
May 10, 2022, Master Thesis: Computer Vision and Biometrics 1

Limited Resource Optimization for Face Recognition Convolutional
Neural Networks

Sub-byte quantization of MobileFaceNet using QKeras
Sebastian Bunda s1701290

University of Twente, Enschede
May 10, 2022

Abstract—Face recognition is one of the most populair
biometric identification systems and as such is widely
used. With the growing need for digital personal data
security, it is crucial to seek solutions to work on personal
devices. To stimulate these developments, the computa-
tional and memory footprint of these face recognition
systems should be reduced to fit on edge devices. Based
on the populair MobileNetV2, MobileFaceNet is a very
efficient face recognition neural network with 99.15%
accuracy on the LFW dataset with a model size of only
4MB using a 32-bit representation. This work presents
a method to reduce the bit length of MobileFaceNet in
the form of QMobileFaceNet using sub-byte quantization.
This is achieved by first identifying the most strategic
use of the QKeras library enabling sub-byte dynamic
fixed-point quantization. This work shows that 8-bit and
4-bit versions of QMobileFaceNet can be obtained with
98.68% and 98.63% accuracy on the LFW dataset which
reduces footprint to 25% and 12.5% of the original weight
respectively. Both show an accuracy loss similar to the
performance described by other quantization methods ap-
plied on MobileNetV2. Using mixed-precision, an accuracy
of 98.17% can be achieved whilst requiring only 10% of
the original weight footprint.

Index Terms—Resource Limited Face Recognition, Deep
Neural Networks, QKeras, Sub-byte Quantization

I. INTRODUCTION

As of late 2021, the Dutch government proposed a
new coalition agreement which focuses, amongst many
other things, on the enhancement and enforcement of
the security of digital personal information[41]. One of
the points discussed in this agreement is the security
of the ‘individual "online" identity’ and the assurance
of the abstinence of using Face Recognition systems
without strict lawful delineation and control. This is in
line with the proposal of the EU artificial intelligence act
that was presented in November 2021[22], which can be
considered as a first step to regulating the use of artificial
intelligence and the regulation of face recognition[23].

With an increasing need for personal digital security,
the question may be asked if there is a way to adapt
a face recognition system (FRS) such that the user is
in charge of his own biometric template. A biometric
template can be defined as a digital feature vector that

Figure 1: Visualisation of a possible scenario with local
biometric verification

can be used to compare with a new feature vector to
identify a person if they are similar enough. In order
to comply with this need for personal data processing,
ideally, this conversion from a face to a biometric feature
vector should be done locally on a personal (mobile)
device. A possible scenario (as in Figure 1) could be
access control where a secured door is accompanied by
a security camera that can detect spoofing and suspicious
behaviour. Then when a person requests access, a live
photo of the face can then be transferred to the personal
device where it can verify the person with a digital
handshake.

In the meantime, machine learning has already found
its way to mobile devices due to the exponential growth
of available mobile computing power. However, the
mobile resources (compared to computers) are still quite
limited for the deployment of neural networks (due to
a huge number of parameters, calculations and internal
representation) which stimulates the search for more
efficient neural network architectures and implemen-
tations. The current state-of-the-art (SOTA) in mobile
image classification networks can be found with e.g.
MobileNetV2[32] and ShuffleNet[20] which achieve
competitive accuracies whilst requiring only a fraction
of the computing power of their much larger counter-
parts. For example MobileNetV2 achieves 72% Top-
1 accuracy compared to ResNet-101[12] 76.4% whilst
requiring just 10% of the total number of parameters.



May 10, 2022, Master Thesis: Computer Vision and Biometrics 2

The field of network optimization is dedicated to im-
proving the trade-off between limited resource factors
(i.e. size and latency) versus accuracy. We have split the
research into two scopes: architecture optimization and
network compression. While the first scope is dedicated
to improving the efficiency of network architectures,
the second is focused on reducing the computation
complexity and footprint of existing network architec-
tures through the use of e.g. quantization (minimizing
the value representation) and pruning (minimizing the
number of unnecessary calculations). Besides the fact
that these methods reduce the memory footprint, integer-
only inference has shown to also improve the throughput
on hardware optimized (for mobile devices) fixed point
operations[18][39].

Popular quantization methods for neural networks can
be found for both Tensorflow Lite (TFLite)[39][38] and
Brevitas for PyTorch[29], although popular edge devices
(e.g. ESP32 and Arduino) only support TFLite for
Microcontrollers[46] (uTFLite). uTFLite is a split-off of
the regular TFLite library optimizing machine learning
inference on microcontrollers. Unfortunately, the official
implementations of Tensorflow’s quantization methods
only support 8-bit quantization up until now. This can
mainly be attributed to the fact that most of the current
microcontroller instruction sets only support the han-
dling of bytes (8 bits). The expectation is, however,
that these instruction sets will get support for mixed-
precision words as research shows some great progress
in the last few years on both (RISC-V) hardware[9, 28]
as on a software level[3, 31].

Another implementation that works with Tensorflow and
does support quantization that is not limited to only 8-
bits (lower than 8-bit is known as sub-byte quantization)
is called QKeras[5]. Although QKeras is still in devel-
opment, the library does show promising results[1]. By
utilizing the sub-byte quantization support, the effect
of sub-byte quantization on the accuracy of a (face
recognition) neural network can be investigated.

Since face recognition can be seen as a subset of
image classification, the same principles can be applied
here as well. The SOTA in mobile face recognition
can be found in networks such as ShuffleFaceNet[24]
and MobileFaceNet[4], which have the same basis as
the networks described previously. Unfortunately, the
quantization of an efficient neural network is a relatively
unexplored area in the field of face recognition. It is
thus interesting to explore this by applying network op-
timization on architectures such as MobileFaceNet and
identify possible problems such as the discriminability
of the feature vector due to the limited solution space.

This work focuses on limiting the resources required
to have a face recognition system by quantizing a
mobile face recognition neural network. The purpose

of this work is to be used when a system has to
be designed given hardware constraints. Only when
hardware constraints are available a good trade-off can
be made between the accuracy loss of the network and
the footprint reduction. The main contributions of this
work are listed below:

• A Quantization Framework Tooling based on QK-
eras that can deploy several quantization methods
layer-wise for a given neural network model.

• Evaluation of several quantization methods pro-
vided by QKeras on different network-layer con-
figurations.

• Evaluation of several quantization strategies by
visualizing a bit length vs. accuracy trade-off.

• Exploration of the effects of quantization on the
biometric template.

A. Research Questions

In order to approach this problem properly, a research
question has been formulated as follows: What are
methodologies that reduce the footprint of a mobile
face recognition network architecture using sub-byte
quantization and what is their impact on the accuracy
of the network?

As examined earlier, the footprint of a neural network
can be drastically reduced using (sub-byte) quantization.
On a fundamental level, it is thus interesting to explore
how much this affects the performance compared to the
original network. In order to mitigate the degradation
of the accuracy, an analysis has to be done to identify
what could be a good method to reduce this footprint. As
quantization is relatively unexplored in face recognition
systems, the effect on the discriminability between the
feature vectors also has to be investigated.

So to answer the main research question, the following
sub-questions will be investigated:

1) What methods are described in the literature to
minimize the computational and memory foot-
prints of a convolutional neural network?

2) How is the accuracy of the individual convolu-
tional layer configurations in a mobile face recog-
nition network affected by sub-byte quantization?

3) How are the footprint and accuracy of a mobile
face recognition network affected using uniform
and individual layer quantization?

4) How is discriminability between biometric face
templates affected by sub-byte quantization of a
mobile face recognition network?

First, a literature study will explore related work that can
help answer the first research question and present SOTA
solutions. The literature section will be followed by a
preliminary study to analyse the effect of quantization on
a layer level using the QKeras quantization framework.



May 10, 2022, Master Thesis: Computer Vision and Biometrics 3

This analysis will be used to answer the second re-
search question and to reduce the quantization parameter
search space for MobileFaceNet in the method section.
Section IV will explore several quantization strategies
and be the foundation to answer the last two questions.
The results of the quantization strategies are shown
in Section V and discussed in Section VI. Lastly, a
conclusion will be drawn from the results to answer the
main research question.

II. LITERATURE

In this section, an overview of neural network optimiza-
tion options will be discussed. First populair mobile
deep neural network (DNN) face recognition architec-
tures will be described and compared. This will be
followed by the current SOTA of network compression
such as quantization and pruning.

A. Mobile Deep Neural Networks

Due to competitions like ImageNet, networks like
AlexNet (2012) and ResNet (2015) were able to show
the sheer power of DNNs if sufficient data and GPU
computing power were available[8]. In 2017, Howard
et al. [14] were the first to show with MobileNets that
with efficient deep neural network architectures a good
trade-off can be made between latency and accuracy.
MobileNets replace conventional convolutional layers
with depthwise separable convolutions (DSC) to dras-
tically reduce the number of multiply additions without
sacrificing the performance.

MobileNetV2[32] quickly followed by replacing the
core DSC blocks with inverted residual blocks that are
connected at the thin bottleneck layers, gaining 1.4 %p1

on the Top-1 accuracy of Imagenet whilst reducing the
number of parameters and Multiply-Additions with 20%
and 48% respectively.

An alternative network ShuffleNet[50], and its successor
ShuffleNetV2[20], aimed to increase the computational
speed using pointwise group convolutions and channel
shuffles. ShuffleNetV2 improved the design by imple-
menting bottleneck structures and a new channel split
operation. The difference between the network blocks
can be seen in Figure 2.

B. Mobile DNN Face Recognition Systems

The LFW evaluation dataset is one of the most populair
face datasets containing 6000 pairs of faces based on
13,233 images and 5749 identities. The AgeDB-30
evaluation dataset also has 6000 face pairs but contains
faces with a 30 year age gap. Commonly, these datasets
are evaluated using 10-K folding after which the best
threshold is found using the most optimal point on

1Percent point, or %p, is the arithmetic difference between two
percentages.

Figure 2: The difference in mobile network architectures.
a) the basic ShuffleNet[50] unit; b) the improved Shuf-
fleNetV2[20] unit; c) the basic MobileNet[14] unit; d) the
improved MobileNetV2[32] unit. DWConv is a depthwise
convolution, GConv is a group convolution and BN is batch
normalization.

the Receiver Operating Characteristic (ROC)-curve. The
accuracy of the model is then defined as the accuracy
of the system using this threshold.

Populair SOTA mobile DNN face recognition systems
are MobileFaceNet[4], ShuffleFaceNet[20] and Mix-
FaceNets[2]. The performance is compared in Table I.
The table shows for each model the number of Floating
Point Operations (FLOPs) it requires and the number of
parameters. The accuracies are shown for the Labeled
Faces in the Wild[15] and the AgeDB-30 dataset[26].

