@ ROBOTICS
AND
MECHATRONICS

DIFFICULTY MEASURE FOR RADIOLOGY CASES WITH
USE OF ITEM ANALYSIS AND DEEP LEARNING

M.H. (Meike) van Benthem

MSC ASSIGNMENT

Committee:

prof. dr. ir. C.H. Slump
E.I.S. Hofmeijer, MSc
dr. C.0. Tan

dr. J. Veltman

dr. M. Poel

June, 2022

016RaM2022

Robotics and Mechatronics
EEMCS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

UNIVERSITY | TECHMED UNIVERSITY | DIGITAL SOCIETY
OF TWENTE. | CENTRE ~ OF TWENTE. | INSTITUTE




Difficulty measure for Radiology cases with use of Item analysis and deep learning

Meike van Benthem University of Twente



iii

Summary

A vast and extensive radiology education is fundamental for the diagnosis, monitoring, and
treatment of lung cancer. Image synthesis, with Generative Adversarial Networks (GANSs), can
be a powerful tool in radiology education by its ability to diversify training cases for medical
students and radiology residents. By controlling the image synthesis, images can be produced
with a specific difficulty or complexity level that fits the student’s level. To achieve optimal per-
sonalization of education, the knowledge gap should be defined by a concrete measure. This
research focuses on a measure of difficulty for the detection of lung nodules. Item analysis is
a statistical method that can give an indication of the difficulty based on the responses of a
group of individuals. To automate the calculation of a measure of difficulty, deep neural net-
works are used to perform item analysis on lung nodule cases. The method is validated by
comparing the measure of difficulty with a subjective subtlety score given by experienced ra-
diologists. The ordinal logistic regression analysis shows a statistically significant relationship
between the calculated measure of difficulty and the subtlety scores of nodules. A measure of
difficulty is defined that has the potential to be applied to image synthesis for the design of
computer-assisted learning systems.
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Samenvatting

Intensief radiologie onderwijs is fundamenteel voor de diagnose en behandeling van longkan-
ker. Image synthesis met gebruik van Generative Adversarial Networks (GANSs) is een veelbe-
lovende techniek voor radiologie onderwijs, vanwege de mogelijkheid om oefencasussen voor
radiologie studenten te produceren. Wanneer de image sythesis gecontroleerd kan worden, is
het mogelijk om casussen te produceren op een bepaald moeilijkheidsniveau. Om de persona-
lisatie van educatie te optimaliseren, wordt in dit onderzoek een moeilijkheidsgraad voor long
nodule casussen gedefinieerd. Item analyse is een statistische methode dat inzage kan geven
in moeilijkheid op basis van responsie van een groep individuen. Door gebruik te maken van
deep learning kan het berekenen van een moeilijkheidsgraad geautomatiseerd worden. Deze
methode is gevalideerd door de moeilijkheidsgraad te vergelijken met een subjectieve subti-
liteitsscore gegeven door ervaren radiologen. De ordinale logaritmische regressieanalyse laat
een statistisch significant verband zien tussen de berekende moeilijkheidsgraad en de subtili-
teitsscores. Dit onderzoek heeft een moeilijkheidsgraad berekent voor long nodule casussen
en heeft the potentie om toegepast te worden bij image synthesis.
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1 Introduction

1.1 Motivation

Lung cancer is the third most common cancer in the Netherlands and has caused over 10.000
deaths in 2020. This makes lung cancer together with Chronic Obstructive Pulmonary Disease
(COPD) and Cardiovascular Disease (CVD) part of the so-called Big-3 diseases that are in the
top ten global causes of death (37; 39; wor). Trials have shown that the mortality rate of lung
cancer can be reduced with early detection by screening risk groups with Low-Dose Computed
Tomography (LDCT) scans (4; 8; 37). Consequently, screening trials produce large medical im-
age databases that require interpretation by highly trained radiologists. The detection of lung
nodules is challenging due to their varying size and can easily be missed in the 3D volume of a
LDCT. Recent interest in machine learning and deep learning has lead to the development of
computer aided detection (CAD) systems that exceed the sensitivity of a radiologist (27). Yet,
radiologist are of great importance in the diagnosis of lung cancer. Radiologic errors have con-
siderable impact on a patients chance of recovery (9). A vast and extensive radiology knowledge
is fundamental for the diagnosis, monitoring and treatment of lung cancer.

The development of such a radiologic knowledge base and a proficient skill set is a time con-
suming and costly process. A residency in the practical environment of a hospital allows a radi-
ology resident to train on a variety of available radiological cases. In a framework of knowledge
and skills of a radiologist the importance of discriminating between healthy and unhealthy
images is emphasized (13). After the residency, a life-long learning is an essential aspect for
radiologist to preserve knowledge and skills, especially with the rapid technological advance-
ment in medical imaging. By reasoning, the knowledge and level of each radiologist depends
on the quantity and variety of radiologic cases the radiologist has examined. A hospital accu-
mulates a unique distribution of radiologic cases with different level of complexity, affecting
the education of an individual radiologist. The cases a radiologist examines during training is
limited by the patient safety and privacy concerns, as well as low prevalence of certain disease
types. The efficiency and quality of the training process of a radiologist can be optimized when
the radiology residents are presented with cases suitable to their level, or fit to their knowledge
gap.

The field of radiology is based on image interpretation, which is suitable to for computer-
assisted learning (CAL) as an addition to traditional radiology education. In this report, a CAL
system is defined as a computer based education method that facilitates interaction during a
students learning process. With the use of CAL, education can be tailored and personalised to
the trainees needs. Image synthesis has been successfully implemented for medical imaging
after the introduction of Generative Adversarial Networks (GAN) (35). Image synthesis can be
a powerful tool in radiology education by its ability to diversify training cases for medical stu-
dents and radiology residents. By controlling the image synthesis, images can be produced
with a specific difficulty or complexity level that fits the students level. To achieve optimal per-
sonalization of education, the knowledge gap should be defined by a concrete measure. This
research focuses on a measure of difficulty for detecting lung nodules.

Difficulty is defined as: "the quality or state of being hard to do, deal with, or understand: the
quality or state of being difficult” (mer). A measure of difficulty is a subjective property depend-
ing on the level, skill and experience of an individual. However, when a group of individuals
find a radiological case difficult, one can assume that the difficulty is embedded in the radiolo-
gical scan. A method that can determine a level of difficulty as a property of a lung CT scan is
explored in the scope of this research.

Robotics and Mechatronics Meike van Benthem
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1.2 Context

Computer-assisted learning systems are a promising innovation for the field of radiology. To
design a radiology CAL system, a good understanding of the knowledge and skills of radiolo-
gists is vital. Image synthesis with the use of GAN has the potential to produce data that can be
used for educational purposes. To achieve optimal personalization of education, which fits an
individual’s knowledge gap, educational material can be synthesized specifically for any indi-
vidual. Yet, in order to make a knowledge gap concrete, educational material should be ordered
to a scale of complexity or difficulty. Item analysis is a statistical method that can give an indica-
tion on the difficulty based on responses of a group of individuals. The group of individuals can
replaced by deep neural networks to automate the calculation of the measure of difficulty. To
validate the method, the calculated measure of difficulty is compared to a subjective measure
of the lung nodule case.

1.2.1 Knowledge and skills in Radiology

Radiology is a relatively new field in medicine and over the past 50 years it has become a key
component in diagnosis and treatment of many maladies. The numerous techniques that are
currently used to visualize the inside of the human body in a non-invasive way has lead to a fast
evolving specialty in medicine. On an annual basis, approximately 1 billion radiologic imaging
examinations are performed world wide (9). This asks for highly trained radiologists that have
to work accurately and efficiently to give a patient the best care possible. The extensive radi-
ology residency is 5 years where the following themes are addressed:

* neuro- and head/neck radiology
e cardio and thorax radiology

* abdominal radiology

* mamma radiology

* pediatric radiology

* musculoskeletal radiology

* intervention radiology

* nuclear medicine

* molecular radiology.

The work of (13) defines a comprehensive framework of knowledge and skills required for
two-dimensional and multi planar interpretation in radiology. The combination of a literat-
ure study, a semi-structured interview with a multidisciplinary expert panel and empirical data
of think-aloud experiments has lead to four knowledge items and thirteen skill items, summar-
ized in figure 1.1. The framework can serve as a guideline for training and assessment as they
can be seen as learning objectives.

The framework shows that radiological image interpretation is a complex cognitive process and
it should be stated that many knowledge and skill items are partly integrated. For diagnosis
and treatment of diseases the reliance on the knowledge and skills of radiologist is high, but
the process of radiologic interpretation is variable and therefore prone to errors (9).

There exists a discrimination between two broad categories of radiologic errors: perceptual
errors and cognitive/interpretative errors (9; 42; 24). Perceptual errors have an elevated occur-
rence, making 60% to 80% of the radiologic error. The perceptual error is defined as an abnor-
mality that is retrospectively present in the image, but was missed by the interpretation radi-
ologist in the initial interpretation phase. The cognitive or interpretative error can be defined
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Figure 1.1: Summary framework representing the most important skills for radiological image interpret-
ation.

as an detected abnormality a diagnostic image, but the significance is incorrectly interpreted
resulting in an incorrect final diagnosis (9). Despite the technological advances in medical
imaging that lead to improved image quality, the perception of the human eye and brain is not
evolving with the same agility (24). Furthermore, in a medical image the diagnostic informa-
tion is embedded in a background of high uncertainty. Every feature of the image may or may
not represent a finding that is of clinical value (9).

In the development of strategies for error reduction, various efforts have been made, which
predominantly focus on intensive education for radiologists-in-training and retraining of prac-
tising radiologists. With the focus on performance improvement of the radiologist, there is also
eye for work-life-balance to limit fatigue and to mitigate pressure of the rapid pace of work.
By automatizing the process of medical image interpretation with the use of computer aided
detection (CAD), the radiological error is hoped to be mitigated.

1.2.2 Computer Assisted Learning

The advancement in technology for healthcare has expanded the knowledge and skills a health-
care professional should posses. It has created many niches within the healthcare branch,
which lead to specializations that require extensive education. The continuous improvement
of healthcare leaves specialists with the challenge of keeping up with the increasing scope of
medical knowledge. This demands a systematic approach in the acquisition, assimilation, or-
ganisation and processing of knowledge. Computer assisted learning (CAL) can have the po-
tential to aid professionals to meet the requirements.

CAL has been defined as a range of computer-based packages that focus on providing inter-
active instruction in a specific subject area (22). The work of Schittek (32) defines computer
based instruction (CBI), computer aided (CAI) and computer aided learning (CAL) as the learn-
ing procedures and environments facilitated through computers where interaction during the
learning process is the key element (32).

