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ABSTRACT 

As deforestation continues to increase rapidly, it is critical to map it reliably and efficiently to protect tropical 

rainforests and implement effective containment policies. Furthermore, it supports monitoring 

deforestation and assessing its effects on local and global climate and biodiversity loss. However, 

conventional methods to map deforestation using optical satellite imagery suffer from persistent cloud 

cover and are often impractical and unsuitable for complex, large-scale analysis. Synthetic aperture radar 

(SAR) images have the ability to penetrate the cloud cover and provide an alternative data source to monitor 

deforestation. Therefore, this research aims to perform a fully convolutional network (FCN) based 

multimodal fusion of optical and SAR data to map the accumulated deforestation regardless of any 

atmospheric condition. The experiments were carried out in parts of Pará state in the Brazilian Amazon. 

10m Sentinel-1 (S-1) SAR data and 10m bands of Sentinel-2 (S-2) optical data were used as input data, and 

primary forest and non-forest data from the Brazilian Amazon Deforestation Monitoring Program 

(PRODES) were used as reference data. Five image pairs for five different cloud scenarios, from 0% to 

100% cloud cover, were used to prepare the training, testing, and validation data. U-Net variations with 

early fusion, late fusion and spatial attention mechanisms were used to experiment with the two input data 

sets in two different scenarios of experiment setups. Scenario-1 was set up to train and test on the same 

image. And scenario-2 was set up to train and test images from different dates.  

The results from the experiments in scenario-1 suggest that the accuracy of the standalone S-2 image 

outperforms every other model in the zero percent cloud scenario. The fusion based models come very 

close to standalone S-2 performance in this scenario but do not improve the results further. As expected, 

the performance degrades abruptly for standalone S-2 images when the cloud-cover increases. Results from 

scenario-2 suggest that with the help of fusion of S-1 and S-2 images during a cloudy scenario, the models 

can output impressive classification results even during an extreme cloud cover scenario. Further 

investigation about improving the fusion accuracy during cloud-free conditions in scenario-2 was left for 

future research works.  

Keywords: 
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Chapter 1  

Introduction 

This chapter provides an overview of information about the current deforestation trends in the Amazon 

rainforest. The past and current technological developments for mapping deforestation are also discussed.  

1.1 BACKGROUND AND MOTIVATION 

1.1.1 Deforestation in Amazon 

The tropical forests have been cleared at an alarming rate (Hoang and Kanemoto, 2021). Loss of natural 

vegetation through deforestation is the second largest source of anthropogenic greenhouse gas emissions. 

The consequences of such phenomena include the loss of biodiversity, changes in hydrological cycles, local 

and global climate change, and disruption of rights and livelihood of local communities (D’Almeida et al., 

2007; Giam, 2017; Hoang and Kanemoto, 2021; Houghton, 1999). Economic development, population 

growth, and international trade are primarily responsible for global deforestation, driven by commodity 

production, forestry, agriculture, and urbanisation (Rodrigues et al., 2009). The Amazon rainforest in Brazil 

encompasses the most extensive stretch of tropical forest in the world (spanning 6.7 million km2, double 

the size of India). It is biologically the wealthiest region of our planet, hosting ≈25% of global biodiversity 

(Malhi et al., 2009; Nicolau et al., 2021). Despite the target set by National Policy on Climate Change 

(NPCC) to reduce deforestation in the Amazon, there has been an increasing trend in the rate of 

deforestation. The year 2019 saw an increase of 34% in deforestation, equating to an alarming rate of 10,129 

km2 of clear-cut deforestation. The Brazilian Amazon Deforestation Monitoring Program (PRODES) 

reported the area of accumulated deforestation for 2020 to be 10,851 km2. This amount was 176% higher 

than the established NPCC target of 3925km2 (Silva Junior et al., 2021). It corresponds to 648 TgCO2 (648 

million tons of CO2) released into the atmosphere due to deforestation (Silva Junior et al., 2021). 

Furthermore, PRODES estimated deforestation in 2021 to be 13,235km2 based on 45% of the monitored 

area. Hence, this continued large-scale deforestation of the amazon would cause perpetual damage to the 

functioning and diversity of the biosphere. As deforestation increases rapidly (Werth, 2002), it is crucial to 

map it accurately and rapidly for managing tropical rainforests and undertaking effective containment 

policies (Maretto et al., 2021). In addition, it helps in monitoring deforestation and understanding its 

implications on local and global climate and the decline in global biodiversity (Cabral et al., 2018; de Bem 

et al., 2020; Werth, 2002). On a global scale, these maps help achieve the target 15.2 of sustainable 

development goal (SDG) number 15, which aims to promote the sustainable management of all types of 

forests, stop deforestation, restore the degraded forest, and significantly increase global reforestation and 

afforestation. 

1.1.2 Mapping Deforestation Using Satellite Imagery 

Remote sensing technologies have played a significant role in recent decades by providing consistent, 

accurate, and timely information to study our planet (Cremer et al., 2020; Maretto, 2020). Land Use and 

Land Cover (LULC) change detection is one of the main uses of satellite remote sensing data (Syrris et al., 

2019; Treitz, 2004). It consists of analysing and quantifying the state of an object at different times (Singh, 

1989) and is an essential step in understanding deforestation processes. However, traditional manual 

analyses to study deforestation from the imagery are expensive for complex, large-scale analysis. So, 

producing an accurate, automated, fast, and responsive deforestation detection system with a reasonable 
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accuracy has been an open challenge in the remote sensing community (Ball et al., 2017; Camps-Valls et al., 

2014; Lu and Weng, 2007; Syrris et al., 2019). The presence of artefacts from cloud and cloud shadows, 

signal inconsistency due to varying environmental conditions, and phenological changes are a few 

challenges that may hinder mapping a LULC change phenomenon (Liu et al., 2020; Nguyen et al., 2020).   

While optical satellite data is widely used in LULC mapping (Sefrin et al., 2020; Wang et al., 2020; Yin et 

al., 2018), Synthetic Aperture Radar (SAR) data is gaining popularity as data from SAR sensors become 

available freely. SAR sensors have enabled the ability to acquire images regardless of weather conditions. 

As part of the Copernicus program of the European Space Agency (ESA), the Sentinel-1 (S-1) satellite with 

its C-band SAR provides a revisit frequency of six days. In the interferometric wide (IW) swath mode, 

Nominal land acquisition provides a spatial resolution of 5 m × 20 m in dual-polarization channels in the 

form of phase and amplitude information. The free, full, and open data policy enables users to access 

extensive scale data with rich source information. These open large-scale geodata represent a huge 

opportunity to create an advanced innovative methodology for different LULC mapping like deforestation. 

However, there are only a few reliable and automated methods for detecting deforestation using these big 

geodata with SAR images. 

Several studies have looked at the viability of SAR imagery for LULC mapping, with an emphasis on 

polarimetric multitemporal (Bruzzone et al., 2004) and multi-frequency SAR in the L-band, C-band, and X-

band (Lonnqvist et al., 2010; Waske and Braun, 2009), as well as the combining the use of SAR and optical 

data (Ullmann et al., 2014). The ability of a longer wavelength (L-band) to penetrate deeper into the forest 

structure is more appropriate for mapping forest cover. Unfortunately, there is no free SAR. L-Band time 

series dataset available worldwide.  

1.1.3 Deep Learning for Image Classification 

In recent years Deep Learning (DL) based models have shown a remarkable feature representation 

capability in various fields, including image scene classification from remote sensing satellite images (Cheng 

et al., 2017, 2016; Hu et al., 2015; Nogueira et al., 2017; Yao et al., 2016; Zou et al., 2015). DL refers to a 

set of Artificial Neural Networks (ANNs) with the ability to learn a hierarchical representation of data for 

image classification, object detection, and many other applications (Lecun et al., 2015). DL models, 

especially Convolutional Neural Networks (CNNs), have achieved state-of-the-art results in the domain of 

remote sensing image classification (Yanfei Liu et al., 2018; Yu and Liu, 2018) and are most commonly 

utilised for pattern recognition from images (O’Shea and Nash, 2015). 

CNNs are composed of a series of processing layers that perform three major tasks: 2D convolutions, unit-

wise nonlinear activations, and spatial pooling with subsampling (Persello and Stein, 2017). Weights and 

biases of the convolution operations are learnt in a supervised way to reduce classification error. Standard 

architectures employ a sequence of convolutional layers that are flattened into a one-dimensional vector 

and fed to fully-connected layers. The Convolutional layers learn the spatial features, whereas fully-

connected layers learn the classification rule that will be applied to the retrieved feature vector (Lecun et 

al., 2015). Because the network is trained from beginning to end, feature extraction and classification occur 

in the same framework. This method has been shown to be effective in various computer vision tasks, 

especially in image classification or object detection, where one label is assigned to the entire input scene. 

Deep CNNs have been successfully applied to image categorisation benchmarks, considerably 

outperforming techniques based on hand-designed features. 

Furthermore, CNNs have been modified to perform pixel-wise classification, also known as semantic 

segmentation. The traditional patch-based method involves training the CNN to label the centre pixel of 

patches derived from the input picture (Bergado et al., 2016). Nevertheless, if applied to classify a large RS 
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image, this method will result in redundant processing and incur high computational costs. To overcome 

this computational issue, Fully Convolutional Networks (FCNs) (Shelhamer et al., 2014) are trained to infer 

the pixel-wise classification of an entire image or patch at once. In an FCN, the fully connected layers from 

CNNs are replaced with one or more upsampling layers that resample the feature map extracted by 

convolutional layers to the exact resolution of the input image (Badrinarayanan et al., 2017; Noh et al., 2015; 

Shelhamer et al., 2014). 

The combination of diverse types of sensors like SAR and optical provides complementary information for 

the same target (Adrian et al., 2021). SAR sensors capture more of the structural properties from the 

backscatter energy of an object on the ground. However, they are more complex for interpretation due to 

the presence of speckle noise. On the other hand, the optical image has better spatial resolution and is easier 

to interpret but widely affected by atmospheric effects. A reliable approach is required to extract and fuse 

information from these two sensors. DL techniques have the potential to efficiently combine information 

from these two sensors because it has the advantage of automatically learning the hierarchical representation 

from the different modality of SAR and optical image. (Ramachandram and Taylor, 2017). It has gained a 

foothold and continues to gain rapid advancements in the field of human activity recognition Ebrahimi 

Kahou et al. (2015); Neverova et al. (2014); Radu et al. (2016); medical applications (Kiros et al., 2014; 

Tajbakhsh et al., 2017; Wu et al., 2013), and autonomous systems (Gu et al., 2016; Lenz et al., 2013). 