MobileFaceNet is based on MobileNetV2[32] and uti-
lizes the same building blocks as MobileNetV2, but
reduces the expansion factors in the inverted residual
blocks effectively reducing the size of the network. The
network also implements a Global Depthwise Convolu-
tional layer as an alternative to a Global Average Pooling
layer and PReLU as an improved non-linear activation
function. The paper shows a 0.70 %p improvement on
the LFW dataset[15] compared to MobileNetV2 using
50% of the total number of parameters.

ShuffleFaceNet is based on ShuffleNetV2[20]. This net-
work also implements a Global Depthwise Convolu-
tional layer and PReLU but uses the ShuffleNet archi-
tecture.

MixFaceNet is a relatively new network architecture
which is based on MixNets[37] which uses Neural
Architecture Search (NAS) to find the optimum net-
work structure. The network uses several kernel sizes
in parallel to benefit from the different kernels whilst
limiting the computational complexity. For the detection
of larger patterns, one needs a larger kernel and a small
kernel for the low-resolution patterns. NAS is used to
aid the finding of the best parameters for the network.
Also implements channel shuffle operations to improve
the discriminative ability of the network in the form of
ShuffleMixFaceNets.



May 10, 2022, Master Thesis: Computer Vision and Biometrics 4

In this work, we have mainly focused on the architec-
ture of MobileFaceNet as MobileNet is widely used in
literature in relation to network compression.

Table I: Comparison of a few very lightweight deep neural
network face recognition models. The models in this table
have been trained with the MS1M-v2 dataset[6] using the
ArcFace loss function[6]

Method MFLOPs #Mparams LFW (%) AgeDB-30 (%)

ResNet100[25] 24211 65.2 99.83 98.40

ShuffleFaceNet[24] 275.8 1.4 99.45 96.33
ShuffleFaceNet 0.5×[24] 66.9 0.5 99.23 93.22
MobileFaceNet[4] 439.8[2]2 0.99 99.55 96.07
MixFaceNet-XS[2] 161.9 1.04 99.60 95.85
MixFaceNet-S[2] 451.7 3.07 99.60 96.63
ShuffleMixFaceNet-S[2] 451.7 3.07 99.58 97.05

C. Network Compression: Precision Reduction

Another category of network optimisation can be seen as
a form of network compression. Network compression
aims to minimize the footprint and memory consumption
and increase the throughput but can degrade the accuracy
compared to the original network. Its goal is therefore
also to minimize any deterioration of accuracy.

The first approach in network compression is the re-
duction of precision (also known as quantization). Most
of the SOTA networks are built on the 32-bit floating-
point number representation (FP-32). Reducing the bit-
precision to e.g. 8-bits can significantly reduce the size
of the network model, as an 8-bit word only requires 1
byte compared to the 4 bytes required for a 32-bit word.

A FP-32 number has the following (IEEE-754) repre-
sentation: (−1)s×m× 2e−127 using the sign bit (s), 23
bits for the mantissa (m) and 8 bits for the exponent (e).
The absolute number range becomes 10−38 – 1038.

Usually, during quantization, this floating-point number
is converted to a N -bit fixed-point representation. As
such the fixed-point number gets the following repre-
sentation: (−1)s ×m× 2−f using the sign bit (s), (N -
1) bits for the mantissa (m) and the scaling factor 2f .
The decimal point is defined using the f parameter. If
f is zero, the fixed point representation of an integer
is obtained. If f is N − 1, the number is normalized
between [-1, 1].

Dynamic fixed-point representations, having different
values for f for e.g. weights and activations, opens up
new possibilities compared to an integer only represen-
tations. Dynamic fixed-point representations have been
shown to work with 8-bit weights and 8-bit activations
without significantly affecting the accuracy[10] with
some fine-tuning.

2The original MobileFaceNets paper states 221 million Multiply
Addition operations which is roughly twice the number of Floating
Point Operations (FLOPs)

The easiest form of quantizing a network is by direct
quantizing the weights and activation functions. This is
known as Post Training Quantization (PTQ). This results
in several quantization losses degrading the quality of
the network. If the network is allowed to continue the
training by fine-tuning the weights, the losses can be
mitigated. This is known as Quantize Aware Training
(QAT) and shows in general better results[27].

As an alternative to dynamic fixed-point representations,
some research is also dedicated to quantization to enable
integer-arithmetic-only inference. Jacob et al. [18] and
Zhao, Liu, and Li [51] present a quantization scheme
to improve the inference speed on fixed-point hardware
(such as ARM processors). Jacob et al. show that integer
only arithmetic inference improves the latency vs accu-
racy trade-off compared to a 32 floating-point network.
This work is also incorporated into the Tensorflow
optimisation tooling where it only shows a 1 %p drop
in accuracy for 8-bit MobileNetV2 using QAT[39].

Zhao, Liu, and Li [51] propose an improvement over
the work of Jacob et al. in the form of a Bounded
Rectified Linear Unit (BReLU). The goal of this ac-
tivation function is to scale the upper bound of the
ReLU6 dynamically with the maximum value of the
input. Instead of the scale being affected by relatively
large numbers, it tries to minimize the quantization loss
by limiting the effect of those large outliers.

Understandably, the current implementations of the tool-
ing are still limited to 8-bit integers (the smallest width
in common instruction sets) and lack the support for
flexible quantization to find the optimal quantization
method for each layer. Although integer-only arithmetic
can speed up inference on mobile devices, the support on
x86 devices is limited resulting in a significant increase
in inference time3.

An alternative quantization scheme is provided by QK-
eras[5]. The library works as an extension on the Keras
framework of Tensorflow and allows drop-in Qlayer
replacements for each layer. It is able to quantize to a
dynamic fixed point, exponent (in powers of two), and
sub-byte representations. Furthermore, it also allows for
custom quantization settings for each layer. For the sake
of customizability and sub-byte quantization support,
this paper will investigate the possibilities of quantizing
MobileFaceNet using QKeras.

D. Network Compression: Reduction of Operations

Another approach in network compression is reducing
the number of operations within the network architec-
ture. Due to over-parameterization in large networks,
it can be beneficial to consider removing elements in

3https://github.com/tensorflow/tensorflow/issues/40183#issuecomment-
641754983



May 10, 2022, Master Thesis: Computer Vision and Biometrics 5

the network that don’t contribute to the output of the
network (weights that are zero or near zero). This
process, also known as pruning, can significantly reduce
the size and computational load of the network. Han
et al. [11] shows that AlexNet and VGG-16 can be
compressed with a factor of 9 and 13, respectively
without affecting the accuracy (with some fine-tuning).
More modern methods can be applied to take the energy
consumption into account[44] and reverse pruning which
starts the pruning process from the output layer back
to the input[49]. There is some work aiming to prune
MobileNet, but it shows a significant degradation of the
performance[40].

Proposed by Hinton, Vinyals, and Dean [13], knowledge
distillation is another method to reduce the number of
operations. By training a significantly smaller model
using the responses of the output neurons of a larger
reference model, similar accuracy can be achieved. This
idea is also applied in the domain of face recognition
with e.g. ProxylessKD[35]. The authors optimize a
small face recognition network by using a large model’s
classifier to guide the smaller model’s classifier to learn
discriminative embeddings which directly optimizes the
model accuracy.

Methods such as pruning and knowledge distillation
will not be considered in this work as it is likely not
necessarily conducive to the performance, as it assumes
redundancy within the network. Given the fact that
mobile network architectures, such as MobileFaceNet,
do already employ efficient architectures, it may be
assumed that optimizations such as those documented
by Han et al. will not be achieved compared to the
quantization prospects. Nevertheless, optimizations such
as pruning might be able to work on the quantized
network, and it could be considered for future work in
further compressing the network.

E. Summary

To summarize this literature study and to answer the first
research question, several methods exist to reduce the
computational and memory footprint of a convolutional
neural network. The first method is by implementing
convolutional computation more efficiently, as can be
seen with a DSC in the case of MobileNet, or group
convolutions and channel shuffle as seen in ShuffleNet.
Given an efficient network architecture such as Mo-
bileNet, there are also other methods like pruning,
knowledge distillation and quantization. Quantization
seems to have a great potential to significantly reduce
the footprint of a CNN, as it has shown to reduce
the footprint of MobileNetV2 by 3.8× (including some
extra overhead, such as a scaling factor) with an int-
8 representation with only a 1%p drop of accuracy. In
order to minimize a face recognition system such as
MobileFaceNet, it seems evident to start with quantizing

the network. To also be able to investigate sub-byte
quantization capabilities, QKeras will be used.

III. PRELIMINARY STUDY: A QKERAS

QUANTIZATION LOSS ANALYSIS

In this section, a preliminary study will be done to
aid the core research of this paper. The QKeras library
will be used to obtain QMobileFaceNet. However, this
library supports several different implementation param-
eters and within the scope of this work, it is not possible
to evaluate all of them on the face recognition network.
Therefore, the study will try to answer the second
research question: How is the accuracy of the individual
convolutional layer configurations in a mobile face
recognition network affected by sub-byte quantization?

To answer this question, the sub-byte quantization
method will be elaborated upon first. Secondly, several
small experiments will be done on the individual layer
blocks found in MobileFaceNet. To reduce the training
time and to explore multiple parameters, these layers
will be placed in small networks and trained for the
MNIST[7] and MNIST-Fashion[43] dataset. The MNIST
dataset contains handwritten digits and the more com-
plex Fashion-MNIST dataset[43] contains 10 different
clothing categories. This will stress the system for
two levels of difficulty without much variability. Both
datasets are in black and white, same dimensions and
are equal in size. Finally, based on these experiments
an analysis will be done to see which parameters are
likely to benefit the quantization of MobileFaceNet in
the method.

A. QKeras Quantization Methods

Figure 3: The difference in the 32-bit floating point represen-
tation and an 8-bit dynamic fixed point representation[36].

As described in the related work section, QKeras[5][1]
uses dynamic fixed point quantization. This means that
the quantization method can specify how many bits (of
the total N ) are reserved for the integer representation
i:

(−1)s ×m× 2−f , (1)



May 10, 2022, Master Thesis: Computer Vision and Biometrics 6

where m = N − 1 and f = m− i. A quantized version
q of a real value x can be converted using the following
method:

q = clamp(s ·
[
x

s

]
,−2i + s, 2i − s) (2)

"clamp" and s are defined as follows:

clamp(x; a, b) :=


a, x ≤ a

x, a < x ≤ b

b, x > b

,

s(i, n) := 2i−n+1 ,

(3)

where [·] represents the rounding operation, i is the
number of bits representing the integer left of the
decimal and n is the total number of bits. An example of
the difference in representation can be found in Figure 3.
QKeras has the option to disable symmetric quantization
adding one option from the lower bound resulting in
the clamp becoming: clamp(x;−2i + s, 2i − s). This
also shifts the zero point off-centre and is not used
in this work. Finally, the PReLU activation function of
MobileFaceNet is not supported, so quantized ReLU will
be implemented instead.

