155 0.087

With r = -0.155 and p-value = 0.212, the relation of L band HV polarised backscatter and canopy 
height was significant with 75% confidence. The correlation with HH polarised backscatter either C 
band or L band was not significant with very low correlation coefficient (-0.092 and 0.087) and large 
p-value (0.4573 and 0.475).

The correlation was also analysed based on land-cover types with the results shown in Appendix D. 
Figure 5.8 showed a comparison of correlation coefficient of radar backscatter and canopy height   
stratified based on land-cover types. HV polarised L band backscatter was the highest correlated to 
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canopy height among the three L-band HH, L-band HV, C-band HH in all land cover types: natural 
forest, plantation and agro-forestry. Canopy height measured in natural forest areas showed higher 
correlation with radar backscatter than in other land cover types.

Figure 5-8 Correlation coefficient of radar backscatter and canopy height in different land cover types

5.4.2. Correlation of Average DBH and radar backscatter

The relationship of average DBH and radar backscatter for each plot was analysed using Pearson's 
product-moment correlation coefficient for all plots measured from the field as shown in the Table 5.4. 

Table 5-6 Pearson's product-moment correlation

HH L-band HV L-band HH C-band
t 0.575 -2.319 -1.277

df 65 65 65
p-value 0.567 0.024 0.206

95% confidence interval
-0.172 -0.484 -0.382
0.306 -0.039 0.087

Correlation coefficient 0.071 -0.276 -0.156

HV polarised L band backscatter showed the highest correlation with average DBH in 95% confidence 
(r = -0.276 and p- value =0.023). While as, the correlation of DBH and HH polarised C band and L 
band was weak and not significant (r = -0.156 and 0.071; p-value = 0.206 and 0.567).

This relationship was stronger when it comes to the stratification of land-cover types as indicated in 
Figure 5.9. The results of correlation analysis in each land cover type were shown in Appendix D. 
Among those, HV L band backscatter showed a high correlation to average BDH in the natural forest 
with r = 0.658.

L-band HH L-band HV C-band HH

Natural forest 0.454 0.543 0.320

Plantation 0.113 0.193 0.155

Agro-foretry 0.143 0.300 0.055
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Figure 5-9 Correlation coefficient of radar backscatter and average DBH in different land cover types

5.4.3. Correlation of Crown cover percentage and radar backscatter

The relationship of crown cover percentage and radar backscatter for each plot was analysed using 
Pearson's product-moment correlation coefficient for all plots measured from the field as shown in the 
Table 5.6.

The correlation of HH polarised L-band backscatter and crown cover percentage was the strongest can 
be found with r = 0.3287 at 90% confidence. HV polarised L-band had the second strong and 
significant correlation with crown cover percentage since it had r = 0.2553 and p value = 0.030. A 
weak relation was of HH polarised C-band backscatter with r = 0.1591 and p-value = 0.1983.

Table 5-7 Pearson's product-moment correlation

HH L-band HV L-band HH C-band
t 2.807 2.218 -1.300

df 65 65 65
p-value 0.007 0.030 0.198

95% confidence interval
0.096 0.027 -0.084
0.527 0.475 0.385

Correlation coefficient 0.329 0.265 0.159

The correlation test was also made for each land cover type (see appendix D) and the result was shown 
in Figure 5.10. As can be seen, a different trend was found when HH polarised L band had the 
strongest correlation   in all land cover type, especially in natural forest with r = 0.526 at 95 % 
confidence and C band HH had the weakest and most insignificant. 

L-band HH L-band HV C-band HH

Natural forest 0.045 0.658 0.207

Plantation 0.158 0.195 0.361

Agro-foretry 0.202 0.161 0.202
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Figure 5-10 Correlation coefficient of radar backscatter and crown cover in different land cover types

5.5. Correlation analysis of above- ground biomass and radar backscatter

5.5.1. From ENVISAT 

Relationship of AGB and radar backscatter extracted from ENVISAT ASAR image was examined 
using Pearson's product-moment correlation coefficient as shown in table 5.6 below. This relation was 
different in land cover types.

The strongest correlation was found in natural forest with r = - 0.310, degree of freedom df = 14 and p-
value = 0.243. The relation of HH polarised C band and AGB was significant with 75 % confidence.

Table 5-8 Pearson's product-moment correlation

Natural forest Plantation Agro-forestry
t -1.220 1.159 0.936

df 14 13 36
p-value 0.243 0.267 0.356

95% confidence interval
-0.698 -0.244 -0.174
0.219 0.707 0.452

Correlation coefficient -0.310 0.306 0.154

Similarly, the correlation with plantation was slightly weaker with r = 0.306, degree of freedom df = 
13 and p- value=0.267. The relation was significant with 70 % confidence.

The weakest correlation was in agro-forestry with r =0.154, degree of freedom df = 36 and p-
value=0.356. The relation was significant with only 60 % confidence.

L band HH L band HV C band HH

Natural forest 0.527 0.324 0.014

Plantation 0.169 0.207 0.185

Agro-foretry 0.345 0.111 0.164
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5.5.2. From ALOS PALSAR

The correlation of radar backscatter extracted from HH and HV polarised ALOS PALSAR image and 
AGB was assessed using Pearson correlation coefficient as showing in table 5.7 below. This 
correlation is different in each type of land cover and different polarisation.

Table 5-9 Pearson's product-moment correlation

Natural forest Plantation Agro-forestry
HH HV HH HV HH HV

t -1.153 -3.451 -1.063 -0.598 1.901 1.577
df 14 14 13 13 36 36

p-value 0.270 0.004 0.307 0.5602 0.065 0.124
95% confidence 

interval
-0.707 -0.889 -0.694 -0.623602 -0.019 -0.071
0.246 -0.2774 0.268 0.381 0.567 0.531

Correlation coefficient 0.305 0.691 0.283 0.164 0.302 0.254

In natural forest, HV polarised L band correlated to AGB strongly and significant with 95% 
confidence and r= -0.63174. The correlation of HH polarised data was weaker and significant with 
70% confidence and r = -0.29425.

In plantation forest, with 65% confidence, the correlation of HH polarised data was found to be 
significant but very weak (r =-0.282689). No significant correlation of L band HV polarisation was 
found with AGB (p-value= 0.5602 and r= -0.163601)

In agro-forestry, both HH and HV polarised L band backscatter showed a positive weak correlation 
with AGB. The correlation of HH polarised L band was significant with 90% confidence and multiple 
R = 0.3020658. Weaker than that, HV polarised L band’s correlation was significant with 85% 
confidence and r = 0.2542332.