However, DL techniques have yet to be substantially investigated to fuse multimodal data from SAR and 

optical remote sensing sensors.  

Attention mechanisms, like many other in DLbased methods, attempt to emulate how the human brain or 

eye processes data (Ghaffarian et al., 2021). The human visual system does not perceive the entire image 

simultaneously; instead, it focuses on specific parts. The focused part of the image is perceived as in “higher 

resolution”, whereas the part out of focus is “low-resolution” (Ghaffarian et al., 2021). The main idea 

behind the attention mechanism is to give higher weights to the most relevant information in the network. 

Inspired by this process, Bahdanau et al., (2014) developed an attention mechanism for natural language 

processing. Gradually, attention mechanisms have also been successfully applied to semantic segmentation 

tasks (Khanh et al., 2020; Oktay et al., 2018; Roy et al., 2019, 2018; Vahadane et al., 2021; Zhao et al., 2020; 

Zhou et al., 2020). In the case of convolutional networks, a spatial attention mechanism focuses on the 

local region from a given set of feature maps (Woo et al., 2018). It produces a rich representation of the 

relevant features of interest from the local domains and cut out the irrelevant information or noises (Zhang 

et al., 2019).   

1.2 RELATED WORKS 

1.2.1 Image Fusion  

Image fusion combines information from two or more images from the same or different sensors of 

different wavelengths of the same scene (Wang et al., 2005). Table 1.1 shows the commonly used existing 

image fusion techniques and their limitations.  

Table 1.1 Overview of various image fusion approaches 

Approach Description Limitation Sample Literature 

Simple average 
Most basic approach for pixel-

level image fusion. 
No guarantee of an 

improved image. 
(Malviya and 
Bhirud, 2009) 

Simple Maximum Compared to the average 
approach, results in a highly 

Influenced by the 
blurring effect, which 

(Malviya and 
Bhirud, 2009; 
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focused image generated from 
the input image. 

directly impacts the 
image's contrast. 

Zheng et al., 2004) 

PCA 

PCA is a tool that transforms 
the number of correlated 

variables into the number of 
uncorrelated variables, which 

is helpful in image fusion. 

Strong correlation 
between the input 

image is required, and 
fused image will have 
lesser quality than any 
of the input images. 

(Abdikan, 2018; 
Sun et al., 2005; 

Walker et al., 2010) 

DWT 

The DWT fusion method may 
surpass PCA in reducing 
spectral distortion. Has a 

higher signal-to-noise ratio 
than pixel-based methods. 

Output image has a 
lower spatial resolution. 

(Desale and Verma, 
2013) 

Combined DWT 
& PCA 

Multilevel fusion yields better 
results when the image is 

fused twice using an efficient 
fusion technique. The final 

image had a high spatial 
resolution and high spectral 

quality. 

Complex method. For a 
better result, a good 
fusing technique is 

required. 

(Pajares and de la 
Cruz, 2004) 

 

1.2.2 Deep Learning-based Image Fusion  

Multiple DL-based fusion approaches have been proposed for image fusion in different application fields. 

However, the multimodal fusion of SAR and optical images is still an evolving research field. Table 1.2 

shows a few approaches that utilise DL-based networks for the fusion of multimodal images from various 

sources.  

Table 1.2 Overview of DL-based image fusion approaches 

Approach Description Sample Literature 

CNN based 

fusion 

Adopts a Siamese-based CNN to fuse images from 

different modalities. Fuse images in a multi-scale manner 

via image pyramids. 

(Liu et al., 2017) 

DenseFuse 
DL-based multimodal fusion of infrared and visible 

images with encoder, decoder and a fusion block. 
(Li and Wu, 2019) 

PMGI 

Fast unified fusion network based on proportional 

maintenance of gradient and intensity (PMGI). Can handle 

various tasks like medical image fusion, visible and 

infrared image fusion, multi-exposure image fusion and 

pan-sharpening. 

(H. Zhang et al., 2020) 

U2Fusion 

Fusion of medical images based on an end-to-end 

unsupervised fusion network. Uses an information 

preservation degree of the extracted feature to evaluate the 

importance of each source image. 

(Xu et al., 2022) 
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cGAN 

Conditional Generative Adversarial Network(cGAN) 

based approach for fusion of multimodal SAR and optical 

imagery to synthesise cloud-free optical images. 

(Bermudez et al., 2019; 

Y. Li et al., 2020) 

 

1.2.3 Attention Mechanisms 

Attention mechanisms were initially introduced for natural language processing (Bahdanau et al., 2014). 

Nevertheless, it has widely been used in various fields since its introduction, especially for medical image 

segmentation. However, limited research utilises attention mechanisms in remote sensing applications. 

Moreover, according to our best knowledge, only a few researches use spatial attention mechanisms to fuse 

SAR and optical images and potentially substitute the cloudy optical images with SAR images automatically. 

Table 1.3 shows the literature related to our study incorporating attention mechanisms.  

Table 1.3 Overview of literature related to attention mechanisms 

Approach Description Reference 

AttentionU-

Net 

Uses a soft-attention gate inside a generic U-Net to 

produce attention maps that emphasise the location of the 

pancreas for medical image segmentation. 

(Oktay et al., 2018) 

CBAM Convolutional Block Attention Module (CBAM) uses a 

channel and spatial attention module in a feed-forward 

CNN to refine the encoder features. 

(Woo et al., 2018) 

SCAU-Net Enhances U-Net encoder and decoder framework with 

spatial and channel attention modules for medical image 

segmentation. 

(Khanh et al., 2020; 

Zhao et al., 2020) 

SCAttNet Uses an end-to-end semantic segmentation network with a 

lightweight channel and spatial attention module for 

feature refinement in high-resolution remote sensing 

images. 

(H. Li et al., 2021) 

TAFFN. Triplet Attention Feature Fusion Network (TAFFN) for 

the fusion of SAR and optical image. Uses spatial, channel 

and cross attention based on a self-attention mechanism to 

extract and integrate long-range and complementary 

information from the images and perform a land cover 

classification. 

(Xu et al., 2021) 

1.3 PROBLEM ANALYSIS 

Most researches on mapping deforestation still rely heavily on the ability of an optical sensor to capture the 

phenomenon. Optical sensors have a huge advantage in terms of the interpretability of the images. 

However, as discussed in section 1.1.2, there is a limitation to using optical remote sensors to map 

deforestation due to their inability to penetrate the cloud. The presence of persistent clouds covering the 

Amazon rainforest season-wide hinders the ability to detect deforestation, especially during the wet season, 

when it is nearly impossible to get a cloud-free image over some regions (Griffiths et al., 2018).  
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With the advancement of SAR sensors and their ability to penetrate the clouds, monitoring the rainforest 

even during seasons with persistent cloud covers has presented an alternative way to monitor deforestation. 

However, there is always a trade-off for only using the SAR sensors to study deforestation. SAR images are 

complex to interpret and have a different modality than optical sensors. Therefore, in recent years, a 

substantial amount of research has focused on optimally fusing complementary and correlated data of 

multimodal sensors. Various attempts to fuse SAR and optical data include the wavelet-merging technique 

(Abdikan, 2018; Hong and Zhang, 2008; Lu et al., 2011), Principal Component Analysis (PCA) (Abdikan, 

2018; Pereira et al., 2013; Walker et al., 2010) and intensity-hue-saturation (IHS) (Abdikan, 2018). However, 

these approaches fuse the image at a pixel level, which suffers from spectral distortion and fails to maintain 

the spatial resolution of input images (Yu Liu et al., 2018).  

1.4 RESEARCH GAP AND SCIENTIFIC CONTRIBUTION 

Even though most studies related to deforestation use longer wavelength L-band S.A.R. data because, they 

have better penetration capability into the forest (Almeida‐Filho et al., 2007; Mitchard et al., 2011; Watanabe 

et al., 2018). However, the L-band S.A.R. data are currently not freely available. Even though C-band SAR 

data has a shorter wavelength than L-band, the C-band data from S-1 satellites is freely available to 

download. Hence, the backscatter data from a C-band SAR combined with optical data will be used in this 

research to assess its suitability for mapping deforestation. Furthermore, the current state-of-the-art 

techniques for detecting deforestation only utilise optical remote sensing data, which sometimes relies on 

visual analysis to extract information from the data source.  

Many researchers have attempted to fuse remote sensing imagery from various sensors using DL 

techniques. Several studies tried to fuse medium-resolution multispectral images with a high-resolution 

panchromatic image to generate higher-resolution images with all the spectral information (Masi et al., 2016; 

Shao and Cai, 2018; Zhong et al., 2016). Using CNN-based architecture, Palsson et al. (2017) fused 

hyperspectral and multispectral images. Methods based on Generative Adversarial Networks (GANs) 

(Goodfellow et al., 2014) try to directly synthesise optical cloud-free images from an input SAR image  

(Bermudez et al., 2019; Gao et al., 2020; Y. Li et al., 2020). (Y. Li et al., 2021a, 2021b) use a supervised 

method based on CNN to fuse medical images. However, research on fusing optical and SAR data to detect 

deforestation are limited. 

Fusion techniques with the addition of attention mechanisms have also enhanced the performance of 

multimodal fusion for multiple classification tasks. (X. Li et al., 2020) used a multimodal fusion network 

with a second-order channel attention mechanism for land cover classification. (Oktay et al., 2018) used an 

attention mechanism in a U-Net architecture (Ronneberger et al., 2015) to identify the pancreas from 

medical imagery. (Zhu et al., 2020) performed a multimodal fusion of audio, visual and language parameters 

with a self-attention mechanism for sentiment analysis. (H. Li et al., 2021) used a combination of spatial 

and channel attention mechanisms for semantic segmentation using high-resolution images for land use 

classification; however, their method does not use any fusion mechanism. Even though extensive research 

identified many advantages of using an attention mechanism in a neural network, there is no research on 

its usability to effectively fuse complementary information from SAR and optical data. Therefore, this 

research aims to effectively explore the potential of a fusion with an attention mechanism to map 

deforestation irrespective of weather conditions. 