In this report a computer assisted learning system is defined as a computer based education
method that facilitates interaction during a students learning process.

Robotics and Mechatronics Meike van Benthem
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Over the scope of many years, various amounts of CAL systems have been developed, specific-
ally for healthcare. Within the peeks of the Covid-19 pandemic CAL has shown to be indispens-
able in today’s educational system, since distanced learning was the only option available for
many students to continue their education. Other advantages of CAL is that it allows for asyn-
chronous learning, where individuals can study at their own pace and direction (34). Every
student adopts its own learning style and applies strategies for studying. A CAL system is able
to anticipate on the students learning by personalising and tailoring the learning experience
and by giving students feedback where needed, which promotes active and self-directed learn-
ing (22). The digitisation of education opens doors to innovate teaching methods because of
the flexibility that software can offer. Research in cognitive psychology has benefited massively
as advancements in software development allows only the developer’s creativity to limit the in-
novation of didactic methods. A CAL system is inexhaustible and non-judgemental in present-
ing the relevant teaching material, resulting in a patient system that has time for every student.
(32).

CAL is limiting in direct interaction with other students and teachers. Live teaching allows
teachers to engage with the audience that can stimulate learning. Having a teacher or mentor
at hand that provides adequate instruction, supervision and help is of value that cannot be un-
derestimated (34). The use of CAL also comes with a set of technical challenges, as the develop-
ment of CAL software is labor intensive, requiring appropriate hardware, backup and frequent
upgrading (22; 34). The implementation of CAL systems is not straightforward and will take
motivated leadership for effective integration in educational systems (34).

1.3 Item analysis

Item analysis is a term for statistical analysis on items in a test. An item can be an exercise,
question, or problem on a test, questionnaire or performance assessment (16). The purpose of
item analysis is to provide information about the test items, not about the competence of the
test taker. Item analysis is performed retrospectively and uses data consisting the responses
by individuals on a group of items (16; 28). Item analysis is able to give information about the
difficulty and discriminative power of an item. In this project, [tem analysis is used to calculate
the level of difficulty of detecting a lung nodule.

1.4 Research objectives

In this project, a method to determine the difficulty as a property of a lung CT scan is explored.
The main research goal is defined as: "How can the level of difficulty of a lung nodule case be
defined as a property of the scan?" The research is supported by two subquestions.

How can item analysis with the use of deep learning determine a measure of difficulty for lung
nodule cases? How does a measure of difficulty, as a property of the scan, relate to the subjective
difficulty of a lung nodule case?

1.5 Thesis outline

This thesis constructs in six chapters the conducted research. The first chapter introduces the
research and the research objectives are stated. Chapter 2 gives theoretical background on
the research and the methods that will be used to answer the research objectives. The use of
Item analysis and deep learning will be thoroughly explained. Chapter 3 explains the outline
of the methods used in the research. Firstly, a description of the data used in this thesis is
provided, followed by the preprocessing steps that were undertaken. Next, the deep learning
process is elucidated by a description of the network architecture and parameters. Additionally,
the training procedure is described. Item analysis, the application of this statistical method is
delineated. Lastly, the evaluation method for the level of difficulty is explained. The results are
presented in chapter 4, where an overview of the findings is given. The performance of the lung
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CHAPTER 1. INTRODUCTION 5

nodule detection networks of the Difficulty-Net is presented. The variation in performance of
the difficulty nets is exploited in the item analysis. The evaluation method will be presented.
In chapter 5 the results will be discussed and clarified. Also the limitations of this research
are discussed. The interpretation of the results will lead towards the conclusion in chapter 6.
Recommendations for improvement of the research are summarized and recommendations for
future work are described. The appendix contains additional information supporting decisions
made during the scope of this thesis.
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6 Difficulty measure for Radiology cases with use of Item analysis and deep learning

2 Theoretical Background

2.1 Lungnodules in CT scans

For screening and diagnosis of lung cancer low dose CT scans is a widely used imaging mod-
ality. It has the ability visualize lung nodules, because of their specific attenuation properties
compared to surrounding tissue. According to Fleishner Society the definition of a lung nodule
is an approximately rounded opacity more or less well-defined measuring up to 3 cm in dia-
meter (18). When the measure of 3 cm is exceeded the Fleishner Society defines them as a lung
mass; any pulmonary, pleural or mediastinal lesion seen on chest radiographs as an opacity
greater than 3 cm in diameter (without regard to contour, border, or density characteristics)
(18).

Dependence on the attenuation of lung nodules in CT scans, they can be categorized in three
different types:

1. solid nodules
2. ground-glass nodules
3. part-solid nodules

Solid nodules are characterized by their homogeneous soft-tissue attenuation and are preval-
ent. Ground-glass nodules show a nonuniform appearance with hazy increase in local attenu-
ation of lung parenchyma not obscuring the underlying bronchial and vascular structures. The
part-solid nodules are a constitution of solid and ground-glass attenuation components (26).
Lung nodules occur solitary, when they are fully surrounded by normal lung tissue. Mostly
ground-glass nodules are found in within multiple nodular lesions. Studies have showed that
within multiple nodules the malignant dominant tumor also present benign satellite lesions,
but it should be noted that not always is the larger or multiple nodules the most dominant
malignant nodule (26).

The size of the nodule is strongly associated with the probability of malignancy. Addition-
ally, spiculation of the anatomical morphology and the prevalent occurrence in the upper lung
lobes are identified as predictors of malignancy. Lung nodules with a diameter below 6 mm are
considered to be of low malignancy risk (26). Other predictors of benign etiology are nodules
(<10 mm) adjacent fissures or the pleural surface, as they are likely to depict intra-pulmonary
lymph nodes (26). Calcification is present in 10% of lung cancer cases, but calcified lung nod-
ules are generally not considered malignant.

2.2 Computer Aided Detection for Lung Nodules

With the use of machine learning algorithms lung nodules can automatically be detected. The
performance of these algorithms has improved over the last years and nowadays the perform-
ance exceeds the accuracy of a radiologist. Initially, feature-based algorithms like support vec-
tor machines (SVM), random forest and regression trees classifiers are used. The workflow of
these algorithms operate in the following fashion: first, a lung segmentation is performed to
remove structures like the vessels, the bronchi and the rib cage. Lung nodule candidates are
detected and their location is identified in the second stage. In the third stage, the features
like shape size and texture is extracted from lung nodule candidates. Lastly, the features are
combined using clustering techniques where the candidates are classified as true positives.
The SVM classifiers obtain the high results with respect to accuracy, sensitivity and sensitiv-
ity (27; 43). The rise of Deep Learning algorithms have shown to obtain better results than
feature based methods for automatic lung nodule detection, because of the advantages deep
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learning has in terms of the processing of low dose CT image data(29; 15). Still, many re-
searchers use conventional machine learning methods combined with deep learning meth-
ods, such as convolutional neural networks (CNN), recurrent neural networks, deep belief net-
works, auto-encoders and general adversarial networks (15). Automatic lung nodule detec-
tion can be achieved with object detection algorithms, comprising two categories: two-stage
and one-stage algorithms. The two-stage category first uses an algorithm to select lung nod-
ule candidates, then another algorithm analyses the candidates and reduces the false posit-
ives. The two-stage algorithms have good performance and high sensitivity for lung nodules
(40; 38; 10; 44). The two-stage algorithm can be extended with 3D information of the lung
nodule to obtain higher performance (19; 45). To use 3D information of in the low dose CT
is challenging because of the limited computational power for deep neural networks. In the
work of Jenuwine (21) 3D lung nodule detection without candidate selection is attempted. The
system is not accurate enough to be usable, but the paper gives proof for one-stage lung nod-
ule detection. To investigate the possibility of one-stage lung nodule detection, the work of
(12) uses a YOLO based deep learning network for lung nodule detection. The YOLO network
is an object detection network that predicts a bound box coordinates. The system uses depth
information by implementing the preceding and succeeding images of the scan image of in-
terest. The performance of the network on the LIDC/IDRI dataset is 89% sensitivity at 6 false
positives per image. The work of (25) uses the latest YOLO v3 algorithm as a CNN implement-
ation (31) for the detection of lung nodules in simulated data and patient data. The simulation
study showed a sensitivity of 99.3% with 4 false positives per scan. The patient study shows a
sensitivity of 90.0%. Besides a high performance the YOLO v3 network has high computational
efficiency. Khosravan (23) tackles the computational power problem with a different one-stage
detection algorithm and proposes S4ND: a deep learning based method for lung nodule detec-
tion. The 3D deep network architecture is designed to detect lung nodules in a singe shot using
a single-scale network. The S4ND method achieved an average Free-Response operating curve
score (FROC-score) of 0.897 (23).

2.3 Item analysis

Item analysis is often applied to educational sciences to monitor the quality of questions on
tests (16). To illustrate the interpretation of item analysis a student exam analogy is used. In
the context of this research, a question on an exam corresponds to a lung nodule case. The per-
formance of all students participating in the test correspond to the performances of multiple
deep neural networks. The items are regarded as a stack of slices from a lung CT on which the
following question could be posed: "Does the stack contain a lung nodule?" The question is
answered with yes or no.

Item analysis is able to give information about the difficulty and discriminative power of an
item. These features can be calculated with several methods. One must beware of the pitfalls
of such methods to be able to draw valid conclusions.

2.3.1 Item difficulty

The difficulty of an item is simply how hard the item is. Some items can be too hard to answer
which results in almost no correct responses, whereas some items are so easy that every test
taker can answer them correctly. By having insight in the difficulty of every item, the test maker
has more control over the overall level of difficulty of the test (16).

The most obvious measure of difficulty of an item for a group of test takes is the average score
on the item. This is only possible when the item is dichotomous, meaning that the answer can
only be correct or incorrect. The average score on the test is only useful when prior knowledge
about the group taking the test is available. The difficulty can also be calculated by dividing
the number of test takers answering the item correctly N, by the total number of test takers

Robotics and Mechatronics Meike van Benthem



8 Difficulty measure for Radiology cases with use of Item analysis and deep learning

answering the item N;. In equation 2.1 the proportion is showed.

_ N 2.1
P=N, 2.1
For Item analysis, it should be considered that the p-value from 2.1 is a behavioural measure,
because difficulty is defined in terms of relative frequency with those taking the test to choose
the correct response. The p-value here is also a characteristic of both the item and the sample
taking the test (16; 28). The value ranges from 0 to 1, where 0 represents the most difficult item
and 1 represents the least difficult item. In this context, p-value is a behavioural measure of

neural networks.

