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Samenvatting (Nederlands)

Achtergrond en doel: Computertomografie (CT) is de basis voor radiotherapie (RT) planning en bevat de voor dosisberekeningen
benodigde informatie over elektronendichtheid. Magnetic resonance imaging (MRI) biedt superieur contrast in de weke delen en
kan helpen bij het intekenen van tumoren, maar bevat geen inherente informatie over elektronendichtheid, in tegenstelling tot CT.
Derhalve worden CT en MRI vaak gecombineerd bij het maken van een bestralingsplan, wat vraagt om beeldregistratie. RT op
basis van alleen MRI is voorgesteld om overgebleven fouten na registratie te vermijden, blootstelling van de patiënt aan ioniserende
straling te verminderen en de workflow te versimpelen. Het maken van synthetische CT (sCT) is noodzakelijk voor MRI-geleide
RT planning, iets wat binnen seconden kan met deep learning (DL). De acquisitieprotocollen voor MRI kunnen veranderen over
de tijd of verschillen tussen zorginstellingen. Zonder her-training generaliseren DL modellen slecht naar nieuwe domeinen, zoals
verschillende acquisitieprotocollen. Dit verhindert hun wijdverbreide gebruik. Domain randomisation is een leermethode die gebaseerd
is op het genereren van trainingsdata met gerandomiseerde parameters. De methode heeft tot veelbelovende resultaten geleid voor
het verbeteren van generaliseerbaarheid, bijvoorbeeld voor segmentatie. Dit werk onderzoekt het vermogen van DL modellen voor het
genereren van sCT van de hersenen om te generaliseren naar MRI scans gemaakt met een ongeziene sequentie zonder het network
te her-trainen, alsook hoe domain randomisation de netwerkprestaties op deze ongeziene sequentie beı̈nvloedt.

Materialen and methoden: Data van 95 patiënten die RT hebben ondergaan werden geı̈ncludeerd uit een retrospectieve database.
Hierbij waren een CT met bijbehorende T1-gewogen MRI met en zonder contrastmiddel (T1wGd en T1w), T2-gewogen (T2w) en FLAIR
MRI vereist voor iedere patiënt. Een Baseline conditional generative adversarial network werd getraind met en zonder ongeziene
sequentie (FLAIR) om te testen hoe een netwerk presteert op een ongeziene sequentie zonder domain randomisation. Twee methoden
voor domain randomisation werden vergeleken: 1) het gebruik van synthetische afbeeldingen voor training met willekeurig contrast,
gegenereerd uit segmentaties van MRI scans en 2) trainen op willekeurige, lineaire combinaties van twee MRI sequenties. De beste
aanpak wat betreft beeldgelijkenis tussen CT en sCT werd gekozen voor vergelijking met de Baseline modellen. In een eindvergelijking
werd naast de beeldgelijkenis ook de nauwkeurigheid van sCT-gebaseerde bestralingsplannen beoordeeld.

Resultaten: Het Baseline model getraind met T1w(Gd) en T2w afbeeldingen behaalde een betere beeldgelijkenis dan een model
dat werd getraind met alleen T1w(Gd) afbeeldingen. De methode voor domain randomisation bestaand uit het toevoegen van
afbeeldingen met willekeurig contrast resulteerde in een betere beeldgelijkenis voor de validatie dataset dan het model getraind met
lineaire combinatie afbeeldingen en werd geı̈mplementeerd. Van de modellen die in de eindvergelijking werden opgenomen, behaalde
het Baseline model de slechtste resultaten voor FLAIR, met een mean absolute error (MAE) van 106 ± 20,7 HU (gemiddelde ±σ).
De resultaten voor FLAIR behaald door het Domain Randomisation model waren significant beter met MAE = 99,0 ± 14,9 HU.
Desalniettemin waren deze resultaten ondergeschikt aan die behaald door het Baseline+FLAIR model, getraind met toevoeging van
FLAIR afbeeldingen aan de trainingsdata (MAE = 72,6 ± 10,1 HU). Zowel het Domain Randomisation model als het Baseline+FLAIR
model resulteerde in een lichtelijk verhoogde MAE voor de geziene sequenties vergeleken met het Baseline model. De 3D γ-pass
rates waren > 95 % voor alle modellen en sequenties. Het 3D γ-pass rate met 1%,1mm criterium verkregen voor FLAIR afbeeldingen
voor het Domain Randomisation model was significant hoger dan dat vergkregen voor het Baseline model (99,2 ± 0,9 % vs 99,0 ±
1,1 %), doch lager dan dat verkregen voor het Baseline+FLAIR model (99,4 ± 0,8 %). De pass rates voor de geziene sequenties
verkregen voor het Domain Randomisation model verschilden niet significant van die verkregen voor het Baseline model.

Conclusies: Zelfs zonder domain randomisation werd een acceptabele dosimetrische nauwkeurigheid gevonden wanneer getraind
werd op een mengsel van sequenties, zelfs voor een ongeziene sequentie. Niettemin resulteerde domain randomisation in verbeterde
prestaties (beeldgelijkenis en dosimetrische nauwkeurigheid) voor de ongeziene sequentie, vergeleken met een model dat alleen op
niet-synthetische MRI werd getraind. Dit resultaat wijst erop dat de methode zou kunnen helpen de noodzaak om netwerken te her-
trainen te reduceren wanneer een model moet worden gebruikt voor een sequentie die geen deel uitmaakte van de trainingsdata.

Trefwoorden

Arteficiële intelligentie, Domain randomisation, Generaliseerbaarheid, GAN, Generative adversarial network, Image-to-image
translatie, MRI-geleide radiotherapie, Synthetische CT
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Contrast generalisation in deep learning-based brain MRI-to-CT
synthesis

Lotte Nijskens, M.Sc. student Biomedical Engineering, Imaging & In Vitro Diagnostics

Abstract

Background and purpose: Computed tomography (CT) is the basis for radiotherapy (RT) planning, providing information on electron
density needed for dose calculations. Magnetic resonance imaging (MRI) has superior soft tissue contrast and is helpful in tumour
delineation, but, unlike CT, it does not inherently contain electron density information. Consequently, CT and MRI are often combined
in the planning workflow, requiring image registration. MR-only based RT has been proposed to avoid residual errors after registration,
reduce patients’ exposure to ionising radiation and simplify the workflow. Synthetic CT (sCT) must be generated to enable MRI-based
RT planning, which is possible within seconds using deep learning (DL). MRI acquisition protocols may change over time or differ
between centres. Without network re-training, DL models poorly generalise to new domains, including different acquisition protocols,
hindering their widespread implementation. Domain randomisation is a learning method that involves generating training data with
randomised parameters. The method showed promising results for improving generalisation in, e.g., a segmentation task. This work
investigates the ability of DL models for brain sCT synthesis to generalise to MRI scans acquired with unseen sequences without
network re-training and how domain randomisation affects model performance on unseen sequences.

Materials and methods: Data from 95 patients undergoing RT were included from a retrospective database, requiring a CT image
and corresponding T1-weighted MRI with and without contrast (T1wGd and T1w), T2-weighted (T2w) and FLAIR MRI. A Baseline
conditional generative adversarial network was trained with and without an unseen sequence (FLAIR) to test how a model performs on
the unseen sequence without domain randomisation. Also, two domain randomisation approaches were compared: 1) using synthetic
training images with random contrast generated from segmentations of acquired MRI and 2) training on random linear combinations of
two MRI sequences. The best approach regarding image similarity between sCT and CT was chosen for comparison with the Baseline
models. In a final comparison, image similarity and accuracy of sCT-based dose plans were assessed.

Results: The Baseline model trained on T1w(Gd) and T2w images achieved better image similarity on the validation set’s FLAIR
images than a model trained only on T1w(Gd) images. The domain randomisation method of adding random contrast images resulted
in better image similarity on the validation set than the model using linear combination images and was adopted. Of the models
included in the final comparison, the Baseline model had the poorest performance on FLAIR, with mean absolute error (MAE) = 106 ±
20.7 HU (mean ±σ). Performance on FLAIR significantly improved for the Domain Randomisation model with MAE = 99.0 ± 14.9 HU.
Still, it was inferior to the performance of the Baseline+FLAIR model, trained by adding FLAIR images to the training set (MAE = 72.6
± 10.1 HU). The Domain Randomisation and Baseline+FLAIR models resulted in a slight increase in MAE on the seen sequences
compared to the Baseline model. The 3D γ-pass rates were > 95 % for all models and sequences. The 3D γ-pass rate with 1%,1mm
criterion obtained for the Domain Randomisation model for FLAIR images was significantly higher than that obtained for the Baseline
model (99.2 ± 0.9 % vs 99.0 ± 1.1 %), yet lower than that obtained for the Baseline+FLAIR model (99.4 ± 0.8 %). Differences in pass
rates obtained for the seen sequences between the Domain Randomisation and Baseline model were insignificant.

Conclusions: Even without domain randomisation, a satisfactory dosimetric accuracy could be obtained when training on a mix
of acquired sequences, even for an unseen sequence. However, domain randomisation improved performance (image similarity and
dose accuracy) on the unseen sequence compared to a model trained only on acquired MRI, indicating that the method could help
reduce the need for network re-training if the model is to be used on a sequence unseen during network training.

Keywords

Artificial intelligence, Domain randomisation, Generalisation, Generative adversarial network, Image-to-image translation, MR-
guided radiotherapy, Synthetic CT

I. INTRODUCTION

A. Radiotherapy planning
Radiation therapy (RT) is one of the main pillars of cancer

treatment, indicated for approximately half of all cancer patients [1].
Computed tomography (CT) images are the basis for RT planning,
as they provide the information on electron density required for
dose calculations [2]. However, intra- and interobserver variability
in delineating tumours and organs-at-risk (OARs) on CT are high,
with the delineation of the gross tumour volume (GTV) having been
called the ‘weakest link’ in RT accuracy [3].

Magnetic resonance imaging (MRI) has superior soft tissue con-
trast compared to CT. Hence, MRI has been suggested as the
preferred imaging modality for delineating tumours and the sur-
rounding OARs in RT planning [4]. Adding MRI to the treatment
planning protocol can significantly reduce the intra- and interobserver
variability in the delineation of tumours and OARs for multiple
disease sites, including the breast [5], prostate and head and neck
[6]. Additionally, for certain brain cancer patients, MRI can resolve
tumour boundaries unidentified on CT [7, 8].

Unlike CT, MRI does not inherently contain the information
needed for dosimetric computations [9]. On the one hand, in CT,
the electron density in the imaged tissues determines the external ra-
diation beam attenuation and image contrast. On the other hand, MRI
is a resonance phenomenon occurring for atomic nuclei with an odd
number of protons (or neutrons) that possess a non-zero nuclear spin,
which is not directly related to electron density [10]. Consequently,
CT and MRI are combined in the RT planning workflow whenever
MRI provides additional information. The tumour and OARs are de-
lineated on MRI, and this target definition is translated to CT through
image registration [11], thereby introducing an additional uncertainty
factor into the workflow [12, 13]. Differences in patient positioning or
bladder or rectal filling, caused by the image acquisition at different
time points, complicate the registration process [14].

B. MR-only treatment planning
MR-only based RT has been proposed to avoid the error associated

with image registration [15, 16]. Removing the registration step
reduced systematic uncertainties for the prostate from 3-4 mm in
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a CT/MRI hybrid pathway to 2-3 mm in an MR-only planning method
[14]. Also, MR-only RT reduces the patient’s exposure to ionising
radiation [11], which can be of significant benefit when re-planning
is needed [17] or for paediatric populations [18]. Another advantage
is that fewer scans are required, improving patient comfort [19].
Moreover, eliminating the CT scan and simplifying the workflow
reduces the workload [20, 21] and costs [19, 20, 22].

With the clinical introduction of MRI scanners integrated with
linear accelerators for radiation delivery for MR-guided radiotherapy
(MRgRT) [23, 24], MR-only RT became particularly interesting.
Because in MRgRT, MRI can be acquired before, during, and after the
RT delivery, both the planning and treatment phases are MRI-guided
[25]. MRgRT even allows online re-planning or plan adaptation if
changes in patient anatomy are observed [24, 26].

C. Synthetic CT (sCT) generation

The lack of a physical relationship between the tissues’ nuclear
magnetic properties and their electron density characteristics needed
for dose calculations can be regarded as the main hurdle in imple-
menting MR-only RT. Many approaches for representing MRI as a
CT equivalent have been proposed to overcome this problem [27].
This process is called synthetic CT (sCT) generation. Alternative
names for the resulting image are pseudo-CT, MRCT, virtual CT,
or substitute CT [20, 28].

Approaches for sCT generation can be divided into three main
categories: atlas-based, voxel-based and hybrid [19]. In atlas-based
approaches, the voxels within a patient’s MRI scan are (deformably)
registered to a CT atlas or an MRI atlas for which there is a known
correlation with a given quantity, mainly Hounsfield units (HU) [19].
The accuracy of atlas-based methods depends on the registration
accuracy. Multi-atlas approaches can be beneficial in this respect,
offering a broader range of options for registration than approaches
using a single (average) atlas [20]. Generally, atlas-based methods do
not perform well in the case of atypical anatomies or less common
patient populations [29, 30].