5.6. Correlation analysis of above-ground biomass and optical and radar 
fused data 

5.6.1. Natural forest

Correlation of AGB and pixel value extracted from 3 bands of the optical and radar fusion image was 
tested using Pearson correlation coefficient. 

Table 5-10 Pearson's product-moment correlation

Band A Band B Band C
t 1.769 -0.804 -0.787

df 13 13 13
p-value 0.100 0.436 0.445

95% confidence interval
-0.093 -0.657 -0.654
0.777 0.332 0.336

Correlation coefficient 0.440 -0.218 -0.213

Only band A showed a significant correlation (r= 0.440) with AGB at 85% confidence. Neither band B 
nor band C correlated with AGB significantly (p-value = 0.436 and 0.445 respectively).
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5.6.2. Plantation forest

Correlation of AGB and pixel value extracted from 3 bands of the optical and radar fusion image was 
tested using Pearson correlation coefficient.

Table 5-11 Pearson's product-moment correlation

Band A Band B Band C
t 1.428 2.248 -0.149

df 13 13 13
p-value 0.177 0.043 0.884

95% confidence interval
-0.178 0.023 -0.542
0.741 0.819 0.481

Correlation coefficient 0.368 0.529 -0.041

Band A and band B showed a quite high correlation with AGB with r= 0.361439 and 0.5289811, 
significant at 80% and 95 % confidence repetitively. There was no correlation existing between band 
C and AGB since the p-value of this relation was 0.8842. 

5.6.3. Agro- forestry

Correlation of AGB and pixel value extracted from 3 bands of the optical and radar fusion image was 
tested using Pearson correlation coefficient.
As can be seen, the strongest correlation was in band A with r=-0.261 at 80% confidence. The other 
two, band B and band C‘s correlation were weak and had low level of confidence (band B -   r =
-0.119 and p value = 0.476, band C - r =-0.206 and p value = 0.216).

Table 5-12 Pearson's product-moment correlation

Band A Band B Band C
t -1.624 -0.721 -1.261

df 36 36 36
p-value 0.113 0.476 0.215

95% confidence interval
-0.536 -0.423 -0.493
0.064 0.208 0.122

Correlation coefficient -0.261 -0.119 -0.206

5.7. Modelling above-ground biomass using radar backscatter in Natural
forest

5.7.1. ALOS PALSAR radar backscatter of AGB

The variation of radar backscatter from HH and HV polarised L-band image can be represented using 
values extracted in 9 pixels which are closest to the central point of sampling plot. Figure 5.8 showed 
the box-plot of these values in each plot.
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The correlation analysis was employed again to see the effect of this variation to the correlation with 
AGB. Repetitively, the mean of 4 pixels and 9 pixels which were closest to the plot centre was 
calculated and analysed the correlation using Pearson correlation coefficient as in table 5.11.

Table 5-13 Pearson's product-moment correlation

1 pixel 4 pixels 9 pixels
HH HV HH HV HH HV

t -1.153 -3.451 -3.330 -3.296 -1.798 -6.674
df 13 13 13 13 13 13

p-value 0.269 0.004 0.005 0.006 0.095 0.000
95% confidence 

interval
0.246 0.277 0.255 0.248 0.086 0.669
0.707 0.889 0.884 0.882 0.780 0.960

Correlation coefficient 0.305 0.691 0.678 0.675 0.446 0.880

Extracted from HV polarised L band, strongest correlation can be found in mean of 9 closest pixels (r
= 0.880 at 95 % confidence). The correlation of mean of 4 closest pixels was also significant but 
slightly weaker (r = 0.675 at 95 % confidence).

The opposite was true for HH polarised L band. The mean of 4 closest pixels showed a stronger 
correlation to AGB (r = 0.678 at 95 % confidence) than that of 9 closest pixels (r=0.446 at 70 % 
confidence).      

Figure 5-11 Box-plot of backscatter values extracted from 9 closest pixels in each sampling plot
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5.7.2. Model adjustment

The multi –linear regression model was used to test whether a combination of multi-polarisation of 
HH and HV L band could bring a stronger relation with AGB. Applied for the 9 closest pixels case, 
the result was shown in the Table 5.13 and Table 5.14.

Table 5-14 Multi-linear regression analysis

Model

Coefficients

t Sig.B Std. Error

1 (Constant) 2125.164 497.003 4.276 .001

HH -85.596 40.890 -2.093 .058

HV 236.913 34.905 6.787 .000

The one way ANOVA test was employed to test the significance of the R2 and the result shown in 
Table 5-15 indicated that the multi-linear regression was really significant. 

Table 5-15 ANOVA test result

df SS MS F
Regression 2 323062.776 161531.4 30.25507
Residual 12 64067.820 5338.985

Total 14 387130.596

The estimated and measured AGB were plotted against each other and calculated the co-efficient of 
determination R2 as presented in Figure 5-12. It was clear from the figures that the multi-linear 
regression model using the mean of 9 pixels extracted from HH and HV polarised L band image (with 
R2= 0.834) was sufficient. 

The confident interval of the model was also considered with 95 % confidence. Figure 5-13 showed 
the variation of AGB estimated by the model.

Figure 5-12 Model Adjustment Result Figure 5-13 Confidence boundary of model 



ABOVE GROUND BIOMASS ESTIMATION IN TROPICAL FOREST FOR ASSESSMENT OF CARBON STOCK USING SAR DATA
- A CASE STUDY IN AFRAM HEADWATER FOREST, GHANA  

43

5.7.3. Model validation

Figure 5-14 Scatter-plot graph of estimated and true value of validation plots

The multi-linear regression model was validated using 8 plots. The RMSE (root mean square error) of 
the value estimated by the model was quite high (179 ton/ha). The estimated value were scattered 
against the ground truth value obtained from the field as shown in Figure 5.10. A fit-of goodness line 
was added and the R2 = 0.65 showed that 65% of ground truth data was explained by the estimated 
value using this model. 

5.8. Regresion analysis in plantation

A multi-linear regression model of band A and band B from the fusion image was employed to 
estimate AGB in plantation forest represented in table 5.13

Table 5-16 Multi-linear regression analysis

Multiple R 0.662471483 
R Square 0.438868466 
Adjusted R Square 0.345346543 
Standard Error 4153.794246 
Observations 15

  Coefficient P-value 
Intercept 9831.140425 0.152184 
Band A_av9 -315.814889 0.070166 
Band B_av9 357.3082502 0.025172 

 

ANOVA 
  df SS MS F Significance F 

Regression 2 161935067.7 80967534 4.69268 0.031216776 
Residual 12 207048079.6 17254007 
Total 14 368983147.3       

Although the relation was significant, the result estimated by this model was quite poor with R2 =
0.439. However, this showed an improvement in correlation with AGB if compared to the result in 
plantation in previous parts.