2.3.2 Item discrimination

The discriminative power of an item is the tendency of the item to be answered correctly by test
takers that are strong in the skills and knowledge, necessary for the item to be answered cor-
rectly, and the test takers that are not. In item analysis the discriminative power of an item can
be evaluated with a measure of the proficiency and competency, which is called the criterion.
In this research the criterion is the performance of a neural network on the entire test set.

The discriminating power can be measured by the product moment correlation in which one
variable is continuous and the other variable is binary (dichotomous). In the context of this
research the point-biserial correlation would be a measure of discrimination by calculating the
correlation between the scores on the item Y and the performance on the test set or criterion
X (16; 36). The simplified formula for the point-biserial correlation r,, follows:

X_l_X_O ning
T'pb = \/ , (2.2)
Oy nn-1)

where X; is the mean on X of those who scored 1 on Y,
Xy is the mean on X of those who scored 0 on Y,

0« is the standard deviation of all n scores on X,

ny is the number of test takers scoring 1 on Y,

np is the number of persons scoring0 on Y,

and n = n; + ny (14).

2.4 Validation

To validate a level of difficulty for the detection of a lung nodule, a subjective variable is neces-
sary. This project will use the Lung Imaged Database Consortium - Image Database Resource
Initiative (LIDC/IDRI) data set which is provided with metadata containing annotations of nod-
ules of 4 radiologist. The construction of the data set will be elaborated in section 3.1. Each
radiologist was asked to assess several characteristics of their annotated nodule. The following
characteristics were scored on a scale from 1-5.

* Subtlety - in terms of its difficulty in detection
* Internal structure - or expected internal composistion of the nodule
» (Calcificiation - pattern of calcification present

* Sphericity - the three dimensional shape of the nodule in terms of its roundness
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CHAPTER 2. THEORETICAL BACKGROUND 9

* Margin - — description of how well defined the margins of the nodule is
e Spiculation — amount of speculation present in nodule

e Texture — internal texture or composition of nodule in terms of solid and ground glass
components

* Malignancy - Radiologist subjective assessment of likelihood of malignancy of this nod-
ule

A subjective score on the difficulty is provided in the subtlety score, where higher values indic-
ate easier detection.

1. ’Extremely Subtle’

2. ‘Moderately Subtle’
3. ‘Fairly Subtle’

4. ‘Moderately Obvious’
5. ‘Obvious’

The objective difficulty score developed in this thesis can be validated by using the subjective
difficulty score provided by the LIDC/IDRI dataset. The subtlety score is seen as a variable with
an ordered categorical scale, as there clear ordering in the levels. Yet, the absolute distances
between the categories is unknown. To analyze subtlety score and its relation to the determ-
ined level of difficulty score, ordinal regression analysis will be applied. This type of regression
restricts analysis solely to the methods that use only the ordering information about the cat-
egories (6).

2.4.1 Ordinal regression

Ordinal logistic regression is used to predict an ordinal dependent variable given one or more
independent variables. An ordinal dependent variable can be predicted by one ore more
independent variables using ordinal logistic regression. An ordinal dependent variable is a
variable with an ordered categorical scale and the independent variables are continuous, or-
dinal or categorical. For example, ordinal regression can be used to predict the likelihood a
bachelor student will do a masters, based on a 4-point Likert scale describing 4 levels; "very
likely","somewhat likely", "somewhat unlikely" and "very unlikely". The regression model is
able to predict the category based on a number of independent variables. In this example
it could be; "Age" and "Savings". Additionally, ordinal regression could be used to analyse

whether an independent variable can predict the ordinal dependent variable (6).

In this research it is tested whether the independent variable "level of difficulty" can predict the
ordinal dependent variable "subtlety of a lung nodule". By realizing ordinal regression model,
it can be tested if the model is statistically significant. The independent variable "level of dif-
ficulty" the test will show how a single unit increase or decrease in that variable is associated
with he odds of the dependent variable "subtlety" having a higher or lower value.

For ordinal regression the data has to satisfy the following assumptions.

e Assumption 1: The dependent variable has to be measured at the ordinal level. This
means that the dependent variable consists of ranked categories.

» Assumption 2: The independent variable(s) are either continuous ordinal or categorical.
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10 Difficulty measure for Radiology cases with use of Item analysis and deep learning

* Assumption 3: For two or more independent variables there is no multicollinearity,
which could occur when two or more independent variables are correlated with one an-
other. It could lead to problems with understanding which variable contributes to the
explanation of the dependent variable.

e Assumption 4: The independent variable has an identical effect at each cumulative split
of the ordinal dependent variable. This can also be described as proportional odds.

Assumptions 1 and 2 should be tested first, as they are fundamental for ordinal regression.
Assumption 3 is important for two or more dependent variables, which is not the case in this
research. Assumption 4 can be checked with the test of parallel lines.

The notation of a ordinal regression model is as follows. Suppose Y is an ordinal dependent
variable with J categories. The cumulative probability of Y less than or equal to a specific
category j =1,..,J—1lisnoted as P(Y < j). From the cumulative probability follows that P(Y <
J) = 1. The odds of being less than or equal to a particular category is defined as

PY<j
(—J.) (2_3)
P(Y >j)

for j=1,...,J—1as P(Y > J) = 0. Here dividing by zero is undefined. The log odds, also known
as logit, can be described in the following equation, where P(Y > j) =1-P(Y < j).

. P <))
logit(P(Y < j)) = IOgP(Y—>j) (2.4)

The model of ordinal logistic regression can be defined as
logit(P(Y < j)) =Bjo+Bj1x1+... + BjpXp, (2.5)

where [0, Bj1,..., jp are model coefficient parameters with p predictors for j =1,...,J—1. In
many software packages the model coefficient parameters are subtracted. This makes it easier
to interpret the relationship between the independent variables and the relationship with the
ordered variables. The computed probabilities can be revalidated with the actual outcome to
validate if high probabilities are associated with events and low probabilities non-events.

A logistic model is said to provide a better fit to the data if it shows an improvement over the
null model, which can be seen as a baseline model without predictors. The model is tested
against the null hypothesis that all observations belong to the largest outcome category. An
improvement on the baseline model can be tested with the -2 Log Likelihood test, which are
often calculated by statistical programs or packages (30).
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3 Method

3.1 Data
3.1.1 Data characteristics

For the development of comuter aided detection (CAD) methods for lung nodules the Lung
Imaged Database Consortium (LIDC) and the Image Database Resource Initiative (IDRI) have
completed a publicly available database with a well-characterized repository of thoracic CT
scans. The LIDC and IDRI consist of the Weill Cornell Medical College, University of California,
Los Angeles, University of Chicago, University of lowa, University of Michigan, MD Anderson
Cancer Center and Memorial Sloan-Kettering Cancer Center and were broadened out with 8
medical imaging companies (AGFA Healthcare, Carestream Health, Inc., Fuji Photo Film co.,
GE Healthcare, iCAD, Inc., Phillips Healthcare, Riverain Medical and Siemens Medical Solu-
tions). As the expertise of academic centers was merged with the medical imaging companies,
the database collection will be referred to as the LIDC/IDRI Database.

The LIDC/IDRI Database contains 1018 helical thoracic CT scans collected from screening
trials. The data is anonymized to remove all protected health information. To achieve a
heterogeneous range of scanner models and technical parameters, no scan was performed
specifically for the purpose of the database. Furthermore, the Database includes one scan
from one patient, such that the scans in the LIDC/IDRI Database are not correlated.

To ensure relevance of the scans for the development of CAD systems for lung nodules, the
database includes (1) an image repository of screening and diagnostic thoracic CT scans, (2)
metadata associated with the scan such as technical scan parameters and patient information,
and (3) nodule truth information based on the subjective assessments of a panel of experi-
enced radiologists.

The nodule truth information was obtained in a two-step image annotation process, where
each case was interpreted by 4 radiologists. In the first "blinded read phase" every radiologist
independently reviewed a scan and marked lesions. The lesions where placed in one of the
following categories:

1. nodule > 3 mm
2. nodule < 3 mm
3. non-nodule > 3 mm

A lesion defined as nodule > 3 mm is considered to be a nodule with greatest in-plane dimen-
sion in the range 3 to 30 mm, regardless of presumed histology. The lesions defined as nodule
< 3 mm are considered to be nodules with greatest in-plane dimension less than 3 mm, that
is not clearly benign. The non-nodules are any other pulmonary lesions greater than or equal
to 3 mm that does not possess features consistent with those of a nodule. (7) The radiologist
did not receive a definition of the concept "nodule", such that each radiologist provided their
own interpretation of the "noduleness" of a lesion during the blinded read phase. For each
nodule >3mm the centre-of-mass location has been indicated. In the second "unblinded read
phase" the results of all radiologists were anonymously revealed to each of the radiologists, who
then independently reviewed the other radiologists marks, as well as their own. This makes it
optional for the radiologist to leave its own marks unchanged, switched in terms of lesion cat-
egory, deleted or additional marks can be added. The database contains 19 CT scans from 19
patients where no nodule > 3mm or nodule < 3mm was marked by the radiologist. For 268 of
the 10180 patients, pathological information was collected retrospectively. This includes the
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patients diagnosis (nonmalignant disease, primary lung cancer or metastatic disease) along
with the method of diagnosis.

The two-phase process was developed for the asynchronous interpretation of thoracic CT scans
without forced consensus, which incorporates real-world variability of image interpretations.
The lack of ground-truth creates the challenge for researchers in how to define targets for the
training and testing of CAD methods. The annotations made for the database differ with a radi-
ologists accustomed routine assessment in routine practice. Here the radiologists encounters
3 steps;

1. Detection of a lesion.
Is the observed structure an abnormality or normal anatomy?
2. Determination of lesion size.

Is the lesion greater than or less than 3 mm?

Is the lesion in the range of 3 mm to 30 mm?
3. Evaluation of the lesion features.

Does the lesion represent a "nodule"?

If the lesion is less than 3 mm, is it clearly benign?

This creates many possible combinations for one single lesions, and any option assigned by
the different radiologist should be considered reasonable due to the inherent subjectivity. The
LIDC/IDRI database has several obvious applications, but is only limited by the creativity of
those who use it. (7)

3.1.2 Data preprocessing

The LIDC/IDRI database consists of an image repository of screening and diagnostic CT scans
that requires preprocessing before deep learning techniques can be applied. With the use of
pylidc, the data queried in an sQL-like fashion (17). The steps necessary for training the lung
nodule detection algorithm are described. The preprocessing methods are adapted to the net-
work architecture and the purpose of this research.