1.5 RESEARCH IDENTIFICATION 

This section presents the research objective and sub-objectives of this research. 
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1.5.1 Objective and Sub-objective 

This research aims to formulate a method to map deforestation in parts of the Brazilian Amazon rainforest 

using an FCN-based multimodal fusion of S-1 SAR and S-2 optical data. The model is expected to be robust 

and adaptable for mapping deforestation regardless of any atmospheric condition. 

To achieve the primary goal of this research, the following sub-objectives were formulated: 

1. Prepare and build datasets for designing, training, testing, and validating the model. 

2. Design and implement a DL-based multimodal fusion model with a spatial attention mechanism. 

3. Evaluate the performance of the fusion models in images with  different levels of cloud cover and 

their impact on the final accuracy 

4. Train, calibrate, and generalise the DL model to be applied to unseen data and validate the output 

quality based on the reference data.  

1.5.2 Research Questions 

The following research questions are derived from the study objectives and sub-objectives listed above: 

1. How to prepare and build the dataset for training, testing and validation? (Objective 2) 

2. What are the crucial criteria for designing the network and performing a multimodal fusion of S-1 

and S-2 data with an attention mechanism? (Objective 3) 

3. How to optimise the network to reduce loss during training and validation for better generalisation 

capability? (Objective 3) 

4. How does the network perform in images with varying cloud cover? Does the fusion with the 

attention mechanism help to increase the classification quality? (Objective 4) 

5. How does the predicted deforestation map compare with the reference data regarding different 

accuracy metrics and qualitative analysis? (Objective 4) 
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Chapter 2  

Study Area and Datasets 

This section highlights geographical information about the study area and the datasets used to conduct the 

study.   

2.1 STUDY AREA 

The study is conducted over a small area of Pará state, the second largest state in Brazil. With about 1.25 

million square kilometres of area, the state is located in the northern part of Brazil. Since 2006 42.65% of 

total deforestation in Legal Amazon has occurred in the Pará state (INPE, n.d.). As the state is considerably 

large, a smaller study area was chosen from the southern part of the state, as depicted in Figure 2.1. The 

study area covers an approximate area of 18 thousand square kilometres. Tropical monsoon climate 

dominates the study area, with annual precipitation exceeding 2000 mm (Griffiths et al., 2018). June, July, 

and August compose the dry seasons. The rest of the year receives frequent rainfall accompanied by 

persistent cloud cover. The highest elevation lies in the southwestern corner of the study area. Its 

approximate elevation is 600m above sea level.  

Figure 2.1 Map of the study area:  a) Location of the study area in a global context; b) Location of the study area inside the 

Pará state along with the footprint of the Sentinel-1 and Sentinel 2 tiles over that. c) The study area map with monthly 

average precipitation for 2017. 
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2.2 DATASETS 

For our study area, the datasets were acquired from 3 different sources. The optical dataset is a Level 1-C 
(L1C) Top of Atmosphere (TOA) reflectance from the S-2 mission, the radar data from Level-1 Ground 
Range Detected (GRD) products of the S-1 mission and the ground truth shapefile for 2017 from 
PRODES. Deforestation shapefiles are distributed by (INPE, n.d.). Since the most recently released 
products of both S-1 and S-2 are kept online in the official data access server for only one month, acquiring 
the data over one month is a considerable challenge. Therefore, for S-1, we acquired all our data from 
Alaska Satellite Facility1 (ASF) mirror using a python wrapper of the ASF2 SearchAPI3. Similarly, for S-2, 
we obtained our images from a public Google Cloud storage dataset4 mirror of the S-2 L1C data products. 
Google hosts this dataset and provides public access to them through Google Cloud console, gsutil, or 
Cloud Storage API. 

2.2.1 Optical Data 

S-2 mission of the European Space Agency (ESA) consists of two constellations of earth observation 
satellites that provide high-resolution optical imagery covering the entire globe with a revisit time of 5 days. 
The L1C product from S-2 has provided Top of Atmosphere (TOA) reflectance data since June 2015 
globally. Each tile of the L1C product covers an area of 100 ×100 km2  in the Universal Transverse Mercator 
(UTM) projected coordinate system. Among all the multispectral bands shown in Table 2.1, only Near-
Infrared, Red, Green, and Blue channel is distributed at a spatial resolution of 10 metres. In addition to 
these bands, L1C products also include qualitative information about cloud masks.   

Table 2.1 Description of multispectral bands of S-2 MultiSpectral Instrument (MSI) sensor 

Band Resolution Central 
Wavelength 

Band Description 

B1 60 m 443 nm Ultra-blue (Coastal and Aerosol) 
B2 10 m 490 nm Blue 
B3 10 m 560 nm Green 
B4 10 m 665 nm Red 
B5 20 m 705 nm Vegetation Red Edge 
B6 20 m 740 nm Vegetation Red Edge 
B7 20 m 783 nm Vegetation Red Edge 
B8 10 m 842 nm Near Infrared (NIR) 
B8a 20 m 865 nm Vegetation Red Edge 
B9 60 m 940 nm Water vapour 
B10 60 m 1375 nm Short Wave Infrared (SWIR) - Cirrus 
B11 20 m 1610 nm Short Wave Infrared (SWIR) 
B12 20 m 2190 nm Short Wave Infrared (SWIR) 

 

2.2.2 Radar Data 

S-1 mission comprises a constellation of two polar-orbiting satellites. They provide data by capturing C-
band SAR images irrespective of the time of the day or the weather. Focused SAR data is detected, multi-
looked, and projected to the ground range using an Earth ellipsoid model in Level-1 GRD Products. Pixel 
values depict the observed magnitude while the phase information of GRD products is lost in the process. 
The resulting image has an approximate square resolution pixels with reduced speckle noise. GRD products 

 

1 https://search.asf.alaska.edu/ 
2 https://cloud.google.com/storage/docs/gsutil 
3 https://github.com/asfadmin/Discovery-asf_search 
4 https://cloud.google.com/storage/docs/public-datasets/sentinel-2 
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at the highest available resolution of 10m (GRDH) were acquired for this study.  

2.2.3 Reference Data 

Primary forest and non-forest data were downloaded for the year 2017 from PRODES (INPE, n.d.). The 

data is available to download as a shapefile or classified raster for each year. PRODES uses satellite images 

from LANDSAT at 30m resolution to produce these maps. The classes in the downloaded reference data 

could be grouped into four classes. The first class is called ‘forest’, which consists of forest areas. The 

second class group is ‘non-forest1’ and ‘non-forest-2’, which is the non-forest class and consists of land 

covers like bare soil, rocks, hill tops, and vegetation cover that are not forest formation. For the 

deforestation class, there are two sub-categories, namely r_𝑦𝑦𝑦𝑦 and d_𝑦𝑦𝑦𝑦. The r_𝑦𝑦𝑦𝑦 is the residual 

deforestation. It is deforestation from an unknown previous year than 𝑦𝑦𝑦𝑦 but was only detected in the 

year 𝑦𝑦𝑦𝑦 because of factors like cloud coverage or unavailable data. The d_𝑦𝑦𝑦𝑦 is the actual 

deforestation for the year 𝑦𝑦𝑦𝑦. And the final class is called ‘hydrography’, which includes bigger water 

bodies and rivers. 

Table 2.2 shows the required data to achieve the objectives of the research and answer all the research 

questions: 

Table 2.2 Overview of datasets used for the study 

Category Data Date Provider 

Optical S-2 L1C MSI (10m bands) 
2017-01-01 to 2017-

12-31 
(ESA, n.d.) 

SAR S-1 GRDH (10m) 
2017-01-01 to 2017-

12-31 
(ESA, n.d.) 

Reference 
Data 

PRODES Deforestation 
(30m) 

2017 (INPE, n.d.) 
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Chapter 3  

Research Methodology 

This chapter provides step-by-step information on transforming the raw acquired data from all the sources 

and making them ready to be used for generating training data.  

3.1 DATA PREPROCESSING 

3.1.1 Sentinel-1 Preprocessing 

The standard generic workflow in Figure 3.1; was used to preprocess the S-1 GRD images. The complete 

workflow to preprocess the data was accomplished using pyroSAR5, a python framework for large-scale 

SAR satellite data processing developed over the APIs provided by European Space Agency (ESA.) Sentinel 

Application Platform (SNAP) (ESA, n.d.).  

The workflow starts with reading multiple files from the adjoining acquisition of the same date. The border 

noise removal algorithm is then used to remove invalid data and low-intensity noise of the scene edges. 

After this, the thermal noise removal tool reduces the noise level in inter-sub-swath texture, particularly by 

normalizing the backscatter signal across the entire scene. With the help of the Slice Assembly operator 

available from the SNAP toolbox, we mosaic the border noise and thermal noise corrected image into a 

single scene. From this point on, the rest of the preprocessing steps are done on the mosaiced scene in 

sequential order.  

The metadata information about the orbit state vector of raw SAR images is generally inaccurate. A precise 

orbit state of the satellite is sometimes determined days/weeks after acquiring the image. This precise orbit 

 

5 https://github.com/johntruckenbrodt/pyroSAR 

Figure 3.1 General pre-processing steps for Sentinel-1 GRD image 
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was applied to generate accurate satellite position and velocity information. After this, we subset the image 

to our area of interest (AOI) and filter the speckle noise to improve the quality of the image. For that, the 

Refined Lee filter is used because of its ability to preserve edges, linear features, and texture information 

(Lee et al., 2009). The next step is to fix the geometric distortion of the topography. Range Doppler terrain 

correction (Schubert and Small, 2008) was used to rectify geometric distortions in the topography, such as 

foreshortening and shadows. It uses a digital elevation model (DEM) to adjust the location of each pixel. 

In the final phase of the preprocessing workflow, the unitless backscatter coefficient is transformed to dB 

using a logarithmic transformation. 