Voxel-based approaches use the intensity and structure of an MRI
for conversion to electron density [19]. Such methods often rely
on specialised MRI sequences to separate bone and air, like ultra-
short echo time sequences [30]. Advantages of voxel-based methods
include the lack of need for image registration and segmentation
when considering statistical approaches [30]. Compared to atlas-
based approaches, voxel-based techniques handle atypical anatomies
better [30, 31]. An important subcategory of voxel-based methods are
methods based on machine learning or, more recently, deep learning
(DL) [19]. In image synthesis tasks (e.g., sCT generation), a DL
model translates or maps a source to a target image belonging to a
different imaging domain [32]. Unlike other voxel-based methods
[30], learning-based methods can separate bone and air without
specialised MRI sequences [31].

Hybrid approaches combine elements from voxel- and atlas-based
techniques [30]. Sometimes, although also viewed as a subcategory
of voxel-based methods [19], a fourth category is distinguished: bulk-
assignment approaches. A (coarse) segmentation is performed on the
MRI, and each label is assigned a value in HU [28, 30]. Its simplicity
makes this an appealing method [30]. Clinically, however, this method
is considered the least advantageous compared to atlas-based and
voxel-based approaches [30]. Treatment planning can lead to dose
differences above 2% with the acquired CT image [30], the suggested
limit for clinical acceptability [33].

Regarding accuracy, atlas-based and learning-based methods show
promise and are actively researched [34]. DL-based methods are of
particular interest as they require a limited time for sCT generation

once training is finished, unlike atlas-based methods [35]. Whereas
(multi-)atlas-based methods can be computationally expensive, with
the time needed for sCT generation ranging from ten minutes to
multiple hours, DL models can generate an sCT in seconds to a
minute [34, 35]. This time aspect is essential in MRgRT, requiring
sCT generation within minutes to allow daily re-planning [26, 28].

D. Deep learning-based sCT
Convolutional neural networks (CNNs) are the most common and

most successful type of DL model in (medical) image processing
[36], including image synthesis tasks [27]. CNNs consist of layers
of convolutional filters combined through weights and biases. Model
training involves optimising these parameters, a process guided by a
loss function that measures the error between the network output and
ground truth for a given set of parameters. The network calculates a
gradient vector representing, per weight, how much this error changes
for a slight increase/decrease (determined by the learning rate) of that
weight. Model parameters are then updated based on this gradient
vector to minimise the loss function [37].

In 2016, Nie et al. [38] proposed using a 3D fully convolutional
neural network for the generation of sCT from MRI for the first time.
After the introduction of generative adversarial networks (GAN) [39],
Nie et al. [40] implemented for the first time a conditional GAN
(cGAN). Subsequently, Wolterink et al. [41] proposed in 2017 an
unsupervised CycleGAN [42] for sCT generation. Since then, DL
networks for sCT generation have been trained and tested for a
multitude of anatomical sites, including the abdomen [43, 44], brain
[41, 45], breast [46, 47], head and neck [34, 45], liver [44], pelvis
[48, 49], prostate [43, 50] and rectum [51].

E. Generalisation of DL models for sCT generation
DL models are known to poorly generalise to new domains [52-

54]. Models assume a shared statistical distribution and feature space
between the training and test data. Therefore, they must be re-trained
if the distribution of the test data changes [52]. For sCT, new domains
could be, e.g., a different MRI sequence, an MRI acquired in another
hospital with different acquisition parameters, MRI acquired after a
scanner upgrade or with a different model, or another anatomy.

Most DL models for sCT generation were trained and tested on a
specific anatomical site using MRI acquired with a limited number of
sequences and a fixed range of imaging parameters. These models do
not consider the variability in MRI acquisition protocols employed
in clinical practice or protocol changes that might occur over time.
If imaging parameters are changed compared to the training data,
networks may need to be re-trained on newly acquired data, hindering
their use in clinical practice. Models that can generalise to MRI se-
quences unseen during training, would avoid re-training and facilitate
a widespread clinical implementation [49]. Suppose generalisation to
a different MRI sequence is possible without network re-training. The
model can likely bridge a smaller contrast domain gap, e.g., renewed
acquisition parameters, MRI scanners from different vendors, or data
from other hospitals [55]. Additionally, models would no longer
require a fixed input sequence, which is helpful if non-standard
imaging protocols are acquired for specific patients, e.g., because
of claustrophobia or contrast allergies.

Two recent publications investigated generalisation to multiple
MRI sequences in MR-only RT [56, 57]. The methods employed
in these works to improve generalisation involved (re)training the
network on those sequences. Zimmermann et al. [57] showed it is
possible to train a combined model for T1w(Gd) and T2w images. A
comparison with single-sequence models revealed poor generalisation
to the sequence not included in the training data [57]. Similar poor
generalisation to an unseen sequence was found in [56].
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F. Domain randomisation
Recently, a promising technique was proposed to improve a seg-

mentation network’s ability to generalise to unseen MRI sequences
[58, 59]. Motivated by evidence that data augmentation beyond real-
ism improves generalisation [60], domain randomisation is a learning
method that involves generating training data with randomised param-
eters (e.g., colour). The method relies on the hypothesis that elaborate
variability in synthetic training data causes the model to see reality
as a variation of the training data [60] and tries to bridge all domain
gaps, in this case in MRI space, at once [55].

Billot et al. [59] applied domain randomisation to train a CNN
to automatically segment brain images of any type of MRI contrast
and any resolution. Instead of using images for each type of contrast
during training, Billot et al. [58, 59] used segmentations to create
synthetic images with a broad, not per se realistic, range of contrasts
(Fig. 1). The segmentation CNN was trained solely on synthetic
images to remove the bias for certain types of contrast, claiming
that the model learns contrast-agnostic features [59]. The results have
been promising, and the method has successfully been extended to
other tasks by the same group [61, 62], but not sCT generation. Given
the promising results on the other tasks, it would be interesting to
see if the method may also be applied to the sCT generation task.

Fig. 1. Example of the synthetic training data used in [59]. A seg-
mentation is converted to a synthetic image by assigning a Gaussian
distribution with a random mean and standard deviation to each label
and filling the voxels within the label according to this distribution.
Additional augmentation steps include elastic deformation. From: [59].

G. Research goals
This work investigates the ability of DL models for MRI-to-

sCT generation to generalise to MRI scans acquired with unseen
sequences in MR-only RT. We concentrate on one anatomical region:
the brain. Encouraged by the results obtained in [48] and [63], we
focus on the cGAN framework termed pix2pix [32].

Inspired by [58, 59], we propose a domain randomisation method
that converts the MRI in the training dataset into synthetic images of
random contrast to improve contrast generalisation. We hypothesise
that training a DL model for MRI-to-sCT generation on input data
with synthetic, not necessarily realistic, image contrast obliges the
network to learn contrast-agnostic features. We formulated the fol-
lowing research question to test our hypothesis: How does a domain
randomisation strategy of randomising image contrast in the training
dataset influence the performance, in terms of image similarity and
dosimetric accuracy, on unseen MRI sequences of a cGAN model
tasked with sCT generation from brain MRI?

Two approaches to domain randomisation are investigated: 1)
using synthetic training images created from label maps of the

acquired MRI; 2) training on random linear combinations of two MRI
sequences. The effect of mixing acquired sequences in the training
data on generalisation is also studied. The end goal is to investigate
how far a DL model can be pushed towards becoming contrast-
agnostic, capable of generating sCT from which RT plans can be
calculated with clinically acceptable dosimetric accuracy.

II. RELATED WORK

Several previous studies have investigated the generalisation ability
of DL models for sCT generation or a related task. The following
categories were identified and are discussed in the following sec-
tions: dataset balancing, transfer learning, data augmentation, domain
randomisation and other approaches. We summarised the categories’
(dis)advantages in the context of generalisation to unseen sequences
(Table I).

A. Dataset balancing

Several publications investigated the impact of introducing varia-
tion in the training data. We have grouped those studies investigating
model performance on different types of input data under the term
dataset balancing. Bird et al. [51] found no significant differences in
cGAN performance on anorectal T2-weighted MRI data from two
different centres. Similarly, in [64], a cGAN generated clinically
acceptable sCT images from T2-weighted pelvic MRI, generalisable
to MRI scanners from multiple vendors and data from a held-
out centre. In [65], model robustness for independent data from
an external centre was shown for a 3D U-Net trained for sCT
generation for a head-and-neck cohort. Fetty et al. [66] demonstrated
cGANs’ ability to generalise to MRI scanners of different field
strength without finetuning models on data from these other scanners.
Maspero et al. [63] studied the influence of heterogeneity in a patient
population and imaging protocol on sCT image quality from T1-
weighted paediatric brain MRI. Image quality was independent of
scan parameters, field strength, Gadolinium administration, patient
age, size and shape [63]. This group also demonstrated the feasibility
of employing a single cGAN for sCT generation for the entire
pelvis, despite training solely on prostate images [48]. The feasibility
of using multiple MRI sequences for training a combined model
for brain sCT generation was investigated in [57], showing that a
combined model for T1- (with and without contrast) and T2-weighted
images can achieve performance comparable to sequence-specific
models for each sequence.

Altogether, introducing variability in training data improves gen-
eralisation effectively when target data are added to the training set.
Additionally, relatively small domain gaps, e.g., same-sequence data
from other centres, can be bridged without re-training. Without re-
training, performance generally decreases for larger domain gaps, like
unseen sequences [56, 57].

B. Transfer learning

Transfer learning is a domain adaptation method often used to
overcome the problem of small available training datasets: an existing
model that performs well after training on a large dataset is adjusted
to a new target domain. Thereby, the method generally requires less
target domain data than dataset balancing. For instance, Wang et al.
[67] applied transfer learning to finetune a model for MRI-to-sCT
generation from the paediatric brain to the paediatric pelvic region,
for which only limited data were available. They found improved
performance on the body surface and in bone compared to training a
pelvic model from scratch. In [65], transfer learning was successfully
applied to adapt a 3D U-Net for sCT generation to new data acquired
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after a software update. Li et al. [56] explicitly investigated how
training strategy influenced networks’ ability to generalise to brain
data from other centres and MRI sequences. The most beneficial
approach consisted of pre-training on source data and re-training with
target data of a different sequence. A model trained only on source
data resulted in the poorest performance on the target data, with
results being unsuitable for dose calculations [56].

C. Data augmentation
Data augmentation methods increase the variability in the dataset

available for training. The method is designed to improve the gener-
alisability of DL models and can aid in bridging (small) domain gaps
[68]. Basic data augmentation methods, such as intensity augmenta-
tions, random flipping, and randomly cropping the input images, have
been applied in multiple studies on sCT generation from MRI (e.g.,
[41, 48]). However, these studies did not explicitly investigate the
effect of such methods. In [69], a more elaborate data augmentation
method was applied: MRI from two patients were combined with
Laplacian blending to simulate a larger training cohort, improving
image similarity between sCT and acquired CT on the test set [69].

D. Domain randomisation
Domain randomisation, introduced in I-F, seeks to bridge larger

domain gaps than data augmentation. As mentioned in section I-F,
Billot et al. [59] applied domain randomisation to achieve contrast-
agnostic segmentation of brain MRI. The same group also applied this
learning strategy to an image registration task [61] and for generating
super-resolution MRI from lower resolution images [62].

E. Other approaches
Two other approaches were identified to improve model gener-

alisation, specifically for supervised frameworks. The CycleGAN
model for unsupervised training learns mappings by enforcing cycle
consistency, meaning the mapping function from one domain (e.g.,
MRI) to the other domain (e.g., CT) should be reversible [42]. This
cycle consistency poses inherent problems with generalisation for the
CycleGAN architecture because it assumes a one-to-one relationship
between the two domains [70]. Brou Boni et al. [49] addressed this
issue by adapting the Augmented CycleGAN (AugCGAN) model
proposed by Almahairi et al. [70]. The model synthesised sCT with
clinically acceptable dosimetric accuracy from MRI acquired with
different scanners and scan parameters and generalised to data from a
centre excluded from the training set [49]. Alternatively, Gadermayr
et al. [71] introduced an asymmetric cycle consistency loss in the
original CycleGAN architecture to create pseudo-healthy MRI from
thigh MRI with fat-infiltration [71].

III. MATERIALS AND METHODS

Networks for sCT generation were trained using either 2D sagittal
slices or isotropic 3D patches. After model optimisation, a 2D or 3D
configuration was chosen for all subsequent experiments.

A Baseline model with and without an unseen sequence was
trained to test how a model generalises to the unseen sequence with-
out domain randomisation. Also, generalisation was investigated by
comparing two domain randomisation approaches: 1) using synthetic
training images with random contrast; 2) using randomly generated
linear combinations of acquired images as training data.

This section first describes the general methodology: data collec-
tion and acquisition, image processing and performance evaluation.
Then, the specifics of the network architecture, model optimisation,
the two methods for domain randomisation and the experimental set-
up are explained, and details on the final comparison are provided.

TABLE I
ADVANTAGES AND DISADVANTAGES OF THE DIFFERENT APPROACHES

TO IMPROVE GENERALISATION IN SCT GENERATION.