The LIDC/IDRI consists of 1018 helical CT scans from 1010 patients, where only one scan is
considered per patient. Scans with a slice thickness larger than 3 mm were excluded. The
remaining scans are resampled, with the use of interpolation, such that each voxel is 1x1x1
mm. The transversal slices are cropped and padded to a size 512x512. The scans were set to the
lung window ranging from -1250 HU to 250 HU.

In the total data set, 19 cases are healthy and have no lung annotations. During the training
of computer assisted detection algorithms problems arise because of the ratio of positive (lung
nodule) data and negative (no lung nodule) within one scan. The enrichment of data with lung
nodules in data sets is necessary for the training of a CAD algorithm to achieve sufficient sens-
itivity. Instead of training the CAD algorithm on the full scan, a stack of slices containing a
nodule is used. Essentially, a level of difficulty is determined for a stack of slices and not the
complete lung CT scan. It was chosen to have a fixed amount of slices per stack such that the
performance of the neural networks could be expressed based on a number or slices. Figure
7.1 in appendix 7 shows the thickness of nodules in slices in a histogram. By dividing the dis-
tribution in quartiles it was found that approximately 75% of the nodules had a thickness of 11
slices. The average thickness was 6 slices. For easy handling the size of the stack was set to 10
slices per stack. Additionally, to show that all lung nodules in the data set are not accumulated
at a certain location within the scan, the locations of all nodules along the cephalad direction
are shown in appendix 7 figure 7.2. Furthermore, the stacks are restricted to having 1 nodule
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10 slices = 1 stack

Nodule _

Figure 3.1: Schematic representation of the construction of two stacks from one pair of lungs. Each
stack consists of 10 slices where the centeroid of the nodule is position on the fifth or sixth slice in the
transversal direction (z-direction). For stacks where nodules are smaller than 10 slices in thickness,
healthy slices were added up on the bottom and top, to aqcuire stacks of 10 slices.

per stack, such that a measure of difficulty would be dependent on one nodule in the stack. The
presence of multiple nodules in one stack has an effect on the level of difficulty, when it would
be presented to human subjects.

In short, a stack was created from the following conditions:
1. The stack has a thickness of 10 slices
2. The stack contains 1 nodule
3. The nodule is annotated by at least one radiologist

From these restrains follows that nodules thicker than 10 slices are initially excluded. Also nod-
ules that show an overlap in the z-direction are not considered to form a stack. In a later state
of the research, stacks with nodules larger than 10 slices were included to achieve variation in
the networks. Figure 3.1 gives a schematic illustration of a pair of lungs with two nodules. The
nodules are at different locations and have a thickness smaller than 10 slices, so from this scan
2 stacks are created. The slice containing the the center of mass of the nodule is taken and the 4
preceding stacks and 5 succeeding stacks are taken to form a stack of 10 slices. It must be noted
that within a stack, the top and/or bottom slices might not contain features of the nodule.

The bounding box of each annotation is stored in the data set and from each nodule one an-
notation was selected. Coordinates of the bounding box were given in the following format and
resampled and padded according to the sampling and padding of the scan.

L bounding box = [x_min x_max y_min y_max z_min z_max] J
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Figure 3.2: Architecture of the deep neural network.

3.2 Deep Neural Network

As described in section 2.2, there are several methods for the detection of lung nodules with
deep learning algorithms. The two-step and one-step methods each have advantages. For the
purpose of a determining the diagnostic difficulty of a stack, a one-step lung nodule detection
algorithm has been selected without a sliding window approach. In order to perform Item
analysis on the stacks, multiple neural networks of varying performances are required. The
network architecture and parameters are presented in 3.2.1 and in 3.2.2 the training procedure
is outlined. The variation in performance is also explained.

3.2.1 Proposed architecture

The chosen network architecture is a network for lung nodule detection inspired by the YOLO
algorithm, but is drastically simplified and has an initial accuracy of 65%. In figure 3.2 the
architecture of the network is presented. The network uses an input of 512x512x 1 pixels and a
label of 16 x 16 x 1 pixels. The architecture employs 18 2D convolutional layers with filtersizes of
3 by 3 and takes strides 1,1 strides. The convolutional layers implement padding on all borders
and apply a Rectified Linear Unit (ReLU) activation function given in 3.1. Each convolutional
layer is followed by a batch normalization. In the network 5 2D MaxPooling layers are used,
which also apply padding. The network provides a 16 x 16 label map as an output. The network
is build with Keras and Tensorflow (5; 11). The loss function, given in equation 3.2 is based on
the mean squared error (MSE) with an Adam optimizer using a learning rate of 1e™.

ReLU(z) = max(0, z) 3.1

D
Loss = Z (x; — yi)2 (3.2)
i=1

3.2.2 Training procedure

During preprocessing 710 nodules have been found that meet the requirements stated in sec-
tion 3.1.2. For the training process the data is divided into a train set and a test set, that contain
80% and 20% respectively. The train set and test set are disjoint, meaning that multiple stacks
from the same patient are in the same set. This results in a train set of 659 stacks with 6590
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slices and a test set of 151 stacks with 1510 slices. The summary can be found in appendix 7
table 7.1.

The ensemble of networks will be referred to as the Difficulty-Net ensemble. The Difficulty-
Net consists of 10 neural networks with the same architecture as described in section 3.2.1,
but with varying performances. A parameter that is known to influence the performance of a
neural network is the size of the data set. To acquire 10 neural networks that are comparable
in architecture and parameter, but with varying performances, the networks are trained on
different sizes of train sets. All ten networks are tested with the same test set.

The initial network (NetA 100) was trained with the train set for 100 epochs with a batch size of
64. It takes 160 minutes to train the proposed network on a 2x Tesla A40 GPU. The network is
tested on the test set and the performance is expressed in the Area Under Curve (AUC). The AUC
of NetA 100 is 0.67. The restrictions stated in 3.1.2 for the stacks has excluded 1429 nodules.
Each nodule has been created into a stack of 10 slices and was incrementally added to the train
set. In total 10 networks were trained with increasing size of train set. In table 3.1 an overview
of the sizes of the train sets has been given

Difficulty-Net | Train set size (slices)
NetA 100 6590
NetB 90/10 7320
NetC 85/15 7750
NetD 80/20 8230
NetE 75/25 8780
NetF 70/30 9410
NetG 65/35 10130
NetH 60/40 10980
Netl 50/50 13180
NetJ 45/55 14640

Table 3.1: Train set sizes of the neural networks that are part of the Difficulty-Net ensemble.

3.3 Item analysis

The purpose of the Item analysis is to map the stacks in the test set to a ranking based on their
level of difficulty as a property of the scan. The item analysis will be performed on each of the
stacks in the test set, where every stack in the test set represents an item. Item analysis can
only be performed retrospectively, meaning the performance of the 10 neural networks on the
whole test set is used to determine the difficulty of one stack. The value of the Point biserial
correlation on the stack is used as a measure for the difficulty of the stack. In this context,
the value of the point-biserial correlation gives in indication of how well the stack can be used
to discriminate high performing neural networks from low performing neural networks in the
Difficulty-Net ensemble. Figure 3.3 shows which values are used to calculate the Point Biserial
correlation. The stack from the test set is fed to all 10 neural networks from the Difficulty-Net
ensemble to give a prediction on detecting the nodule. The prediction is transformed to a bin-
ary score, where 1 indicates that the nodule has been detected and 0 indicates the nodule has
not been detected. The transformation of the prediction to a binary item can be performed in
several ways and will be discusses in section 3.3.1. The formula of the point-biserial correlation
takes the square root of the number of neural networks that were able to detect the nodule mul-
tiplied by neural networks that were not able to detect the nodule divided by the total number
of neural networks in the ensemble. This is multiplied by the mean value of the performance
of the neural networks detecting the nodule minus the mean of the performance of the neural
networks not detecting the nodule, divided by the standard deviation of the performance of all
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Figure 3.3: Flow chart of the composition of the Point-biserial correlation. A stack from the test set is
presented to all neural networks. Their prediction is transformed to a score on the item. The number
of correct networks and the average performance of the networks answering correct is calculated. The
same is done for all networks answering incorrect. Together with the standard deviation of the perform-
ance of all networks, the point-biserial correlation can be calculated.

neural networks. The point-biserial correlation gives a value ranging form -1 to +1, where +1 in-
dicates strong discrimination and 0 means weak discrimination. A value of -1 indicates that the
detection of the nodule in the stack was random. The point-biserial correlation is calculated
with the scipy.stats.pointbiserialr() function (41).

3.3.1 Point Biserial Correlation

For the purpose of this research a measure of difficulty is determined for each stack. The trained
neural networks take a slice of 512 by 512 pixels as input. The output is a prediction map of 16
by 16 squares, which gives a the probability of presence of a nodule. Since the neural network
takes 1 slice as an input, the calculation of the Point Biserial correlation for a stack of 10 slices
can be conducted in several ways. Ideally, the point-biserial correlation can be related to the
subtlety score given by the radiologist. 3 methods of how the point-biserial correlation can be
calculated will be outlined.
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For the point-biserial correlation a binary score needs to be provided. The stacks in the test set
all have one nodule, but some nodules are less than 10 slices thick, resulting in stacks that have
slices without a visible or annotated nodule. In each method the true positives, true negatives,
false positives and false negatives are regarded to determine the binary score.

Method 1 In this method a score for each slice is determined from which the point-biserial
correlation value is calculated for each slice. The point-biserial correlation of the stack is then
determined by taking the mean value of the point-biserial correlation over all 10 slices in the
stack. By looking at individual slices, one discriminates slices with an annotation of a nodule
(a positive slice) and slices without an annotation of a nodule (a negative slice). As mentioned,
the network gives a prediction map onto which a threshold is applied. The threshold is scaled
to individual performance of each Net in the Difficulty-Net ensemble. A binary mask is created
which can be compared to the label of the slice.

If the slice is positive and the nodule is detected, a score of 1 will be granted. This means that
there is one true positive in the slice, and all false positives are ignored. In case of a positive slice
and the nodule is not detected a score of 0 will be given, this means the scan is false negative.

For negative slices the score is more difficult to determine. Ultimately, if the slice is negative, the
binary mask is also completely negative, by 256 squares correctly. Since the false positives are
ignored in the positive slices, a score of 1 will be granted when 95% of the squares are assigned
negative. A score of 0 will be given, when less than 95% of the squares are assigned negative.

The binary scores are saved in a matrix with the number of slices as rows and the neural net-
works from the Difficulty-Net ensemble as columns. The matrix is used to calculate the point-
biserial correlation, illustrated in figure 3.3. The difficulty score of the stack is the mean value
of the point-biserial correlation of each slice in the stack. This method uses the assumption
that every slice in the stack contributes equally to the difficulty score.