Measured Biomass (Ton/ha)

Estimated 
Biomass
(Ton/ha)
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5.9. Mapping above-ground biomass and carbon stocks in Natural forest

The multi-linear regression model of HV and HH polarised L band was decided to estimate the AGB 
in the Natural forest following the equation

Y= -85.596*X1+236.913*X2 – 2125.164 
In which

Y: estimated above-ground biomass (ton/ha)
X1: backscatter value extracted from HH polarised L-band
X2: backscatter value extracted from HV polarised L-band

The result of AGB estimation for Natural forest in the study area was shown in Figure 5.15. From the 
map of AGB, it can be seen that over the area the amount of AGB was mostly from 100 up to 200 ton 
per ha. In some parts of the area where was closed to boundary with other land cover types, this 
decreased to less than 100 ton per ha, especially near the boundary of the reserve, because of 
degradation. Only a minor area has AGB value higher than 300 ton per ha in which was far from the 
boundary, less degraded and difficult in accessibility.

Figure 5.16 presented the map of carbon stocks in natural forest calculated from AGB map. Because 
this map was made based on AGB biomass, it has a similar trend in the carbon stocks distribution. The 
area that has difficulties in accessibility was the largest carbon stocks with the amount higher than 150 
Mg per ha. The carbon stocks with the amount less than 100 Mg per ha was found in the easy 
accessible area that near the boundary of the reserve and other land cove types. It account for the 
majority over the study area.

Figure 5-15 Map of estimated AGB in Natural forest
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Figure 5-16 Map of estimated carbon stock in natural forest



ESTIMATION AND MAPPING OF ABOVE GROUND BIOMASS FOR THE ASSESSMENT AND MAPPING OF CARBON STOCKS IN TROPICAL 
FOREST USING SAR DATA - A CASE STUDY IN AFRAM HEADWATERS FOREST, GHANA

46

6. Discussion

6.1. Correlation of forest stand parameters measured from the field and
radar backscatter

Standing biomass of a given tree species is mainly a function of DBH, tree height and density which 
depends on tree age, forestry practices and also environmental and genetic factors (Kasischke and 
Christensen, 1990). Therefore, there must be a good relationship between radar backscatter and 
biophysical parameters to exploit the use of SAR backscatter to determine AGB since radar energy 
respond to biophysical characteristics of forest. Correlation of three radar backscatter types (C-band 
HH, L-band HH, L-band HV) and forest stand parameter measured from the field was analysed and 
the results were shown in section 5.4.

General speaking, strongest correlation was found with HV polarised L band backscatter and most 
biophysical parameters. Other correlations of HH polarised both L-band and C- band with stand 
parameters were not strong. These results are because of a deeper penetration of such long wavelength 
radar energy like L-band compared to short wavelength C-band and of the volume scattering from a
multi-scatterrer (e.g. forests) using cross polarisation.

Forest stand parameter which showed the highest correlation to radar backscatter was found for DBH
with the L-band HV (r = 0.691 with 95% confidence in natural forest). Because AGB is mainly 
calculated from DBH using allometric equation shows strongly correlation with HV radar backscatter.
This is an indication that AGB calculation using IPCC allometric equation was sufficient for this 
study. However, the correlation between AGB and radar backscatter was not strong in plantations and 
agro-forestry cover types (r = -0.283 and -0.163). An explanation for this could be that in plantation 
and agro-forestry, the tree density within sampling plots was not high so the backscatter was a result of 
surface scattering from the ground instead of volume scattering from the canopies.

The correlation of canopy height in all land cover types with L band HV was also higher (r = 0.155)
compared to the other radar backscatter types C-HH, and L-HH (r =0.092 and 0.087). It can be 
explained by the stronger coupling of the vertical polarised wave and the vertical stalks (compared to 
the coupling of the horizontal polarisation wave) (Carver et al., 1988). Among the three land cover 
types, natural forest has the strongest correlation (r = 0.543, 0.454 and 0.319) with the same reason as 
for DBH.  Even though the correlation of canopy height was also quite strong, it was not considered as 
an input parameter that contributes directly to AGB estimation. The reason for this is the unavailability 
of local allometric equations that consider both DBH and canopy height. However, the role of this 
stand parameter in providing information about vegetation surface (Ustin, 2004) could not be denied.

Crown cover was the only stand parameter which has the correlation with L-band HH slightly higher 
than L band- HV as the result of the reflectance of like polarisation to surface scattering. This
correlation was also relatively stronger in natural forest than in plantations and agro-forestry areas.

Previous research also indicated that cross polarisation is more correlated to forest stand parameters 
than like polarisation ((Le Toan et al., 1992). In another research, (Beaudoin et al., 1994) concluded 
that linear regression analysis between backscatter coefficients of forest stands and each forest 
parameter resulted in a higher correlation at HV, followed by HH and VV with general forest 
parameter such as stand height, DBH, tree and stand basal area (Table 6-1 ).

(Hussin, 1990; Hussin et al., 1991) used L-band multi-polarised multiple incidence angle, aircraft SAR 
data to assess the correlation with forest stand parameters by comparing radar backscatter with age, 
DBH, basal area, height, cord per acre, tree per acre and stand biomass. The result indicated that there
was a strong statistically significant relationship between HV-polarised radar backscatter and several 
forest stand parameters (Hussin, 1990), in particular strong positive relationship L-band HV with Slash 
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Pine Plantations stand parameter (Hussin et al., 1991). (Le Toan et al., 1992) established relationships 
between forest stand parameters and measurements retrieved from P-, L- and C- SAR data in which 
strong correlations were found with height, age, DBH and basal area at P-HV. (Leckie and Ranson, 
1998) concluded that forest stand parameters and radar backscatter of long wavelength is highly 
correlated, such as tree age, tree height, DBH, basal area, and AGB.

Table 6-1 Correlation coefficients from linear regression analysis between radar backscatter at P and L band adapted 
from (Beaudoin et al., 1994)

General forest parameters P-HH P-HV P-VV L-HH L-HV L-VV
Stand age (year)

Height (m)
DBH (cm)

Tree basal area (m2)
Tree density (per ha)

Stand basal area (m2/ha)

0.72
0.78
0.81
0.80
0.41
0.71

0.73
0.86
0.79
0.77
0.44
0.75

0.49
0.71
0.59
0.52
0.20
0.79

0.57
0.66
0.65
0.52
0.35
0.58

0.53
0.69
0.60
0.46
0.26
0.76

0.46
0.62
0.53
0.39
0.20
0.68

6.2. Correlation of above- ground biomass and radar backscatter

The relationship of AGB and radar backscatter was analysed using the method describe in Section
4.1.6 with the result shown in Section 5.6. 