Below is a list of options available for the scaling factor
of the quantization method using QKeras:

• None or ‘1’ (default): No specific scaling is
defined and uses the whole range.

• Automatic: Computes scale based on each output
channel

• Auto po2: Computes the scale to be a power of
2 (can be beneficial for multiplications but creates
logarithmic steps between the available values op-
tions).

These effects of the default and the first automatic option
will be analysed in the rest of this section as logarithmic
quantization is not considered in this work.

B. Quantization of Convolutional Layers

The QKeras library is built to work on top of the
Keras framework of Tensorflow[5]. As such, QKeras
provides Qlayer equivalents that can be interchanged
with the normal layers but act as a shell to handle all
the quantization tasks.

The network architecture of MobileFaceNet implements
alternatives amongst the standard convolutional layer
such as the DSC. In order to obtain the best QMobile-
FaceNet network, we have to find the best configuration
for each type of layer. The concept of DSC and other
layer optimizations used by MobileFaceNet are elabo-
rated in Section IV-B.

Figure 4: The MNIST network to test the quantization
performance of each type of layer.

In order to figure out the best quantization configuration
for each layer configuration, some experiments will be
performed for each type of layer. The network that
will be trained for each layer can be seen in Figure 4.
The first layer (CBA4) is a standard convolutional layer
using batch normalization and activation function and is
needed to provide the necessary channels for the layer
block configurations under test. The kernel of each layer
block configuration is always 5×5 pixels, except for
the linear global depthwise convolutional layer which
is the same size as the input width (28×28). The output
dimension (depth) is always 3.

The floating-point network is trained for 20 epochs and
is compared with the same network is which quantized
after 10 epochs and trained using QAT for an additional
10 epochs. Each training is repeated 5 times with
different seeds. Each network will be tested for 2 – 8-bit
levels on the MNIST and MNISTFashion datasets.

Experiment 1: Batch Normalization Folding

For the first experiment, the effect of the folding of
the batch normalization for the convolutional layer will
be investigated. As explored by Hubens [16], batch
normalization can be folded (or fused) with the con-
volutional layer. Hubens shows that the folding of the
batch normalization with the convolutional layer results
in a speedup in training with less learnable parameters
without a significant impact on the accuracy. The folding
of batch normalization is also implemented in QKeras,
unfortunately, it is no longer supported by Tensorflow
2.0+ so the quantized folded network will be compared
to the QKeras implementation without a quantizer. An
additional advantage is that the folded layers can be un-
folded after training, removing the batch normalization,
resulting in a smaller inference model. The layers that
support folding (in QKeras) are the normal convolutional
layer and the depthwise convolutional layer. The results
can be seen in Figure 5. The figure shows the mean of
5 different runs, with the shaded areas representing the
confidence interval.

Experiment 2: Fixed Point Location

For the second experiment, the effect of the fixed point
location will be explored. The position of the fixed
point specifies the range in which the weight can be

4Convolution – Batch normalisation – Activation function



May 10, 2022, Master Thesis: Computer Vision and Biometrics 7

Figure 5: The percent point loss defined as the loss in
accuracy due to folding the batch normalization layer on the
convolutional layers (lower is better). The first row is the
convolutional layer without folding and the second row is with
the batch normalization folded into the convolutional layer.

expressed. An integer representation of e.g. 2 or 3 bits
results in a range of (-4, 4) and (-8, 8) respectively.
The results for both scaling options can be found in
Figure 6. The percent point accuracy loss for each fixed
point position with a certain bit-length is shown for the
inverted residual blocks.

Figure 6: The effect of the decimal point position (Integer)
for different bit lengths (Q-bits) and scaling on the inverted
residual blocks. The values are the percent point accuracy loss
(lower is better). Using the MNIST dataset.

Experiment 3: Scaling Factor for different types of
convolution

For the last experiment, the effects of the absence and
automatic scaling factor will be investigated for each
layer type found in MobileFaceNet. Each configuration
uses a folded convolutional (CBA) layer and zero bits
dedicated to the integer representation. The results can
be seen in Figure 7. The translucent areas represent the
confidence interval from 5 different runs, the line itself
is the mean of those runs.

Experiment 4: Non-linear activation in the Depthwise
Separable Convolution

In the original network architectures of MobileNets the
DSC is implemented by applying both batch normaliza-
tion and the ReLU activation function after the depth-
wise convolution and after the pointwise convolution.

However, research shows that this implementation can
have a significant effect on the accuracy of the quantized
version of MobileNetV1. Sheng et al. [34] show that
by removing the batch normalization and the ReLU
after the depthwise convolution. This would increase
the accuracy from 1.8% to 68.03%. Yun and Wong
[47] come to the same conclusion. On the other hand,
at the Tensorflow website[39] it is shown that their
method of quantization did not have a significant effect
on the performance as they achieve 70% accuracy with
MobileNetV1 and 70.9% with MobileNetV2 compared
with the original score of 71.9% with MobileNetV2
without quantization.

Assuming the Tensorflow implementation does not
change the network architecture, this shows that the
quantization method can heavily impact the quantization
performance. Therefore, another experiment has been
conducted to estimate the effect of this non-linear ac-
tivation function on the quantization performance of the
DSC.

Figure 8 shows the effect of the quantization on the DSC
(as in MobileNetV1) and the inverted residual (as in
MobileNetV2). The orange line shows the original (split)
implementation and the blue line takes the suggestion
of[34] to remove the split of the DSC by removing
the batch normalization and ReLU after the depthwise
convolution.

C. Analysis

From Figure 5 it can be clearly seen that the convo-
lutional and the depthwise convolutional layer benefit
from the folding of the batch normalization. Both the
automatic scaling and the no scaling have significant
lower spikes, with the exception of the 2-bit depthwise
convolutional layer. The runs with the MNISTFashion,
however, show much smaller deviations. This would
still suggest that the folded networks are more likely
to be easier to quantize with a lower quantization error
than the standard Keras implementation without folding.
Nonetheless, the MNISTFashion runs show that separate
batch normalization layers do not necessarily yield bad
results.

When we consider the position of the decimal point, as
seen in Figure 6, it can be concluded that the quantiza-
tion without scaling only works if the bit reserved for
the integer number representation is lower than the total
bit length. When automatic scaling is applied, this is
then compensated for resulting in the same performance
for all integer bit-lengths larger than 0. Interestingly
enough, the full fractional length (integer=0) often yields
a (slightly) better performance in the case of the inverted
residual blocks. From this, we can conclude that in
general, the network doesn’t seem to benefit from being
able to represent the integer bit.



May 10, 2022, Master Thesis: Computer Vision and Biometrics 8

Figure 7: The effect of the scaling factor for different convolutional layer configurations for different bit lengths.

Figure 8: The effect of the implementation of the separa-
ble convolution for different bit lengths. The split signifies
whether the depthwise and pointwise convolution are sepa-
rated by a batch normalization and activation function. The
scaling factor is determined using the ‘auto’ parameter.

From the third experiment in figure 7, we mostly see
similar performance between the two scaling options
for all the types of convolutional layer configurations.
The only exception is the linear global depthwise con-
volutional layer, which sees a great variance in the
performance over the course of several runs. This could
be mainly attributed to the fact that this layer acts
as a global average pooling layer and sees a great
dimensionality reduction. This discarding of information
is thus likely to lead to great variance in performance
and quantization accuracy.

The last experiment in Figure 8 estimates the effect of
different implementations for the DSC. The first obser-
vation that can be made is that both implementations
don’t differ much from each other, except for three
points. The first point is the fact that the DSC with
the DSC-split has a large mean accuracy loss at 7-bits.
However, this is likely due to an outlier as the confidence
interval is also large and the rest of the bit lengths of
the network seem to behave similarly to the rest of the
experiments. The other point of interest is the same
orange mean line at the inverted residual implementation

seems to behave better than the rest of the MNIST
dataset. On the other hand, for MNISTFashion, the
implementation seems to behave on par with the blue
lines. The last observation is the fact that the DSC
implementation without the split has the potential to
behave slightly worse using a 2-bit quantization. Never-
theless, this experiment does not show major differences
between the two implementations and can be considered
inconclusive.

Considering this analysis, it can be said that the folding
of the batch normalization and the use of the full bit
range for the fractional number are likely to be the best
quantization parameters to quantize MobileFaceNet. The
analysis did not rule out one of the scaling options,
as both seem to have a similar performance. The same
holds for the implementation of the DSC.

IV. METHODS

In this section, several experiments will be designed
to explore the effect of sub-byte quantization on the
performance of MobileFaceNet. We will make use of the
conclusions drawn from Section III concerning the best
quantization parameters for MobileFaceNet. At the start
of this section, an explanation of the model architecture
of MobileFaceNet will be provided.

The first set of experiments will focus on the research
question concerning the effect of the level of quan-
tization on the accuracy of evaluating both uniform
and individual layer quantization. The experiments will
explore the performance of QMobileFaceNet for differ-
ent quantization methods using 8-bit, 4-bit and 2-bit
quantization. 1-bit quantization will not be considered
in this work as this requires adaptations to the network
and can be considered a work in itself.

The last experiments will focus on the remaining re-
search question that delves into the question of whether



May 10, 2022, Master Thesis: Computer Vision and Biometrics 9

the discriminability of the face recognition system is
affected by the (sub-byte) quantization. This will be
done by using the 8, 4 and 2-bit uniformly quantized
networks.

A. Datasets and evaluation metrices

The CASIA-Webface[45] dataset is used to train all
the (Q)MobileFaceNet networks. The CASIA-Webface
dataset consists of 435.779 images of 10.575 different
identities build from images found on the internet using
a semi-automatic method.

Chen et al. mention the MTCNN[48] alignment method
is used for MobileFaceNet, however, when applied to
the CASIA-Webface dataset the accuracy could not
be matched and many mistakes were found after fur-
ther inspection of the aligned images. This resulted
in the use of the alignment protocol StyleGAN2[19],
which yielded better-aligned faces but uses an inherently
different alignment method as the evaluation dataset.
This could result in a minor decrease in accuracy. The
performance is evaluated using the Labeled Faces in the
Wild[15] and the AgeDB-30 dataset[26]. The evaluation
datasets both contain 6000 frontal face pairs, of which
half is a face pair of the same identity. The network
is evaluated (as[6]) by comparing both feature vectors
that are calculated for each face by calculating the angle
between the vectors. Then the False Positive Rate and
False Negative Rates are calculated for several thresh-
olds. Finally using 10-K folding, the best threshold is
found, and for this threshold, the accuracy is determined.