Category Advantages Disadvantages

Dataset
balancing

• Simple implementation
• Effective

• Requires including target
data in the training seta

• Poor results for target data
outside the training set for
large domain gaps

Transfer
learning

• Simple implementation
• Effective
• Requires smaller amounts

of target data than dataset
balancing

• Requires including target
data in the training seta

• Poor results for target data
outside the training set for
large domain gaps

Data
augmentation

• Increases variability in
available training data

• Effective for bridging
small domain gaps

• Effectiveness not expected
for large domain gaps

Domain
randomisation

• Aims to generalise to data
outside the target domain

• Aims to bridge larger do-
main gaps

• Requires generating
synthetic training data

Other
approaches

• Described methods are
only applicable for
unsupervised training

aUnsuitable when investigating generalisation to an unseen sequence.

A. Data collection and acquisition

This study was conducted under the local Medical Ethical Com-
mittee (study number: 20/519, approved on August 11, 2020). Data
were selected from a retrospective, anonymised database of patients
undergoing treatment at the UMC Utrecht RT department. The main
selection criterion was the availability of a treatment plan for brain RT
conducted between January 2020 and July 2021, with corresponding
CT and MRI (T1-weighted with and without contrast enhancement,
T2-weighted and FLAIR images). Patients were excluded if not all
sequences were available, no suitable CT was available, the time
between MRI and CT acquisition was more than 1.5 months, patient
age was < 18 years, or the MRI was a follow-up exam. If multiple
CT acquisitions were available, the most recent one was chosen, and
the MRI dataset acquired closest in time to the CT was selected.

In total, 95 patients were selected. These were randomly divided
over the training (n = 60), validation (n = 10) and test set (n = 25).
The female/male ratio for the 95 included patients was 51/44. The
mean patient age was 59.9 ±13.0 years (range: 24.3-86.8). The mean
interval between CT and MRI acquisition was six days (1-26). Dose
prescriptions ranged from 14 to 60 Gy over 1-33 fractions.

Planning CTs were acquired at the radiotherapy department using
a Brilliance Big Bore system (Philips Healthcare, USA). The ac-
quisition took place in the supine treatment position, aided by head
support and a personalised immobilisation mask. CT acquisition was
without contrast agents, with a tube potential of 120 kV, a tube current
of range 234-360 mA, and 1000-1712 ms exposure. The in-plane
resolution was 0.57-1.17 mm2, with a slice thickness of 1-2 mm.

MRI data were acquired with a 1.5 or 3.0 T Ingenia MR-RT
system (Philips Healthcare, the Netherlands). Available sequences
were: 3D T1-weighted turbo field echo (TFE) images with and
without Gadolinium contrast (T1w and T1wGd), 2D T2-weighted
turbo spin-echo (TSE) images with Gadolinium contrast (T2w) and
3D T2-weighted FLAIR TSE images (FLAIR). Table II gives an
overview of the acquisition parameters per sequence.



L. NIJSKENS, CONTRAST GENERALISATION IN DEEP LEARNING-BASED BRAIN MRI-TO-CT SYNTHESIS 5

TABLE II
OVERVIEW OF ACQUISITION PARAMETERS PER SEQUENCE FOR THE 95 INCLUDED PATIENTS.

Parameter
Value(s)
3D T1w TFE 3D T1w TFE

with Gadolinium
2D T2w TSE
with Gadolinium

3D T2w FLAIR TSE

Field strength B0 [T] 1.5: n = 66
3.0: n = 29

1.5: n = 66
3.0: n = 29

1.5: n = 66
3.0: n = 29

1.5: n = 66
3.0: n = 29

Contrast No Yes, Gadolinium Yes, Gadolinium No

Read-out direction Anterior-posterior Anterior-posterior Anterior-posterior Anterior-posterior

Flip angle [°] 8 8 90 90

Repetition time (TR) (range) [ms] 7.6-8.7 7.6-8.7 3119-5996 4800

Echo time (TE) (range) [ms] 3.5-4.1 3.5-4.1 80-100 303-363

FOVa (range) [mm3] 230, 230, 160 230, 230, 160 230, 230, 140-160 230, 230, 160

Acquired voxel sizea (range) [mm3] 1.0, 1.0, 0.5-1.0 1.0, 1.0, 0.5-1.0 0.6, 0.6-0.7, 4.0-5.0 1.1-1.2, 1.1-1.2, 0.6

Reconstructed voxel sizea (range) [mm3] 0.4-1.0, 0.4-1.0, 0.5-1.0 0.5-1.0, 0.5-1.0, 0.5-1.0 0.4-0.5, 0.4-0.5, 4.0-5.0 1.0, 1.0, 0.6

Reconstruction matrixa (range) 240-512, 240-512, 162-
323

240-480, 240-480, 162-
323

480-512, 480-512, 31-43 240, 240, 269-270

Bandwidth (range) [Hz/px] 190-217 190-217 143-206 851-1075

Acquisition time (range) [s] 136-271 121-271 117-137 331-475
aRespective directions: anterior-posterior, right-left and cranio-caudal.

B. Image processing

1) Pre-processing: Each MRI was rigidly registered to the corre-
sponding CT with Elastix software (version 4.700) [72, 73], using
multi-resolution registration (with resolution σ = 4, 2, 1 and 0.5)
with an adaptive stochastic gradient descent (ASGD) optimiser and
mutual information similarity metric. The parameters from [63] were
adopted. The registered MRI will be referred to as MRIreg. MRIreg
and CT were resampled to isotropic 1.0x1.0x1.0 mm3 resolution
using linear interpolation.

Matlab R2019a (The MathWorks, Inc., USA) was used for the sub-
sequent pre-processing steps. Most images contained a discrepancy
between CT and MRI FOVs, caused by angulated MRI acquisition
(Fig. 2). A binary body mask was computed on the non-registered
MRI to ensure congruent FOVs between CT and MRIreg. The mask
was generated using a threshold with an empirically determined value
of 20 (or 15 for T2w images), followed by morphological filling and
dilation with a disk-shaped structuring element of radius 20 voxels.
The binary mask was registered to the CT by applying the transform
computed for MRIreg, resampled, and applied to the MRIreg-CT pair
for training. The FOVs of MRIreg and CT were cropped to the extent
of the registered mask with additional ten voxel margins on each
side or until the original image boundary. MRIreg were normalised
by clipping to the per-patient 99th percentile value over the masked
volume. Training CTs were clipped to range [-1024, 1500] HU.

Note that for CT, the masking and range clipping steps were
only applied to the training images (hereafter: CTtrain). Fig. 2 shows
an example of a normalised brain MRIreg with the corresponding
normalised CTtrain, ground truth CTcrop and original, unregistered
MRI for each sequence for a single patient. CTtrain and normalised
MRIreg were saved as 2D sagittal slices in PNG format, linearly
rescaled to 16-bit unsigned integers, and as 3D volumes in NifTI
format, linearly rescaled to [-1, 1].

For the experiment investigating how training on linear combina-
tion images affects model generalisability, the pre-processed T2w and
T1wGd images were also registered to the corresponding T1w image
with the same registration parameters as before.

2) Post-processing: Image post-processing was done in Matlab
2019a. Inference of models with 2D configuration generated 2D sagit-
tal sCT slices. These were linearly resampled and stacked to obtain

Fig. 2. Example of the pre-processing outcomes. The original T1w (top
row), T1wGd (second row), T2w (third row) and FLAIR (bottom row)
brain MRI for a single male patient in the training dataset are shown (left)
with corresponding normalised MRIreg, CTtrain and ground truth CTcrop
(left to right).

volumes of 1.0x1.0x1.0 mm3 resolution. Inference of models with
3D configuration generated 3D volumes of the required resolution
without additional steps. All generated sCTs were linearly rescaled
to a [-1024, 1500] HU range, conforming to the range of CTtrain.

C. Performance evaluation
Matlab 2019a was used for performance evaluation. The experi-

ments evaluated image similarity between acquired CT and generated
sCT for the validation set. Image similarity metrics and dosimetric
accuracy were calculated on the test set for models included in
the final comparison. Statistical comparisons were performed with
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Wilcoxon signed-rank tests, with p-values < 0.05 regarded as statis-
tically significant.

1) Image similarity: The accuracy of the assigned HU values
was analysed with a voxel-wise comparison between CTcrop (ground
truth) and sCT. A body contour mask was applied to CTcrop and sCT
before calculating the metrics, comparing over the intersection of the
two masks. The masks were created by thresholding the (s)CT above
-200 HU, then morphologically closing and filling the combined
mask to include the nasal cavities. The mean absolute error (MAE)
was computed per patient. Peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) were additional metrics.
Definitions are provided in Appendix A. The range and mean ±
standard deviation (µ ± σ) over all patients in the validation or test
set were calculated for each metric.

2) Dosimetric accuracy: For patients in the test set (n = 25), the
clinically optimised dose plan was re-calculated on (s)CT. Generated
sCTs were registered and resampled to the original, non-cropped CT
with Elastix (version 4.700) [72, 73], allowing only translations.
Multi-resolution registration was performed (with isotropic resolution
σ = 4, 2, 1 and 0.5) with an ASGD optimiser and mutual information.
In some cases, three resolutions were used instead of four (resolution
1: σ = 4, 4, 2; resolution 2: σ = 2, 2, 1; resolution 3: σ = 1, 1, 0.5).

A segmentation of the body contour of the non-cropped CT was
taken from the clinical treatment plan, and the voxels outside the
original MRI FOV and inside this body contour were set to 0 HU.
The difference in FOV between sCT and acquired CT was thus water-
filled in both images (example in Appendix B). The water-filled sCT
and acquired CT are referred to as sCTwf and CTwf.

Plan re-calculation was done on (s)CTwf using GPUMCD [74].
Plans were volumetric modulated arc therapy (VMAT) photon plans
with a single arc with a beam energy of 6.0 MV. They were calculated
with a Monte Carlo algorithm on a 3 mm3 grid with 3 % uncertainty.

Dosimetric performance was assessed through the calculation of
the dose difference (DD) relative to the prescribed dose (Dpresc) in
the high dose region (D > 90% of Dpresc) [27]:

DD = 100 ∗ DCT −DsCT

Dpresc
%, (1)

with D the dose (in Gy) in the (s)CTwf-based dose plan. Korsholm
et al. [33] proposed a criterion for clinical acceptability of DD: the
DD compared to a CT-based dose plan should be <2% for 95% of
the patients. In this work, a more conservative criterion was adopted.
Individual sCTs were considered acceptable if the DD was <1%.

Dose-volume histograms (DVH) were analysed for differences in
Dmedian and Dmax between sCT- and CT-based plans for the follow-
ing OARs: brainstem, optic chiasm, lenses, cochleae and pituitary
gland. Additionally, a 3D-γ global analysis was conducted [75].
The definition of the γ-index and -pass rate is given in Appendix
C. For the computation of γ-pass rates, a 10% dose threshold was
used, with 3%,3mm, 2%,2mm and 1%,1mm criteria. Heilemann et al.
[76] demonstrated the ability to detect clinically unacceptable VMAT
plans using a 90% γ-pass rate threshold for the 2%,2mm criterion.
Nevertheless, the absence of clinically significant dose differences
was not guaranteed [76]. Considering also that evaluation of γ-
pass rates is adopted for quality assurance of delivered plans, where
uncertainty is higher, we adopted stricter thresholds in this work:
95% and 99% for the 2%,2mm and 3%,3mm criteria.

D. Network architecture

The cGAN model pix2pix was implemented to allow paired
training, as proposed by Isola et al. [32]. For models with a 2D
configuration, a PyTorch version 1.4 implementation of the original

pix2pix model [32] was used, modified to enable training on 16-
bit greyscale images. An implementation of the original pix2pix
model [32] called Ganslate [77] in PyTorch version 1.10 was used
for 3D models. All models were trained using a GPU (Tesla P100
PCIe 16 GB or V100 PCIe 32 GB, NVIDIA Corp., USA).

Figure 3 illustrates the general structure of the implemented cGAN.
The model’s goal is to learn a mapping from an image (x) belonging
to a specific input domain (MRI) to an output image (y’) from a
different domain (y; here: CT). The model consists of two networks:
a generator (G) and a discriminator (D). G aims to produce realistic
images (y’; the sCT) resembling the example images from the target
domain (y). D is presented with images from the target domain (y)
and images output by G (y’) and tries to identify y’. The two networks
are trained in an adversarial manner and compete in a minimax
game. While G learns to produce better images, D becomes better at
discriminating between real and fake [32].

Fig. 3. Schematic overview of the employed cGAN for sCT generation.
The model consists of a generator (G) and a discriminator (D) competing
in a minimax game. G tries to produce images y’ (sCT) from x (MRI)
that are indistinguishable from their real counterpart (y; CT), while D is
presented with y’ and y and tries to discriminate between real and fake.
Random noise (z) is injected in the form of dropout layers in G. G* is
the objective of the learning process consisting of an adversarial part
(LcGAN(G, D)) and a voxel-wise part (LL1(G)).

Models with a 2D configuration were implemented with a 256
x 256 U-Net generator [32]. Models with a 3D configuration were
implemented with a 3D U-Net generator architecture that allows
variable patch sizes as input. A 70 x 70 PatchGAN discriminator
[32] was used for both configurations. The L1-based loss function
proposed in [32] was implemented as the following objective function
(eq. 2).