The correlation between AGB biomass and C- band backscatter was found to be very weak and not 
very significant in all type of land cover in Afram Headwater Forest. The strongest linear relationships
of radar backscatter were found in natural forest and plantation significantly with only 75% and 70% 
confidence repetitively. In agro-forestry, a significant relationship was also identified with only 60% 
confidence level. The limited penetration capability of C-band was the reason for this poor correlation. 
Only leaves, twigs and secondary branches could be scattered with this short wavelength while the 
primary branches and trunk which are the major component to AGB could not be reached.

Poor relationship of radar backscatter with biomass at short wavelength was found also in several 
studies (Henderson and Lewis, 1998). (Pulliainen, 1996) showed that radar has low response to forest 
stem volume in C and X bands.(Luckman et al., 1997) found out that C-band SAR system was not 
suitable for monitoring biomass density in regeneration tropical forest.(Hoekman et al., 1996) using 
backscatter measurement found that the correlation between backscatter and biomass was low for C-
band.

In contrast, a stronger correlation was found with backscatters at a longer wavelength (L-band) 
because of its capability to penetrate deeper into the canopy. Among the two polarisations of L band, 
HV has a stronger correlation with AGB because its vertical polarisation is a consequence of volume 
scattering and AGB in a way related to volume.

SAR L-band data have proven to be valuable for AGB estimation by several research from ((Wu and 
Sader, 1987; Dobson et al., 1992; Hussin et al., 1992; Le Toan et al., 1992; Luckman et al., 1997; 
Kurvonen et al., 1999). HV (horizontal–vertical) polarization in longer wavelengths (L or P band) is 
most sensitive to biomass because it is originated mainly from the canopy volume scattering  and trunk 
scattering(Le Toan et al., 1992), and is less affected by the ground surface (Ranson and Sun, 1994; 
Frank Rosillo-Calle et al., 2007).

Most recent research at NASA/JPL indicates that like polarised imagery shows wavelength dependent 
surface roughness whereas cross-polarised images present volume scattering. More specifically, L HV 
imagery show volume scattering from trees and dense vegetation; C-HV imagery would show volume 
scattering from grass and many agricultural crops and L-HH or C-HH imagery would tend to show 
surface scattering(Henderson and Lewis, 1998). Therefore in most cases, the operation mode with best 
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positive relationship with forest biomass was found to be cross polarisation at longer wave length 
(Henderson and Lewis, 1998).

Differences were found in the correlation between AGB and HH, HV polarised L-band backscatter 
value in different land cover types. 

In natural forest, a strong and significant relation was found between HV polarised L-band with AGB 
while HH polarised L-band correlation was weaker. This also was indicated in several previous 
researches that are cited by (Rosillo-Calle et al., 2007). (Santos et al., 2003) studied the relationship of 
P-band SAR data with biomass values of primary forest and secondary succession of the Brazilian 
tropical rainforest and proved conclusively that P-band data could substantially contribute towards the 
development of models to monitor the biomass dynamics of tropical forests (Henderson and Lewis, 
1998). (Rauste et al., 1992) found that use of L-band would be limited to condition of lower biomass. 
Negative relations or a decrease in radar backscatter after biomass reaches higher level have also been 
observed (Rauste et al., 1992; Ranson and Sun, 1994).

In plantation forest, the correlation of HH polarised L-band in this land cover type was similar to that 
found and explained in natural forest. But the insignificant relation found in HV polarised L band was 
different from previous research from (Wu and Sader, 1987; Hussin et al., 1991; Castel et al., 2002).
The reason for this can be explained by the difference in management and age of plantation measured 
from the field in this research. These plantations show high variance in age, density, etc. In the west 
part of the area, the plantations were old and abandoned until the next harvest season. But in the 
Northeast, there were young plantations with age from 8-10 years.

As for agro-forestry, a positive relation was identified in both HH and HV polarised L band data. But 
HH polarisation correlated stronger than HV polarisation. In this cover type, crop and grass were 
dominant and trees density was very low and as a result, most backscatter was directly from the 
ground. Or in other word, the scattering here is surface scattering not volume scattering which related
to AGB.

6.3. Factors affecting correlation of AGB and radar backscatter

6.3.1. Wavelength and polarisation 

The backscatter interaction within a forest canopy includes (Henderson and Lewis, 1998):
- crown scattering
- direct backscatter from the trunks
- direct backscatter from the ground
- crown – ground backscatter
- trunk – ground backscatter.

The radar backscatter dependency on biomass varies as a function of radar wavelength and 
polarisation (Kasischke et al., 1997). The forest structural-physiognomic characteristics and the radar’s 
volume scattering and double bounce scattering are two important factors affecting these relationships 
(Santos et al., 2002).

6.3.1.1. Wavelength

SAR images at varying wavelengths have different interactions with the various tree components. The 
wavelength will determine whether the SAR backscatter is dominated by surface scattering or volume 
scattering. Figure 6-1 showed the penetration of multi-frequency radar system through vegetation
canopy.

When relatively short-wavelength microwave energy interacts with the surface of the forest canopy, 
the energy is scattered by the small-scale components of the canopy (foliage and small branches). 
Therefore, at these wavelengths the RADAR energy reflects mainly from the surface of the canopy. 
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Such a short wavelength as X-band or C-band would interact strongly with the surface of the canopy 
and probably penetrate the canopy surface someway to provide progressively weaker responses from 
the lower layers it encounters.

Figure 6-1 Penetration of multi-frequency radar system through vegetation (Carver et al., 1988)

In contrast, radar energy with relatively long wavelengths will penetrate into the canopy and reflect 
from large scale components composing the canopy (large branches, stems), and the terrain surface. 
The reflectance is dominated by volume scattering from large-scale canopy features and surface 
scattering from the terrain surface (Andersen et al., 2006). Longer wavelength (L- and P-band) would 
be likely to be interacted only weakly with the surface and upper layers of the canopy as they lack
structures of sufficient size to impede the wave as it passes through. In this case the incident wave 
would interact most strongly with structures lower down the canopy ( branches and trunk, and possibly 
the ground as well) but there would also be some weak contribution from the upper layer as these have 
to passed through twice before a signal is registered back at the receiving antenna.

The general relationship of wavelength and scattering behaviour of components in close forest was 
summarised by (Van de Sanden, 1997; Van der Sanden, 1997) and shown in Table 6.2 as follow.

Table 6-2 Summary of general relationship between wavelength and the scattering behaviour of the component in 
close forest (Van der Sanden, 1997)

Wavelength
Forest component

Leaves Twigs Secondary 
branches

Primary 
branches Trunks Soil

X band ++ ++ ++
C band ++ + ++
L band - - ++ ++ ++ +
P band - - - ++ ++ ++

Notes: the mark as follows: ++ main backscattering sources, + secondary backscattering source and –
attenuating source.