Method 2 In this method the binary score of the stack is determined by the binary score of the
individual slices. First a binary score is assigned to each of the slices in the stack as described
in method 1. If the slice is positive and the nodule is detected, a score of 1 will be granted. In
case of a positive slice and the nodule is not detected a score of 0 will be given. A score of 1 will
be granted when 95% of the squares are assigned negative. A score of 0 will be given, when less
than 95% of the squares are assigned negative.

If 5 or more slices in the stack have a binary score of 1, the binary score of the stack will be 1.
If less than 5 slices in the stack have a binary score of 1, the binary score of the stack will be
0. The binary scores of the stacks is saved in the matrix and and a point-biserial correlation is
calculated for each stack.

3.4 Evaluation

To investigate the relation ship of the point-biserial correlation with the level of difficulty of a
stack, a evaluation method is developed. The LIDC/IDRI data set is provided with meta data
and each radiologist gives a subtlety score of their annotated nodule, described in section 2.4.1.

The subtlety scores of the stacks in the test set are shown in figure 3.4, where it can be seen that
most of the nodules in the test set are score a 3 ("Fairly Subtle") or higher. Only ten nodules
score have a subtlety score of 1 ("Subtle").

3.4.1 Ordinal regression

For each of the methods described in 3.3.1 ordinal categorical logistic regression analysis is ap-
plied with the use of IBM SPSS statistics (IBM Corp.). We define here the subtlety categories
as dependent variable and the point-biserial correlation as an independent variable. With the
use of the Goodness-of-Fit test, the -2 log likelihood and test of parallel lines, the statistical
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Figure 3.4: Histogram of the distribution of subtlety scores in the test set.

significance of the analysis will be tested. The logit values are transformed to the odds ratio,
which gives insights into the relationship between the point-biserial correlation and the sub-
tlety scores.
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4 Results

4.1 lungnodule detection network

The performance of the neural networks in the Difficulty-Net ensemble are presented in a Re-
ceiver Operating Characteristic (ROC) curve in figure 4.1 and in table 4.1. Variation in the per-
formance of the neural networks can be seen in the ROC curves. The True Positive rate and
False Positive rate differ per network. Table 4.1. shows the Area Under Curve (AUC) of each of
the network, which is regarded as a measure for the performance of the network. Increasing
size of the train set was expected to have an effect on the performance of the networks on the
test set. From table 4.1 and figure 4.1 the performance of the network does not seem to in-
crease or decrease by the size of the train set. The least performing Net from the ensemble is
NetB 90/10, where an AUC of 0.573 on the test set was found. A good performing network in the
Difficulty-Net ensemble is NetF 70/30. Here, 70 % consists data equal to the train set used for
NetA 100. Another 30 percent of excluded data is added, as described in 3.1.2. To verify if this
performance is caused by the additional 30% of data or by random initialization, NetF 70/30
is trained 3 times. In figure 4.2 the ROC curve is presented, where it can be seen that the per-
formance of the repetitions is lower than than the initial performance of NetF 70/30, used in the
Difficulty-Net ensemble. The average performance with a standard deviation of 0.033 indicates
that NetF 70/30 obtained an AUC of 0.704 because of the favorable random initialisation.

For this research, a variation in performance is desired to be able to perform Item analysis. The
performance of the networks presented in table 4.1 shows an average performance of 0.667
with a standard deviation of 0.043. With the knowledge of the checks conducted with NetF
70/30, it is suspected that the performance of the network is limited. It was decided to attempt
to prove the research objectives with the 10 neural networks in the Difficulty-Net ensemble,
because addition of Networks with similar performance would not influence the variation in
performance. Further elaboration on the limited performance is given in discussion section 5.

Difficulty-Net | Train set size (slices) AUC
NetA 100 6590 0.671
NetB 90/10 7320 0.572
NetC 85/15 7750 0.665
NetD 80/20 8230 0.603
NetE 75/25 8780 0.672
NetF 70/30 9410 0.704
NetG 65/35 10130 0.702
NetH 60/40 10980 0.673
Netl 50/50 13180 0.698
Net] 45/55 14640 0.707
Average 9701 0.667 £ 0.043

Table 4.1: Performance on the test set expressed in Area Under the Curve (AUC) of the neural networks
in the Difficulty-Net ensemble with train set sizes.
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Figure 4.1: ROC curves of the neural networks in the Difficulty-Net ensemble.
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Difficulty-Net Train set size (slices) ‘ AUC
NetF 70/30 9410 0.704
NetF 70/30 check 1 9410 0.639
NetF 70/30 check 2 9410 0.629
Average 9410 0.658 + 0.033

Table 4.2: Performance on the test set expressed in AUC of NetF 70/30 trained 3 times with identical
train set.

4.2 Item analysis
point-biserial correlation

The neural networks from the Difficulty-Net ensemble are used to perform Item analysis on
the stacks in the test set. A value for the point-biserial correlation is calculated for each stack.
Figure 3.3 describes how the performance of the neural networks and the score on the stacks
is used to determine a value for the point-biserial correlation. The score on the stacks is de-
termined by the predictions of the networks in the Difficulty-Net ensemble. To determine the
score with the predictions, four methods have been used. These four methods result each in
four distributions of the point-biserial correlation over the test set. The two methods described
in 3.3.1 are presented in this section, while two other methods and results can be found in the
appendix 7.2. The values of the point-biserial correlation are presented in a histogram to show
how the values are distributed. The value of the point-biserial correlation ranges from -1 to
+1. The values of the point-biserial correlation of the complete test set are shown in a histo-
gram, where the distribution of the value can be assessed. For each method described in 3.3.1
a histogram is given.

Method 1 In this method the point-biserial correlation of the stack is calculated by taking the
mean of the point-biserial correlation of the slices, as described in section 3.3.1. In figure 4.3
a distribution of the point-biserial correlation of the stacks can be found. Each stack has been
given a subtlety score by the annotated radiologist. To investigate the relationship between
the point-biserial correlation of the stack and the subtlety score of the stack. Figure 4.4 shows
raincloud plots for each subtlety score. The raincloud plots show a distribution with below a
strip plot where the individual data points are indicated. Over the strip plot a boxplot is placed
to show the median, and quartiles of the distribution. For subtlety category 1, a distribution
that is more orientated towards positive values of the point-biserial correlation. For category
2, 3 and 4, values of the point-biserial correlation are distributed over total range. For subtlety
score 5 the distribution is more focused on negative values for the point-biserial correlation. It
is expected that an ordinal categorical logistic regression model can be fitted onto the data to
investigate the statistical significance of the relationship between the point-biserial correlation
of the stacks and its subtlety score.

Method 2 The values of the point-biserial correlation calculated by method 3, described in
section 3.3.1, are presented the histogram of figure 4.5. Negative values, as well as positive
values of the point-biserial correlation are found for the stacks. In figure 4.6 it can be seen
that negative values for point-biserial correlation are more associated with subtlety score 5 and
positive values are associated with subtlety score 1. For subtlety score 3, both positive and
negative values of the point-biserial correlation.
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Figure 4.3: Histogram showing the distribution of the point-biserial correlation of stacks, determined
by method 1.

Method 1

b —_
Q 3 . ) ? -
5 ’ = W= e — [ ] T -
?
= ]
4 b 2 - - ‘-: =- i - — - g
5 = —

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Point Biserial correlation

Figure 4.4: Raincloud plots of the distribution of the point-biserial correlation acquired with method 1
for each subtlety score. The top of the plot shows the distribution over the range oft the point-biserial
correlation. Below the distribution a strip plot displays the individual data points. A boxplot is added to
show the median and quartiles of the distribution.
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Figure 4.5: Histogram showing the distribution of the point-biserial correlation of stacks, determined
by method 2.
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Figure 4.6: Raincloud plots of the distribution of the point-biserial correlation acquired with method 2
for each subtlety score. The top of the plot shows the distribution over the range oft the point-biserial
correlation. Below the distribution a strip plot displays the individual data points. A boxplot is added to
show the median and quartiles of the distribution.
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4.3 Ordinal categorical logistic Regression

A ordinal categorical logistic regression model was fitted to the data acquired with method 1
and method 2, described in section 3.3.1 to research the hypothesis regarding the relation-
ship between of the point-biserial correlation of the stack and the subtlety score. The ordinal
categorical regression analysis was performed with the use of IBM SPSS statistics (IBM Corp.),
where the PLUM procedure is carried out according a tutorial (Ord). Firstly, the interpretation
of the model fitted to the data acquired by method 1 is given, followed by the model fitted to
the data obtained by method 2 as described in section 3.3.1.

4.3.1 Regression Model for data acquired with Method 1

In 2.4.1 4 assumptions are stated, to which the data must comply. The first two assumptions
are satisfied as the subtlety category is naturally ordered and the point-biserial correlation is
continuous. The third assumption is relevant for two or more independent variables, which is
not the case for the data. The fourth assumption is that the model gives a better fit to the data
than the ordinal proportional odds. The test of parallel lines, in table 4.3, compares the ordinal
logistic model with the proportional odds. Assumption 4 is rejected for a statistical better fit.
From the test of parallel lines it can be concluded that assumption four is also satisfied.

In table 4.4 it can be see that the -2 Log Likelihood with the y2-test gives an improvement on the
baseline model and therefore, the ordinal logistic model is more effective than the null model.
In 4.5 the statistical test of individual predictors can be found, where the statistical significance
of the individual regression coefficients is tested with the Wald chi-square statistic. The Point
Biseral correlation is a significant predictor of the subtlety. The Goodness-of-Fit statistics in
table 4.4 assess the fit of the model against the actual outcomes (the subtlety category). The
Pearson test yields a y?(587) of 585.977 and is not statistically significant, suggesting that the
model is a good fit to the data. The additional descriptive measures R? indices, Cox and Snell,
McFadden and Nagelkerke are given in the caption of table 4.4. They represent the proportion
of the variation in the dependent variable that can be explained by predictors in the model
(30). They do not give information about the explained variance and also do not correspond to
predictive efficiency. Therefore, they are merely given as an addition to the overall evaluation
of the model and the Goodness-of-Fit test statistics.

The ordinal categorical logistic regression calculates a value for the logistic odds or logit of
an event outcome from the predictor. The logit is the natural log of the odds, and therefore
can be transformed to the odds as explained in section 2.4.1. The odds ratio shows the factor
of increase in the dependent variable per unit increase of the independent variable. In SPSS
this calculation is performed manually with the syntax code given in appendix 7.3.3. From
table 4.5 we can see that the calculated odds ratio ef = 0.319, indicating a descending predicted
probability. The odds of being in higher subtlety category decreases from 1.0 to 0.319, with
every unit increase of the point-biserial correlation.