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) (2)

This final objective consists of an adversarial part (LcGAN , eq. 3)
dependent on both G and D and a voxel- or pixel-wise term (LL1,
eq. 4) that depends only on G. The factor λ weighs the two terms.
Isola et al. [32] have shown the importance of this combined loss
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function. Using only LcGAN produced sharp images at the cost of
introducing artefacts. Solely using the LL1 term, on the other hand,
led to good mappings, but the generated images were blurry [32].

LcGAN (G,D) = E
x,y

[logD(x, y)]+ E
x,z

[log(1−D(x,G(x, z))] (3)

LL1(G) = E
x,y,z

[∥ y −G(x, z) ∥]1 (4)

E. Model optimisation
A 2D and a 3D model were optimised in parallel to establish a

model configuration for all subsequent experiments. Hyperparameter
optimisation was performed with a grid search strategy using the
validation set and ten patients from the training set, using only
T1w images without contrast; see Appendix D for the details. The
MAE served as the decision criterion. The optimised 2D and 3D
model were trained on a subset of thirty patients from the training
set. The performance of the two optimised models was compared
(Appendix E), after which the 3D configuration was adopted. As a
final optimisation step, the ratio between T1w images with/without
contrast and T2w images in the training set was balanced, and the
batch size was finetuned (Appendix F)1. The training dataset (n = 60)
contained 60 T2w, 30 T1w and 30 T1wGd images after balancing.

After optimisation, all models were trained with Xavier initialisa-
tion, Adam optimiser, patch size = 128x128x128 voxels, batch size
= 1, λ = 5000, number of downsampling steps = 5, and a constant
learning rate of 0.001. A sliding window inferrer was used for patch
combination with a patch overlap of 0.5 and Gaussian blend mode.
The Adam optimiser [78] was implemented with β1 = 0.5 and β2 =
0.999 as momentum parameters and no weight decay. Early stopping
was applied to avoid overfitting, as illustrated in Appendix G, using
the MAE as the decision criterion.

F. Generating random contrast images
1) Segmentation: Automatic segmentations were generated to

investigate how synthetic training images with random contrast
created from label maps affect models’ ability to generalise to unseen
sequences. Segmentations were generated from the T1w images,
complemented by some structures labelled using CTtrain. Note: this
research does not aim to train a segmentation network, and label
maps do not serve as ground truth for comparisons.

Segmentation of cerebral structures was performed on T1w images
using an open-source DL network called FastSurfer [79]. OARs were
added by segmentation of T1w MRI with a previously in-house
developed DL algorithm (unpublished and developed for clinical use
as in [80]), based on the DeepMedic model [81]. The GTV was
obtained from a clinical segmentation. Cerebrospinal fluid (CSF)
was labelled using a combination of FastSurfer labels and a clinical
segmentation. Thresholding CTtrain segmented labels for bone and
soft tissue. The resulting label maps (Fig. 4) were saved as an
additional dataset. More details on image segmentation and a lookup
table with included labels are reported in Appendix H.

2) Contrast randomisation: Label maps were converted to ran-
dom contrast (RC) images for network training on the fly based on
[59]. All steps involving generating RC images from label maps were
implemented using TorchIO software [82].

After randomly selecting a segmentation from the training data,
each label i in the label map was assigned a Gaussian function

1One patient was retrospectively excluded from the validation set after
failure of registration between the T2w MRI and the CT was observed.
Validation of all models except the optimised 2D and 3D models was thus
done on a nine-patient validation set.

Fig. 4. Example of a label map created through automatic segmentation
of a single patient’s T1w MRI and corresponding CT.

with mean and standard deviation chosen randomly from a uniform
distribution with ranges of [10, 240] and [1, 25], respectively. These
ranges were based on the sensitivity analysis conducted in [59]. All
voxels within a label were assigned an intensity value sampled from
this Gaussian distribution.

Then, images were blurred to increase spatial coherence between
neighbouring voxels. The standard deviation of the Gaussian was
randomly sampled from a uniform distribution: σblur ∼ U(0, 0.3),
like in [58]. Random gamma augmentation was applied after rescaling
image intensity to a positive range to increase variability in the
training data further. Following [59], the exponent γ = eβ was
randomly sampled from a normal distribution: β ∼ N(µβ , σβ) with
µβ = 0 and σβ = 0.4. The resulting RC image was rescaled to [-1,
1]. Figure 5 shows some example slices from patches of RC images
used for network training, illustrating the variability in the training
data generated with this method.

Fig. 5. Examples of random contrast (RC) images generated from label
maps. Each image is a slice from an example patch as input to the
network during training.

G. Generating linear combination images

The domain randomisation strategy comprising RC images (section
III-F) requires segmenting patients’ MRI. A second, more straight-
forward domain randomisation approach based on linearly combining
acquired MRI was designed to prevent this need for label maps and
test whether such a method could be effective.

Linear combination (LC) images were generated from T1w(Gd)
and T2w images. A random choice was made during network training
between combining the patient’s T2w image with their T1w or
T1wGd image, using equal probabilities. The T1w(Gd) and T2w
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images were then combined as follows:

ImLC = p1 ∗ ImT1 + p2 ∗ ImT2, (5)

with p1 and p2 the coefficients for voxel-wise addition of the
T1w(Gd) (ImT1) and T2w (ImT2) image, respectively. These were
randomly sampled from a uniform distribution: p1,2 ∼ U(−1, 1).
The chosen range allows addition and subtraction in the linear
combination and contrast inversions. Finally, images were rescaled to
the range [-1, 1]. Figure 6 shows several example LC image patches.

Fig. 6. Examples of linear combination (LC) images generated through
a linear combination of real T1w(Gd) and T2w images. Each image is a
slice from an example patch as input to the network during training.

H. Experiments

1) Generalisation of conventional cGANs - Baseline vs T1-
only model: A Baseline model was trained on a mix of T1w, T1wGd
and T2w images to assess models’ ability to generalise to an unseen
sequence (FLAIR) without data augmentation or domain randomisa-
tion. Its performance was compared to that obtained for a T1-only
model to study the effect of mixing sequences on generalisation.

Table III indicates for which sequences the MAE was considered to
decide when to apply early stopping and the chosen iteration, for each
model trained for the experiments. The Baseline model was obtained
by re-training the 3D model on the whole training set (n = 60) using
30 T1w, 30 T1wGd and 60 T2w images. The T1-only model was
trained on the same dataset, excluding the T2w images. After early
stopping, image similarity metrics were calculated for both models
on sCT from T1w, T1wGd, T2w and FLAIR for the chosen iteration.
The models’ performances were statistically compared per sequence.

2) Domain randomisation - Random contrast vs mixing se-
quences: The RC+T1(Gd) model was trained to investigate the
effect of adding RC images in the training data and compare it to
the impact of mixing acquired sequences in the training data. The
training dataset consisted of T1w images (n = 30), T1wGd images
(n = 30) and segmentations (n = 60), which were converted on the
fly to RC images as described in section III-F. After the choice of
iteration by early stopping, image similarity metrics were additionally
calculated for sCT generated from T2w and FLAIR images of the
validation set. Results for the RC+T1(Gd) model were statistically
compared with those obtained for the Baseline and T1-only model.

3) Domain randomisation - Random contrast vs linear combi-
nations: This experiment studies whether using RC or LC images
as training data affects models’ ability to generalise to the unseen

sequence (FLAIR) and results in choosing either of the two methods
for the final comparison.

After comparison to a model trained on RC images only (Appendix
I), the RC+T1(Gd)+T2 model was adopted for this experiment. Its
training dataset consisted of a mix of label maps (n = 60) and
acquired T1w (n = 30), T1wGd (n = 30) and T2w (n = 60) images.
For the domain randomisation method comprising LC images, the
LC+T1(Gd)+T2 model was adopted after comparison to the LC-only
model (Appendix J). This LC+T1(Gd)+T2 model was trained with a
50 % chance of applying a linear combination to the acquired MRI,
as opposed to 100 % for the LC-only model.

The RC+T1(Gd)+T2 model and the LC+T1(Gd)+T2 were sta-
tistically compared using image similarity metrics calculated per
sequence. The best-performing model was chosen as the Domain
Randomisation model for the final comparison, using MAE as the
leading metric for model choice.

TABLE III
DETAILS FOR THE APPLICATION OF EARLY STOPPING FOR MODELS IN

THE EXPERIMENTS.

Model Sequences considered Chosen iteration

Baseline T1w, T1wGd, T2w 300,000
T1-only T1w, T1wGd 400,000
RC+T1(Gd) T1w, T1wGd 400,000
RC+T1(Gd)+T2 T1w, T1wGd, T2w 450,000
LC+T1(Gd)+T2 T1w, T1wGd, T2w 200,000

Early stopping was applied, as illustrated in G.

I. Final comparison

Three models were assessed in the final comparison: the best
Domain Randomisation model (resulting from the choice of domain
randomisation method in experiment III-H.3), the Baseline model
(III-H.1), and the Baseline+FLAIR model.

The Baseline+FLAIR model was trained to obtain a measure for
the best achievable performance for FLAIR input images. This model
was trained with the same hyperparameters as before (section III-E)
on the whole training set of 60 patients. The training dataset consisted
of a mix of T1w (n = 30), T1wGd (n = 30), T2w images (n = 60)
and FLAIR images (n = 60). Only the iteration at which to perform
early stopping was finetuned, using MAE as the decision criterion
while evaluating the sCT generated from the T1w, T1wGd, T2w and
FLAIR images of the patients in the validation set. Early stopping
was applied at iteration 450,000.

For the final comparison, the Baseline, Baseline+FLAIR and
Domain Randomisation models were inferred on the test set (n = 25).
Image similarity metrics and dosimetric accuracy were calculated for
sCT generated by the three models from patients’ T1w, T1wGd, T2w
and FLAIR images in the test set. For each model, the image simi-
larity metrics and metrics for dosimetric evaluation were statistically
compared between the four sequences. Also, per sequence, statistical
comparisons were made between the three models.

IV. RESULTS

The training time for the Baseline model was 32.0 h, while
training the Baseline+FLAIR model took 46.2 h. For the Domain
Randomisation model, the training time was 66.4 h. Inference time
on the test set was approximately 4 s per sequence and patient for
all models included in the final comparison.
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Fig. 7. Errorbar plot for the MAE in the intersection of the body contour of sCT compared to ground truth CT for the models presented in the
experiments. Results were obtained on the validation set (n = 9) and are shown per sequence, from left to right: T1w, T1wGd, T2w and FLAIR. The
marker indicates the mean value, with the errorbars representing the standard deviation. A dot marker indicates the sequence was used for model
training, and an asterisk indicates the sequence was not part of the training data and only used for evaluation.

A. Experiments

1) Generalisation of conventional cGANs - Baseline vs T1-
only model: For the Baseline model, the highest MAE was obtained
on FLAIR images: 114 ± 28.4 HU (Fig. 7; table values including the
range are reported in Appendix K). Removing T2w images from the
training dataset of the T1-only model decreased the performance on
T2w images compared to that obtained for the Baseline model. The
performance of the T1-only model for T2w images was the worst
among the sequences, resulting in an MAE of 136 ± 21.1 HU, while
that obtained for the Baseline model was 74.7 ± 13.3 HU. Likewise,
the MAE obtained for FLAIR images increased to 125 ± 31.6 HU.
The increase in MAE for the T1-only model compared to the Baseline
model was statistically significant for both sequences (p-values in
Appendix L, Table XIII).

The slight decrease in MAE found for the T1-only model on
T1w images (from 68.4 ± 14.2 HU to 67.2 ± 14.2 HU) was not
statistically significant, in contrast to the decrease in MAE found on
T1wGd images (from 67.8 ± 13.7 HU to 66.2 ± 14.7 HU). SSIM and
PSNR (Appendix K) show the same trends in performance as MAE,
although, for SSIM, the increase in T1w images for the T1-only
model compared to the Baseline model was statistically significant,
and the difference in PSNR and SSIM on T1wGd images was not
(p-values in Appendix L, Table XIII).

2) Domain randomisation - Random contrast vs mixing se-
quences: Mixing T1w(Gd) images with RC images improved per-
formance on T2w and FLAIR images compared to training only on
T1w(Gd) images (Fig. 7, with table values in Appendix K). For T2w
images, the MAE decreased from 136 ± 21.1 HU for the T1-only
model to 111 ± 14.6 HU for the RC+T1(Gd) model (p < 0.05;
Appendix L, Table XIII). Likewise, by adding RC images to the
training data, the MAE for FLAIR images decreased from 125 ±
31.6 HU to 100 ± 18.5 HU (p < 0.05). For SSIM and PSNR,
similar performance improvements were found (Appendix K). The
slight performance decline on T1w(Gd) images was not statistically
significant, except for a decrease in SSIM on T1w images.

Mixing T1w(Gd) images and RC images compared favourably

to mixing T1w(Gd) images with T2w images (Baseline model) in
terms of performance improvement on FLAIR compared to the T1-
only model: the RC+T1(Gd) model resulted in an MAE of 100
± 18.5 HU, compared to an MAE of 114 ± 28.4 HU for the
Baseline model (p < 0.05). The exclusion of T2w images from the
RC+T1w(Gd) model’s training data significantly increased the MAE
for T2w images compared to the Baseline model: 111 ± 14.6 HU
vs 74.7 ± 13.3 HU. Performance differences between the Baseline
and RC+T1(Gd) model on T1w(Gd) images were not statistically
significant. The SSIM and PSNR were consistent with the MAE.