B. QMobileFaceNet

The network architecture of MobileFaceNet is visualized
in Table II. The bottlenecks are the same type used in
MobileNetV2 and consist of inverse residual bottlenecks
with an expansion (t), channel depth (c), repetition (n)
and a stride (s). An official implementation of Mobile-
FaceNet using the TensorFlow 2+ framework does not
exist. An attempt has been made to recreate a truthful
implementation in Python using TensorFlow 2.4 follow-
ing the training algorithm described by Chen et al. [4].
As mentioned earlier, QKeras does not support a quanti-
zable version of PReLU (the activation function used by
MobileFaceNet), our version of QMobileFaceNet will
use the ReLU activation function instead (with 3 bits
for the integer representation).

Chen et al. mention only using ArcFace as a loss
function, however, we were unable to recreate the per-
formance shown in their paper. Better accuracies were
achieved by first training with a softmax classification
header and then swapping it with an ArcFace classifica-
tion header before being retrained again.

For both the softmax and ArcFace header, the models
were trained using the Stochastic Gradient Descent

(SGD) optimizer function with a momentum of 0.9 and
a batch size of 512. The learning rate started with a
value of 0.1 for the softmax and 0.01 for the ArcFace
header. After 36K, 52K and 58K batches the learning
rate was divided by 10. Each training session ended after
60K batches. For the QAT it was found that the Adam
optimizer with a learning rate of 0.01 worked better than
the SGD optimizer.

Interestingly enough, as it differs from the original
implementation, it was found that removing the batch
normalization with a folded network after the depthwise
convolution of the second and ninth layers improved
both the float-32 and quantized network accuracy. This is
implemented by replacing the folded depthwise convo-
lution block with a normal depthwise convolution block
and retraining the network for 10 more epochs.

Table II: The network architecture of MobileFaceNet. t is the
expansion factor, c is the channel depth, n is the number of
repetitions and s is the stride (of the first layer if bottleneck)

Architecture MobileFaceNet[4]

Layer Input Operator t c n s

1 1122 × 3 conv3×3 64 1 2
2 562 × 64 depthwise conv3×3 64 1 1
3 562 × 64 bottleneck 2 64 5 2
4 282 × 64 bottleneck 4 128 1 2
5 142 × 128 bottleneck 2 128 6 1
6 142 × 128 bottleneck 4 128 1 2
7 72 × 128 bottleneck 2 128 2 1
8 72 × 128 conv1×1 512 1 1
9 72 × 512 linear GDC7×7 512 1 1
10 12 × 512 linear conv1×1 128 1 1

C. Post-Training Quantization

The simplest form of quantization is by quantizing
the trained float-32 weights and activation functions of
MobileFaceNet. Using this experiment QMobileFaceNet
will compare 8, 4, and 2-bit quantization for both scaling
and DSC split implementation options.

D. Quantize Aware Training

QKeras is designed such that the weights and activations
can take specific quantization schemes into account
while training. In order to test this capability on a
larger scale than in Section III, several experiments will
be done to find the best method to quantize the whole
QMobileFaceNet network. The quantization analysis
concluded that the networks should be folded and have
only fractional bits.

1) Individual Layer Quantization
An initial experiment will quantize each layer of
MobileFaceNet individually as shown in Table II. The
goal is to find the location where the convolution is the
most affected by the quantization. The expectation is



May 10, 2022, Master Thesis: Computer Vision and Biometrics 10

that the first layers will affect the accuracy the most as
errors made in the beginning will propagate the most
towards the end. We also expect that the last layers
will not affect the accuracy in a significant way for the
same reason.

2) Uniform bit-length quantization
The second strategy to fully quantize MobileFaceNet
is by continuing the training of the post-training
quantized network. The network is trained for 20
epochs with a learning rate of 0.001 using the Adam
optimizer. This strategy will compare the 8, 4 and
2-bit uniform quantized network with both weights and
activations quantized using the specified bit length. To
show the consistency, the mean and standard deviation
will be calculated for 3 separate runs for each bit length.

3) Mixed precision quantization
The third strategy will involve different mixed-precision
networks for each layer configuration. The goal is to
obtain a graph to show a trade-off between footprint and
accuracy. The estimation of the footprint will be made
using the number of bits required for the representation
of the weights and thus does not include any overhead
required for the implementation. For this experiment,
the first two layers will remain 8-bits and the rest of the
layers are either 4-bit or 2-bit. A detailed table with the
models and the corresponding total weight bits can be
found in Table A.2.

E. Analysis on the quantization of the Face Feature
Vector

The feature vector output of the face recognition system
is used to compare the features between two faces to
determine whether the features are similar enough to
belong to the same identity. Quantization significantly
reduces the total solution space by reducing the number
of representation spaces per feature. In order to investi-
gate the effect of (sub-byte) quantization on this decision
making, some small experiments will be done.

First, the feature vectors of 10 identities from the
MS1M-V2 dataset[6] are calculated. For these identities,
a similarity matrix is constructed to show the difference
in angles between different identities. For the same set
of angles, a t-distributed stochastic neighbour embed-
ding (t-SNE) analysis[21] will be performed to show
the clustering ability between the feature vectors. The
high dimensional data points are modelled in a two-
dimensional map, where similar points are clustered to-
gether using their probability distribution. The resulting
figures of the t-SNE will thus not give any numerical
results.

The second experiment will generate the ROC curves
for the LFW and AgeDB-30 datasets. These should
show the trade-off for several thresholds and show

whether the curve is flattened at some point limiting
the performance. From this ROC curve, the area under
the curve can be obtained and compared.

V. RESULTS

In this section the several QKeras quantization methods
will be evaluated on their performance compared to the
float-32 implementation.

A. Post-Training Quantization

The results of the post-training quantization can be
found in Table III. If the accuracy is 50% it means that
by comparing the two faces, the threshold is placed at
0 degrees and the result of the comparison is always
negative. This will give an accuracy of 50% as half of
the face pairs is a face pair of the same identity.

Table III: The results of Post-Training Quantizing Mobile-
FaceNets. The best method is highlighted.

QMobileFaceNet LFW AgeDB-30
Split Scaling 32-bit 8-bit 4-bit 2-bit 32-bit 8-bit 4-bit 2-bit
True Auto 98.85 84.27 59.33 50.82 90.33 61.60 53.00 49.97
True 1 98.85 56.70 50.00 50.00 90.33 52.15 50.00 50.00
False Auto 98.85 94.65 63.15 51.55 90.38 73.42 54.98 50.55
False 1 98.85 58.48 50.00 50.00 90.38 52.85 50.00 50.00

B. Quantize Aware Training

In the methodology section, we have proposed several
quantization strategies to obtain QMobileFaceNet. In
this section, QMobileFaceNet is implemented using
automatic scaling and no split of the DSC as this was
the best method using PTQ. The results can be seen
below.

Table IV: The mean results (standard deviation) of Quantize
Aware Training of MobileFaceNets

QMobileFaceNet
LFW 32-bit 8-bit 4-bit 2-bit
Post Training Quantization 98.85 94.65 63.15 51.55
Quantize Aware Training 98.85 98.68 (0.15) 98.63 (0.18) 93.45 (0.66)
AgeDB-30 32-bit 8-bit 4-bit 2-bit
Post Training Quantization 90.38 73.42 54.98 50.55
Quantize Aware Training 90.38 88.79 (0.10) 88.20 (0.50) 75.62 (2.83)

1) Individual Layer Quantization
The results of the individual layer quantization can
be observed in Figure 9. This plot also visualizes the
number of parameters that are quantized in each layer.
This plot shows that the most accuracy degradation can
be attributed to the quantization of the layers 3–5.

2) Uniform bit-length quantization
The mean results for the uniform bit lengths quantization
can be found in Table IV. The QAT results are based
on the mean (and standard deviation) of three different
quantization training sessions. This table shows that
quantize aware training can significantly improve the
quality of the quantized network. It also shows that
the network could be quantized to 4-bits with only an



May 10, 2022, Master Thesis: Computer Vision and Biometrics 11

Figure 9: The accuracy of 8, 4 and 2-bit QMobileFaceNet with folding by quantizing each layer individually for both the
LFW and the AgeDB-30 dataset. In bottom plot also shows the number of parameters per layer on a logarithmic scale

accuracy loss of 0.22 %p using the LFW dataset and
2.18 %p using the AgeDB-30 dataset.

3) Mixed precision quantization
The results for the mixed-precision quantization can be
found in Figure 10. This figure visualizes the trade-
off between the number of bits required for the weight
representation versus the accuracy of the LFW and
AgeDB-30 datasets. These results are compared with
(all) the uniform QAT results from Table IV.

Figure 10: The total weight bits versus accuracy trade-off for
the LFW and AgeDB-30 datasets.

C. Relative Performance

The performance of the quantization strategies is sum-
marized in Table V. To place the performance within
relevant literature, results from other quantization meth-
ods applied on MobileNetV2 are listed.

D. Analysis on the quantization of the Face Feature
Vector

To analyse the effect of the quantization of the feature
vector on the performance of the face recognition sys-
tem two small experiments have been done. The first
experiment was based on the discriminability between
different faces. For this experiment, the angle is calcu-
lated between two feature vectors from faces found in
the MS1M-V2 dataset.

Figure 11: (top-row) The resulting similarity matrices of the
8, 4 and 2-bit quantized last layers. The similarity is defined as
the angle between the vectors with a lower value the better.
(bottom-row) The visualisation of the ability to cluster the
identities using the t-SNE algorithm.

The similarity matrices of the angle between the feature
vectors for 10 subjects can be seen in the top row of
Figure 11. Between the similarity matrices of 8 and 4-
bits, there are not many differences other than it seems
that the 4-bit matrix appears to be slightly less red in the
non-mated regions compared to the 8-bit equivalent. The
t-SNE clustering (in the bottom row of the figure) shows
that the 8-bit and 4-bit quantized networks generate
vectors that can easily be clustered and that there is good
segregation between the mated and non-mated vectors.

The 2-bit similarity matrix, however, looks visibly dif-
ferent. It contains patches of non-mated vectors that have
a much larger angle between each other, resulting in
a deep red colour. In the mated vectors, there are a
lot more vectors that also have a larger angle, which
could result in mismatches. This chance for mismatches
is visible in the t-SNE plot for the 2-bit network around
(18, 0). Here a cluster of non-mated vectors can be
observed as shown by many dots of different colours.