Model -2 LogLikelihood |  #* | df | p
Null Hypothesis 435.090
General 433.638 1.451 | 3 | 0.694

Table 4.3: Test of parallel lines for method 1 to compare the model of to the proportional odds.
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Test ¥ | drl|p
-2 Log Likelihood 9.174 1| 0.002
Pearson 585.977 | 587 | 0.504

Table 4.4: Model fit Goodness-of-Fit tests of Pearson Deviance and the -2 Log Likelihood of the ordinal
regression analysis for data acquired by method 1. Pseudo R-squared values; Cox and Snell R?=0.059,
Nagelkerke R%=0.062, McFadden R%=0.021.

Predictor B SEf | Wald p ef Lower | Upper
Subtlety 1 -2.611 | 0.328 | 63.327 | <0.001 | 0.073 | 0.039 | 0.140
Subtlety 2 -1.511 | 0.217 | 48.260 | <0.001 | 0.221 | 0.144 | 0.338
Subtlety 3 0.016 | 0.170 | 0.009 0.926 | 1.016 | 0.728 | 1.418
Subtlety 4 1.107 | 1.93 | 32.846 | <0.001 | 3.026 | 2.072 | 4.420
point-biserial correlation | -1.142 | 0.380 | 9.021 | 0.003 | 0.319 | 0.151 | 0.672

Table 4.5: Ordinal logistic regression analysis on the calculated point-biserial correlation by method 1
and subtlety score.

4.3.2 Regression Model for data acquired with Method 2

In table 4.6, 4.7 and 4.8 the results of the ordinal categorical regression model on the data ac-
quired with the second method, described in section 3.3.1 are summarized. The test of parallel
lines shows that assumption 4 is satisfied in table 4.6. In table 4.7 it can be seen that the -2
Log Likelihood with the y?-test gives an improvement on the baseline model and therefore, the
ordinal logistic model is more effective than the null model. Like the model described in 4.3.1,
the point-biserial correlation is a significant predictor of the subtlety, according to the Wald
chi-square statistic in table 4.8. In table 4.7 the Pearson test yields a y?(115) of 101.418 and is
not statistically significant, suggesting that the model is a good fit to the data. The additional
descriptive measures R? indices, Cox and Snell, McFadden and Nagelkerke are also given in the
caption of table 4.4 as a supplement to the Goodness-of-Fit test. The logit and the odds ratio
eP are given in table 4.8, where indication for descending probability is found. The odds of
being in higher subtlety category decreases from 1.0 to 0.529, with every unit increase of the
point-biserial correlation.

Model -2 LogLikelihood |  »* | df | p
Null Hypothesis 168.279
General 162.752 5.527 | 3 | 0.137

Table 4.6: Test of parallel lines for method 2 to compare the model of to the proportional odds.

Test ¥ | df|p
-2 Log Likelihood 9.909 1| 0.002
Pearson 101.418 | 115 | 0.813

Table 4.7: Goodness-of-Fit tests of Pearson Deviance and the -2 Log Likelihood of the ordinal regression
analysis for data acquired by method 2. Pseudo R-squared values; Cox and Snell R?=0.064, Nagelkerke
R?=0.068, McFadden R?=0.023.
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Predictor B SEfB | Wald p % Lower | Upper
Subtlety 1 -2.658 | 0.329 | 65.109 | <0.001 | 0.070 | 0.037 | 0.134
Subtlety 2 -1.602 | 0.222 | 52.209 | <0.001 | 0.202 | 0.131 | 0.311
Subtlety 3 -0.047 | 0.169 | 0.076 | 0.783 | 0.955 | 0.686 | 1.329
Subtlety 4 1.063 | 0.190 | 31.166 | <0.001 | 2.896 | 1.994 | 4.206
point-biserial Correlation | -0.636 | 0.204 | 9.703 | 0.002 | 0.529 | 0.355 | 0.790

Table 4.8: Ordinal logistic regression analysis on the calculated point-biserial by method 2 correlation
and subtlety score.
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5 Discussion

5.1 Interpretation of the results
5.1.1 Lungnodule detection network

Training a lung nodule detection network is an essential task to determine an objective diffi-
culty score as a property of a lung nodule case. Many scientist and engineers have achieved
to write lung nodule detection algorithms with extremely high performances, and research is
continuing to improve these algorithms. Lung nodule detection from a low dose CT scan is a
complex task, because of the varying sizes and density of nodules and the imbalance of voxels
with nodules and without nodules. To detect nodules with algorithms, multiple preprocessing
steps and two-step network architectures are applied to achieve a high sensitivity and spe-
cificity. This research did not aim for high sensitivity and specificity, but for a variation in the
performances of multiple networks. Therefore, only basic preprocessing was applied to the
data set. To aim for a simple model to detect nodules, a one-step detection algorithm was se-
lected. A one-step model has the advantage that only one network needs to be trained, it is
fast to train in the network and hyper parameter optimization is easily performed. The disad-
vantage is that the performance of a one-step network is lower compared to algorithms that
are currently published. The performance of the initial model could have been higher if the
model would have been based on a two-step process, where first nodule candidates are selec-
ted followed by a False Positive reduction. Additional preprocessing steps, for instance lung
segmentation or removal of the vessels, could have improved the average performance of the
Nets in the ensemble.

5.1.2 The Difficulty-Net ensemble

Besides the desire of a simple model, the item analysis is performed with the use of the point-
biserial correlation, utilizing varying performances as a continuous value. The range in per-
formance of the network was aimed to be wide, resulting in good performing models and bad
performing models. In section 4.1 the performance of the networks in the Difficulty-Net en-
semble are presented in table 4.1 and plotted in an ROC curve in figure 4.1. It was expected
that the variation in performances would result from increasing size in train set. The perform-
ance ranges between 0.572 and 0.706, but does not increase or decrease, with the size of the
test set. To check the influence of the increasing test set, NetF 70/30 was trained with the same
parameters and same train set 2 times. Figure 4.2 shows the ROC curves, where the repetitions
are similar in performance, but lower than the network used in the ensemble. The variation
in performance is likely to be caused by the random initialization of the network. Increasing
the size of the train does not have the desired effect on achieving an ensemble of networks
with varying performances. Moreover, the neural networks in the Difficulty-Net ensemble are
almost identical, which has consequences for the validity and significance of the the Item ana-
lysis. To prove the concept presented in this research, it was chosen to keep the architecture
and parameters of the networks the same. Item analysis with networks constructed of different
architectures and parameters could impede the interpretation and explanation of the results.
Nevertheless, for future research it is suggested to use a different methods for controlling the
performance of neural networks.

The Difficulty-Net ensemble is applied for item analysis where it is assumed that all individual
subjects are independent. Since the Nets have the same architecture and parameters, the same
classifying method and are trained on similar training data, the networks in the ensemble are
not independent. To achieve more independency for the individuals in the ensemble, other
machine learning and deep learning algorithms could be added. As mentioned in section 2.2,
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support vector machines, linear classifiers, decision trees and other methods could be added
to the ensemble to achieve more independency. By varying the approaches of the individuals
in the ensemble, the quality of item analysis might improve.

5.1.3 Item analysis

This research has used item analysis to define a measure of difficulty of a radiological case. The
statistical analysis applied originates from educational sciences where the quality of questions
on an exam or test are evaluated. Item analysis can use multiple methods to assess the good-
ness of a question, but in this research, it was chosen to investigate whether the discriminating
power, calculated with the point-biserial correlation, can give an indication of the level of dif-
ficulty of a radiological case. It should be noted that the discriminating power of a radiological
case has an indirect relation to difficulty. Difficulty is subjective property, making the scale or
measure of difficulty unique for every person. The discriminating power is determined by tak-
ing the performance of a group of individuals into consideration. The discriminating power
of a question can therefore be an indicator of difficulty for the overall group or for the average
performing individual. The size of the group of subjects and the variance in the performance of
the subjects influences the results of the item analysis. Literature does not describe a minimal
number of subjects to perform item analysis, but as a rule of thumb, 30 individuals are recom-
mended. Literature about educational sciences describe a minimum of 30 subjects to calculate
a significant value for the point-biserial correlation.

The proposed method utilizes merely 10 neural networks as subjects to calculate a value for the
point-biserial correlation of a stack. This choice is sustained by the fact that training a single
neural network takes time and energy. The purpose of this research is to explore whether the
method is feasible and to prove the concept of creating a measure of difficulty with the use of
neural networks. Moreover, the performance of the networks in the ensemble is limited due to
the reasons described in section 5.1.1 The point-biserial correlation takes the variation of the
performance of the networks into account by using the standard deviation of the performance
of the ensemble. The value of the point-biserial correlation might describe the discriminating
power of the stack more accurately in case of more neural networks. It is expected that the
point-biserial correlation would be impacted significantly if multiple better performing net-
works and worse performing networks would be added. For this project it was chosen to keep
the architecture and parameters of the networks the same. Future research could result in an
ensemble of more networks, with better performance and worse performance.

The resulting measure of difficulty determined with the presented method is scaled to the per-
formance of the individual subjects used, in this case, the neural networks. The neural net-
works have a relatively low performance with an average AUC of 0.667, compared to neural
networks commonly described in literature. The level of difficulty is determined for all the
networks in the ensemble or for the average performing network in the ensemble. To test the
validity of the method and the measure of the difficulty, the results are compared to the categor-
ical difficulty given by 4 experienced radiologists. Since the performance of the networks is not
comparable to the performance of 4 experienced radiologist, the comparison is not impartial.
The annotations of the radiologists are used as the ground truth, meaning that if one network
in the ensemble can detect the nodules in all stacks, comparison to radiologists would be more
equitable. Comparison of the level of difficulty determined by networks with an average per-
formance, like that of experienced radiologists, would give more insight about the validity of
the method presented in this project.

The determined level of difficulty could also be compared to a different group of individuals.
When the stacks would be presented to a group of individuals that perform similar to the neural
networks, a more equitable comparison is accomplished. A user study is suggested in section
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6.2 to explore the legitimacy of the measure of difficulty determined in this research and the
soundness of the method.