3) Domain randomisation - Random contrast vs linear com-
binations: For all sequences, the MAE was lower for the
RC+T1(Gd)+T2 model than for the LC+T1(Gd)+T2 model (Fig. 7).
Only the difference on FLAIR images was statistically significant
(p-values in Appendix L, Table XIII): an MAE of 105 ± 20.5 HU
was obtained for the RC+T1(Gd)+T2 model, compared to an MAE
of 110 ± 23.9 HU for the LC+T1(Gd)+T2 model. For all sequences,
the mean PSNR for the RC+T1(Gd)+T2 model was either higher than
or equal to that obtained for the LC+T1(Gd)+T2 model (Appendix
K). The same is true for SSIM, except for T1w images, where the
SSIM was slightly higher for the LC+T1(Gd)+T2 model than for the
RC+T1(Gd)+T2 model. Differences in SSIM and PSNR were not
statistically significant. Overall, using RC images was deemed the
most beneficial domain randomisation strategy of the two approaches.
Consequently, the RC+T1(Gd)+T2 model was adopted as the Domain
Randomisation model for final comparison.

B. Final comparison - Image similarity

1) Baseline model: The performance of the Baseline model on
the test set (n = 25) was best on T1w and T1wGd images, with the
difference between these two sequences not statistically significant
for the three metrics (Fig. 8). The mean MAE was 64.2 ± 7.34 HU
or 63.8 ± 9.12 HU for T1w and T1wGd images, respectively. The
worst performance was found for FLAIR images, with a considerable
difference with performance on T1w(Gd) images: the mean MAE was
106 ± 20.7 HU. Testing on T2w images resulted in a mean MAE of
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Fig. 8. Violin and box-and-whisker plots for the MAE (top), SSIM
(middle) and PSNR (bottom) in the intersection of the body contour of
sCT compared to ground truth CT for the Baseline model on the test
set (n = 25). Results are presented per sequence, from left to right:
T1w, T1wGd, T2w and FLAIR. The black box indicates the interquartile
range and median (white circle) with whiskers indicating the range,
outliers excluded. The width of the violin indicates the distribution of
the data points. The mean values and standard deviations are shown.
Statistically significant differences are indicated by * (p < 0.05) or ** (p
< 0.001). Wilcoxon-signed rank tests were used for statistical testing.

69.6 ± 8.48 HU. Results for SSIM and PSNR were in line with the
MAE. For each metric, the difference in performance on FLAIR and
T2w images compared to the performance on the respective other
three sequences was statistically significant (Fig. 8).

Figure 9 shows results for three example cases. Typical problematic
areas for all sequences are the skull border and the nasal cavities (Fig.
9 A). For FLAIR images specifically, the Baseline model produced
sCTs on which the skull is thicker than on the acquired CT (Fig. 9 A).
This finding translates to a bright blue colour in the image showing
the difference between CT and sCT (right) due to the higher HU
value assigned to the sCT than the acquired CT. Additionally, the
back of the neck is typically a problematic area for FLAIR images
(Fig. 9 A, arrow). Figure 9 B depicts the FLAIR image (left) and the
corresponding image with the difference between CT and sCT (right)
of a patient with an oedematous area in the frontal lobe. The area is
hypointense on the FLAIR image, leading to an intensity similar to air
in the sCT, which translates to a high positive value in the image with
the difference between CT and sCT (right; bright red, arrow). Figure

Fig. 9. Results produced by the Baseline model. A) Results for a
representative subject for T1w, T1wGd, T2w and FLAIR input images
(top to bottom). The image shows from left to right: original MRI, ground
truth CT, sCT generated by the Baseline model, and the difference
between the acquired CT and sCT. Typical problematic areas are the
nasal cavities and the borders of the skull (bright in the image with the
difference between CT and sCT on the right). For FLAIR specifically, the
back of the neck (arrow) is problematic, and the skull is too thick on sCT,
represented by the blue colour in the image with the difference between
CT and sCT (right). B) Example patient with oedema in the frontal
lobe. This area is hypointense on the FLAIR image (right), leading to
problems in the sCT (arrow). C) Post-operative patient for whom part of
the skull has been resected, which the Baseline model handles correctly
(arrow). The result shown is for the T1w input image. Similar results are
generated for the other sequences.

9 C shows the T1w image of a patient with atypical anatomy: part
of the skull has been resected for this post-surgical patient. Despite
obtaining bottom performance for this patient for all sequences, the
atypical anatomy was translated to the sCT satisfactorily by the
Baseline model: the area of skull resection (arrow) shows a near-
zero difference in HU values between ground truth CT and sCT.
Similar results were obtained for this patient’s other sequences (not
shown). Figure 9 C also shows a substantial difference between CT
and T1w-based sCT in the vertebrae, a common observation among
the patients in the test set for each sequence.

2) Baseline+FLAIR model: As for the Baseline model, the
best performance was found on T1w and T1wGd images for the
Baseline+FLAIR model (Fig. 10). The difference in MAE and SSIM
between these two sequences was not statistically significant, with
a mean MAE of 65.5 ± 7.73 HU or 64.6 ± 9.25 HU for T1w
and T1wGd images. Performance on T2w images was slightly worse
with mean MAE = 71.2 ± 8.76 HU. All differences in the three
metrics between T2w images and T1w and T1wGd metrics were
statistically significant. The highest MAE was obtained for FLAIR
images, with a mean value of 72.6 ± 10.1 HU. As for T2w images,
differences between performance on FLAIR images and T1w and
T1wGd images were statistically significant for all three metrics.
Image similarity metrics on T2w images versus FLAIR images did
not differ significantly.
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Fig. 10. Violin and box-and-whisker plots for the MAE (top), SSIM
(middle) and PSNR (bottom) for the Baseline+FLAIR model on the test
set (n = 25). The mean values and standard deviations are shown.
Statistically significant differences are indicated by * (p < 0.05) or **
(p < 0.001). Significant improvements are seen in all three metrics for
the FLAIR sequence (right) compared to the Baseline model.

Overall, the performance on T1w(Gd) and T2w images was slightly
worse for the Baseline+FLAIR model than for the Baseline model,
with an increased MAE and decreased PSNR and SSIM. For T2w
images, this difference was statistically significant for all three
metrics and for T1w images only for MAE and SSIM (p-values in
Appendix L, Table XIV). Differences between the two models for
T1wGd images were not statistically significant.

The most notable change in MAE was found on FLAIR images,
favouring the Baseline+FLAIR model. Adding FLAIR images to the
training data reduced the MAE from 106 ± 20.7 HU to 72.6 ± 10.1
HU. SSIM and PSNR results are in line with this finding (p < 0.5).

Visual inspection of sCTs generated by the Baseline+FLAIR model
(Fig. 11) reveals specific problematic areas similar to those for the
Baseline model (Fig. 9). Again, the skull border, the nasal cavities
(Fig. 11 A), and the vertebrae (Fig. 11 C) prove difficult. While the
Baseline model systematically produced sCTs from FLAIR images
with the skull mapped too thick compared with the acquired CT
(Fig. 9 A), this is not the case for the Baseline+FLAIR model (Fig.
11 A). Similarly, the problematic areas in the muscles of the neck
observed for the Baseline model (Fig. 9 A, arrow) are less prominent
for the Baseline+FLAIR model (Fig. 11 A, arrow). The hypointense

Fig. 11. Results generated by the Baseline+FLAIR model for the
same example patients as presented for the Baseline model. A) Typical
problematic areas in the T1w(Gd)- and T2w-based sCT are the same as
for the Baseline model: nasal cavities and the borders of the skull (bright
in the image with the difference between CT and sCT on the right). For
FLAIR, the back of the neck (arrow) is less problematic than for the
Baseline model, and the skull is no longer too thick on sCT. B) This
patient’s oedema in the frontal lobe (hypointense in the FLAIR image)
leads to problems in the sCT (arrow), although less than for the Baseline
model. C) The Baseline+FLAIR model handles this patient’s partial skull
resection decently (arrow).

oedematous area in the patient’s frontal lobe (Fig. 11 B) is also closer
to the acquired CT in the sCT generated by the Baseline+FLAIR
model (arrow) than in the sCT generated by the Baseline model (Fig.
9 B, arrow). Still, the image shows a more considerable difference
between acquired CT and sCT at the border between the skull and
cerebrum near this hypointense region than at the rest of the border.
In the sCT generated by the Baseline+FLAIR model for the post-
surgical patient with partial skull resection (Fig. 11 C), the skull
seems to continue further downwards than on the acquired CT, which
translated to the blue colour in the image with the difference between
CT and sCT (right image, arrow). Nevertheless, it is visible that part
of the skull has been removed in this patient.

3) Domain Randomisation model: Similarly to what was found
for the Baseline and Baseline+FLAIR models, the Domain Randomi-
sation model performed best on T1w and T1wGd images (Fig. 12).
An MAE of 67.6 ± 7.4 HU was obtained for T1w images and of
66.5 ± 9.2 HU for T1wGd images (p > 0.05). In line with the
results obtained for the Baseline and Baseline+FLAIR model, the
MAE found for T2w images was slightly higher: 71.5 ± 7.93 HU.
The highest MAE was obtained for FLAIR images: 99.0 ± 14.9 HU.
Differences in performance on T2w and FLAIR images compared to
the other three sequences were all statistically significant. The SSIM
and PSNR (Fig. 12, middle and bottom, respectively) are generally
consistent with the findings for the MAE.

For the seen sequences (i.e., T1w, T1wGd and T2w images), the
MAE obtained for the Domain Randomisation model was higher
than that obtained for the Baseline and Baseline+FLAIR models,
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Fig. 12. Violin and box-and-whisker plots for the MAE (top), SSIM
(middle) and PSNR (bottom) for the Baseline+FLAIR model on the test
set (n = 25). The mean values and standard deviations are shown.
Statistically significant differences are indicated by * (p < 0.05) or **
(p < 0.001). Significant improvements are seen in all three metrics for
the FLAIR sequence (right) compared to the Baseline model, although
performance on FLAIR does not reach the same level as that obtained
for the Baseline+FLAIR model.

and the PSNR and SSIM were lower. All differences between the
Domain Randomisation model and the Baseline model for these three
sequences were statistically significant (p-values for comparisons
between models in Table XIV, Appendix L). Likewise, the differences
between the Domain Randomisation and the Baseline+FLAIR model
were statistically significant for T1w and T1wGd images, but not for
T2w images, with consistent results among the three metrics.

The MAE obtained for the Domain Randomisation model on
FLAIR images was 7 HU lower than that obtained for the Baseline
model (p < 0.05), a difference which is larger than the increase in
MAE obtained for the other sequences (T1w: +3 HU, T1wGd: +3
HU; T2w: +2 HU). Despite this decrease in MAE on FLAIR images
obtained through the addition of RC images during network training,
the MAE obtained for the Domain Randomisation model was 26
HU higher than that achievable when adding FLAIR images to the
training dataset (Baseline+FLAIR model; p < 0.05).

As for the Baseline and Baseline+FLAIR models, visual inspection
of the generated sCTs reveals that the most prominent problematic
areas for the Domain Randomisation model are the skull border and
nasal cavities (Fig. 13 A) and the vertebrae (Fig. 13 C). While

Fig. 13. Results generated by the Domain Randomisation model
for the same example patients as presented for the Baseline and
Baseline+FLAIR model. A) Typical problematic areas in the T1w(Gd)-
and T2w-based sCT are the same as for the other two models: the
nasal cavities and the borders of the skull (bright in the image with the
difference between CT and sCT on the right). For FLAIR, the skull is too
thick on sCT, like for the Baseline model. The back of the neck (arrow) is
less problematic than for the Baseline model. B) This patient’s oedema
in the frontal lobe (hypointense in the FLAIR image) leads to problems
in the sCT (arrow), although less than for the Baseline model. C) Post-
operative patient for whom part of the skull has been removed, which is
a problematic area for the Domain Randomisation model (arrow).

the neck muscles led to difficulties for the Baseline model (Fig.
9 A, arrow), this is partly resolved for the Domain Randomisation
model (Fig. 13 A, arrow). Nevertheless, the image with the difference
between CT and sCT (right) still shows more significant differences
in this area than in the sCT generated by the Baseline+FLAIR model
(Fig. 11 A, arrow). This reduction in differences between sCT and
CT in muscle tissue compared to the Baseline model was observed
for all patients in the test set. An unresolved problem in FLAIR-based
sCTs is the mapping of the skull. Like the Baseline model (Fig. 9
A), the Domain Randomisation model systematically produced sCTs
with the skull mapped thicker than on the acquired CT (Fig. 13 A).

The partial skull resection of the patient shown in Fig. 13 C is
not mapped correctly by the Domain Randomisation model, unlike
by the Baseline model (Fig. 9 C). In general, however, the Domain
Randomisation model can handle abnormalities, as seen in Fig. 13
B. The mapping of the hypointensity in the frontal lobe visible in
the FLAIR image (arrow) that led to problems for the Baseline
model (Fig. 9 B, arrow) resembles the mapping obtained by the
Baseline+FLAIR model (Fig. 11 B, arrow).