May 10, 2022, Master Thesis: Computer Vision and Biometrics 12

Table V: The results of quantizing MobileFaceNets compared to other works on MobileNetV2. The accuracy loss is described
in percent point (%p) and relative percentage loss (%)

Performance

Architecture Representation LFW Accuracy Loss AgeDB-30 Accuracy Loss

MobileFaceNet (ReLU)[4] Float-32 99.15% 92.93%
MobileFaceNet (Self) Float-32 98.85% 90.38%
QMobileFaceNet (PTQ) Fixed point-8 94.65% 4.20 %p (4.25%) 73.42% 16.96 %p (18.77%)
QMobileFaceNet (QAT) Fixed point-8 98.68% 0.17 %p (0.17%) 88.79% 1.59 %p (1.76%)
QMobileFaceNet (QAT) Fixed point-4 98.63% 0.22 %p (0.22%) 88.20% 2.18 %p (2.41%)
QMobileFaceNet (QAT) Fixed point-2 93.45% 5.40 %p (5.46%) 75.62% 14.76 %p (16.33%)

Top-1 Accuracy Loss

Mobilenet-v2-1-224[39] Float-32 71.90%
Mobilenet-v2-1-224[39] (TFLite) (PTQ) Fixed point-8 63.70% 8.20 %p (11.40%)
Mobilenet-v2-1-224[39] (TFLite) (QAT) Fixed point-8 71.26% 0.64 %p (0.89%)

MobileNetV2[42] Fixed point-16 71.40% 0.50 %p (0.70%)
MobileNetV2[42] Fixed point-8 70.18% 1.72 %p (2.39%)
MobileNetV2[27] Fixed point-8 71.10% 0.80 %p (1.11%)
MobileNetV2[27] Fixed point-4 64.80% 7.10 %p (9.87%)
MobileNetV2+[30] Float-32 71.94%
MobileNetV2+[30] Fixed point-8 72.35% -0.41 %p (-0.57%)
MobileNetV2+[30] Fixed point-4 71.56% 0.38 %p (0.53%)

(a) ROC LFW Dataset (b) ROC AgeDB-30 Dataset

Figure 12: The ROC curves for several bit lengths. For each
curve the location of the False Acceptance Rate (same as FPR)
at 1% is highlighted. In the legend also each area under the
curve can be found.

The second experiment shows the ROC curve for the
LFW and AgeDB-30 datasets that determine the accu-
racy scores of the QAT networks found in Table IV. The
ROC curve of the LFW dataset has been zoomed in for
an FPR of max 10% for visibility. The full graph can
be found in the Figure A.2.

VI. DISCUSSION

The preliminary study in Section III-A already demon-
strated the potential for quantization using the QKeras
framework. This section will discuss the results of the
quantization of MobileFaceNet that can be found in
Section V.

In order to enable the quantization of MobileFaceNet,
a pre-trained version of MobileFaceNet is required. Un-
fortunately, an official implementation using Tensorflow
2.X was not available and had to be built and trained
from scratch. This did result in some accuracy differ-
ences. The MobileFaceNet network itself was built using
standard Tensorflow layers, however, the ArcLoss loss
function had to be implemented using a custom function.
Additionally, the dataset used for training (CASIA-
WebFace) also had to be aligned and cropped. This was

first done using the MTCNN algorithm but the newly
aligned dataset contained relatively many miss-aligned
images after manual inspection. For example, most eyes
were not correctly aligned when compared to the images
from the (properly) aligned evaluation dataset. Finally,
the StyleGAN2 alignment algorithm was applied, which
yielded better results but the trained network could still
not match the original performance.

The fact that the performance of our system and the
original version of MobileFaceNet (using ReLU) differs
suggests that the implementation used in this work is
likely not optimal and resulted in the use of percent
points to show the relative performance. The fact that
the accuracy using the AgeDB-30 dataset is clearly
worse (92.93% versus 90.38%) than on the LFW dataset
(99.15% versus 98.85 %) would suggest the network
has more difficulty with comparing faces with a 30-
year time difference. This would hint that either the net-
work hasn’t seen enough different faces or the ArcLoss
implementation did not cluster the identities enough.
Several implementations of the ArcLoss loss function
were tested but did not result in better accuracy.

A. Analysis QMobileFaceNet

The results in Table III show the performance of Mo-
bileFaceNet when the weights and activation functions
are directly quantized after training. From these results,
it can be seen that the automatic scaling for the quanti-
zation seems to enable the post-training quantization of
8-bit networks. The PTQ is also improved by removing
the split in the DSC. The difference is less significant as
described by Sheng et al. [34], which seems to suggest
that QKeras is a more quantization-friendly method for
DSC layers.

In order to understand the loss in accuracy for the
different bit lengths within the network, the results in
Figure 9 can be investigated. These show that the second
layer and the first four sets of inverted residual blocks



May 10, 2022, Master Thesis: Computer Vision and Biometrics 13

have the most impact on the accuracy of the AgeDB-
30 dataset for the 2-bit quantization. What can also be
noted is that after some quantize aware training this can
be somewhat mitigated. The expectation was that the
quantization loss had the most impact at the beginning
of the network. The results seem to be in line with the
expectation, although it has to be noted that the inverted
residual blocks also account for most of the parame-
ters in the network which could also have led to the
quantization loss. Another interesting observation is that
the 4-bit quantization has a very similar performance as
the 8-bit equivalent, whilst in theory only requires half
of the bits to describe the weights. This, and the fact
that the last four 2-bit quantized layers behave similar
to the other bit lengths, is an indication that mixed-
precision networks could reduce the size of the network
significantly without having to sacrifice the accuracy too
much.

Following the previous results, Table IV shows the per-
formance of QMobileFaceNet when the uniformly quan-
tized network is allowed to train for 20 more epochs.
This table shows a significant improvement in the 8-bit
and 4-bit networks, only a few percent points lower than
the original 32-bit floating-point network. Especially the
results of the 4-bit network are noteworthy, as it is only
12.5% of the original 32-bit weight footprint. The 2-
bit network also sees an improvement after QAT, but
clearly has to sacrifice accuracy for the smaller weight
representation.

The third quantization experiment investigates the effect
on performance if the network is not limited to one bit-
length. These results can be found in Figure 10 and show
a clear drop-off around the 3 million bits. The network
just before this drop-off with 3.1 million weight bits
achieved 98.17% and 87.37% on the LWF and AgeDB-
30 dataset respectively. This network had a configuration
where the first two layers were quantized using 8-bit
quantization, layer 3–5 using 4-bit quantization and
layer 6–10 using 2-bit quantization. This is 10% of
the footprint of the original 32-bit equivalent with an
accuracy loss of only 0.68 %p on LFW and 3.01 %p
on the AgeDB-30 dataset. These results indicate new
possibilities for implementations on edge devices that
only have a limited amount of storage available. A major
downside is, however, that the system has to support
mixed-precision architectures, which could bring a toll
on calculation complexity. For future research, it is inter-
esting to investigate the effect of implementing similar
mixed-precision networks on the latency in mobile and
edge devices.

Another interesting observation is the fact that the accu-
racy drops significantly (for both datasets) when the fifth
layer is quantized using 2-bits, which is also in line with
the observation during the individual layer quantization.
The fifth layer is also the largest layer in the entire

network, and it might be interesting to investigate the
effect of dividing this layer into smaller blocks that are
quantized separately. This was not considered in this
work as it significantly increased the training time, but
is recommended for further work.

The performance of this work is compared to other
work in Table V. To overcome the fact that no other
work on the quantization of MobileFaceNet was found,
the results are compared to other quantization research
using MobileNetV2. An attempt was made to also
quantize MobileNetV2 using QKeras, but was aborted
due to some problems. One of these problems was the
fact that continuing training with pre-trained weights
(found on the Tensorflow website[39]) only decreased
the accuracy. Another problem was that the default
implementation did not seem to quantize out of the box
as PTQ, whole model QAT and layer for layer QAT
resulted in sub 1% accuracies. For both training options,
the accuracy seem to drop to almost 0% halfway during
training such that it could not be recovered. Several
attempts with different learning rates were made but
did not yield any improvements. The implementation
changes made to MobileFaceNet have the potential to
improve MobileNetV2 but would have required a new
training session of the whole model from scratch and
were considered out of the scope of this work. The
network is also larger than MobileFaceNet, as seen in
Table A.1 and would have required more resources to
train. It was decided to abort the attempt of quantization
of MobileNetV2 and focus on improving the perfor-
mance of QMobileFaceNet.

The comparison between the quantization results of
QMobileFaceNet and other quantization methods on
MobileNetV2 shows that the relative performance is
very similar. The relative accuracy loss of the 8-bit
and 4-bit network of QMobileFaceNet on the LFW
dataset seems to be less than documented by TensorFlow
[39], Wu and Huang [42] and Nagel et al. [27] for
MobileNetV2. On the other hand, the relative accuracy
loss for the AgeDB-30 dataset is a bit higher than
documented by TensorFlow [39]. Unfortunately, this
comparison cannot be done quantitatively as the network
is not the same and MobileNetV2 is a classifier and
MobileFaceNet is a face recognition network. What can
be observed, however, is that the quantized versions of
MobileNetV2 by Nagel et al. [27] show quite some
degradation in accuracy for the 4-bit quantized network
which is larger than the relative performance loss of our
4-bit version. The PROFIT quantization method by Park
and Yoo [30] seems to have the best relative performance
but implemented a more elaborate quantization algo-
rithm (compared to our method) that could be considered
for further work. The conclusion that can be drawn from
this comparison is that the 8-bit quantization method
described in this paper shows no noteworthy differences



May 10, 2022, Master Thesis: Computer Vision and Biometrics 14

in performance degradation compared to similar quan-
tization methods. The performance degradation of the
4-bit QMobileFaceNet does seem to be less severe than
described by Nagel et al. [27].

B. Analysis Face Feature Vector

The feature vector experiments on the 8, 4 and 2-bit
quantization of QMobileFaceNet evaluated the similarity
between feature vectors of ten identities, the ability
to cluster the vectors of these identities and how the
quantization affected the threshold selection for different
datasets. The first experiment was designed to visual-
ize the discriminability between mated and non-mated
feature vectors. As shown in Figure 11, this qualitative
approach shows only minor differences between 8 and
4-bit quantization. The only observation is the fact
that the angles between the non-mated identities of
the 4-bit network seem less extreme than for the 8-bit
network, which might result in a lower threshold and
thus less room for variability within one identity. As
this difference is only trivial, it suggests that the 4-bit
network is likely similar in performance compared to
the 8-bit network and did not require notable changes
in the network during the training. The 2-bit quantized
network, however, shows different results. The fact that
the similarity matrix looks visibly different, suggests that
this network did undergo considerable changes during
training to support the reduction in the solution space.
Also, the 2-bit similarity matrix of Figure 11 shows
dark red lines within the mated identity squares. This
suggests that the 2-bit network does encounter problems
with the discriminability between the vectors and is not
a recommended network for a face recognition system.