3.1.2 Sentinel-2 Preprocessing 

The S-2 preprocessing pipeline depicted in Figure 3.2 was built using the Python API of the Geospatial 

Data Abstraction Library6 (GDAL/OGR). At first, four tiles covering the study area for a single date were 

read into the workflow. All the bands with a spatial resolution of 10m were extracted from these four 

images, which are red, green, blue, and near-infrared. Simultaneously the vector file that provides 

information about the cloud mask is also extracted and rasterised to stack with the 10m bands of each tile. 

After this, the stacked tile consisting of 10m bands and the cloud mask were mosaiced together as a virtual 

raster and stored in temporary storage. Finally, the virtual raster was clipped with the AOI and saved to the 

file system. 

3.1.3 Reference Data Preparation 

Reference data for the study was prepared by reclassifying the classes described in section 2.2.3. As seen in 

Figure 3.3, most of the deforested areas were recorded before 2017. For future reference, it should be noted 

that the area deforested before 2017 could be well vegetated with shrubs, grass, or small trees in a shorter 

period. However, it takes a considerable amount of time to regrow a deforested patch. Therefore, this 

research aims to map the accumulated deforestation, not only the deforestation from 2017. Therefore, the 

area deforested before and during 2017 was merged to create the deforestation reference class. The rest of 

 

6 https://gdal.org/python/index.html 

Figure 3.2 Pre-processing pipeline for Sentinel 2 L1C data 
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the classes were merged together to form the not-deforested class. After completing the reclassification, 

27.5% of the study area belonged to the deforested class, and 72.5% were not-deforested class. 

3.2 MODEL DEVELOPMENT 

3.2.1 U-Net 

The core structure of our model was adapted from the U-Net architecture, first introduced by (Ronneberger 

et al., 2015) for biomedical image segmentation. The main idea of a U-Net architecture is to use skip-

connection to fuse high semantic but coarse spatial features with corresponding low semantic but finer 

spatial features (Figure 3.4). It receives then the locational information from the encoder layers and 

aggregates it with the decoder features to recover the spatial information. However, the multiscale skip 

connection in the U-Net receives unnecessary information from the low-level encoder features (Khanh et 

al., 2020). Therefore, the network needs to focus on the salient low-level features of the encoder, 

representing rich spatial contextual information 

The fully convolutional model in this research is inspired by the U-Net architecture and is explicitly designed 

to handle image segmentation problems. Figure 3.4 depicts the base architecture for the U-Net proposed 

Figure 3.3 Reference map showing different classes in the study area. 
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in this thesis. The implementation details for each of the layers in the U-Net are elaborated in-depth in 

Figure 3.5. 

The proposed model is a variation of the original U-Net with the same structure for the encoder blocks, 
where we use a 2-D convolutional block followed by a max-pooling layer to encode features representing 
the input image at multiple levels. Each max-pooling operation increases the number of feature mappings 
(channels) in a typical convolutional neural network (CNN) design. However, we opted to maintain a 
consistent number of sixty-four feature maps across our network. Two observations influenced this 
decision. First, because the model has access to low-level features in the upsampling path of the decoder, 
we may allow the network to lose some information after the downsampling layer from the decoder. 
Second, because there is no notion of depth or high temporal frequencies to understand in the input satellite 
images, many feature maps in the upper layers may not be necessary for optimal performance.  

In the encoder, padding of (1,1) was used for convolution operation and padding of (0,0) with stride 

(2,2) in the MaxPool operation to down-scale the feature maps. Transposed-convolution processes are 

followed by concatenation and standard convolution in the decoder part of the network. In addition to the 

padding of (1,1), the output padding of (1,1) 

was used in transposed convolution to 

upscale the feature maps. The objective of the 

decoder is to semantically project the 

discriminative feature representations of the 

encoder (lower resolution) onto the pixel 

space (higher resolution) to obtain a rich 

classification.  

3.2.2 U-Net with Early Fusion 

U-Net with early fusion (EF) is adapted from 

EF implementation by Maretto et al., (2021). 

It follows the same architecture and 

implementation as the base U-Net, with only 

a different input size to the model. All the 

inputs were stacked together as one to feed to 

the network. The rest of the architecture is the 

same U-Net variation as in Figure 3.4. 

Figure 3.4 U-Net architecture 
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3.2.3 U-Net with Late Fusion 

The implementation of multimodal feature fusion is adapted from the late fusion (LF) proposed by Maretto 

et al., (2021). The U-Net encoder is extended in the LF version, as shown in Figure 3.6, where each image 

is processed by its respective encoder. The feature maps created by both encoders were fused after each 

convolutional block. Then, the fused feature maps were cropped and copied to concatenate on the 

corresponding block of the decoder.  

Figure 3.5 Implementation details of the U-Net 

Figure 3.6 U-Net with late feature fusion 
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3.2.4 Late Fusion with Attention Mechanisms 

In a traditional U-Net, skip-connection fuses high semantic but coarse spatial features with corresponding 

low semantic but finer spatial features. This way, it receives the locational information from the encoder 

layers and aggregates it with the decoder features to recover the spatial information. However, the multilevel 

skip connection in the U-Net is prone to receiving unnecessary information from the low-level encoder 

features (Khanh et al., 2020). Therefore, the network must focus on the low-level salient features of the 

encoder, representing rich spatial contextual information. Hence, an attention mechanism is used to filter 

out irrelevant information from the encoder features and overcome the drawback of traditional U-Net 

architecture.  

3.2.4.1 Spatial Attention 

A typical skip connection in a U-Net concatenates the encoder and decoder characteristics, wasting 

computational resources and producing redundant information as the model not always can recognize 

where an object is located. One way to overcome this issue is to use the most significant spatial features 

and give them more weight to determine the target object, which is the primary purpose of the spatial 

attention gate.  

As shown in Figure 3.7, the spatial attention gate takes the input feature from the encoder. To compute the 

spatial attention map, average pooling 𝐹𝑎𝑣𝑔
𝑠 ∈ ℝ1×𝐻×𝑊 and max pooling 𝐹𝑚𝑎𝑥

𝑠 ∈ ℝ1×𝐻×𝑊  were applied 

in the channel dimension of the encoder and concatenated for feature representation purposes. Pooling 

procedures along the channel axis have been found to help emphasize informative locations (Zagoruyko 

and Komodakis, 2016). Woo et al., (2018) inspired the use of average pooling and max-pooling. Zhou et 

al., (2015) suggests using the average-pooling to learn the target of the extent object effectively. Hu et al., 

(2017) used average-pooling in their attention module to calculate spatial statistics. Additionally, max-

pooling was also used because Woo et al., (2018) suggested it helps to generate additional distinctive features 

which help in inferring finer spatial attention maps. The concatenated feature map is then passed through 

a large-sized 7 × 7 convolutional filter for capturing long-range contextual information to produce a spatial 

attention map 𝑀𝑠(𝐹) for the encoder feature. Finally, the spatial attention map 𝑀𝑠(𝐹) was computed by 

applying a sigmoid function on the sum. 

 𝑀𝑠(𝐹) = 𝑓1
7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹), 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]) 

= 𝜎 (𝑓7×7([(𝐹)𝑎𝑣𝑔
𝑠 , (𝐹)𝑚𝑎𝑥

𝑠 ])) 

(3.1) 

where, 𝑓𝑎×𝑎 denotes  𝑎 × 𝑎 filter size convolution operation, and 𝜎 denotes the sigmoid function.  

Figure 3.7 Inside the spatial attention gate. 
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3.2.5 Spatial Attention on Optical Image 

In this variation of the LF, spatial attention was used on top of the convolution block of each encoder level 

(Figure 3.8). The proposed spatial attention module attempts to achieve one main target: to give more 

weight to deforested areas and less weight to cloudy optical images. So, the spatial attention gates feed the 

decoder with more relevant information instead of plain old skip connection from the low-level encoder 

feature with unnecessary information. 

3.2.6 Spatial Attention on Optical and SAR Image 

In addition to using spatial attention only on the optical image, this model also adds spatial attention to the 

SAR image. As can be observed from the network architecture in Figure 3.9, spatial attention was used on 

two separate occasions. The first attention was applied to the encoder feature of the optical image and fused 

with the encoder feature of the SAR image. The second spatial attention was applied to these fused features 

and concatenated with the decoder part of the model. After figuring out a way to pay less attention to the 

optical images, the model also attempts to give more weight to the essential features of SAR images.  

Figure 3.8 LF U-Net with spatial attention on the optical image. 
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3.3 LOSS FUNCTION  

3.3.1 Binary Cross-entropy 

Cross-entropy is defined as the difference between two probability distributions for a given random variable 

or sequence of events. It is widely used for classification objectives, and since segmentation involves pixel-

level classification, it performs effectively (Jadon, 2020). 

Binary Cross-Entropy is defined as: 

 𝐿𝐵𝐶𝐸(𝑦, 𝑦̂) = −(𝑦𝑙𝑜𝑔(𝑦̂) + (1  −  𝑦) 𝑙𝑜𝑔(1  −  𝑦̂)) 
(3.2) 

where 𝑦 is the actual value and 𝑦̂ is the predicted result.  

Figure 3.9 LF U-Net with spatial attention on both input data 
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3.4 MODEL PERFORMANCE METRICS 

3.4.1 Overall Accuracy 

Model overall accuracy calculated using Eq. (3.1) is one of the performance metrics used to evaluate the 

model. The overall accuracy of a classifier was used in two different scenarios. (a) During the training of 

the model, monitor its performance. Furthermore, (b) during the prediction phase where the adaptability 

of the different trained models was evaluated.   

3.4.2 Precision, Recall and F1 Score 

Apart from the overall accuracy, confusion matrices resulting from all the classifier's variations were also 

investigated. Using Eq. (3.3), we can calculate the precision and recall of each class using the confusion 

matrix: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
      𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝+𝑓𝑛
 (3.3) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =
𝑡𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 

(3.4) 

 

where, 𝑡𝑝 is the total number of true positives, 𝑓𝑝 is the number of false positives, and 𝑓𝑛 is the number 

of false negatives. Precision indicates the proportion of deforestation areas correctly identified by the 

classifier. Recall indicates the proportion of deforested areas in the reference data correctly identified by 

the classifier. A harmonic mean of precision and recall parameters is used to calculate the F1 score in Eq. 

(3.5) (Flach and Kull, 2015).  