Overall, a visual inspection of the results for FLAIR images
generated by the Domain Randomisation model reveals that the model
might be more robust than the Baseline model. Figure 14 shows three
example patients for whom the Baseline model produced artefacts in
the sCT (green rectangles). Such artefacts were not observed in the
FLAIR-based sCTs produced by the Baseline+FLAIR and Domain
Randomisation models. The reduced difference between sCT and
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Fig. 14. Results from FLAIR images generated by the three models for three different patients. Images show from left to right: original FLAIR
MRI, ground truth CT, sCT, and the difference between the acquired CT and sCT for the Baseline model, Baseline+FLAIR model and Domain
Randomisation model, respectively. The areas marked with a green rectangle highlight artefacts in sCT produced by the Baseline model that are
not present in the sCT generated by the Baseline+FLAIR and Domain Randomisation models.

CT in the muscles in the neck for sCT generated by the Domain
Randomisation versus the Baseline model is also evident in Fig. 14.

C. Final comparison - Dosimetric accuracy
1) Baseline model: For the Baseline model, 3D γ-pass rates in

the low dose region (> 10 % of the prescribed dose) with 1%,1mm
criterion were > 95 % (Table IV) for every patient and each sequence.
The pass rate obtained for FLAIR images (99.0 ± 1.1 %) was
significantly lower than that computed for all other sequences (p-
values in Appendix L, Table XV). The γ-pass rates with 3%,3mm and
2%,2mm criteria were > 99 % for every patient and each sequence
(Appendix M, Table XVII).

For the Baseline model, a DD in the high dose region (> 90 %
of the prescription dose) of -0.1 ± 0.2 % was obtained for treatment
plans based on sCT generated from T1w, T1wGd and T2w images,
and a DD of 0.4 ± 0.5 % was found for FLAIR images (Table IV).
The DD was significantly larger for FLAIR than for the three other
sequences (p-values in Appendix L, Table XV). Other differences in
DD between sequences were not statistically significant.

For T1w-, T1wGd- and T2w-based sCT, the DD was below 1 %
for every patient, while the DD in treatment plans from FLAIR-based
sCT was > 1 %, but ≤ 1.5 % for three patients (PT2, PT13 and
PT18). There was a discrepancy between sCT and CT HU values
for PT2 near the high dose region. The skull near the frontal lobe
was imaged too thinly on sCT, causing HU values to be lower than
in the acquired CT. Discontinuities were visible in the skull of this
post-surgical patient in the problematic area, although no part of
the skull was missing. For PT13 (Fig. 9 A), the high dose region
was located in the dorsal part of the cerebrum, where differences in
skull thickness occurred between the FLAIR-based sCT generated by
the Baseline model and the acquired CT, this time with higher HU
values in the sCT than in the acquired CT. Notable dose differences
were observed for PT18 near the nasal cavities, close to one of the
isocentres of irradiation. The sCT generated by the Baseline model
from this patient’s FLAIR image revealed more prominent differences
in this area between HU values of sCT and acquired CT than the sCT
generated for the other sequences.

In general, minor differences in Dmax and Dmedian were observed
for OARs in DVH analysis for each sequence (Appendix M). On
average, differences were below 0.5 % for every sequence and DVH

point. Individually, most patients had differences in DVH points ≤ 1
%. Exceptions were the lens (PT12) and the cochlea (PT5 and PT12)
for T1w images, with differences ≤ 1.5 %. For T1wGd images, two
patients had differences ≤ 1.5 % for the cochlea (PT5 and PT12). For
T2w images, differences ≤ 2.0 % were found for one patient (PT12)
in the lens, pituitary gland and cochlea. Differences in FLAIR images
were ≤ 2.0 % for the pituitary gland (PT14), optic chiasm (PT1),
and lens (PT12). PT12 patient had an RT plan with a vast irradiated
area, matching the patient’s large tumour volume. For this patient, for
every MRI sequence, notable dose differences were observed around
the body contour on the right half of the body.

2) Baseline+FLAIR model: 3D γ-pass rates in the low dose
region with 1%,1mm criterion > 97 % were obtained for each patient
and MRI sequence (Table IV) for the Baseline+FLAIR model. As for
the Baseline model, pass rates with 3%,3mm and 2%,2mm criteria
were all > 99 % (Appendix M, Table XVII). Statistically significant
differences in pass rates between sequences were only found for the
1%,1mm criterion. For this criterion, the mean 3D γ-pass rate was
99.5 ± 0.7 % for T1w and T1wGd images, 99.4 ± 0.7 % for T2w
images, and 99.4 ± 0.8 % for FLAIR images. Differences between
T1w and T1wGd vs FLAIR images were statistically significant,
as was the difference between T1w and T2w images (p-values in
Appendix L, Table XV).

For FLAIR images, the Baseline+FLAIR model outperformed the
Baseline model in terms of 3D γ-pass rates for the 1%,1mm criterion:
99.4 ± 0.8 % (Baseline+FLAIR model) vs 99.0 ± 1.1 % (Baseline
model; p-values in Appendix L, Table XVI). Likewise, the other two
pass rates were significantly higher for the Baseline+FLAIR model.
Surprisingly, despite the higher MAE obtained in T1w images for the
Baseline+FLAIR model versus the Baseline model, a significantly
higher 3D γ-pass rate was obtained for the 1%,1mm criterion for the
Baseline+FLAIR model (99.5 ± 0.7 % vs 99.4 ± 0.8 %). All other
differences in pass rates between the two models were not significant.

For the Baseline+FLAIR model, differences in DD between se-
quences were not statistically significant (Table IV; p-values in
Appendix L, Table XV). Absolute DD values obtained per sequence
for the Baseline+FLAIR model were all smaller than those obtained
for the Baseline model (p < 0.05; Appendix L, Table XVI).

The Baseline+FLAIR model generated sCTs resulting in treatment
plans with a DD below 1.5 % for every patient and sequence. For
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TABLE IV
DOSE EVALUATION (γ1%,1mm AND DD) FOR SCT GENERATED BY THE BASELINE, BASELINE+FLAIR AND DOMAIN RANDOMISATION MODELS

PER MRI SEQUENCE.

Metric Model
Sequence
T1w T1wGd T2w FLAIR

γ1%,1mm [%] a

Baseline 99.4 ± 0.8
[97.1 - 100]

99.4 ± 0.8
[96.9 - 100]

99.4 ± 0.7
[97.3 - 100]

99.0 ± 1.1
[95.4 - 99.9]

Baseline+FLAIR 99.5 ± 0.7
[97.4 - 100]

99.5 ± 0.7
[97.2 - 100]

99.4 ± 0.7
[97.4 - 100]

99.4 ± 0.8
[97.2 - 100]

Domain Randomisation 99.4 ± 0.8
[97.0 - 100]

99.4 ± 0.8
[96.9 - 100]

99.3 ± 0.8
[97.2 - 100]

99.2 ± 0.9
[96.6 - 99.9]

DD [%] b

Baseline -0.1 ± 0.2
[-0.5 - 0.1]

-0.1 ± 0.2
[-0.5 - 0.1]

-0.1 ± 0.2
[-0.4 - 0.8]

0.4 ± 0.6
[-1.0 - 1.5]

Baseline+FLAIR -0.02 ± 0.2
[-0.4 - 0.4]

-0.01 ± 0.2
[-0.7 - 0.5]

0.01 ± 0.3
[-0.4 - 1.1]

0.01 ± 0.4
[-1.4 - 0.7]

Domain Randomisation -0.1 ± 0.2
[0.5 - 0.2]

-0.2 ± 0.2
[0.5 - 0.1]

-0.1 ± 0.3
[-0.5 - 0.9]

0.3 ± 0.5
[-0.4 - 1.4]

Dosimetric accuracy was assessed through plan re-calculation on water-filled sCT compared to the water-filled acquired CT. Mean
values and standard deviations (µ ± 1σ) and range ([min - max]) are reported. aCalculated in the D > 10 % prescribed region.
bCalculated in the D > 90 % prescribed region.

T1w and T1wGd images, the DD was < 1 % for every patient. For
FLAIR images, the number of patients with a DD > 1 % reduced to
one (PT2) compared to three for the Baseline model. Similar to what
was found for the Baseline model, for PT2, discrepancies between
sCT and CT HU values were present near the high dose region in
the area of surgical intervention. Unlike the Baseline model, for the
Baseline+FLAIR model, there was one patient (PT16) for whom the
DD was > 1 % for T2w images. Partial volume effects were present
on the border of the skull in this patient’s T2w image, leading to
substantial differences in HU values, with HU values in the sCT
higher than those in the acquired CT. The area where partial volume
effects occurred was located within the high dose region.

As for the Baseline model, differences in Dmax and Dmedian were
minor for all DVH points evaluated and all sequences, with average
differences < 0.5 % (boxplots in Appendix M). Most patients had
differences in DVH points ≤ 1 % for every OAR, with some
exceptions for T1wGd, T2w and FLAIR images. For T1wGd images,
this was the case for one patient for the lens (PT12) and for another
patient for the brainstem (PT18), with both differences ≤ 1.5 %.
The lens and cochlea (both PT12) and the brainstem (PT18) were
exceptions for T2w images, with differences ≤ 2.0 % for all. Finally,
for FLAIR images, one patient (PT12) had a difference of ≤ 1.5
% in the cochlea. As observed for the Baseline model, sCT-based
dose plans for PT12 resulted in notable dose differences at the body
contour on the right side of the body.

3) Domain Randomisation model: The 3D γ-pass rates in the
low dose region with 1%,1mm criterion obtained for the Domain
Randomisation model were > 96 % for each patient and each MRI
sequence (Table IV). For the 3%,3mm and 2%,2mm criteria, pass
rates were all > 99 %, as for the other two models (Appendix M,
Table XVII). As for the Baseline model, for the 1%,1mm criterion,
the pass rate obtained for FLAIR images (99.2 ± 0.9 %) was lower
than the pass rates obtained for all other sequences, with p < 0.05
(p-values in Appendix L, Table XV).

Differences in 3D γ-pass rates between the Baseline and Domain
Randomisation model were insignificant for the seen sequences
(Appendix L, Table XVI). However, for FLAIR images, the Domain
Randomisation model outperformed the Baseline model for the
1%,1mm criterion (99.2 ± 0.9 % vs 99.0 ± 1.1 %; p < 0.05).

Compared to the Baseline+FLAIR model, for FLAIR images, the
Domain Randomisation model resulted in significantly lower 3D γ-

pass rates for the 1%,1mm criterion (99.2 ± 0.9 % vs 99.4 ± 0.8 %).
The Domain Randomisation model also resulted in significantly lower
pass rates for FLAIR for the 3%,3mm, but not the 2%,2mm criterion.
Additionally, higher pass rates were obtained for the Baseline+FLAIR
model than for the Domain Randomisation model for T1w images
for the 1%,1mm and 3%,3mm criteria (p < 0.05).

As for the Baseline model, for the Domain Randomisation model,
the DD in the high dose region (> 90 % of the prescription dose)
obtained for FLAIR images (0.3 ± 0.5 %; Table IV) was significantly
higher than that obtained for the other three sequences; see the
corresponding p-values in Appendix L, Table XV. Differences in DD
between the Domain Randomisation model and the Baseline model
were not significant (Appendix L, Table XVI). Comparing the DD
obtained for the Domain Randomisation and Baseline+FLAIR models
resulted in p-values < 0.05 for every sequence, with the DD obtained
for the Baseline+FLAIR model smaller in absolute terms.

For the Domain Randomisation model, the DD was below 1 % for
every patient for T1w(Gd)- and T2w-based sCT. Meanwhile, the DD
in treatment plans from FLAIR-based sCT was > 1 %, but < 1.5 %
for three patients (PT13, PT16 and PT18). As for the Baseline model,
PT13’s sCT generated by the Domain Randomisation model showed
an overestimated skull thickness near the high dose region near the
dorsal cerebrum. For PT18, areas with notable dose differences were
similar to those observed for the Baseline model, mainly the nasal
cavities. For PT16, dose differences in the high dose region were
substantial along the inner border of the skull, in line with the general
observation that the MAE along the skull border was comparatively
high for sCT generated from FLAIR images. The area of high DD
was less localised and more spread out over the skull border than
the area of high DD observed for this patient for the dose plan from
the T2w-based sCT generated by the Baseline+FLAIR model, which
was attributed to partial volume effects that were not observed here.

In general, boxplots for differences in DVH points for OARs
(Appendix M) reveal slight differences in Dmax and Dmedian for all
DVH points and sequences, with average differences < 0.5 % as
for the other two models. On an individual basis, most patients had
differences in DVH points ≤ 1 % for every OAR. Exceptions for
T1w images were one patient that had a difference of < 1.5 %
for the cochlea (PT6) and another for the brainstem (PT18). For
T2w images, one patient (PT12) had differences < 1.5 % for the
lens, cochlea and pituitary gland. FLAIR images resulted in DVH
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differences < 2.5 % for the pituitary gland and lens for the same
patient. A DVH difference < 1.5 % was found for another patient
(PT6) for FLAIR images for the cochlea. The patient with the most
considerable differences in DVH points (PT12) was the same as for
the other two models. As for the other models, dose differences were
substantial along the body contour on the right side of the body.