To show the effect of the quantization on the trade-off
between the True Positive Rate and the False Positive
Rate, the ROC curves can be found in Figure 12. Similar
to the results in the first experiment, the curves between
32-bit, 8-bit and 4-bit networks are very similar. Inter-
estingly enough, for the LFW dataset, the 4-bit network
seems to work better than the 8-bit network with an FPR
larger than 0.5%. This is not the case for the AgeDB-30
dataset and seems to suggest that this is a marginal effect
and does not mean that the 4-bit network outperforms
the 8-bit network. The 2-bit network performs visibly
worse than the other networks. The ROC curve for
the LFW dataset still has a comparable AUC to the
other networks, which would suggest still a moderate
performance. For the AgeDB-30 dataset, however, the
curve only converges to almost 100% with an FPR
higher than 90%. This is also in line with findings of
the first experiment on the 2-bit network that it clearly
underperforms and should not be considered for a face
recognition system.

C. Future Work

QKeras simulates the network as if it was a fixed-point
number but in reality, it is still implemented as a 32-
bit floating-point number. For further work, it can be
strongly suggested to implement the proposed networks
as it was a fixed point integer and also test inference
on a mobile device to obtain the inference. Also, as
discussed earlier in this section, the performance of Mo-
bileFaceNet was not the same as shown in the original
paper. For further work, we would suggest trying to
investigate this issue. Implementations using PyTorch
have shown great accuracy and could be a good start.

Another point that can be investigated is by using a
larger face dataset to train the network. In this work
the CASIA-WebFace dataset is used, however, the per-
formance of this work can not match the results in the
original MobileFaceNet paper[4]. That paper also shows
that using the MS1M-V2 dataset[6] can also improve the
accuracy of the system (3%p on the AgeDB-30 dataset).
The dataset is almost 10× larger so will also increase
the training time. This work did not consider binary and
logarithmic quantization, but are worth investigating to
also optimize computational complexity.

VII. CONCLUSION

Several quantization methods are proposed to quantize a
Face Recognition System in order to give an answer to
the original research question: What are methodologies
that reduce the footprint of a mobile face recognition
network architecture using sub-byte quantization and
what is their impact on the accuracy of the network?. In
order to answer this question, the problem was divided
into multiple smaller sub-questions.

First, this research was placed within related work
which primarily shows that although literature discusses
mobile neural network architectures for face recognition
systems, no research on quantization can be found for
face recognition systems. Fortunately, this subject is
populair for other neural networks such as MobileNet.
The mobile face recognition network MobileFaceNet
is based on MobileNet and is the most suitable to
compare quantization performance results with. A study
of network compression for neural networks shows that
integer-quantization can produce an int-8 version of
MobileNet with a 0.64 percent point drop in accuracy
whilst producing a model which is almost 4× smaller.

The next question pondered the effect of sub-byte quan-
tization for the individual layers that could be found
in MobileFaceNet. To enable the experimentation with
sub-byte quantization, the QKeras framework is used.
However, there were several parameters that could be
chosen, such as the folding of the batch normalization
layer, the position of the decimal point and the scaling
factor. So in order to answer this question, a preliminary



May 10, 2022, Master Thesis: Computer Vision and Biometrics 15

study has been done to analyse the QKeras quantization
loss. This study then investigated the effect of several
parameters for each of these layers. Here the conclusion
was drawn that the folding and full fractional bit repre-
sentation were the best options to be used for the sub-
byte quantization of MobileFaceNet. The experiments
using the scaling factor and the split of the DSC yielded
no significant conclusion and were tested again with the
quantization of the whole model.

The third question delved into the problem of the
quantization strategy. This problem was dealt with by
defining several options to quantize the network. First,
Post Training Quantization showed that by removing
the batch normalization and ReLU after the depthwise
convolution in the DSC and choosing an automatic
scaling factor the quantization resulted in the highest
quantization scores. Secondly, this version of QMo-
bileFaceNet was then fine-tuned using Quantize Aware
Training which showed an impressive improvement for
the 8-bit and 4-bit networks, effectively showing that
a network with 12.5% of the original model footprint
(concerning the weights) can score a mean accuracy
of 98.63% for the LFW dataset and 88.20% for the
AgeDB-30 dataset, which is only 0.22 and 2.18 %p
lower than the floating-point version. Using the mixed-
precision experiment is also shown that, in theory, the
network can reduce the footprint down to 10% of the
floating-point equivalent with an accuracy loss of only
0.68 %p and 3.01 %p on the LFW and AgeDB-30
dataset respectively.

The fact that there is no literature found on the quanti-
zation of face recognition systems, this work formed
the last research question investigating the effect of
uniform quantization on the discriminability between
several identities. These experiments showed that 8-bit
and 4-bit quantization both had a minimal toll on the dis-
criminability of different identities. 2-bit quantization,
however, did show problems identifying mated feature
vectors and should not be considered for a small face
recognition system.

Considering all, to answer the main research question,
this work shows several methods to quantize Mobile-
FaceNet using the QKeras framework in Tensorflow.
This works shows that it is possible to quantize a face
recognition system using 8 and 4 bits for the weight
representation and activation function with a 0.17 and
0.22 %p loss in accuracy using the LFW evaluation
dataset. The research also shows that using mixed preci-
sion the size of the footprint can be reduced further. The
results of this work suggest that sub-byte and mixed-
precision is a good method to reduce the size of a face
recognition system without losing performance and can
thus be used as a basis for further work that has hardware
requirements for actual implementation.

ACKNOWLEDGEMENTS

I would like to show my appreciation to all of my peers
who have supported me throughout my thesis. I would
like to thank them for all the daily update meetings and
useful sparring sessions. I would also like to thank my
daily supervisor for the interesting discussions that kept
me sharp and motivated for this work.

REFERENCES

[1] Claudionor N. Coelho Jr. au2 et al. Automatic het-
erogeneous quantization of deep neural networks
for low-latency inference on the edge for particle
detectors. 2021. eprint: 2006.10159.

[2] Fadi Boutros et al. “MixFaceNets: Extremely
Efficient Face Recognition Networks”. In: 2021
IEEE International Joint Conference on Biomet-
rics (IJCB). 2021, pp. 1–8. DOI: 10 . 1109 /
IJCB52358.2021.9484374.

[3] Alessandro Capotondi et al. “CMix-NN:
Mixed Low-Precision CNN Library for
Memory-Constrained Edge Devices”. In:
IEEE Transactions on Circuits and Systems II:
Express Briefs 67.5 (2020), pp. 871–875. DOI:
10.1109/TCSII.2020.2983648.

[4] Sheng Chen et al. “MobileFaceNets: Efficient
CNNs for Accurate Real-Time Face Verification
on Mobile Devices”. In: Biometric Recognition.
2018, pp. 428–438. DOI: 10 .1007/978- 3- 319-
97909-0_46.

[5] Claudionor Coelho. Google/QKeras. 2019. URL:
https : / / github . com / google / qkeras (visited on
03/02/2022).

[6] Jiankang Deng, Jia Guo, and Stefanos Zafeiriou.
“ArcFace: Additive Angular Margin Loss
for Deep Face Recognition”. In: CoRR
abs/1801.07698 (2018). arXiv: 1801 . 07698.
URL: http://arxiv.org/abs/1801.07698.

[7] Li Deng. “The mnist database of handwritten
digit images for machine learning research”. In:
IEEE Signal Processing Magazine 29.6 (2012),
pp. 141–142.

[8] The Economist. From not working to neural net-
working The artificial-intelligence boom is based
on an old idea, but with a modern twist. Accessed
on 21-12-2021. URL: https : / / www. economist .
com / special - report / 2016 / 06 / 23 / from - not -
working-to-neural-networking.

[9] Angelo Garofalo et al. “XpulpNN: Accelerating
Quantized Neural Networks on RISC-V Proces-
sors Through ISA Extensions”. In: 2020 Design,
Automation Test in Europe Conference Exhibition
(DATE). 2020, pp. 186–191. DOI: 10 . 23919 /
DATE48585.2020.9116529.

2006.10159
https://doi.org/10.1109/IJCB52358.2021.9484374
https://doi.org/10.1109/IJCB52358.2021.9484374
https://doi.org/10.1109/TCSII.2020.2983648
https://doi.org/10.1007/978-3-319-97909-0_46
https://doi.org/10.1007/978-3-319-97909-0_46
https://github.com/google/qkeras
https://arxiv.org/abs/1801.07698
http://arxiv.org/abs/1801.07698
https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking
https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking
https://www.economist.com/special-report/2016/06/23/from-not-working-to-neural-networking
https://doi.org/10.23919/DATE48585.2020.9116529
https://doi.org/10.23919/DATE48585.2020.9116529


May 10, 2022, Master Thesis: Computer Vision and Biometrics 16

[10] Philipp Gysel, Mohammad Motamedi, and So-
heil Ghiasi. “Hardware-oriented Approximation
of Convolutional Neural Networks”. In: CoRR
abs/1604.03168 (2016). arXiv: 1604.03168. URL:
http://arxiv.org/abs/1604.03168.

[11] Song Han et al. “Learning both Weights and
Connections for Efficient Neural Networks”. In:
CoRR abs/1506.02626 (2015). arXiv: 1506 .
02626. URL: http://arxiv.org/abs/1506.02626.

[12] Kaiming He et al. “Deep Residual Learning for
Image Recognition”. In: CoRR abs/1512.03385
(2015). arXiv: 1512 . 03385. URL: http : / / arxiv.
org/abs/1512.03385.

[13] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean.
Distilling the Knowledge in a Neural Network.
2015. arXiv: 1503.02531 [stat.ML].

[14] Andrew G. Howard et al. “MobileNets: Effi-
cient Convolutional Neural Networks for Mobile
Vision Applications”. In: CoRR abs/1704.04861
(2017). arXiv: 1704.04861. URL: http://arxiv.org/
abs/1704.04861.

[15] Gary Huang et al. “Labeled Faces in the Wild:
A Database forStudying Face Recognition in Un-
constrained Environments”. In: Tech. rep. (Oct.
2008).

[16] Nathan Hubens. Speed-up inference with Batch
Normalization Folding. 2020. URL: https : / /
towardsdatascience . com / speed - up - inference -
with-batch-normalization-folding-8a45a83a89d8
(visited on 03/07/2022).