The longer wavelength has a high relationship to biomass and other forest stand parameters than short 
wavelengths (Henderson and Lewis, 1998).

6.3.1.2. Polarisation

The polarisation of incident microwave affects their interaction with forest because it defines the plane 
in which micro wave interaction will take place (Van der Sanden, 1997). Considering forest as a 
collection of vertical cylinders over a smooth surface, on their way into the forest, both horizontally
and vertically polarised waves will be attenuated by the cylinders. However, due to the backscattering 
the loss of power for vertically polarised waves will be considerably higher than for horizontally 
polarised waves. Therefore, waves with a horizontal polarization will penetrate deeper than waves 
with a vertical polarisation. Microwaves that interact with forests and other types of vegetation are 
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known to become depolarized to a high degree which is caused by the multiple reflection of wave at 
resonant scatters, i.e. leaves, twigs and branches. Strong depolarisation implies that the backscatter 
wave will have a large un-polarised component. This large un-polarised component, in turn, gives rise 
to a substantial amount of cross polarisation which is characteristic for the vegetation. Because of its 
dispersing effect on polarisation, the multiple reflection interaction process in vegetation volume is 
often referred as diffuse scattering at surface (diffusion of polarisation) (Van der Sanden, 1997).
Figure 6-2 showed the surface and volume scattering from vegetation. 

Figure 6-2 Surface and volume scattering expected from vegetated surface (Carver et al., 1988)

Because radar energy can be depolarized upon interaction with various surface features, independently 
recording the reflection of like-polarized energy and cross-polarized energy can yield valuable 
information regarding the characteristics of imaged features, and can be particularly useful in the 
analysis of vegetation type and structure (Andersen et al., 2006). If the radar energy interacts mainly 
with single scatterers at the surface of the canopy, the energy is not depolarized and there is a strong 
reflection of like-polarized energy. In contrast, if the radar energy is reflected from multiple scatterers 
within the canopy structure, it is often depolarized and there is a strong reflection of cross-polarized 
energy (Jensen, 2000). A radar image acquired from a system with a particular frequency, polarization, 
and incidence angle can therefore provide information related to canopy water content, vegetation 
type, biomass components (foliage, branches, stems), and canopy structure (Andersen et al., 2006).

The three polarisation (HH, HV and VV) provide three different view of canopy structure because the 
wave propagation through and back scattering from the vertical stems of the plant and the trunks of the 
trees are polarisation –dependent. The difference between HH and VV, the later polarisation generally 
is more sensitive to the stalk of the plants and to the trunk of the tree because of their vertical 
orientation. Because of the stronger coupling of the V polarised wave and the vertical stalks (compared 
to the coupling of the H polarisation wave), its velocity of propagation in the canopy is slower than it 
is for the H signal (Carver et al., 1988).

Cross-polarisation data have been found to be better than like-polarised for estimating biomass 
because cross polarisation is mostly due to volume scattering from the crown (Henderson and Lewis, 
1998).

6.3.2. Vegetation structure

Vegetation structure and soil surface are main factors affecting the correlation with radar backscatter 
and caused saturation in the high biomass range (Hoekman et al 1996) like tropical forests. Structural 
variation might have a substantial effect on P, C, L band quad-polarisation backscatter of forest stand 
with equal biomass (Imhoff 1995). Precision of radar increase if structure differences between forest 
types are accounted for during the inversion of radar (Rignot et al 1995).

Scattering from canopy top

Volume scattering

Surface scattering
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6.3.3. Other factors

Tree density will be a major consideration in determining the degree of contributions from surface and 
underlying vegetation. The greater the tree density and homogeneity of ground cover the more it can 
be sure that the backscatter is derived uniquely from one particular type of cover. However as this 
density reduced the greater the mixture is likely to be with contributions coming from upper, 
intermediate and lower layers with an additional possibility that there be some sub-surface 
contribution as well. 

The magnitude of radar backscatter (i.e. return) from a feature is also dependent upon a variety of 
surface characteristics, including structure, surface roughness, and moisture content (Andersen et al.,
2006). Therefore they could also be factors that affect to the correlation of radar backscatter and AGB.
Increasing the moisture increase the amount of interaction that takes place and as a consequence of the 
penetration depth reduced from that of the dry condition state. However, since the radar images were 
acquired during the dry season and the study area was quite flat, they are considered in this research to 
have no effect.

6.4. Correlation of above-ground biomass and optical and radar fused data

Optical data has been used to estimate AGB in several studies (see Section 2.1) and most of them 
indicated the quick saturation as the limitation of this data especially in areas with high range of 
biomass like in tropical forest. Some research tried to combine optical and radar data to estimate AGB 
but most of them were concerned only with its ability to enhance classification rather than a 
quantitative approach. Therefore, in this research, an effort was made to assess the correlation of 
fusion of radar and backscatter with AGB. The fusion approach and correlation analysis was described 
in Section 4.1.3 and 4.1.6 and the result was shown in Section 5.6.

In general, the correlation found in all land cover types between AGB and pixel value extracted from 
fusion image was weak and in some case, not significant. As mentioned above, the optical part in the 
fused data with radar was saturated quickly and, therefore, not corrected strongly with AGB. In the 
radar part of the fused data including the HH and HV polarisation L- band, only the L-band HV has 
really strong correlation with AGB as described in previous sections. From the fusion approach, it can 
be seen that this only part was then combined with other parts which do not have strong correlation to 
AGB and separate to three bands (band A, band B, and band C). As a result, the correlation was not 
improved but decreased.

The only exception was in plantation forest in which band A and band B showed a significant and 
relatively strong correlation with AGB. The explanation for this is the homogenous structure of 
canopy in plantation areas. The fused data of optical and radar was the combination of all information 
collected in both types of image which were compressed in 3 bands of the fused data. The first two 
bands are considered to contain the most information of the three. Therefore, they will have the 
strongest correlation among the three. In addition, the fused data is also more capable to distinguish 
cover types in different management and vegetation structure. It means that for natural forest, with the 
variation in vegetation types and canopy structure, it will be less homogenous than plantation areas
which mostly are monoculture of teak plantation. Consequently, for plantation, the correlation with 
AGB is enhanced and become stronger. In other words, this promised a potential to estimate AGB 
using fusion of optical and radar data.