5.1.4 Methods for score

A dichotomous score or binary score is needed to calculate a value for the point-biserial correl-
ation. It should be emphasized that the Difficulty-Net ensemble is used to predict the presence
of a lung nodule in a slice, meaning that the 3D information of the stack is not considered. To
transform the prediction per slice of the networks to a binary score for the calculation of the
point-biserial correlation, two methods are described in this report. Appendix 7.2 elaborates
on 2 additional methods to determine the binary score for the calculation of the point-biserial
correlation. A stack contains slices with nodules (positive slices), which can be found in the
center of the stack, and slices without nodules (negative slices), the peripheral slices of the
stack. The network is required to perform two tasks; 1. To detect the nodule in the positive
slices and 2. To not detect nodules in the negative slices. For positive slices, a score of 1 is
granted if the nodule is detected, where the number of false positives is not considered. Neg-
ative slices are granted a score of 1 if 95% percent of the slice is predicted negative of nodules.
Here, the confidence interval is applied, because in very few cases the networks were able to
completely classify a negative slice correct. Appendix 7.3.1 shows the confusion matrices of the
neural networks in the ensemble where it can be seen, that some networks perform better on
positive slices and some networks perform better on negative slices. In method 1 the binary
score is determined for each slice resulting in a point-biserial correlation for each slice. As-
suming every slice contributes equally to the level of difficulty of the stack, the average value
of the point-biserial correlations of the slices is taken. Averaging the value of the point-biserial
correlation removes the extreme values and can therefore give misleading results. Figure 7.3
shows the distribution of the standard deviation of each stack. The highest density is found at
a standard deviation of 0.56, indicating high variance between the point-biserial correlation of
the slices within the stacks. Filtering the extreme values of individual slices can lead to misin-
terpretation of the relation of the point-biserial correlation and difficulty. Therefore, it is not
preferable to take mean value of the point-biserial correlation of the slices in the stacks.

Method 2 bases the binary score of the stack on the binary score of the individual slices in the
stack. The stack is granted with a score of 1 when 50% or more slices in the have a score of 1.
The effect of a lower or higher threshold on the results of the point-biserial correlation, but also
other methods to transform the prediction to a binary score could be explored in future work.
The framework presented in this research uses a point-biserial correlation, which requires a
binary value. Additionally, it would be interesting to search for other statistical methods that
can handle the predictions of the networks directly, instead of transforming it to a binary value.

5.1.5 Ordinal regression

In section 4.3 an ordinal regression model is used to investigate the relationship of the point-
biserial correlation and the subjective category of subtlety of nodules. Analysis is performed
on the data acquired by method 1 and method 2. According to the Goodness of fit and over-
all model fit, the model for both methods are statistically significant. One should be aware of
the following when drawing conclusions. In table 4.5 and table 4.8 the parameter estimates
are summarized. The model predicts intercepts for subtlety category 1, 2, and 4 are significant.
The intercept 3 is not statistically significant. Looking back in figure 4.4 for method 1, subtlety
score 2, 3 and 4 have values over the complete range of the point-biserial correlation. Figure 4.6
for method 2 show for subtlety scores 2, 3 and 4 values of the point-biserial correlation around
-0.75 and 0.75. The distributions over the point-biserial correlation are relatively similar to one
another. Therefore, it makes sense that the ordinal logistic regression did not lead to a signific-
ant predictor for subtlety category 3. Based on the ordinal logistic regression analysis the two
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methods cannot be compared to one another, as similar results are found. Section 3.3.1 and
5.1.4 describe and discuss method 1 where the mean value of the point biserial correlation is
taken. Taking the mean over correlation values is regarded as controversial. Therefore, the res-
ults of the ordinal logistic regression analysis for method 2 are considered promising, compared
to the results of method 1. When looking at the subtlety scores for each of the stacks, there is an
imbalance in the number of data points per subtlety category. Figure 3.4 shows there are only
ten nodules in category one while up to 30 nodules in category 3, 4 and 5. More homogeneous
data set, where the number of nodules per category are similar, might have lead to a better fit
of the ordinal logistic regression model.

5.2 Limitations

Data

The preprocessing steps that were undertaken result in some limitations to the research. The
normalization of the voxel size to 1x1x1 mm needs interpolation. Scans with a transversal slice
thickness of more than 3 mm were deemed to be excluded, because the interpolation would
result in a manifold of transversal slices containing the same information. The manual exclu-
sion could have been avoided if the LUng Nodule Analysis 2016 (LUNA16) dataset, an extract
of the LIDC/IDRI dataset would have been used. The LUNA16 dataset excludes scans with
nodules smaller then 3 mm and scans with a slice thickness larger than 3 mm. The data set also
excluded nodules annotated by 1 or 2 radiologists, which were considered irrelevant findings
(33). For the method of determining a level of difficulty of lung nodule cases, it should be noted
that the subtlety score of nodules is coherent with the number radiologist annotating nodules
(refer to 2D histogram!!!). To validate the level of difficulty, comparison with the opinion of
all 4 radiologists is preferred. Therefore, the choice for the LIDC/IDRI dataset prevailed. The
aim of the research is to define a measure of difficulty of a lung nodule case. The measure of
difficulty for a complete CT scan, with the use of deep learning, gives rise to multiple problems.
Firstly, complete CT scans cannot be processed by neural networks, as this is computationally
too heavy with the contemporary computational power. Secondly, considering a thoracic CT
scan, different locations within a scan can have a varying level of difficulty. It is unknown how
the general difficulty of a scan is influenced by specific locations. To illustrate, healthy tissue
in a CT scan also possesses a level of difficulty with respect to pathologies. artefacts visible in
specific locations of the scan can influence the overall difficulty of a lung nodule in a CT scan.
that can be visible section 1.2.1 describes that healthy cases are often regarded as difficult for
inexperienced radiology residents. To maintain a Cartesian approach, the level of difficulty of
anodule in a stack of 10 slices was determined. To use the presented approach in the future for
a computer assisted learning system, it was decided to determine the level of difficulty of 3D
data instead of 2D slices. Detection of lung nodules from 2D slices is challenging for human
subjects, as the 3D information of a lung CT scan is used to discriminate lung nodules from
vessels. The chosen neural network architecture takes 2D transversal slices as input leading
to prediction of lung nodule location in 2D. Thus, the method presented in this framework
indirectly determines the level of difficulty of a lung nodule in a stack of 10 slices, by assessing
it slice by slice. For the development of a supervised computer aided detection system the data
islabelled. In this research, any annotation out of 4 experienced radiologists are assumed to be
the ground truth. The From 157 patients the true diagnosis is recorded. How the true diagnosis
relates to radiological errors in terms of lung nodule detection is not investigated in the scope
of this research.

lung nodule detection network

Most lung nodule detection networks use a two-step architecture to achieve high sensitivity
and specificity. In section 5.1.1 the choice of a one step process is explained. In the prepro-
cessed data, the lung nodules are small, resulting in a disbalance of data with a nodule and
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data without a nodule. The one-step network architecture that was selected for the task of
lung nodule detection is not adequate enough to achieve performance similar to two step
processes. Most likely, the neural network is not able to sufficiently learn the features of small
nodules. To achieve this, a more advanced and complex one-step network should be used to
be able to detect lung nodules.

Difficulty-Net ensemble

As mentioned in section 5.1.1, the neural networks in the Difficulty-Net ensemble ought to be
independent. Since they share their architecture, parameters and they are trained on the same
dataset, their performance is not varying as was desired. The concept of item analysis with the
use of machine learning or deep learning has not been performed. To set up a baseline exper-
iment for a measure of difficulty, determined with the use of deep learning, the architecture
and parameters should not be varied. to be able to set a baseline experiment. Future work
could use different machine learning and deep learning methods to see its effects on the item
analysis and the measure of difficulty.

Item analysis

The item analysis conducted in this research, uses the point-biserial correlation. A correlation
value between a continuous value (performance of neural networks) and a binary value (score
on stack). The output of a neural network consists of a prediction on the location of the nodule
in the slice. To calculate a point-biserial correlation, the prediction must be transformed into
a binary score. This transformation is based on formulated restrictions, which could be refor-
mulated in multiple ways. The transformation takes the prediction of each slice separately and
determines a binary score for each slice. This might influence the outcome of the value of the
point-biserial correlation.

Validation

The subtlety scores provided by the LIDC/IDRI dataset are used to validate the method. Each
radiologist annotating a nodule is asked to give a subtlety score for the nodule. The annota-
tions of the nodules are clustered to its corresponding nodule. The set of 151 stacks contains
nodules that are annotated by all radiologists, but also by solely by one radiologist. For this
research only one subtlety score per nodule has been taken into consideration. In a later stage,
the other subtlety scores were analysed and compared with one another. The mean subtlety
scores and the standard deviation are shown in the appendix in figure 7.8 and figure 7.9. The
distributions are similar, and it shows for most cases a standard deviation of 0, indicating
perfect agreement between the radiologists. Few cases have a standard deviation higher than
1. In future research the point-biserial correlation should be compared to the annotation of all
annotating radiologists.
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6 Conclusion

6.1 Conclusions

The method presented in this research aims to define a measure of difficulty of lung nod-
ule cases as a property of the scan. A method as such can be useful for image synthesis for
computer-assisted learning in radiology education to optimize the learning process and to fit
personalized training to knowledge gaps. The research has been guided by two research ob-
jectives. The first research objective is; How can item analysis with the use of deep learning
determine a level of difficulty for lung nodule cases? was approached in the following way. By
training 10 one-step deep neural networks to detect lung nodules in slices of lung CT scans, the
networks predict the location of the nodules. Two methods were used to transform predictions
of the networks are transformed to binary scores for Item analysis. For each item in the data
set of 151 stacks, consisting of 10 transversal CT slices, a value of the point-biserial correlation
was calculated. The relationship between the point-biserial correlation and the subtlety scores
is the focus of the second research objective: How does a measure of difficulty, as a property
of the scan, relate to the subjective difficulty of a lung nodule case? Ordinal categorical lo-
gistic regression is applied to analyze the relationship between the point-biserial correlation
and the subtlety scores. From the results in chapter 4 it can be concluded that positive values
of the point-biserial correlation are related to “subtle” nodules, while negative values of the
point-biserial correlation can be related to “obvious” nodules. Given the above, a measure of
difficulty is defined, with the use of item analysis and deep learning. As the method applied
item analysis with supervised neural networks, the difficulty is scaled to the annotations of 4
experienced radiologists. Therefore, the measure of difficulty of the lung nodule case is not a
property of the scan. Nevertheless, the measure of difficulty has the potential to be applied to
image synthesis for the design of a computer-assisted learning system for radiology education.