[17] Sergey Ioffe and Christian Szegedy. “Batch Nor-
malization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift”. In: CoRR
abs/1502.03167 (2015). arXiv: 1502.03167. URL:
http://arxiv.org/abs/1502.03167.

[18] Benoit Jacob et al. “Quantization and Training of
Neural Networks for Efficient Integer-Arithmetic-
Only Inference”. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition.
2018, pp. 2704–2713. DOI: 10.1109/CVPR.2018.
00286.

[19] Tero Karras et al. “Analyzing and Improving the
Image Quality of StyleGAN”. In: Proc. CVPR.
2020.

[20] Ningning Ma et al. “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture De-
sign”. In: Computer Vision – ECCV 2018. Ed. by
Vittorio Ferrari et al. Cham: Springer Interna-
tional Publishing, 2018, pp. 122–138. ISBN: 978-
3-030-01264-9.

[21] Laurens van der Maaten and Geoffrey Hin-
ton. “Visualizing Data using t-SNE”. In: Jour-
nal of Machine Learning Research 9.86 (2008),
pp. 2579–2605. URL: http://jmlr.org/papers/v9/
vandermaaten08a.html.

[22] Tambiama Madiega. Artificial intelligence act
[EU Legislation in Progress][Policy Podcast].
Accessed on 16-12-2021. URL: https : / /
epthinktank.eu/2021/11/18/artificial-intelligence-
act-eu-legislation-in-progress/.

[23] Tambiama Madiega and Hendrik Mildebrath.
“Regulating f acial recognition in the EU”. In:
Members’ Research Service (2021). Accessed on
16-12-2021. DOI: 10.2861/140928. URL: https :
//www.europarl.europa.eu/RegData/etudes/IDAN/
2021/698021/EPRS_IDA(2021)698021_EN.pdf.

[24] Yoanna Martindez-Díaz et al. “ShuffleFaceNet:
A Lightweight Face Architecture for Efficient
and Highly-Accurate Face Recognition”. In: 2019
IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW). 2019, pp. 2721–
2728. DOI: 10.1109/ICCVW.2019.00333.

[25] Yoanna Martínez-Díaz et al. “Benchmarking
lightweight face architectures on specific face
recognition scenarios”. In: Artificial Intelligence
Review (Feb. 2021). DOI: 10.1007/s10462-021-
09974-2.

[26] Stylianos Moschoglou et al. “AgeDB: The First
Manually Collected, In-the-Wild Age Database”.
In: 2017 IEEE Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW).
2017, pp. 1997–2005. DOI: 10 . 1109 / CVPRW.
2017.250.

[27] Markus Nagel et al. “A White Paper on
Neural Network Quantization”. In: CoRR
abs/2106.08295 (2021). arXiv: 2106.08295. URL:
https://arxiv.org/abs/2106.08295.

[28] Gianmarco Ottavi et al. “A Mixed-Precision
RISC-V Processor for Extreme-Edge DNN Infer-
ence”. In: 2020 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). 2020, pp. 512–517.
DOI: 10.1109/ISVLSI49217.2020.000-5.

[29] Alessandro Pappalardo. Xilinx/brevitas. 2021.
DOI: 10 . 5281 / zenodo . 3333552. URL: https : / /
doi . org / 10 . 5281 / zenodo . 3333552 (visited on
03/02/2022).

[30] Eunhyeok Park and Sungjoo Yoo. “PROFIT: A
Novel Training Method for sub-4-bit MobileNet
Models”. In: CoRR abs/2008.04693 (2020).
arXiv: 2008.04693. URL: https:/ /arxiv.org/abs/
2008.04693.

[31] Manuele Rusci, Alessandro Capotondi, and Luca
Benini. “Memory-Driven Mixed Low Preci-
sion Quantization For Enabling Deep Net-
work Inference On Microcontrollers”. In: CoRR
abs/1905.13082 (2019). arXiv: 1905.13082. URL:
http://arxiv.org/abs/1905.13082.

[32] Mark Sandler et al. “MobileNetV2: Inverted
Residuals and Linear Bottlenecks”. In: 2018
IEEE/CVF Conference on Computer Vision and

https://arxiv.org/abs/1604.03168
http://arxiv.org/abs/1604.03168
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://towardsdatascience.com/speed-up-inference-with-batch-normalization-folding-8a45a83a89d8
https://towardsdatascience.com/speed-up-inference-with-batch-normalization-folding-8a45a83a89d8
https://towardsdatascience.com/speed-up-inference-with-batch-normalization-folding-8a45a83a89d8
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/CVPR.2018.00286
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://epthinktank.eu/2021/11/18/artificial-intelligence-act-eu-legislation-in-progress/
https://epthinktank.eu/2021/11/18/artificial-intelligence-act-eu-legislation-in-progress/
https://epthinktank.eu/2021/11/18/artificial-intelligence-act-eu-legislation-in-progress/
https://doi.org/10.2861/140928
https://www.europarl.europa.eu/RegData/etudes/IDAN/2021/698021/EPRS_IDA(2021)698021_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/IDAN/2021/698021/EPRS_IDA(2021)698021_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/IDAN/2021/698021/EPRS_IDA(2021)698021_EN.pdf
https://doi.org/10.1109/ICCVW.2019.00333
https://doi.org/10.1007/s10462-021-09974-2
https://doi.org/10.1007/s10462-021-09974-2
https://doi.org/10.1109/CVPRW.2017.250
https://doi.org/10.1109/CVPRW.2017.250
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://doi.org/10.1109/ISVLSI49217.2020.000-5
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://arxiv.org/abs/2008.04693
https://arxiv.org/abs/2008.04693
https://arxiv.org/abs/2008.04693
https://arxiv.org/abs/1905.13082
http://arxiv.org/abs/1905.13082


May 10, 2022, Master Thesis: Computer Vision and Biometrics 17

Pattern Recognition. 2018, pp. 4510–4520. DOI:
10.1109/CVPR.2018.00474.

[33] Shibani Santurkar et al. How Does Batch Normal-
ization Help Optimization? 2019. arXiv: 1805 .
11604 [stat.ML].

[34] Tao Sheng et al. “A Quantization-Friendly Sep-
arable Convolution for MobileNets”. In: CoRR
abs/1803.08607 (2018). arXiv: 1803.08607. URL:
http://arxiv.org/abs/1803.08607.

[35] Weidong Shi et al. “ProxylessKD: Direct Knowl-
edge Distillation with Inherited Classifier for Face
Recognition”. In: CoRR abs/2011.00265 (2020).
arXiv: 2011.00265. URL: https:/ /arxiv.org/abs/
2011.00265.

[36] Vivienne Sze et al. “Efficient Processing of
Deep Neural Networks: A Tutorial and Survey”.
In: Proceedings of the IEEE 105.12 (2017),
pp. 2295–2329. DOI: 10 . 1109 / JPROC . 2017 .
2761740.

[37] Mingxing Tan and Quoc V. Le. “MixConv: Mixed
Depthwise Convolutional Kernels”. In: CoRR
abs/1907.09595 (2019). arXiv: 1907.09595. URL:
http://arxiv.org/abs/1907.09595.

[38] TensorFlow. TensorFlow Lite. 2021. URL: https:
/ / www . tensorflow . org / lite / guide (visited on
03/02/2022).

[39] TensorFlow. TensorFlow model optimization.
2021. URL: https://www.tensorflow.org/model_
optimization/guide (visited on 03/02/2022).

[40] Cheng-Hao Tu et al. “Pruning Depthwise Sepa-
rable Convolutions for MobileNet Compression”.
In: 2020 International Joint Conference on Neu-
ral Networks (IJCNN). 2020, pp. 1–8. DOI: 10.
1109/IJCNN48605.2020.9207259.

[41] CDA en ChristenUnie VVD D66. Coalitieakko-
ord 2021 – 2025. Accessed on 16-12-2021. URL:
https : / / www. kabinetsformatie2021 . nl / binaries /
kabinetsformatie / documenten / publicaties / 2021 /
12 / 15 / coalitieakkoord - omzien - naar - elkaar -
vooruitkijken-naar-de-toekomst/coalitieakkoord-
2021-2025.pdf.

[42] Yueh-Chi Wu and Chih- Tsun Huang. “Efficient
Dynamic Fixed-Point Quantization of CNN In-
ference Accelerators for Edge Devices”. In: 2019
International Symposium on VLSI Design, Au-
tomation and Test (VLSI-DAT). 2019, pp. 1–4.
DOI: 10.1109/VLSI-DAT.2019.8742040.

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf.
“Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms”.
In: CoRR abs/1708.07747 (2017). arXiv: 1708 .
07747. URL: http://arxiv.org/abs/1708.07747.

[44] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze.
“Designing Energy-Efficient Convolutional Neu-
ral Networks Using Energy-Aware Pruning”. In:
2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 2017, pp. 6071–
6079. DOI: 10.1109/CVPR.2017.643.

[45] Dong Yi et al. “Learning Face Representation
from Scratch”. In: CoRR abs/1411.7923 (2014).
arXiv: 1411.7923. URL: http://arxiv.org/abs/1411.
7923.

[46] Arm Ltd Yuan Tang Google LLC.
tensorflow/tflite-micro. 2021. URL: https :
//github.com/tensorflow/tflite- micro (visited on
03/14/2022).

[47] Stone Yun and Alexander Wong. “Do All Mo-
bileNets Quantize Poorly? Gaining Insights into
the Effect of Quantization on Depthwise Separa-
ble Convolutional Networks Through the Eyes of
Multi-scale Distributional Dynamics”. In: CoRR
abs/2104.11849 (2021). arXiv: 2104.11849. URL:
https://arxiv.org/abs/2104.11849.

[48] Kaipeng Zhang et al. “Joint Face Detection and
Alignment using Multi-task Cascaded Convo-
lutional Networks”. In: CoRR abs/1604.02878
(2016). arXiv: 1604 . 02878. URL: http : / / arxiv.
org/abs/1604.02878.

[49] Min Zhang et al. “Optimized Compression for
Implementing Convolutional Neural Networks on
FPGA”. In: Electronics 8.3 (2019). ISSN: 2079-
9292. DOI: 10 . 3390 / electronics8030295. URL:
https://www.mdpi.com/2079-9292/8/3/295.

[50] Xiangyu Zhang et al. ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mo-
bile Devices. 2017. arXiv: 1707.01083 [cs.CV].

[51] Hengrui Zhao, Dong Liu, and Houqiang Li.
“Efficient Integer-Arithmetic-Only Convolutional
Networks with Bounded ReLU”. In: 2021 IEEE
International Symposium on Circuits and Sys-
tems (ISCAS). 2021, pp. 1–5. DOI: 10 . 1109 /
ISCAS51556.2021.9401448.