6.5. Geometric Sensitivity to correlation of radar backscatter with AGB 

Geometry of radar backscatter was also considered as a source of error in this research since the 
positioning of plot center using GPS instrument and the radar calibration still contain some error that 
could become larger when matching the center of the plot with the pixel in the image for extractting
radar backscatter. Therefore, in order to test whether it had influence on the correlation of radar 
backscatter and AGB, comparisons of correlation analysis between average values of one, four and 
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nine pixels nearest to plot central were made and it indicated effect of geometry to the correlation with 
AGB.

From the results in Section 5.7.1, the stronger correlation found when using the average value of 9 
pixels closest to the sampling plots centre in HV L band. Even though this of HH L band was quite 
high, the result also showed that for HH L band, an average value of 4 pixels was slightly higher. It 
could be explained that the like polarisation has a stronger return than the cross polarisation when the 
polarisation of the transmitted microwave radiation is parallel to the domain plane of linear features. 
This means that the like polarised image will be generated with a higher signal to noise ratio (S/N) and 
therefore, will be sharper and less grainy than the cross polarised image (Henderson and Lewis, 1998).

This result indicated that the correlation of AGB is sensitive to geometry and in order to reduce this
effect, it is better if the average value of 9 pixels nearest to the center of the plots was used for 
modelling and estimate AGB instead of using only the value the nearest pixel.

6.6. Estimating and mapping AGB and carbon stocks in tropical forest

Multiple channel radar imagery or multiple step approaches allow for estimating biomass with higher 
accuracy than relying on correlation between total biomass and radar backscatter from a single 
frequency/ polarisation ((Ranson and Sun, 1994; Dobson et al., 1995; Harrell et al., 1997), reviewed 
by (Kasischke et al., 1997). The complexity of these methods is higher and the uncertainties are 
greater in landscapes where there are a number of different forest ecosystems with multiple tree 
species. Therefore, there is a need to stratify or classify the land surface containing the forest into 
different cover categories (Kasischke et al., 1997).

6.6.1. Natural forest

The correlation of radar backscatter and AGB found in this type of land cover prove that L band HV 
was the most suitable input for modelling AGB in the study area. Since the L band HH also had a quite 
strong correlation with AGB, it was chosen together with L band HV for multi-linear regression 
analysis as described in Section 4.1.6. The result was shown in Section 5.7.2 concluded that the multi-
linear regression model of HH and HV polarised L band was the best fit used to estimate AGB.

Validation result (presented in Section 5.7.3) answered the question about the goodness-of-fit of this 
model which can explain 65% the ground data. Even though the RMSE was quite high, it could be 
understood since the developed model was only using 15 plots and validated using 8 plots. If larger 
dataset had been used, the error and fitness of this model would have been improved.

The multi-linear model then was used to estimate the AGB and carbon stocks in natural forest areas in 
the study area. Maps of AGB and carbon stock were established and showed in Section 5.9. Over the 
natural forest areas, the amount of AGB was mostly from 100 to 200 ton per ha. The carbon stocks 
with the amount less than 100 Mg per ha accounts for the majority. It also can be seen from the maps 
that areas which are less degraded and difficult in accessibility have higher amount in AGB and 
carbon. The areas where are closed to the boundary of the reserve and other land cover types have low 
amount of AGB and carbon. 

6.6.2. Plantation forest

Previous discussion on correlation analysis of AGB with radar backscatters and fused data of optical 
and radar in plantations (Section 6.2 and 6.4) indicated that the poor results were found in most cases.
A gap in management status of sampling plots obtained from the field was one of the main causes for 
this. It would be improved if the sampling plots could be stratified base on the different managements. 
However, this could not be done due to the limitation of number of plots obtained from plantation. In 
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addition, there was not much variation in the AGB of plantation that also can be another issue for 
modelling.

The fusion data of optical and radar has a stronger correlation to AGB, especially band A and band B. 
Therefore, the multi-linear regression analysis was also done for these two bands to find out whether 
they can be used to estimate AGB. The method and results of this work were shown in Section 4.1.6 
and Section 5.8. But this model only explained less than 50% of the estimated result. Therefore it 
could not be used to estimate AGB in plantation cover. However, it was indicated that this model has 
the potential to map plantation forest better than using only radar data. However, more field data need 
to be added and differentiate in management should be considered for AGB modelling.  

6.6.3. Agro-forestry

No strong correlation was found in this type of land cover even using radar or the fusion or radar and 
optical image. Therefore, no model was developed to estimate AGB in this area of Agro-forestry.
Further research and additional measurement of biomass from crops and herbal are necessary to 
develop a model for biomass estimation.

6.7. Uncertainty of research

Despite the large number of studies, the actual levels of uncertainty or errors in SAR biomass 
algorithm are not well documented. Most studies are using the standard error of the regression 
equation as a measure of uncertainty. This approach yields errors in the order of 10 to 20 tons/ha not 
an unreasonable level. However, (Harrell et al., 1997) research showed that the uncertainty was two to 
three times the standard error of regression equation used to estimate biomass in the range of 50 to 80 
ton/ha (Ustin, 2004). The uncertainties are greater in landscape where there are a number of different 
forest eco-systems with multiple tree species than in forest where is dominated by single tree species 
(Kasischke et al., 1997).

There is a need to calibrate radar imagery using ground base techniques to quantify the pattern of 
biomass distribution in the forests of interest using valid sampling approach (Kasischke et al., 1994)
and stratify or classify the land surface containing the forest under study into different cover categories 
prior to application of the radar- based biomass estimation algorithms.

Radar saturation is also a limitation of this research. The sensitivity of radar backscatter at a single 
polarisation/ frequency to variation in biomass saturates after a certain biomass level is reached. The 
saturation point is higher for longer wavelengths and HV polarisation is the most sensitive while VV
the least (Kasischke et al., 1997).

The saturation of SAR response to forest biomass is considered a distinct limitation to the usefulness 
of C-,L-, and P band SAR data. This poses a particular problem in tropical forest environments where 
AGB level generally exceed 200 – 250 Mg/ha (Ustin, 2004).