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
       (3.5) 

3.4.3 Intersection over Union (Jaccard index) 

Proposed initially by Jaccard, (1901), the Jaccard index is an accuracy metric that measures the overlap 

between two sample sets. It is most commonly used for the task of semantic segmentation. For any two 

finite sets, 𝐴 and 𝐵, the Jaccard index is defined as the ratio of the size of the intersection over union (IoU), 

as given in Eq. (3.6): 

 
𝐽(𝐴, 𝐵) =

|𝐴 ⋂ 𝐵|

|𝐴 ⋃ 𝐵|
 (3.6) 

The Jaccard index ranges from [0,1], where 0 indicates no overlap between the target and predicted sample, 

and 1 implies a complete overlap. 
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Chapter 4  

Design of Experiments 

This chapter provides finer details about the necessary setup to answer the research question about the 

need for a multimodal fusion.  

The experiments were set up in two different scenarios. Scenario-1 is designed considering the sub-objective 

3 in section 1.5.1 to evaluate the performance of fusion models in images with different cloud cover and 

their impact on the accuracy. Based on the result of  scenario-1, scenario-2 was designed to achieve sub-

objective 4 in section 1.5.1. The sub-objective is to train a model that can be implemented in a real-world 

scenario to detect deforestation irrespective of any atmospheric condition.  

4.1 IMAGE PAIRS  

Before setting up the experiments for each scenario, a common table containing images from both sensors 

was created (Table 4.1). Images from this common table were then used in a different setup for different 

scenarios.  

The table contains images from S-1 and S-2 for the year 2017. Images from S-2 were classified into five 

different cloudy conditions inside the table. Cloud cover percentage information on the metadata provided 

with all the S-2 images was used to categorize the images. Five images for each category were chosen for 

each cloudy scenario. Only four images were chosen for the 60-80% cloudy scenario due to the 

unavailability of data during 2017. To form the image pair for a corresponding S-2 image, we choose the 

next closest acquisition date available for the S-1 image. A summary of all the 24 image pairs and their 

acquisition date is shown in Table 4.1.   

Table 4.1 Image pair used for different cloudy scenarios. 

Cloudy Scenarios Image ID S-2 Image S-1 Image 

No cloud 

im1 26-06-2017 25-06-2017 

im2 06-07-2017 13-07-2017 

im3 16-07-2017 13-07-2017 

im4 21-07-2017 19-07-2017 

im5 31-07-2017 31-07-2017 

20-40% 

im1 28-12-2017 22-12-2017 

im2 29-10-2017 29-10-2017 

im3 03-11-2017 04-11-2017 

im4 29-09-2017 29-09-2017 

im5 08-03-2017 09-03-2017 

40-60% 

im1 28-03-2017 02-04-2017 

im2 07-04-2017 02-04-2017 

im3 27-05-2017 01-06-2017 

im4 24-09-2017 29-09-2017 

im5 03-12-2017 28-11-2017 

60-80% 

im1 13-12-2017 10-12-2017 

im2 26-02-2017 25-02-2017 

im3 06-02-2017 01-02-2017 

im4 03-12-2017 28-11-2017 
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Above 80% 

im1 07-01-2017 08-01-2017 

im2 27-01-2017 01-02-2017 

im3 16-02-2017 13-02-2017 

im4 18-03-2017 21-03-2017 

im5 18-11-2017 16-11-2017 

4.2 SCENARIO I: TRAIN & TEST ON THE SAME IMAGE 

Scenario-1 aims to evaluate the performance effects of combining the two data to detect deforestation in 

different cloudy scenarios. The following sections explain more information about how the experiment 

scenario was set up.  

4.2.1 Normalisation 

Input images were normalised in the range of [0,1] using a minimum-maximum scaling transformation. 

Separate minimum and maximum values of each individual image were used to transform between zero 

and one.   

4.2.2 Sampling 

All the images were split into training, testing, and validation tiles to prepare training data for the model. 

First, the entire dataset of input and labels was divided into 25 larger tiles, with 2767 × 2810 pixels each 

(Figure 4.1). Each of the 25 tiles was then split in a ratio of  60:20:20 to get the training, testing, and 

validation sets. There were 15 training tiles, 5 test tiles and five validation tiles. This split was done randomly 

in NumPy7 with a fixed random seed set to 4327. Different random seeds were randomly chosen before 

fixing it to 4327; this ensured that the training and testing samples were not spatially correlated. The spatial 

distribution of the train, test, and validation sets is shown by overlaying with a colour code in Figure 4.2.  

 

7 https://numpy.org/ 

Figure 4.1 Initial splitting of the entire image into a 5×5 tile for a Sentinel-S2 image (on the left) and the 

corresponding label (on the right). 
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4.2.3 Generating Patches 

All the variations of the model used in this study had an input size of 512×512 pixels. The training, testing 

and validation set tiles were further split into smaller patches of this size. While generating the patches, all 

patches containing NoData or null values were discarded from the input data to keep the training inputs 

simpler. Overlapping was used in the last row and column to avoid wasting input data information (Figure 

4.3). In the end, each image pair had 448 training patches, 149 validation patches and 152 testing patches.  

Figure 4.3 Generated patch (512×512) from an example tile (2767× 2810) with the highlighted box showing the 

overlapping part. 

Figure 4.2 Training, testing and validation split of the entire study area 



DEEP LEARNING-BASED MULTIMODAL FUSION OF SENTINEL-1 AND SENTINEL-2 DATA FOR MAPPING  DEFORESTED AREAS IN THE AMAZON RAINFOREST 

23 

4.2.4  Experiments 

Initial experiments were performed by training the U-Net with individual S-1 and S-2 images as input. U-

Net with three layers of encoder and decoder block (U-Net3) and U-Net with two layers of encoder and 

decoder block (U-Net2) were experimented with. A total of 24 S-1 images and 24 S-2 images were used to 

train the network. The next step was to combine the two input images through the EF U-Net model 

discussed in section 3.2.2. Therefore, the stacked input of the S1+S2 ([VV, VH, NIR, R, G, B, Cloud Mask]) 

image was used as the input to this model. EF of the two images uses the same underlying architecture as 

U-Net with only a difference in the input shape of combined channels from the S-1 and S-2 images.  

The next iteration of the experiment used three different variations of LF architecture on the 24-image 

pairs, resulting in 72 runs. Except for the first LF architecture, the other two used spatial attention 

mechanisms to combine the input data. An overview of all these experiments is summarized in Table 4.2.  

Table 4.2 Setup of image pairs as input to all different variations of the model. 

Model: U-Net3 U-Net3 LF U-Net3 LF Spatial 

attention on S-2 

U-Net3 LF Spatial 

attention on both 

Input S-1 S-2 Stacked(S1+S2) [S-1, S-2] [S-1, S-2] [S-1, S-2] 

S2-Cloud % Number of runs per cloud scenario 

0 5 5 5 5 5 5 

20-40 5 5 5 5 5 5 

40-60 5 5 5 5 5 5 

60-80 4 4 4 4 4 4 

>80 5 5 5 5 5 5 

Total 144 

 

4.2.5 Implementation Details 

All the experiments in this research were implemented using the TensorFlow-Keras8 framework. A 16-

gigabyte NVIDIA RTX A4000 graphics card hosted on the geospatial computing platform9 (CRIB) servers 

was used for GPU-assisted computing. A summary of the technical specification for the used server is 

shown in Table 4.3. 

Table 4.3 Specification of the server unit used for model training 

Unit PowerEdge R730 

Architecture Intel x86-64 

CPU E5-2695 v4 

Max Speed (GHz) 3.3 

Cores 2 × 18 

Thread 72 

Memory (GB) 768 

GPU NVIDIA RTX A4000 (CC 8.6) 

 

8 https://keras.io/ 
9 https://crib.utwente.nl/ 
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Some initial experiments were performed with one single cloud-free image pair as an input to optimize the 

hyperparameters of the models. The initial experiment was conducted with different variations of network 

depth and different loss functions. In this phase, there were minor improvements in the overall accuracy 

when using  U-Net3 over U-Net2. Therefore, only U-Net3 were chosen to move forward with the training.   

A summary of all the hyper-parameters is presented in above Table 4.4. All U-Net variations used in this 

scenario were trained with a U-Net3. Because of limited GPU memory, it was impossible to use a batch 

size larger than two. Adaptive moment estimation (Adam) optimiser (Kingma and Ba, 2014) with a learning 

rate of 0.00007 was used to train the network. The maximum number of epochs for each model was set to 

10000, and model callbacks like early-stopping and model checkpoint were used to train and restore the 

best model weights. The callbacks monitor the validation IoU with the patience of 30 epochs before early-

stopping the training and restoring the model with the best weights. In this context, the patience of 30 

epochs implies that the model training will terminate only if the chosen performance (Validation IoU in 

this study) metrics do not improve for 30 epochs in a row.  

Table 4.4 Summary of hyperparameters used. 

 

Total trainable parameters and time for each model to complete each training epoch are presented in Table 
4.5. As the number of parameters increases, the model takes more time to complete each epoch of training, 
consequently increasing the total training time. 

Table 4.5 Model trainable parameters and training time for one epoch during scenario-1 

 

4.3 SCENARIO II: TRAIN & TEST ON DIFFERENT IMAGES 

In this experiment scenario, the main objective was to develop a model that can be used in a real-world 

situation, where the model should be able to generalise unseen data from any date or under any cloudy 

conditions. Therefore, the training data preparation and implementation details differ from that used in the 

previous scenario.  

Hyper parameters Value 

Network depth 3 

Optimizer Adam 

Learning rate 0.00007 

Early stopping patience 30 

Max number of epochs 10000 

Batch size 2 

Loss function BCE 

Model No. of trainable params Train time per epoch 

U-Net3 S-1 1,297,282 40 ± 3 seconds 

U-Net3 S-2 1,299,010 43 ± 3 seconds 

U-Net3 EF 1,300,162 47 ± 2 seconds 

U-Net3 LF 2,372,610 55 ± 3 seconds 

Spatial attention on optical 2,373,100 68 ± 3 seconds 

Spatial attention on both 2,373,590 83 ± 4 seconds 
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4.3.1 Image Pair 

Out of 24 image pairs, ten were used for training, 5 for validation and 5 for testing. Image pairs with id 

‘im2’ (Table 4.1) from each of the five cloudy scenarios were used for training. Image pair id ‘im4’ were 

used for testing, and image pair id ‘im3’ of the 60-80% cloud category plus ‘im5’ of the rest four cloud 

categories were used for validation.  