APPENDIX

A. MobileNetV2

MobileNetV2[32] is the basis for MobileFaceNet. The
network architecture is shown in table A.1.

B. MobileFaceNet Network Elements

1) Depthwise-Separable convolution
The basis for MobileFaceNet (and its predecessor Mo-
bileNet) is the introduction of the notion of a Depthwise
Separable Convolutional layer (DSC-layer). Whereas
conventional convolutional layers calculate an output
based on the whole input feature map, DSC aims to
separate the process to reduce the amount of multiplica-
tions without having the need for linearly separable filter
kernels. Conventional convolutional layers calculate the
output pixel value by multiplying the k2 · C, where k2

represents the number of filter (with size k) multiplica-
tions and C is the number of input channels. Usually

https://doi.org/10.1109/CVPR.2018.00474
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1803.08607
http://arxiv.org/abs/1803.08607
https://arxiv.org/abs/2011.00265
https://arxiv.org/abs/2011.00265
https://arxiv.org/abs/2011.00265
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://arxiv.org/abs/1907.09595
http://arxiv.org/abs/1907.09595
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/model_optimization/guide
https://www.tensorflow.org/model_optimization/guide
https://doi.org/10.1109/IJCNN48605.2020.9207259
https://doi.org/10.1109/IJCNN48605.2020.9207259
https://www.kabinetsformatie2021.nl/binaries/kabinetsformatie/documenten/publicaties/2021/12/15/coalitieakkoord-omzien-naar-elkaar-vooruitkijken-naar-de-toekomst/coalitieakkoord-2021-2025.pdf
https://www.kabinetsformatie2021.nl/binaries/kabinetsformatie/documenten/publicaties/2021/12/15/coalitieakkoord-omzien-naar-elkaar-vooruitkijken-naar-de-toekomst/coalitieakkoord-2021-2025.pdf
https://www.kabinetsformatie2021.nl/binaries/kabinetsformatie/documenten/publicaties/2021/12/15/coalitieakkoord-omzien-naar-elkaar-vooruitkijken-naar-de-toekomst/coalitieakkoord-2021-2025.pdf
https://www.kabinetsformatie2021.nl/binaries/kabinetsformatie/documenten/publicaties/2021/12/15/coalitieakkoord-omzien-naar-elkaar-vooruitkijken-naar-de-toekomst/coalitieakkoord-2021-2025.pdf
https://www.kabinetsformatie2021.nl/binaries/kabinetsformatie/documenten/publicaties/2021/12/15/coalitieakkoord-omzien-naar-elkaar-vooruitkijken-naar-de-toekomst/coalitieakkoord-2021-2025.pdf
https://doi.org/10.1109/VLSI-DAT.2019.8742040
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://doi.org/10.1109/CVPR.2017.643
https://arxiv.org/abs/1411.7923
http://arxiv.org/abs/1411.7923
http://arxiv.org/abs/1411.7923
https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro
https://arxiv.org/abs/2104.11849
https://arxiv.org/abs/2104.11849
https://arxiv.org/abs/1604.02878
http://arxiv.org/abs/1604.02878
http://arxiv.org/abs/1604.02878
https://doi.org/10.3390/electronics8030295
https://www.mdpi.com/2079-9292/8/3/295
https://arxiv.org/abs/1707.01083
https://doi.org/10.1109/ISCAS51556.2021.9401448
https://doi.org/10.1109/ISCAS51556.2021.9401448


May 10, 2022, Master Thesis: Computer Vision and Biometrics 18

Table A.1: The network architecture of MobileNetV2.

Architecture MobileNetV2[32]

Layer Input Operator t c n s

1 2242 × 3 conv3x3 32 1 2
2 1122 × 32 bottleneck 1 16 1 1
3 1122 × 16 bottleneck 6 24 2 2
4 562 × 24 bottleneck 6 32 3 2
5 282 × 32 bottleneck 6 64 4 2
6 142 × 64 bottleneck 6 96 3 1
7 142 × 96 bottleneck 6 160 3 2
8 72 × 160 bottleneck 6 320 1 1
9 72 × 320 conv1x1 1280 1 1
10 72 × 1280 avgpool7x7 1
11 1× 1× 1280 conv 1x1 k 1 1

a convolutional layer contains an N number of filter
kernels resulting in the following number of required
multiplications given the input H height and W width
of an input feature map:

MULconv2D = H ·W · C ·N · k2 (4)

A DSC-layer separates the image convolution from the
channel-wise convolution. These are named Depthwise
and Pointwise convolutions accordingly. Depthwise con-
volutions apply a convolutional filter only over the
Height and Width of the input, resulting in C number
of output feature map. Pointwise convolutions apply an
N number amount of 1x1 convolutional operations over
the input channels. The combination of both operations
results in the following number of required multiplica-
tions, which can be significantly less than a conventional
convolutional layer:

MULDSC = H ·W · C · (N + k2) (5)

2) Inverted Residual Bottleneck
MobileNetV2 introduced us to Inverted Residual Bottle-
necks[32], a concept that combines DSC-layers with a
residual connection to improve the ability of a gradient
to propagate through multiple layers according to the
authors. The inverted bottleneck refers to the fact that
the dimension of the internal convolution block is first
expanded with an expansion ratio t, opposed to reducing
the dimensions inside the bottleneck (hence the name).
The residual connection means that the input is added
to the output given the dimensions match. The diagram
of this block can be found in figure A.1.
3) Global Depthwise Convolution
The authors of MobileFaceNet[4] claim that due to the
fact that the network is trained on a set aligned faces, the
network does not benefit from the use of conventional
Global Average Pooling that treats every feature map the
same. The reasoning behind this is the fact that often the
corners of the image (should) have a significant smaller
impact on classification than the center of the image.

Figure A.1: Inverted Residual Bottleneck Block as described
in MobileNetV2[32]

Instead they propose the use of a Global Depthwise
Convolutional (GDC) layer that sets the kernel size equal
to the input feature map. This method increased the ac-
curacy with 0.3% (LFW) and 1.86% (AgeDB-30), whilst
only adding 25k parameters. Finally, the authors also
implement a pointwise convolution to reduce the output
feature vector to 128 parameters as an alternative to a
fully connected layer, which reduces the total number
with 8 million. The final MobileFaceNet network only
requires 0.99 million parameters.
4) Batch Normalisation
It is common knowledge that batch normalization[17]
improves the performances of deep neural networks,
at as such widely used (also in e.g. MobileNet and
MobileFaceNets). However the reasons why are still
highly debated. The original authors[17] claim that the
effectiveness is due to the reduction of internal covariate
shift (the shift of weights during training). However
this seems to be disproven by Santurkar et al. [33],
which they claim that the effectiveness comes due to the
impact of batch normalization on optimization landscape
smoothness (resulting in smoother gradients and thus
faster and better convergence). Santurkar et al. even
claim these properties are not even limited to batch
normalization and can even be achieved using other
normalization methods. Nevertheless, to understand the
Mobile(Face)Net architecture, the batch normalisation
should not be glanced over. The algorithm is described
below:

Algorithm 1 Algorithm for Batch Normalization[17]
Input: Values x in batch: B = {x1..m}
1. µB = 1

m

∑m
i=1 xi

2. σ2
B = 1

m

∑m
i=1(xi − µB)

2

3. x̂i = xi−µB√
σ2
B+ϵ

(ϵ is a constant for numerical stability)

4. yi = γx̂i + β
Output: BNγ,β(xi)

C. Mixed Precision parameters

D. Full ROC curve of the LFW dataset



May 10, 2022, Master Thesis: Computer Vision and Biometrics 19

Table A.2: The mixed precision models and the number of bits for the weights they require.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Parameters
Parameters 1985 576 90245 52481 413190 137729 137730 67585 25088 66049 992658
32-bit 32 32 32 32 32 32 32 32 32 32 Total bits
Weight bits 63520 18432 2887840 1679392 13222080 4407328 4407360 2162720 802816 2113568 31765056
8-bit 8 8 8 8 8 8 8 8 8 8
Weight bits 15880 4608 721960 419848 3305520 1101832 1101840 540680 200704 528392 7941264
4-bit 4 4 4 4 4 4 4 4 4 4
Weight bits 7940 2304 360980 209924 1652760 550916 550920 270340 100352 264196 3970632
2-bit 8 2 2 2 2 2 2 2 2 2
Weight bits 15880 1152 180490 104962 826380 275458 275460 135170 50176 132098 1997226
Mixed 1 8 8 4 4 4 4 4 2 2 2
Weight bits 15880 4608 360980 209924 1652760 550916 550920 135170 50176 132098 3663432
Mixed 2 8 8 4 4 4 4 2 2 2 2
Weight bits 15880 4608 360980 209924 1652760 550916 275460 135170 50176 132098 3387972
Mixed 3 8 8 4 4 4 2 2 2 2 2
Weight bits 15880 4608 360980 209924 1652760 275458 275460 135170 50176 132098 3112514
Mixed 4 8 8 4 4 2 2 2 2 2 2
Weight bits 15880 4608 360980 209924 826380 275458 275460 135170 50176 132098 2286134
Mixed 5 8 8 4 2 2 2 2 2 2 2
Weight bits 15880 4608 360980 104962 826380 275458 275460 135170 50176 132098 2181172
Mixed 6 8 8 2 2 2 2 2 2 2 2
Weight bits 15880 4608 180490 104962 826380 275458 275460 135170 50176 132098 2000682

Figure A.2: The zoomed out graph of the ROC curve of the
LFW Dataset


	Introduction
	Research Questions

	Literature
	Mobile Deep Neural Networks
	Mobile DNN Face Recognition Systems
	Network Compression: Precision Reduction
	Network Compression: Reduction of Operations
	Summary

	Preliminary study: A QKeras Quantization Loss Analysis
	QKeras Quantization Methods
	Quantization of Convolutional Layers
	Analysis

	Methods
	Datasets and evaluation metrices
	QMobileFaceNet
	Post-Training Quantization
	Quantize Aware Training
	Individual Layer Quantization
	Uniform bit-length quantization
	Mixed precision quantization

	Analysis on the quantization of the Face Feature Vector

	Results
	Post-Training Quantization
	Quantize Aware Training
	Individual Layer Quantization
	Uniform bit-length quantization
	Mixed precision quantization

	Relative Performance
	Analysis on the quantization of the Face Feature Vector

	Discussion
	Analysis QMobileFaceNet
	Analysis Face Feature Vector
	Future Work

	Conclusion
	Appendix
	MobileNetV2
	MobileFaceNet Network Elements
	Depthwise-Separable convolution
	Inverted Residual Bottleneck
	Global Depthwise Convolution
	Batch Normalisation

	Mixed Precision parameters
	Full ROC curve of the LFW dataset