6.2 Recommendations and Future Work

The architecture described in 3.2.1, gives a 16 by 16 pixels prediction map. The output is down
sampled and does not give the exact bounding box of the nodule, which also would indicate
the size, but the location of a 32 by 32 pixel square on the slice. A second network could be
added to the network pipeline that reduces the false positives. The network selects a 32 by 32
pixel square with a potential nodule and classifies it as a True Positive or False Positive. This
might improve the performance of the networks, but also offers another opportunity to vary
the performance of the Nets in the ensemble. In this research, it was attempted to vary the
performance of the Nets by adding more data to the train set. The same could be done for the
false positive reducing network. The combination of the Net in the Difficulty-Net ensemble
and the false positive reducing network could also create variation in the performance.

The method presented in this research uses neural networks to determine a point-biserial cor-
relation which can be related to a measure of difficulty of a stack of lung CT slices. The values
of the point-biserial correlation are dependent on the performance of the neural networks and
therefore scaled and limited to the performance of the neural networks. In the introduction,
it was mentioned that the level of difficulty is useful for radiology education. Yet, a level of
difficulty is subjective and a scale of difficulty might vary for groups with a specific level of
knowledge and skill. The measure of difficulty might be different for first-year medical stu-
dents and that of experienced radiologists. In other words, can one define a scale of difficulty
that includes experienced radiologists and inexperienced students? In this framework, the dif-
ficulty is based upon neural networks and their performance on a lung nodule detection task.
The relation to difficulty was investigated by validation with the subtlety score of an experi-
enced radiologist. To see how the difficulty measure developed in this research relates to for
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example medical students, a validation study is suggested. With a simple graphical user inter-
face, the stacks can be presented to a group of medical students. They are asked to detect the
nodule and indicate the square in which the nodule is present. Item analysis can be performed
retrospectively and the values of the point-biserial correlation can be compared to the values
determined in this framework. This will add to the validity of the developed method to determ-
ine a measure of difficulty and can give insights into the differences in interpretation between
medical students and the used neural networks in the method.

For future work, a measure of difficulty of radiology cases can be particularly useful for radi-
ology education. Computer-assisted learning has been proven to be a good addition to tra-
ditional radiology education. The development of generative adversarial networks has made
it possible to generate medical images from existing data sets, that can be used for radiology
education. When the level of difficulty or complexity of the generated slices can be guided and
controlled, the data can be adapted to the individual’s level. This offers the opportunity for
computer-assisted learning systems to be fully personalized and fitting to the student’s know-
ledge gap. Implementation of the presented framework to the workflow of GANs should be
investigated and validated. By implementing the presented framework to the workflow of im-
age synthesis with GANs, computer-assisted learning can be lifted to the next level regarding
personalized education.
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7 Appendix 1

7.1 Descriptive values of data set

The thickness of all nodules in the data set are displayed in a histogram in figure 7.1. The me-
dian of the thickness is 6 slices per nodule. The upper quartile of of this datais at 11 transversal
slices per nodule, meaning that 75% of the nodules is smaller than 10 slices. The median is at 8
transversal slices per nodule.

Thickness of nodules in complete dataset in slices along the z-axis

350 +

300 4

250 4

150 4

100

Number of nodules in complete data set

o mm wm } I
40 60 80

Location of scan on normalized z-axis

Figure 7.1: Thickness of the nodules in number of transversal slices in the total data set.

Figure 7.2 shows the location of all nodules in the data set on a normalized height scale. Not
every scan has the same number of slices. To be able to compare the location of the nodules,
the number of slices were normalized, were 0 indicates the bottom-most transversal slice and
100 indicates the upper transversal slice. According to the histogram, nodules can be found in
each location along the cephalad direction.

Location of nodules along the normalized z-axis
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Figure 7.2: Location of nodules on a normalized height, where 0 indicates the bottom-most transversal
slices of the scan and 100 indicates the upper transversal slice of the scan.
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Table 7.1 gives an overview of the number of patients, stacks and slices within the train and test
set.

Ratio ‘ Patients ‘ Stacks ‘ Slices

Total 100 810 8100
Train set | 80% 659 6590
Test set 20% 151 1510

Table 7.1: Overview of the number of patients stacks and slices for the train and test set.
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7.2 Additional Methods Binary score and results

In method 1 described in 3.3.1, the mean value of the point-biserial correlation over the whole
stack is taken. Figure 7.3 shows how the standard deviation of each stack is distributed.

Histogram of standard deviation of each stack after taking the mean

17.5 A
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12.5 A
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2.5 7

0.0 T T
0.0 0.2 0.4 0.6 0.8 1.0

Standard Deviation RpgintBiserial

Figure 7.3: Distribution showing the standard deviation of the point-biserial correlation calculated by
method 1 of each stack.

To transform the predictions of the neural networks to a binary score serving the calculation
of a point-biserial correlation, 2 other methods were explored. These transformations showed
less promising results, and were therefore not further investigated. The two additional methods
3 and 4 are described below and the results can be found in 7.3.3.

Method 3 Method 3 first determines a binary score of the whole stack and calculates the point-
biserial correlation. The assumption is here is that if the network was able to detect the nodule
correctly in any slice of the stack, a score of 1 will be granted for the whole stack. If the nodule
was not detected in any of the slices of the stack, a score of 0 was given. The binary scores are
stored in a matrix, where the number of of rows is equal to the number of stacks, and the num-
ber of columns is equal to the number of nodules. The point-biserial correlation is calculated
for each stack.

Method 4 Similar to method 3, the binary score is determined by the binary score of the indi-
vidual slices. If the slice is positive and the nodule is detected, a score of 1 will be granted. In
case of a positive slice and the nodule is not detected a score of 0 will be given. A score of 1 will
be granted when 95% of the squares are assigned negative. A score of 0 will be given, when less
than 95% of the squares are assigned negative.

The score of the whole stack is determined by the score of two consecutive slices. If two con-
secutive slices both have a score of 1, the score of the stack will be one. If no consecutive slices
both have a score of 1, the score of the stack will be zero.

7.3 Difficulty-Net results

7.3.1 Tables of confusion

Table 7.2 till table 7.11 show the confusion matrices of the networks giving an indication of the
performance of the network.
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NetA 100 Predicted Positive ‘ Predicted Negative

Actual Positive 246 609
Actual Negative 31051 354654

Table 7.2: Confusion matrix of NetA 100.

NetB 90/10 Predicted Positive ‘ Predicted Negative

Actual Positive 855 0
Actual Negative 385699 6

Table 7.3: Confusion matrix of NetB 90/10.

NetC 85/15 Predicted Positive ‘ Predicted Negative

Actual Positive 217 638
Actual Negative 20983 364722

Table 7.4: Confusion matrix of NetC 85/15.

NetD 80/20 Predicted Positive ‘ Predicted Negative

Actual Positive 637 218
Actual Negative 315746 69959

Table 7.5: Confusion matrix of NetD 80/20.

NetE 75/25 Predicted Positive ‘ Predicted Negative

Actual Positive 100 755
Actual Negative 4819 380886

Table 7.6: Confusion matrix of NetE 75/25.

NetF 70/30 Predicted Positive ‘ Predicted Negative

Actual Positive 40 815
Actual Negative 1036 384669

Table 7.7: Confusion matrix of NetF 70/30.

NetE 65/35 Predicted Positive ‘ Predicted Negative

Actual Positive 13 842
Actual Negative 513 385192

Table 7.8: Confusion matrix of NetG 65/35.

NetH 65/35 Predicted Positive ‘ Predicted Negative

Actual Positive 22 833
Actual Negative 614 385091

Table 7.9: Confusion matrix of NetH 60/40.
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NetI 50/50 Predicted Positive ‘ Predicted Negative

Actual Positive 5 850
Actual Negative 160 385545

Table 7.10: Confusion matrix of NetlI 50/50.

Net] 45/55 Predicted Positive ‘ Predicted Negative

Actual Positive 14 841
Actual Negative 189 385516

Table 7.11: Confusion matrix of NetJ 45/55.

7.3.2 Additional results point-biserial correlation

Method 3

The following method first determines a score of the whole stack, based on the predictions of
the network on the stack. The score and the performance of the Nets are used to calculate a
point-biserial correlation of the stack. The transformation of the predictions of the Difficulty-
Net is described in 3.3.1. In figure 7.4 the distribution of the values of the point-biserial cor-
relation can be found. All calculated values for the point-biserial correlation are negative. The
raincloud plot therefore shows the highest densities for negative values of the point-biserial
correlation. a negative values indicate that good performing networks did not correctly classify
the stack whilst bad performing networks did classify correct by chance. The distributions of
the point-biserial correlation for each subtlety score look very similar, therefore ordinal logistic
regression analysis was not applied.

Method 2 Point Biserial correlation of stacks

20 +

-
(%))
L

Number of stacks
=
L

WWHM
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-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
R

PointBiserial

Figure 7.4: Distribution of the point-biserial correlation, determined by method 2, of the stacks in the
test set.

Method 4 Figure 7.6 shows the histogram of the point-biserial correlation calculated by method
4 described in 3.3.1. The histogram shows that many stacks have a point-biserial correlation
of 0. There some stacks that have a positive or negative point-biserial correlation. From the
raincloud plots of figure 7.7, one can see that subtlety score 2 and 3 have mostly values of 0,
with some outliers, when looking at the boxplot. For every subtlety score the median can be
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Raincloud Plots
Point Biserial correlation distribution method 3 for each subtlety score
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Figure 7.5: Raincloud plots of the point-biserial correlation for each subtlety score, determined by
method 3.

found around 0. There is not much variation in the distribution of the point-biserial correlation
for each subtlety score. For this reason, no ordinal logistic regression was performed.

Method 4 Point Biserial correlation of stacks
354
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Figure 7.6: Distribution of the point-biserial correlation, determined by method 4, of the stacks in the
test set.
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Raincloud Plots
Point Biserial correlation distribution method 4 for each subtlety score
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Figure 7.7: Raincloud plots of the point-biserial correlation for each subtlety score, determined by

method 4.

7.3.3 Ordinal Regression method

Below, one can find the syntax used to calculate the odds ratio from the logits in SPSS.

COMPUIE Exp_B = EXP(Estimate).
OOMPUIE Lower = EXP(LowerBound).
GOMPUIE Upper = EXP(UpperBound).
FORMATS Exp_B Lower Upper (F8.3).
EXECUTE.

7.3.4 Subtlety scores

Figure 7.8 show the mean values of the subtlety scores of all annotating radiologists. The stand-
ard deviation of the subtlety score for each nodule is shown in figure 7.9.
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Figure 7.8: Mean values of subtlety scores of all annotating radiologists.
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Figure 7.9: Standard deviation of mean values of subtlety scores of all annotating radiologists.
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