4.3.2 Normalization 

Global minimum and maximum values for optical data and another global minimum and maximum values 

for SAR data were used separately to normalize all the training, testing, and validation image in the range 

of [0,1]. This normalization is done to keep the same transformation across all the images. Otherwise, it 

may confuse the model with a different range of numbers for each image and make it unable to converge 

(Singh and Singh, 2020). Figure 4.4 shows the normalized histograms of optical data in different cloud 

scenarios. And an example of a normalized histogram of the S-1 image is shown in Figure 4.5. 

  

Figure 4.5 Example of a normalized histogram of S-1 image. 

Figure 4.4 Normalized histogram of S-2 images at different cloudy conditions 
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4.3.3 Generating Patches  

Before start generating the patches, the whole image was trimmed down from all four sides to eliminate all 

the NoData values. After that, training and validation patches with 512×512 pixels were extracted. The 

whole spatial extent was used to extract patches as training, and testing data were split over different image 

pairs. Patches from the all the images were concatenated on the batch axis to create a total of 6210 training 

patches with a size of 512×512×5 for optical data and 512×512×2 for SAR data. For the validation image, 

there was a total of 3105 patches. Patches from the test image pair were extracted on the fly to perform 

prediction and then reconstructed to create a large classification map for the entire extent.  

Training and validation samples were wrapped in a data generator using the ‘Sequence’ class of Keras to 

avoid loading all the images into GPU memory. In this way, the network only loads the specified number 

of batch sizes at a time onto the GPU memory. The sequence of the patches was shuffled at the end of 

each epoch to ensure that the model does not receive the batches in a similar pattern and hence avoid 

overfitting.  

4.3.4 Experiments and Implementation  

Due to time constraints and the large training and validation data size, a lighter variation of U-Net2 

architecture was used to carry out the experiments. Optical and SAR data were trained as standalone input 

and combined. The combined experiments use the simpler U-Net2 LF. Adam optimiser with a learning 

rate scheduler that reduces at an exponential rate was used. The initial learning rate was set to 0.01 with a 

decay rate of 0.9 per epoch.  

A summary of hyperparameters used for the LF U-Net2 and base U-Net2 is presented in Table 4.6, and 

the time taken for each epoch and number of trainable parameters is presented in Table 4.7  

Table 4.6 Summary of hyperparameters for U-Net2 and U-Net2 with LF. 

 

Table 4.7 Model trainable parameters and training time for one epoch for scenario-II 

 

Hyper parameters Value 

Network depth 2 

Optimizer Adam 

Learning rate 0.01 

Decay rate 0.9 

Early stopping patience 35 

Max number of epochs 10000 

Batch size 2 

Loss function BCE 

Model Input No. of trainable params Train time per epoch 

U-Net2 S1 985,570 550 ± 5 seconds 

U-Net2 S2 985,570 560 ± 5 seconds 

U-Net2 LF [S1, S2] 1,822,338 890 ± 6 seconds 
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Chapter 5  

Result 

5.1 SCENARIO I: TRAIN & TEST ON THE SAME IMAGE 

Scenario-1 presents the performance metrics and classified map combining the two data to detect 

deforestation in different cloudy scenarios. The models in this scenario were trained and evaluated using 

the different spatial locations of the same image.  

5.1.1 Individual Image & Early Fusion 

The individual image of an image pair and their EF were trained with a base U-Net3 to assess the 

performance in different cloudy scenarios. 

5.1.1.1 Performance Metrics 

The F1 score in all the tables presented is the accuracy for only the deforested class and not a combined 

overall F1 score of all the classes. The F1 and IoU values in Table 5.1 indicate an average of all the image 

pairs for each cloudy scenario. And σF1 and σIoU are the standard deviations of the performance metrics, 

which indicates how the result within a cloudy scenario the result varies from the mean.  

It is noticeable from Table 5.1 that an individual S-2 image has the best and most consistent F1 and IoU 

scores in a cloudless condition. This consistency is because a standalone optical image has superior feature 

representation capability compared to a radar image. It also performs better than the early fusion because 

the simpler data of the optical sensor make it easy for the model to extract features.   

Table 5.1 Mean F1 and IoU score of deforested class with the different input images to a U-Net3. The bold 

numbers indicate the highest accuracy for each cloud scenario among the three inputs. 

5.1.1.2 Qualitative Analysis 

When we see the classified map in Figure 5.1, the optical image was able to classify the deforested areas 

much better than the standalone S-1 image. The S-1 image mostly under-estimated the deforested areas. 

This underestimation is due to the inability of a radar image to distinguish between a backscatter intensity 

of forest and deforested area with regrowth of smaller vegetation (Durieux et al., 2019). Also, as discussed 

in section 3.1.3, most of the deforested areas were mapped in the earlier years and, therefore, could undergo 

an initial reforestation phase, making it difficult for the model to differentiate. An example of this 

phenomenon is discussed below in section 5.2.2.  

 S-1 S-2 [S1+S2] Stacked 

Cloud F1 IoU σF1 σIoU F1 IoU σ F1 σIoU F1 IoU σ F1 σIoU 

0% 76.74 62.28 1.66 2.17 87.75 78.18 0.28 0.44 87.42 77.62 0.42 0.73 

20-40% 80.56 67.49 1.97 2.73 72.55 57.42 7.44 8.47 80.72 67.91 4.59 6.23 

40-60% 79.67 66.27 2.39 3.31 71.53 55.87 4.54 5.39 80.52 67.44 2.06 2.90 

60-80% 79.65 66.23 2.11 2.87 41.26 28.32 20.28 18.31 80.79 67.79 1.36 1.91 

>80% 80.24 67.13 0.63 0.87 16.09 9.63 16.12 10.19 81.26 68.50 2.27 3.22 
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The accuracy of the classified map dramatically changes when clouds are present in the image. However, 

the result from the radar image remains stable since those are not affected by clouds. Figure 5.2 shows the 

result of the classified map using different inputs at 40-60% cloud cover. The poor performance of using 

an optical image with 100% cloud is also evident in Figure 5.3. 

When the input was changed from individual images to a stacked input of image pair, it was noticed that 

the model could avoid clouds from the S-2 image and extract representative features from the S-1 image. 

The accuracy score when using stacked input reflects that the model maintained a consistent result 

irrespective of the cloud cover in the S-2 image.  

  

Figure 5.1 Classified map of test tile 9 using U-Net3. Top-left image shows the reference label superimposed on S-2 

image, and the others show the classification maps with different input images at zero percent cloud scenario 

overlaid on their input S-1 and S-2 image. 
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Figure 5.2 Classified map of test tile 9 using U-Net3. Top-left image shows the reference label superimposed on S-2 

image, and the rest shows the classification map using different input images at 40-60% cloud cover overlaid on 

their input S-1 and S-2 image. 
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Figure 5.3 Classified map of test tile 9 using U-Net3. Top-left image shows the reference label superimposed on a 

clear S-2 image, and the rest shows the classification map using different input images at 80-100% cloud cover 

overlaid on their input S-1 and S-2 image. 
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5.1.2 Late Fusion 

5.1.2.1 Performance Metrics 

Compared to the performance metrics using a standalone S-2 image under cloud-free conditions, the 

accuracy of all the variations of LF U-Net3 was almost identical (Table 5.2). During a cloudy scenario, the 

LF helped increase the accuracy by using both S-2 and S-1 input. This increase was more pronounced if 

the result was compared with a standalone S-2 image. Therefore, the result from the LF implies that fusion 

is necessary to ignore the cloud in the S-2 image automatically.  

Table 5.2 Mean F1 and IoU score of deforested class with the input of S-1 and S-2 images to different LF U-Net3 

 LF Spatial attention on S-2 Spatial attention on both 

Cloud  F1 IoU σF1 σIoU F1 IoU σ F1 σIoU F1 IoU σ F1 σIoU 

0% 86.15 75.70 1.40 2.14 86.46 76.16 0.70 1.09 87.17 77.26 0.59 0.93 

20-40% 81.54 68.76 1.98 2.97 81.73 69.11 0.49 0.69 81.63 69.01 1.80 2.57 

40-60% 80.82 67.91 2.79 3.87 81.79 69.19 0.56 0.80 81.20 68.37 0.93 1.32 

60-80% 79.50 66.10 3.35 4.49 78.79 65.09 2.74 3.76 82.32 69.97 1.00 1.45 

>80% 79.48 66.18 4.51 6.09 80.55 67.50 2.54 3.55 79.63 66.22 2.44 3.36 

The performance of two spatial attention variations was better in most scenarios than using a standard LF 

by a small margin. The most notable improvement of using the attention mechanism was for cloud cover 

between 60-80%, where spatial attention on both inputs improves the F1 score by almost 2%.  

An overall summary of all the results comparing fusion models with individual and early fusion is 

demonstrated in Table 5.3. The comparison shows that the fusion with attention mechanism has the best 

performance metrics in most cloudy scenarios. And therefore, the attention mechanism has the potential 

to improve further if the architecture is modified a little and trained with larger training samples.  

Table 5.3 Summary of results from all experiments in scenario-1 

 U-Net U-Net EF LF Att. on S-2 Att. on both 

Input S-1 S-2 [S-1,S-2] [S-1,S-2] [S-1,S-2] [S-1,S-2] 

Cloud  F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU 

0% 76.74 62.28 87.75 78.18 87.42 77.62 86.15 75.70 86.46 76.16 87.17 77.26 

20-40% 80.56 67.49 72.55 57.42 80.72 67.91 81.54 68.76 81.73 69.11 81.63 69.01 

40-60% 79.67 66.27 71.53 55.87 80.52 67.44 80.82 67.91 81.79 69.19 81.20 68.37 

60-80% 79.65 66.23 41.26 28.32 80.79 67.79 79.50 66.10 78.79 65.09 82.32 69.97 

>80% 80.24 67.13 16.09 9.63 81.26 68.50 79.48 66.18 80.55 67.50 79.63 66.22 

5.1.2.2 Qualitative Analysis 

The classification map in Figure 5.4 and Figure 5.5 displays the output of the LF models in two different 

cloudy scenarios. At zero percent cloud condition (Figure 5.4), all the models could consistently delineate 

between the deforested and not-deforested classes. The edges were well-preserved, and most of the 

deforestation patches were extracted according to the reference data.  