V. DISCUSSION

In this work, we investigated the influence of domain randomi-
sation on the problem of MRI-to-sCT generation, investigating its
impact on rendering a cGAN contrast-agnostic. To the best of
our knowledge, this is the first work2 exploring whether a single
cGAN network can be trained for sCT generation from various MRI
sequences without the need for (re)training the network on unseen
sequences (here: FLAIR).

A. Overall model performance

Image similarity of our three models from the final comparison
on their seen sequences is on par with that obtained in other work
(Appendix O). Our highest MAE for T1w(Gd) images, obtained for
the Domain Randomisation model, falls within the range reported in
the literature (T1w: 45.4 HU ± 8.52 HU [83] to 131 ± 14.3 HU [84];
T1wGd: 44.6 ± 7.48 HU [83] to 89.3 ± 10.3 HU [85]). Likewise, the
performance of our Baseline+FLAIR model for FLAIR falls within
the range reported in the limited number of studies using T2w FLAIR
images for model training: 51.2 ± 4.5 HU [83] to 115 ± 22 HU [86].
The slightly higher MAE obtained for our Baseline+FLAIR model
on this sequence compared to T1w(Gd) is in line with findings in [83,
86, 87] and is attributed to the contrast in FLAIR images. Specific
tissues, e.g., muscle, are generally low in image intensity, and the
skull border is more difficult to distinguish by eye than in the other
sequences. We obtained slightly higher mean MAE values for T2w
than earlier work (maximum: 68.3 ± 7.3 HU [57]). Our T2w images
were acquired with a larger slice thickness than the other sequences,
leading to partial volume effects (Appendix P) and explaining the
slightly reduced performance compared to T1w(Gd). Mean γ-pass
rates were on the high end of values in the literature (Appendix O).
Altogether, also considering that the number of patients included in
our training set (n = 60) is significantly larger than the median number
in other studies (n = 33), we believe that our models’ performance
for the seen sequences is sufficient to explore generalisation.

Nevertheless, some limitations should be taken into account. A
supervised framework was adopted, requiring a set of well-registered
MRI-CT pairs. Poor registration between the CT and MRI in the
training dataset has been shown to negatively influence DL network
performance for MRI-to-CT synthesis when employing supervised
training [88]. Additionally, registration imperfections in the test set
might lead to an underestimated network performance (Appendix P).
In this work, the outline of the skull on sCT showed imperfections for
all sequences, and sinuses and vertebrae were especially problematic.
We expect that the errors in rigid registration are also the most
pronounced in these locations. In the future, non-rigid registrations
could be explored to improve the overall model performance. An
alternative approach that might alleviate problems associated with
image registration is unpaired training [41].

Hyperparameter tuning was performed using only T1w images. A
slightly different hyperparameter combination might improve perfor-
mances when mixing sequences or adding RC images. A small check
of the Domain Randomisation model’s hyperparameters revealed that

2The search strategy adopted to verify that no other work provided a similar
exploration is provided in Appendix N.

this might be true, with the current combination leading to 2-3 HU
higher MAE on T1w(Gd) and T2w than the best combination tested.
However, to isolate the effect of domain randomisation, the three final
models were trained using the same hyperparameter set. Future work
should clarify whether performance can be improved through hyper-
parameter finetuning. Based on the findings of the hyperparameter
check, we expect the maximum obtainable performance improvement
on the seen sequences to be in the order of 5 HU.

A critical note should be made about our dosimetric evaluation.
Differences in the FOV of the acquired MRI and planning CT led
to equal differences between the sCT and planning CT. Water-filling
was used to avoid the calculated dosimetric accuracy being mostly a
measure of this difference in FOVs. For beams in the treatment plan
passing through the water-filled area, the dosimetric accuracy of the
sCT could be overestimated. To cope with this limitation, we have
adopted stricter criteria for clinical acceptability of dose plans than
generally employed in practice (section III-C.2). The sCT developed
in this work should not be considered directly for clinical use but
are still relevant to shed light on model generalisation, which is this
study’s primary aim. In the future, models should be trained using
MRI data covering a larger FOV (e.g., up to the chin) to evaluate the
dosimetric accuracy without water-filling.

B. Generalisation and domain randomisation

We found that a model trained on T1w(Gd) images only (section
IV-A.1) generalised poorly to FLAIR and T2w images, in line
with the results for generalisation to unseen sequences in [56, 57].
Mixing T1w(Gd) and T2w images in the training data (Baseline
model) improved image similarity metrics, not only for T2w but
also for FLAIR images, although the performance for FLAIR was
still inferior to that for the other sequences. The accuracy of dose
plans generated from sCT was generally high for all models and
sequences. Considering the adopted criteria for clinical acceptability
of 3D γ-pass rates with 3%,3mm and 2%,2mm criteria, dose plans
were acceptable for all patients and sequences, even for FLAIR-based
sCT generated by the Baseline model. Therefore, we considered the
more stringent 1%,1mm criterion for further comparisons.

We compared two approaches for domain randomisation, proving
that the method involving synthetic RC images was more effective
than the method based on linear combinations of acquired T1w(Gd)
and T2w images. The Domain Randomisation model generated sCT
from FLAIR images with significantly improved image similarity and
dosimetric accuracy compared to the Baseline model.

We found that the benefit of adding RC images to the training
data was more substantial when only T1w acquired MRI were used
for network training (RC+T1(Gd) vs T1-only model) than when both
T1w(Gd) and T2w images were used (RC+T1(Gd)+T2 vs Baseline
model). This finding is in line with the finding that mixing T1w(Gd)
images and T2w images already improved generalisation to FLAIR
compared to training on T1w(Gd) images only. Perhaps mixing
sequences provides the network with similar clues about focusing
on contrast-invariant features as adding RC images.

A substantial gap remained in performance on FLAIR images for
the Domain Randomisation model compared to the Baseline+FLAIR
model regarding both image similarity and dose accuracy. Generating
RC images from label maps results in a loss of within-label structure
and detail compared to the acquired MRI. We hypothesise that this
loss of detail reduced the information in (part of) the network’s
training data needed for a per-voxel mapping to a CT representation.
Possibly, such an information reduction could explain why the
Domain Randomisation model’s performance for FLAIR did not
reach the same level as obtained when adding FLAIR to the training
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data. Future research should investigate whether model performance
on unseen sequences can be pushed further toward the performance
achieved when training on this sequence.

Due to the different tasks (segmentation vs synthesis) in this work
and Billot et al. [58, 59], a quantitative comparison of the effect of the
applied domain randomisation method is difficult. Nevertheless, while
Billot et al. [58] state their segmentation network is accurate across
all test domains, our network for sCT synthesis does not perform
equally well on FLAIR as on T1w(Gd) or T2w images from held-
out test patients. Note that in [59], the segmentation network was
also tested on FLAIR images and obtained a lower performance than
on various T1w and T2w datasets. However, Billot et al. [59] did not
directly compare, with a statistical test, the performance on FLAIR
to the performance on other sequences, which complicates judging
to what extent their model is contrast-agnostic.

A limitation in this work is that our segmentations were not,
per definition, perfectly aligned with the corresponding ground truth
(acquired CT), unlike in [58, 59] where segmentations served as
the basis for generating training data and as the ground truth. This
drawback might have reduced the effect of the RC images on network
performance in our work. Also, visual inspection of the label maps
showed imperfections: the eyes and lenses were frequently smaller
than in the acquired MRI. Additionally, the label for the brain stem
did not extend to the caudal end of the MRI FOV. Moreover, the final
segmentation was partly derived from the patients’ T1w MRI and
partly from their CT (i.e., the bone and soft tissue labels). Obtaining
the best possible segmentations, e.g. through manual segmentation,
is expensive and was out of scope for this research. Future studies
should clarify whether more accurate or elaborate label maps are
more suitable as the basis for RC images.

The domain randomisation method using RC images requires
segmenting (extra)cerebral structures. These might not always be
available when training a model for MRI-to-CT translation. There-
fore, this method might not always be practical for sCT synthesis.

A second domain randomisation method, based on linear combi-
nations of acquired T1w(Gd) and T2w images, was tested. To the
best of our knowledge, this is the first work investigating such a
method for sCT generation. An advantage of this method over RC
images is that it requires minimal effort and is easily applicable if
multiple sequences are available per patient. However, the method is
more constrained and the variability of the generated training data is
much more limited, which could explain why this method is not as
effective as using RC images. Theory and earlier studies suggest that
variability beyond what the network will encounter in reality can be
beneficial [55, 60, 89], in line with findings in [59], where synthetic
images mimicking specific MRI sequences proved counterproductive.

C. Outlook and clinical implications

We limited our investigation to RC and LC as methods for
domain randomisation. Future work could explore other methods, like
extending LC to non-linear combinations or increasing the number of
acquired MRI sequences used for combination. Also, the variability
in the RC images could be further increased, e.g., using random
elastic deformations or simulation of bias field artefacts as in [58,
59]. Alternatively, one could combine RC and LC, e.g., by overlaying
specific labels over an LC image or using label maps to create
label-specific offsets in the voxel values of acquired MRI. Another
approach could explore using GANs or other DL models to generate
synthetic training data, as suggested in, e.g., [90, 91].

An open question is whether the implemented domain randomisa-
tion approach could already be employed clinically to bridge smaller
domain gaps than an entirely new sequence, like same-sequence data

from a different hospital or changes in the acquisition protocol that
might occur over time. Further evaluations on new datasets are needed
to investigate whether this is the case.

This work provides the first attempt toward contrast-agnostic sCT
generation for MR-only RT planning. A clear improvement was found
in image similarity for sCT generated from an unseen sequence by
our Domain Randomisation model compared to a Baseline model.
A slight deterioration was allowed in image similarity for the seen
sequences to achieve such improvement. Interestingly, in terms of
dosimetric accuracy, our Baseline model already achieved good
results for most patients for the unseen sequence simply by training
on a mix of other sequences. The Domain Randomisation model
improved the 3D γ-pass rate with 1%,1mm criterion for this unseen
sequence. In contrast, differences with the Baseline model in dose
metrics were not statistically significant for the seen sequences,
leading us to believe that the small decrease in image similarity
obtained for the seen sequences is clinically acceptable. Moreover, the
Domain Randomisation model reduced artefacts observed in FLAIR-
based sCT compared to the Baseline model. Altogether, the results
indicate that domain randomisation can improve generalisation to
unseen sequences for sCT generation. Before clinically implementing
the methods described in this work, dosimetric accuracy must be
evaluated in a clinical setting on MRI acquired with a larger FOV.

The results obtained in this work indicate that domain randomisa-
tion might help reduce the need for network re-training if the model
is to be used on a sequence unseen during network training. This
would be helpful if exceptions need to be made in imaging protocols
for specific patients, e.g., due to allergies or claustrophobia. On the
other hand, we are unsure whether the performance improvement
found in this work is substantial enough to justify the effort associated
with obtaining segmentations, if not already available. Therefore, we
advise developing the method further before clinical implementation
to either a) push performance on unseen sequences further towards
the performance achieved when including the sequence in the training
data, or b) design a simplified method that obviates the need for label
maps, e.g., by extending the LC method.

VI. CONCLUSION

We investigated the ability to generalise to unseen sequences of a
DL model tasked with sCT synthesis for MR-only radiotherapy. We
found that mixing acquired sequences in the training data improved
image similarity for an unseen sequence compared to only training on
a single sequence. We considered two methods for domain randomi-
sation, showing that adding random contrast images generated from
label maps to the training data is more effective than applying random
linear combinations of acquired MRI. Before clinical implementation,
the domain randomisation method should be developed further to test
whether performance on unseen sequences can be obtained closer to
that achieved for seen sequences.

Generally, a satisfactory dosimetric accuracy was obtained when
training on a mix of acquired sequences, even for the unseen
sequence. However, the adopted domain randomisation method im-
proved dosimetric accuracy and image similarity on this unseen
sequence, indicating that domain randomisation could help reduce
the need for network re-training if the model is to be used on a
sequence unseen during network training.
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APPENDIX

A. IMAGE SIMILARITY METRICS

This section gives the definitions of the image similarity metrics used in this work. MAE is defined as [27]:

MAE =

∑n
1 |CTi − sCTi|

n
, (6)

with n the number of voxels in the given region of interest (ROI). The metric gives an impression of the overall discrepancy in the assigned
HU value between the acquired CT image and the sCT [92]. Lower values mean better congruence between sCT and acquired CT.

PSNR is defined as follows [27]:

PSNR = 10 ∗ log 10
MAX2

CT

MSE
, (7)

in which MAXCT is the maximum possible intensity value within the CT. Here, MSE is the mean square error: MSE =
∑n

1 (CTi−sCTi)
2

n .
PSNR quantifies the noise introduced by the synthesis of CT compared to using the acquired CT image [27]. Better performance of a model
used for sCT generation translates to a higher PSNR.

SSIM is computed to add an element of perception. The metric considers known attributes of the human visual system, where quality is
defined in terms of decay in image structure [93]. A higher value means the generated sCT is more similar to the acquired CT image. The
metric is computed as [93]:

SSIM =
(2µsCTµCT + c1)(2σsCT,CT + c2)

(µ2
sCT + µ2

CT + c1)((µ
2
sCT + σ2

CT + c2)
, (8)

with c1 = (k1L)
2 and c2 = (k2L)

2. L is the dynamic range in the image, µ is the mean value, σ is the (co)variance and k1,2 are constants:
k1 = 0.01 and k2 = 0.03.