The strategy to convert forest plot data into regional – scale AGB estimation in this research also 
mentioned in other previous research (Brown et al., 1989; Brown, 1997; Houghton et al., 2001). These 
steps integrated a variety of technique that all contain some uncertainty as describing in Figure 6-3.  
(Chave et al., 2004) provide a summary of the source of error in AGB estimation of a tropical forest 
including: tree level error, allometric model, within plot uncertainty, among plot uncertainty. The first 
type of error refers to the AGB estimation in s single tree. The second one related to the choice of 
allometric model. The last two types are sampling error which can be minimized by large sized, multi-
plot, censuses.
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Figure 6-3 The error propagation for estimate AGB of a tropical forest from permanent sampling plots (Chave et al.,
2004)

AGB for individual tree was calculated using allometric equation from IPCC which, following (Basuki
et al., 2009), overestimated the biomass. (Cairns et al., 2003) (Nelson et al., 1999) also indicated the 
application of the site specific equation must be considered. In contrast, (Chave et al., 2005) and 
(Gibbs et al., 2007) stated that for tropical forest, generalized allometric equations must be employed 
because the allometric equation for local conditions or species-specific allometric equation will not 
improve accuracy significantly. (Ketterings et al., 2001) consider the estimation error introduced in 
choosing a suitable functional value for any adjustment parameter in allometric equation relative to 
other source of uncertainty and suggest to reduce it by using average wood density as a site specific –
parameter that can explain the part of variation in the model and should be include as a calibration 
variable where cutting and weighting of the trees is not possible for obtain a site –specific equation.
Uncertainty due to measurement errors, transect size, fraction of the above-ground biomass considered 
and site selection discussed by (Brown et al., 1995) indicated that the dominant contributors to 
biomass - emergent and large canopy trees should be the focus of attention.
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7. Conclusion and Recommendation

The objective of this research is to estimate and map Above Ground Biomass (AGB) and carbon 
stocks for tropical forest using SAR data. To achieve this, correlation analysis was used to assess the 
relation of AGB and other stand parameter measured from the field with radar backscatter extracted
from L- band HH and HV polarisation, C-band HH polarisation and fused data of radar and optical 
image. After that, a multi linear regression model was established with the chosen inputs from 
previous correlation analysis to estimate AGB.
Through this approach, the research questions defined in Section 1.5 were properly answered.

How strong is the relationship between the forest stand parameters (diameter at breast height, tree 
height, % cover) and the multi- polarised radar backscatter?
The relationship between the diameter at breast height and tree height and the cross polarised radar 
backscatter at long wavelength correlates was the strongest and most significant (r = 0.658, 0.543) in 
natural forest) while other polarisation showed strongest correlation with crown cover percentage (r = 
0.526). Like polarised radar backscatter at short wavelength had weaker correlation with the stand 
parameters (r =0.207, 0.320, 0.004 in natural forest).

How strong is the relationship between AGB and the multi-polarised radar backscatter?
The most significant and strongest correlation with AGB was with cross polarisation at long 
wavelength (r = 0.691).

How sensitive is the extracted backscatter value from radar imagery to its geometry in affecting the 
correlation with AGB biomass? 
The geometric sensitivity of the extracted backscatter value from radar imagery was a factor affecting 
the correlation with AGB biomass. In 1,4 and 9 pixels closest to the center of the plot, taking the 9 
pixels setup showed best correlation with AGB (L-band HH: r =0.447, L-band HV: r = 0.878) .

Is the fused data of optical and radar images correlated with ABG biomass?
Fused data of optical and radar images did not show any strong correlation with AGB (highest in 

plantation with r = 0.529 with band B).

How accurate can the AGB in this study area be estimated using polarised radar backscatter by 
regression model?
AGB in the study area could not be estimated accurately for all land cover types. Only the AGB in the 
natural forest could be estimated and mapped accurately using multi linear regression of L-band HH 
and HV polarisation. Neither in plantation nor agro-forestry, a correlation with radar backscatter was 
strong enough to be used for estimation.   

Can forest biomass and carbon stocks be mapped using radar images?
As the carbon stock was calculated from AGB, this research was in line with previous studies to prove 
the usefulness of radar imagery in mapping AGB and carbon stock. Furthermore, with multi-temporal 
radar images, the carbon sequestration assessment also could be mapped accurately. This will 
contribute to improve the knowledge of human about global carbon budget and its changes over the 
years, especially in tropical ecosystems where still remaining uncertainties in accuracy and cost.
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Nevertheless, the research still had some limitations due to the constraint of time, budget and field 
data. It is recommended that larger field dataset needs to be collected from the field in all three types 
of land cover with considering to different managements. Moreover, larger dataset of radar image in 
multi-temporal and multi – polarisation could be helpful to improve the correlation with AGB and 
estimate carbon sequestration. For instance, a ratio of L-band and C-band HV also could be useful to 
estimate AGB and overcome the saturation issue in radar image. In addition, forest canopy density 
also can be considered to improve the correlation of radar and AGB.
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Appendix A - List of local tree species

Local name Scientific name

Akye Blighia sapida

Emire Terminalia ivorensis

Esa Celtis mildbraesii

Esia Petersianthus spp.

Foto Glyphaea brevis

Funtum Funtumia elastic

Kakadukro Trichilia prieuriana

Kyenkyen Antiaris toxicaria

Mahogani Khaya grandisfoliola

Mansonia Mansonia altissima

Nyankyerene Ficus exasperate

Ofram Terminalia superb

Okoro Albizia zygia

Odum Milicia excels

Onyina Ceiba pentandra

Prekese Tetrapleura tetraptera

Sese Holarrhena floribunda

Watapuo Cola gigantean

wawa Trilochiton scleroxylon

Wawabema Sterculia rhinopetala

Wonton Morus mesozygia



66

Appendix B- ALOS PALSAR calibration accuracy

Items Measured value No of data Specification

Geometric 

accuracy

9.7 m (RMS): STRIP mode
572

100m

70 m (RMS): SCANSAR

Radiometric 

accuracy

0.219 dB (1 sigma) from Amazon forest

0.76dB (1sigma) from CRs

0.17 dB (1 sigma: Sweden CSs)

-34 dB (Noise equivalent Sigma-zero for 

HV)

-32 dB (as a minimum of FBD-HH)

-29 dB (as a minimum of FBS-HH)

572

1.5dB

1.5dB

1.5dB

-23 dB

Polarimetric 

calibration

VV/HH ratio

VV/HH phase diff

Cross talk

1.013(0.062)*

0.612deg(2.66)

-31.7 (4.3)

81

0.2 dB

5deg

-30 dB

Resolution

Azimuth

Range (14MHz)

Range (28MHz)

4.49m (0.1)*

9.06m (0.1m)

4.7m (0.1m)

572

-4.5m

10.7m

5.4m

Side slope

PSLR in azimuth

PSLR in range

ISLR

-16.6 dB

-12.6 dB

-8.6 dB

572

-10dB

-10dB

-8 dB

Ambiguity
Azimuth

Range

Not appear

23 dB

16 dB

16 dB

Transmission 

power

Sum of 80 TRM 2220W 2000W

A(B)* represents an average value of A and a standard deviation of (B)

PSLR is Peak-to-Side-Slope Ratio and ISLR is Integrated Side-Lobe Ratio
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Appendix C – Photos from the field

C1- Natural Forest
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C2- Plantation
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C3- Agro-forestry