Compared to the predicted map from zero per cent cloud, the quality of the classification map reduced 

slightly during a more cloudy situation (Figure 5.5:  Cloud cover: 40-60% and Figure 5.6: Cloud cover 80-

100%). In cloudy scenarios, the performance of the LF models emulates the performance of a standalone 

S-1 image. The reason is that out of an S-1 image and a cloudy S-2 image, the most learnable feature for an 
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LF model was S-1; therefore, the result looks like the model has automatically output a map that resembles 

closely like it was classified by just using S-1 image. Hence, all the models output a consistent result using 

an S-1 radar image during a cloudy scenario. Moreover, if the image is clear, it gives a more accurate result 

using the feature of the S-2 image.  

  

Figure 5.4 Classified map of test tile 9 using different LF U-Net3. Top-left image shows the reference label 

superimposed on a clear S-2 image, and the rest shows the classification map using different input image pairs at 0% 

cloud cover overlaid on their input S-2 image. 
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Figure 5.5 Classified map of test tile 9 using different LF U-Net3. Top-left image shows the reference label 

superimposed on a clear S-2 image, and the rest shows the classification map using different input image pairs at 40-

60% cloud cover overlaid on their input S-1 and S-2 image. 
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Figure 5.6 Classified map of test tile 9 using different LF U-Net3. Top-left image shows the reference label 

superimposed on a clear S-2 image, and the rest shows the classification map using different input image pairs at 80-

100% cloud cover overlaid on their input S-1 and S-2 image. 

 



DEEP LEARNING-BASED MULTIMODAL FUSION OF SENTINEL-1 AND SENTINEL-2 DATA FOR MAPPING  DEFORESTED AREAS IN THE AMAZON RAINFOREST 

35 

 

5.2 SCENARIO II: TRAIN & TEST ON DIFFERENT IMAGE 

This section presents the result from scenario 2 with the primary objective of developing a model that can 

be used in a real-world situation and be able to generalise unseen data from any date or under any cloudy 

conditions.  

5.2.1 Performance Metrics 

A summary of all the results from this scenario is presented in Table 5.4. A reduction in the F1 and IoU 

scores can be noticed when the results of using individual S-2 images are compared with results from 

scenario-1 in section 5.1. This reduction is because only 20% of the training images were cloud-free, and 

80% were cloudy. As the amount of training data for S-2 was imbalanced with more cloudy images, the 

model training process for S-2 data could not find an optimal set of weights to generalise both cloudy and 

cloud-free images.  

On the other hand, the results from the experiment using the S-1 input image improved from 80% F1 score 

in scenario-1 to 85% F1 score in the current scenario. The higher accuracy of S-1 for scenario-2  is mainly 

because the model had ten times more training samples to learn from and, therefore, could perform better 

during inference. Therefore, it is evident that the accuracy can be improved by increasing the training 

samples.  

The LF result during the zero per cent cloud scenario did not improve compared to scenario-1. Scenario-1 

had an average accuracy of 87.17% F1 score at cloudless condition, whereas it is 85.46 for LF U-Net2 for 

scenario-2. The leading cause goes back to the same sample imbalance problem discussed above. Another 

reason could be that the LF needs much more samples to train and generalize than the standalone sensors. 

The result remains constant for all the other conditions when there was more than 20% of cloud coverage 

in the S-2 image. In those cases, the model also learned to ignore the clouds in the S-2 image automatically 

and focus on the S-1 image to classify deforested areas.  

Table 5.4 Summary of results using U-Net2 with and without fusion. 

 S-2 with U-Net2  S-1 with U-Net2 
[S-1, S-2] with LF U-

Net2 

Cloud F1 IoU F1 IoU F1 IoU 

No cloud 78.92 65.19 85.52 74.71 85.46 74.61 

20-40% 66.41 49.72 85.51 74.68 85.50 74.68 

40-60% 3.90 2.00 84.00 72.41 84.91 73.77 

60-80% 33.77 20.31 85.85 75.20 85.18 74.19 

>80% 3.46 1.76 85.65 74.91 84.74 73.53 

5.2.2 Qualitative Analysis 

A close view of the classification quality generated from LF U-Net2 is displayed in Figure 5.7. The output 

in the figure was generated using a test image pair with 40-60% cloud cover. A more zoomed-in view from 

Figure 5.8 reveals the superior edge detection capability of the model. The reference image has a spatial 

resolution of 30m and does not perfectly align if superimposed on top of an input S-2 image. However, the 

prediction from the model gives a better representation of the deforestation patch than the reference data.  

It can segment the deforested patches of land from the not-deforested class very well.  
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Figure 5.7 Close view of a classified map from LF U-Net2 compared with reference data 
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Even though the model performs adequately in most scenarios, it also has limitations. An example of such 

shortcomings is depicted in Figure 5.9. The map from the Figure 5.9 shows two types of error that most 

of the classified map from U-Net2 LF and  S-1 with the U-Net2 model produces. The error map is 

calculated by subtracting the prediction map from the reference map and portrays the distribution of false 

positives and false negatives over the whole output area. A false positive is where the model incorrectly 

predicted the region as deforested and is highlighted in pink. False negative is the deforested areas in the 

reference data that the model could not identify and is highlighted in orange.  

The bottom left image, highlighted with a red frame, shows an example of false-negative areas overlaid with 

orange. According to the reference data, the orange area indicates that it should be a deforested area, but 

the model could not predict it as deforestation. The areas that could not identify as deforested are mainly 

due to two underlying reasons. 1) The model struggles to identify an area as deforested if there has been a 

regrowth of vegetation (further discussed in section 3.1.3). This similarity makes it too difficult for the 

model to identify these regrowth areas. Although they are reforested, they are not primary forests anymore 

and, for that reason, are labelled as deforestation in the reference data. 2) The edges of a deforestation patch 

in the reference data do not align perfectly with the input data. This alignment issue is mainly because of 

the resolution difference, since the reference data was generated from a satellite image with 30m spatial 

resolution compared to the 10m spatial resolution of the input data.  

The second type of error highlighted inside the blue frame is false positives areas overlaid with pink. These 

are the areas that the model predicted as deforestation, but they are not deforested in the reference data. 

Rocky outcrops, bare soil or sparsely vegetated hilltops are some examples of ambiguous areas that the 

model classifies as deforestation. None of the models experimented with in this study could distinguish 

between such an ambiguous class that resembles a deforested land. However, this can probably be fixed 

with the inclusion of a digital elevation model (DEM). The DEM can be integrated as a separate channel 

to the model's input.  

Figure 5.8 Map showing the quality of predicted result compared to reference data when overlayed on top of an 

input S-2 image.  
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Figure 5.9 False positives and false negatives of the predicted map overlaid on top of input S-2 image. 
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5.3 FINAL RECAP 

The result of each experiment and their performance analysis is presented in this section. For scenario-1, it 

was noticed that the performance of EF U-Net3 and base U-Net3 with standalone input has the best 

performance with zero-cloud cover images. Moreover, the performance of the S-2 individual image 

degrades rapidly with the increase in the cloud cover. As expected, since SAR data is not affected by clouds, 

the performance of the S-1 images remains stable irrespective of the cloud cover scenario. The same stability 

is also observed in the EF scenarios. Even though this stable performance was not perfect, it still somehow 

avoids features from the S-2 cloudy image and uses the features from the S-1 image. Nevertheless, the 

prediction from EF still had room to improve as it fell short of the majority of the LF models in terms of 

accuracy.  

Scenario-1, with different LF and attention mechanisms, has overall results that outperform the EF results. 

The result from LF models had a similar level of accuracy to that of a standalone S-2 image when the image 

has no clouds. However, the LF and the LF with attention mechanisms outperformed the others when the 

input image had clouds. The visual quality of the result from LF models was better in delineating the edge 

of deforestation patches. The main limitation of all the LF and EF was that the result of fusion does not 

significantly improve the performance compared to performance from standalone S-2 cloud-free inputs.  

In scenario-2, a more realistic experiment was set up. The model was trained with much more training 

samples, and the prediction was performed on unseen images of the same area. Due to time constraints, 

only one variation of U-Net2 with LF was performed. The results suggest that the model can predict 

deforested areas regardless of any cloud cover situation. The prediction is also stable with increasing cloud 

cover in the input images. This stability suggests that the model was able to avoid any amount of cloud in 

the input S-2 image and extract features from only the S-1 image during a cloudy scenario. However, the 

major drawback of this experiment is that the fusion of a cloud-free image pair yields in similar result to 

that of an image pair with a cloudy scenario. However, this result may be explained by the imbalance of 

cloudy and non-cloudy images in the training samples. Nevertheless, none of the experiments performed 

in this research could differentiate between the bare rock on a hilltop with deforested areas.  
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Chapter 6  

Discussion 

In this section, a more comprehensive scope of the study is discussed by comparing the result of this 

research with other similar studies and discussing the implication of this study in a broader scope.   

6.1 COMPARISON WITH OTHER STUDIES 

It is challenging to compare this research with other studies as most of the studies use their datasets in 

different study areas and applied different models to tackle a specific challenge. No studies set up their 

experiments based on cloudy images to train their model; hence, comparing the accuracy and other 

performance metrics would be inappropriate. However, multiple studies utilise cloud-free optical images to 

study deforestation and other LULC mapping methods. Ortega et al., (2021) used different FCN-based 

architectures to compare optical and SAR data for deforestation mapping. Their experiment found a mean 

average precision of 93.65 when using S-2 data and 85.05 when using S-1 data. Nevertheless, the accuracy 

attained by them is similar to this research when it is compared with non-cloudy scenarios.  