C4- Transportation vehicle and accessibility
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C5- Popular Crops in taungya system
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Appendix D : Correlation of forest stand parameters and radar backscatter in different land 

cover types

D1- Natural forest

Correlations

Height HV

Height Pearson Correlation 1.000 -.543*

Sig. (2-tailed) .036

N 15 15

HV Pearson Correlation -.543* 1.000

Sig. (2-tailed) .036

N 15 15

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations

Height C_HH

Height Pearson Correlation 1.000 .320

Sig. (2-tailed) .245

N 15 15

C_HH Pearson Correlation .320 1.000

Sig. (2-tailed) .245

N 15 15

Correlations

Height HH

Height Pearson Correlation 1.000 -.454

Sig. (2-tailed) .089

N 15 15

HH Pearson Correlation -.454 1.000

Sig. (2-tailed) .089

N 15 15
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Correlations

crown_cover HV

crown_cover Pearson Correlation 1.000 -.324

Sig. (2-tailed) .239

N 15 15

HV Pearson Correlation -.324 1.000

Sig. (2-tailed) .239

N 15 15

Correlations

crown_cover C_HH

crown_cover Pearson Correlation 1.000 -.014

Sig. (2-tailed) .961

N 15 15

C_HH Pearson Correlation -.014 1.000

Sig. (2-tailed) .961

N 15 15

Correlations

crown_cover HH

crown_cover Pearson Correlation 1.000 -.527*

Sig. (2-tailed) .044

N 15 15

HH Pearson Correlation -.527* 1.000

Sig. (2-tailed) .044

N 15 15

*. Correlation is significant at the 0.05 level (2-tailed).
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Correlations

Average_DBH HH

Average_DBH Pearson Correlation 1.000 .046

Sig. (2-tailed) .870

N 15 15

HH Pearson Correlation .046 1.000

Sig. (2-tailed) .870

N 15 15

Correlations

Average_DBH HV

Average_DBH Pearson Correlation 1.000 .659**

Sig. (2-tailed) .008

N 15 15

HV Pearson Correlation .659** 1.000

Sig. (2-tailed) .008

N 15 15

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

Average_DBH C_HH

Average_DBH Pearson Correlation 1.000 -.208

Sig. (2-tailed) .457

N 15 15

C_HH Pearson Correlation -.208 1.000

Sig. (2-tailed) .457

N 15 15
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D2-Plantation

Correlations

HH_central Height

HH_central Pearson Correlation 1.000 .023

Sig. (2-tailed) .934

N 15 15

Height Pearson Correlation .023 1.000

Sig. (2-tailed) .934

N 15 15

Correlations

Height HV_central

Height Pearson Correlation 1.000 .009

Sig. (2-tailed) .974

N 15 15

HV_central Pearson Correlation .009 1.000

Sig. (2-tailed) .974

N 15 15

Correlations

Height HH_Envisat

Height Pearson Correlation 1.000 -.155

Sig. (2-tailed) .580

N 15 15

HH_Envisat Pearson Correlation -.155 1.000

Sig. (2-tailed) .580

N 15 15
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Correlations

HH_Envisat cown_cover

HH_Envisat Pearson Correlation 1.000 .185

Sig. (2-tailed) .509

N 15 15

cown_cover Pearson Correlation .185 1.000

Sig. (2-tailed) .509

N 15 15

Correlations

cown_cover HH_central

cown_cover Pearson Correlation 1.000 -.169

Sig. (2-tailed) .548

N 15 15

HH_central Pearson Correlation -.169 1.000

Sig. (2-tailed) .548

N 15 15

Correlations

cown_cover HV_central

cown_cover Pearson Correlation 1.000 -.207

Sig. (2-tailed) .459

N 15 15

HV_central Pearson Correlation -.207 1.000

Sig. (2-tailed) .459

N 15 15
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Correlations

HV_central Average_DBH

HV_central Pearson Correlation 1.000 .211

Sig. (2-tailed) .450

N 15 15

Average_DBH Pearson Correlation .211 1.000

Sig. (2-tailed) .450

N 15 15

Correlations

Average_DBH HH_central

Average_DBH Pearson Correlation 1.000 .094

Sig. (2-tailed) .738

N 15 15

HH_central Pearson Correlation .094 1.000

Sig. (2-tailed) .738

N 15 15

Correlations

Average_DBH HH_Envisat

Average_DBH Pearson Correlation 1.000 .361

Sig. (2-tailed) .187

N 15 15

HH_Envisat Pearson Correlation .361 1.000

Sig. (2-tailed) .187

N 15 15
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D3-Agroforestry

Correlations

HH Height

HH Pearson Correlation 1.000 .143

Sig. (2-tailed) .398

N 37 37

Height Pearson Correlation .143 1.000

Sig. (2-tailed) .398

N 37 37

Correlations

Height HV

Height Pearson Correlation 1.000 .300

Sig. (2-tailed) .072

N 37 37

HV Pearson Correlation .300 1.000

Sig. (2-tailed) .072

N 37 37

Correlations

Height HH_Envisat

Height Pearson Correlation 1.000 -.055

Sig. (2-tailed) .746

N 37 37

HH_Envisat Pearson Correlation -.055 1.000

Sig. (2-tailed) .746

N 37 37
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Correlations

HH crown_cover

HH Pearson Correlation 1.000 -.345*

Sig. (2-tailed) .036

N 37 37

crown_cover Pearson Correlation -.345* 1.000

Sig. (2-tailed) .036

N 37 37

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations

crown_cover HV

crown_cover Pearson Correlation 1.000 -.111

Sig. (2-tailed) .514

N 37 37

HV Pearson Correlation -.111 1.000

Sig. (2-tailed) .514

N 37 37

Correlations

crown_cover HH_Envisat

crown_cover Pearson Correlation 1.000 -.166

Sig. (2-tailed) .325

N 37 37

HH_Envisat Pearson Correlation -.166 1.000

Sig. (2-tailed) .325

N 37 37
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Correlations

Average_DBH HH

Average_DBH Pearson Correlation 1.000 -.205

Sig. (2-tailed) .224

N 37 37

HH Pearson Correlation -.205 1.000

Sig. (2-tailed) .224

N 37 37

Correlations

Average_DBH HV

Average_DBH Pearson Correlation 1.000 .163

Sig. (2-tailed) .335

N 37 37

HV Pearson Correlation .163 1.000

Sig. (2-tailed) .335

N 37 37

Correlations

Average_DBH HH_Envisat

Average_DBH Pearson Correlation 1.000 .203

Sig. (2-tailed) .228

N 37 37

HH_Envisat Pearson Correlation .203 1.000

Sig. (2-tailed) .228

N 37 37