John and Zhang, (2022) used attention-based U-Net for detecting deforestation using satellite imagery, 

which partially resembles the one used in this research. The attention mechanism is similar to this research 

but not entirely the same. They perform their experiment using a three-band RGB dataset of the Amazon 

Rainforest (Bragagnolo et al., 2019) and 4-band RGB+NIR multispectral data for the Atlantic Forest 

(Bragagnolo et al., 2021). They achieved an IoU of 91.99%. However, the semantics of their classification 

was much more straightforward than in this study. They split their binary class into forest and non-forest. 

The non-forest class includes everything else than forest, making it a more straightforward classification 

problem than this study. Also, they produced their label using a modified k-means clustering algorithm on 

the input dataset. Therefore, they had the exact matching resolution for input and target data, which helped 

them achieve good accuracy.   

Fusion of optical and SAR images using SVM for LULC classification was performed by Gibril et al., (2016); 

R. Zhang et al., (2020) in a cloud-free scenario yielded a lower accuracy than this research. This lower 

accuracy is because the neural network used in this research is superior in learning more complex features 

over an SVM (Support Vector Machines).  

 

6.2 RESEARCH IMPLICATIONS  

In the domain of image classification from remotely sensed imagery, most researches rely heavily on the 

availability of cloud-free optical images. The main advantage of this study is that it assessed the performance 

of the fusion models with cloudy images. Very few studies use cloudy images as part of their training 

process. A few variations of GANs (Gao et al., 2020b; Grohnfeldt et al., 2018) try to remove clouds from 

the optical image. However, the resulting image from GAN-based architectures is often artificial and can 

create undesirable artefacts. Several studies fuse cloud-free optical and SAR images at a pixel level to 

enhance the output image. However, they cannot deal with the situation when there are noises in either 

image.  

Nevertheless, to the best knowledge, during this research, zero studies assessed the performance of their 

models in a combination of cloudy optical images and SAR data to identify deforestation or other 
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segmentation problem in the field of image classification from satellite imagery.  Furthermore, the fusion 

models can output impressive classification results even during an extreme cloud cover scenario. Therefore, 

the primary contribution of this research is a cloud-independent deforestation mapping application which 

works in any season and weather condition. This research also demonstrates that the scientific methods 

used for this study could be easily modified and adapted to study different remote sensing segmentation 

problems that are held back due to persistent cloud cover. Examples of such studies include change 

detection, wetland monitoring (Montgomery et al., 2019), flood mapping (D’Addabbo et al., 2016), and 

real-time wild-fire monitoring (Zhang et al., 2021), disaster mitigation, and many others.  
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Chapter 7  

Conclusion and Future Developments 

7.1 CONCLUSIONS 

This study explored a deep learning-based multimodal fusion of S-1 and S-2 data for mapping deforestation. 

Initial experiments were performed to understand the ability of each sensor to map deforestation in 

different cloud-cover scenarios. The initial experiments were performed with a twofold objective. The first 

objective was to identify how the model performs on each individual image of the image pairs with different 

cloudy scenarios. The second objective was to explore different fusion mechanisms that automatically 

exclude features from cloudy optical images in cases of high obstruction by clouds and rely more on radar 

images. Different performance analysis metrics – F1 score, IoU score, and qualitative map analysis- show 

that the fusion improves the consistency of mapping approaches, allowing it to generate maps in any 

conditions. The results from LF architectures perform similarly to each other in different cloud scenarios. 

Using an attention mechanism in the LF increases the classification accuracy only by a couple of fractions, 

showing the need for further improvements in the attention component. Therefore, plain LF was used in 

the final set of experiments. For the final experiment, 10 out of 24 image pair was used to generate the 

training sample. The number of images for this experiment was significantly more prominent than in all the 

previous experiments. Therefore, a lighter architecture with only two encoder blocks and two decoder 

blocks of U-Net was used to perform the LF. The model of the final experiments was used to predict an 

unseen image pair. The result outperforms the initial experiments for several cloudy scenarios. One major 

drawback of this experiment is that the accuracy does not improve when cloud-free images are in available 

the optical input. This model behaviour could be attributed to the imbalance between the amount of cloudy 

and non-cloudy training samples. The model also lacks on robustness to differentiate between bare rocks 

on a hilltop and a deforested patch.  

This section also includes the answer to the research questions that were presented in Chapter 1: 

1. How to prepare and build the dataset for training, testing and validation?  

Prior to preparing the dataset, a general preprocessing workflow was developed to convert the raw 

downloaded files to the AOI of the study. Section 3.1 demonstrate different preprocessing steps 

that each dataset went through before preparing them for training, testing and validation. After 

preprocessing, train test and validation patches were generated for two different scenarios. In 

scenario-1, the same image was divided to split train, test and validation patches; in scenario-2, the 

training, testing, and validation data were chosen from different images.  

2. What are the crucial criteria for designing the network and performing a multimodal fusion of S-1 

and S-2 data with an attention mechanism? 

In total, there were four different variations of U-Net architecture that were implemented in this 

research. The base U-Net3 and U-Net2 architecture take individual input to assess their 

performance at different cloud covers in the optical images. The U-Net3 was also used for 

performing the EF of the stacked input images. The rest three architectures were developed to 

perform the LF. All of the designed LF architecture had a dual encoder which is concatenated at 

each encoder level to perform the multimodal fusion. Two different variations of spatial attention 

were also used in the LF U-Net. Spatial attention on the optical data was designed to give less 

weight to the cloudy pixels in the optical input features. Spatial attention on both the input was 
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designed such that, in addition to less attention to the cloudy optical image, it should also give 

more attention to the representative features from the SAR image.  

3. How to optimise the network to better optimize the loss during training and validation for better 

generalisation capability? 

As demonstrated in section 4.2.4, initial experiments were performed with different 

hyperparameters of the learning rate, the number of encoder blocks in the network, and batch size. 

After the result from these experiments, the hyperparameters with the best overall accuracy were 

chosen as a starting point for all the 144 experiments in Scenario-1. The hyperparameters used in 

Scenario-1 were used as a reference point to further tune the hyperparameters in Scenario-2. Apart 

from the hyperparameters, different callbacks were used throughout the experiments to monitor 

the model performance during the training process, stop it from overfitting, and give a generalized 

prediction.   

4. How does the network perform in images with varying cloud cover? Does the fusion with the 

attention mechanism help to increase the classification quality? 

The performance metrics of Scenario-1 discussed in section 5.1 suggest that performing a 

multimodal fusion is necessary to create a robust fusion mechanism that does not relies on the 

availability of a cloud-free optical image. The result suggests that a multimodal fusion model could 

identify a deforested patch of land regardless of cloud presence in the optical image. The same 

conclusion can be drawn from the discussion in section 5.2 that the fusion automatically helps 

avoid cloudy image pixels and map deforestation using S-1 data.  However, the fusion does not 

necessarily improve the accuracy even when the optical images are cloud-free. The fusion 

automatically detects features from the most representative features out of the input images and 

performs prediction. Using an attention mechanism in the fusion results in a similar performance 

to that of an LF. Therefore further studies regarding the attention mechanism are necessary to 

improve the result.  

5. How does the predicted deforestation map compare with the reference data regarding different 

accuracy metrics and qualitative analysis? 

The predicted map's qualitative and quantitative analysis is discussed for each scenario in sections 

5.1.1.2 and 5.2.2. The result suggests that the LF U-Net model is capable of predicting impressive 

classification results when there is zero per cent cloud in the optical image. Moreover, in addition 

to that, the model can also generate good quality results in a 100% cloud cover scenario.  

 

7.2 FUTURE DEVELOPMENTS 

Finally, for future developments, the following steps are recommended: 

• Reference data quality: The reference data used in this study is generated from various LANDSAT 

images with a GSD of 30m. Therefore, the patches of deforestation do not exactly overlay on top 

of the input image of S-1 and S-2 (shown in Figure 5.8). This mismatch is due to the spatial 

resolution of 10m in the input image. Because of this mismatch, different performance metrics 

were underestimated by some amount. For some instances, the output predicted map overlaid 

better to a patch of deforested land than the reference image. Therefore, using higher-resolution 

reference data is recommended to get a more accurate estimate of the model performance. 
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• Explore different base model architectures other than U-Net. 

• A different attention mechanism could be explored, which takes both encoder and decoder features 

to refine the attention map. This approach is successfully implemented in medical imaging 

segmentation (Oktay et al., 2018).  

The weights of the attention map could be initialised with the provided cloud mask with the S-2 

image. From this point, the attention map could be further tuned during model training. 

• The fusion accuracy in cloud-free images could be improved by taking a balanced set of training 

samples from non-cloudy and cloudy images. This imbalance can be tackled by oversampling the 

non-cloudy images or under-sampling the cloudy images.  

• The fusion could also be improved by using a transfer learning procedure. The initial weights could 

be set by only training with cloud-free images, and then that weight could be the starting point for 

training with cloudy images.  

• Regarding the ambiguity of deforestation class and bare rock or soil on a hilltop, a Digital Elevation 

Model (DEM) could be used in the training process as an additional input for the model.  
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Appendix A  

Implementation Details of U-Net 

Complete network architecture of an LF U-Net3 with spatial attention  

on the optical input: 
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Figure A.1 Network architecture of LF U-Net3 with spatial attention. 
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Appendix B  

Training Curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure B.2 Training and validation IoU of a U-Net3 with S-2 image 

Figure B.1 Training and validation IoU of a U-Net3 with S-1 image 
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Figure B.3 Training and validation IoU of a U-Net3 EF 

Figure B.4 Training and validation IoU of a U-Net3 LF 
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Figure B.5 Training and validation IoU of U-Net3 LF with spatial attention on optical input 

Figure B.6 Training and validation IoU of U-Net3 LF with spatial attention on both input 



DEEP LEARNING-BASED MULTIMODAL FUSION OF SENTINEL-1 AND SENTINEL-2 DATA FOR MAPPING  DEFORESTED AREAS IN THE AMAZON RAINFOREST 

61 

Figure C.1 Example of Input S-2 image patch, S-1 image patch, reference data and S-2 cloud mask (from left to 

right) and extracted feature maps from first encoder block and last decoder block from the input image 

Appendix C  

Feature Map Visualization 

Extracted features maps and attention maps from a single patch of cloudy image using U-Net3 LF spatial 

attention on both inputs is visualized here.  
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Figure C.2 Attention map at different level of encoder block 