B. EXAMPLE IMAGES OF WATER-FILLING FOR RT PLAN RE-CALCULATION

The difference in FOV of the acquired MRI and corresponding CT led to equal differences in FOV between sCT and acquired CT. This
difference was water-filled in both sCT and acquired CT for the dose re-calculation performed for assessment of dosimetric accuracy of
sCT-based dose plans by setting the voxels outside the FOV of the original MRI but inside the body contour of the original acquired CT
equal to 0 HU, as illustrated in Fig. 15.

Fig. 15. The CTwf (left) and sCTwf (right) generated by the Baseline model from the T1w image of an example patient in the test set after water-
filling the original images for RT plan re-calculation.

C. DOSIMETRIC ACCURACY: GAMMA INDEX AND PASS RATE

This section describes how the γ-index and -pass rate can be calculated. The γ-pass rate combines measures for spatial distance and
dose difference. In the computation of the γ-index, a comparison is made between a reference dose distribution (here: the dose distribution
obtained through planning with acquired CT) and the dose distribution that needs to be evaluated (here: the dose distribution resulting from
planning based on sCT).

For each point re in the distribution for evaluation, the γ-index is computed as follows [75]:

γ(re, rr) =

√
∆r2(re, rr)

δr
+

∆D2(re, rr)

δD
. (9)

Here, rr is a given point in the reference distribution, ∆r is the Euclidean distance between re and rr in space, and ∆D is the difference
between the dose in each of the two points (eq. 10).
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∆D(re, rr) = De(re)−Dr(rr) (10)

For each point rr, a value for γ is obtained by minimising over all points re.
In eq. 9, δD and δr are the dose and distance criteria, respectively, usually reported as, e.g., δD/δr = 3%/3mm. A point in the reference

distribution passes this criterion if γ ≤ 1, so a γ-pass rate can be computed.

D. MODEL OPTIMISATION: HYPERPARAMETER TUNING

Hyperparameter optimisation was introduced in section III-E. Details about the hyperparameter optimisation process are provided here,
including a summary of the main results.

A. Methods
Hyperparameter optimisation was performed for a 2D and a 3D model in parallel. Tuning was done using a subset of 10 patients from the

training dataset and the validation set (n = 10), using only T1w images without Gadolinium contrast. The optimisation was done by training
50 epochs for the 2D configuration or 5,000 (coarse search) or 25,000 (refined search) iterations for the 3D configuration. Here, an epoch is
defined as passing the entire training set through the network once. An iteration is defined as passing one image patch per patient through
the network times the number of patients in one batch. The MAE between CTcrop and generated sCT was leading in optimisation. SSIM
and PSNR were used to decide if no differences in MAE were observed between models. Additionally, images were visually inspected for
artefacts and image quality.

Hyperparameter optimisation was done through a grid search strategy. Hyperparameters considered were: (1) initialisation method, (2)
optimiser and (3) corresponding weight decay value for the AdamW optimiser [94], (4) patch size for the 3D configuration or load size for
the 2D configuration, (5) the value of λ in the loss function, (6) learning rate, (7) batch size, and (8) number of downsampling steps used in
the U-Net generator architecture. Specifically for the 3D configuration, where patch-based inference was used, (9) the blend mode for patch
combination and (10) the amount of patch overlap were tuned. Table V contains the grid values considered.

TABLE V
HYPERPARAMETERS CONSIDERED FOR OPTIMISATION AND THE CORRESPONDING TESTED GRID VALUES.

Hyperparameter 2D configuration (n) 3D configuration (n)

Initialisation method [Kaiming, Xavier] [Kaiming, Xavier]

Optimiser [Adam, AdamW] [Adam, AdamW]

Weight decay for AdamW [0.01, 0.1, 0.5] [0.01, 0.1, 0.5]

Load size (2D), Patch size (3D) [256, 268, 286, 512, 1024] [32, 64, 128, 256]

λ [100, 500, 1,000, 5,000, 10,000] [1, 10, 100, 500, 1,000, 5,000, 10,000]

Learning rate [0.0001, 0.001, 0.005] [0.0001, 0.001, 0.01]

Batch size [1, 2, 5, 10, 50] [1, 5, 10]

Number of downsampling steps [5, 6, 7, 8] [5, 6, 7]

Blend mode - [Gaussian, constant]

Patch overlap - [0.25, 0.5, 0.75]

As a final optimisation step, three different decay strategies for the learning rate were compared for both configurations, and early stopping
was investigated. In this step, training was done on 30 training patients. The decay strategies considered were a constant learning rate of
0.001, a stepwise decaying learning rate and a cyclic learning rate. Two decay steps were applied for the stepwise decaying learning rate
with decay factor γ = 0.2, after 40 and 60 epochs for the 2D model and 200,000 and 300,000 iterations for the 3D model. The cyclic
learning rate was implemented with an initial constant phase at a learning rate of 0.001 during 40 epochs (2D) or 200,000 iterations (3D),
followed by linear decay to 0 in 40 epochs (2D) or 200,000 iterations (3D) and two cycles consisting of a restart to a learning rate of 0.01
with decay to 0 in 60 epochs (2D) or 300,000 iterations (3D). Early stopping was applied by selecting the first epoch or iteration for which
the MAE in the intersection of the body contours did not improve for the subsequent three epochs or iterations. Note that evaluation was
performed every 20 epochs for 2D or 20,000 iterations for 3D.

B. Results
This subsection summarises the main results of hyperparameter optimisation for the 2D and 3D models. The results are presented as a

plot of SSIM against MAE for a selection of the models trained during several hyperparameter optimisation steps. Results are provided for
the hyperparameters that proved to be the most influential: the learning rate, the value of λ and the patch size for 3D models or the load size
for 2D models. All models for which the results are presented here were trained with Xavier initialisation, Adam optimiser (with momentum
parameters β1 = 0.5 and β2 = 0.999 and no weight decay), batch size = 1, and a U-net generator architecture with 5 (3D models) or 8
(2D models) downsampling steps. Unless stated otherwise, the models for which the results for a given hyperparameter (λ, learning rate or
patch or load size) are presented are those trained with the other hyperparameter values equal to those used in the final, optimised models.
Models for which results are plotted in the left upper quadrant have the best performance: a lower MAE and a higher SSIM.

Figure 16 shows the SSIM plotted against the MAE for three models with a 3D configuration, trained with different learning rates. All
models were trained during a first coarse optimisation step, training for 5,000 iterations with λ = 1,000 and a patch size = 128. Performance
was best for the model with a learning rate = 0.001, and this value was adopted in the final model.
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Fig. 16. Plot of the SSIM against the MAE [HU] for three models
with 3D configuration trained with different learning rates. The
marker represents the mean value of each metric. The error bars
represent the standard deviation. All models were trained during a
coarse initial optimisation step for 5,000 iterations with λ = 1,000
and a patch size = 128 on a subset of the training data constituting
ten patients. Results were computed on the validation set (n = 10).
Models with better performance are plotted toward the left upper
corner: these have a high SSIM and a low MAE.

Fig. 17. Plot of the SSIM against the MAE [HU] for three models
with 2D configuration trained with different learning rates. The
marker represents the mean value of each metric. The error bars
represent the standard deviation. All models were trained for 50
epochs with λ = 5,000 and a load size = 268 on a subset of the
training data constituting ten patients. Results were computed on
the validation set (n = 10). Models with better performance are
plotted toward the left upper corner: these have a high SSIM and
a low MAE.

For 2D models (Fig. 17), a learning rate = 0.001 resulted in better performance than a learning rate = 0.0001. A learning rate of 0.005 led
to a marginally lower mean MAE than a learning rate of 0.001. However, the SSIM and PSNR (results for PSNR not shown) were better
(higher) for the learning rate of 0.001, and the standard deviation in MAE was smaller for learning rate = 0.001. Additionally, other models
in the grid search with different values for λ and the batch size showed a trend favouring a learning rate of 0.001 (results not shown), also
when looking at mean MAE. Therefore, a learning rate of 0.001 was adopted for the 2D configuration. The models presented in Fig. 17
were all trained for 50 epochs with λ = 5,000 and load size = 268.

Figure 18 presents results for 3D models trained with different values of λ. Models indicated with a circular marker were trained during a
first coarse optimisation step, training for 5,000 iterations with a learning rate = 0.001 and patch size = 128. The figure shows that increasing
λ improved performance. Based on these results, the tested values of λ were broadened in a second grid search to include also λ = 5,000
and λ = 10,000. These models indicated with a triangular marker were trained for 25,000 iterations, with a learning rate = 0.001 and patch
size = 128. Increasing λ improved performance up to λ = 5,000. An increase to λ = 10,000 did not improve performance further. During
optimisation of λ for models with a 2D configuration (Fig. 19), the optimum was λ = 5,000 as well. Following these results, λ = 5,000 was
chosen for both configurations.

Figure 20 presents results for 3D models trained with different patch sizes. Models indicated with a square marker were trained during
a first coarse optimisation step, training for 5,000 iterations with a learning rate of 0.001 and λ = 1,000. A larger patch size resulted in
improved performance. In a subsequent refined grid search, models were trained for 25,000 iterations with patch sizes of 128 and 256.
Again, these models were trained with a learning rate of 0.001. For comparison, results are shown for models trained with λ = 1,000 and
models trained with λ = 5,000. Increasing the patch size to 256 did not further improve performance. Therefore, a patch size of 128 was
deemed optimal and was chosen. Figure 21 shows results for five 2D models trained with different load sizes. Images were subsequently
cropped to a final size of 256 for all models, following the image size required for the U-Net-256 generator architecture. Load sizes 268 and
286 resulted in similar performances, with load size 268 slightly outperforming load size 286. Using the whole image (load size 256) for
training or smaller patches (load sizes 512 or 1024) resulted in worse performance. A load size of 268 was chosen based on these results.
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Fig. 18. Plot of the SSIM against the MAE [HU] for ten models
with 3D configuration trained with different values of λ. The marker
represents the mean value of each metric. The error bars repre-
sent the standard deviation. All models were trained with a learning
rate = 0.001 and patch size = 128 on a subset of the training data
constituting ten patients. Models indicated with a circular marker
were trained during an initial coarse optimisation step, training
for 5,000 iterations. Models plotted with a triangular marker were
trained during an optimisation step on a refined grid, training for
25,000 iterations. Results were computed on the validation set (n
= 10). Models with better performance are plotted toward the left
upper corner: these have a high SSIM and a low MAE.

Fig. 19. Plot of the SSIM against the MAE [HU] for five models
with 2D configuration trained with different values of λ. The marker
represents the mean value of each metric. The error bars repre-
sent the standard deviation. All models were trained for 50 epochs
with a learning rate = 0.001 and load size = 268 on a subset of
the training data comprising ten patients. Results were computed
on the validation set (n = 10). Models with better performance are
plotted toward the left upper corner: these have a high SSIM and
a low MAE.

Fig. 20. Plot of the SSIM against the MAE [HU] for ten models with
3D configuration trained with different patch sizes. The marker rep-
resents the mean value of each metric. The error bars represent
the standard deviation. All models were trained with a learning rate
= 0.001 on a subset of the training data constituting ten patients.
Models indicated with a square marker were trained during an
initial coarse optimisation step, training for 5,000 iterations with λ =
1,000. Models plotted with a triangular marker were trained during
an optimisation step on a refined grid, training for 25,000 iterations
with λ = 1,000. Models plotted with a circular marker were trained
during an optimisation step on a refined grid, training for 25,000
iterations with λ = 5,000. Results were computed on the validation
set (n = 10). Models with better performance are plotted toward
the left upper corner: these have a high SSIM and a low MAE.

Fig. 21. Plot of the SSIM against the MAE [HU] for five mod-
els with 2D configuration trained with different load sizes. The
marker represents the mean value of each metric. The error bars
represent the standard deviation. All models were trained for 100
epochs with a learning rate = 0.001 and λ = 5,000 on a subset of
the training data comprising ten patients. Results were computed
on the validation set (n = 10). Models with better performance are
plotted toward the left upper corner: these have a high SSIM and
a low MAE.
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E. MODEL OPTIMISATION: 2D VS 3D MODEL CONFIGURATION

As introduced in section III-E, the optimised 2D and 3D models were trained on a subset of thirty patients from the training set using
T1w images only. Their performance was compared to establish a model configuration for all subsequent experiments. This section describes
the methods and results for this comparison.

A. Methods

The optimised 2D model was trained using the following hyperparameters: Xavier initialisation, Adam optimiser, load size = 268x268
pixels (randomly cropped to a patch size of 256x256 pixels), batch size = 1, weight factor in the loss function λ = 5000, and 8 downsampling
steps in the U-Net generator. A learning rate with stepwise decay was implemented, starting at an initial value of 0.001 and decaying with
decay factor γ = 0.2 after 40 and 60 epochs. Early stopping was applied at epoch 60: the first epoch for which the MAE in the intersection
of the body contours did not improve for the following three epochs, evaluating every 20 epochs.

The optimised 3D model was trained with Xavier initialisation, Adam optimiser, patch size = 128x128x128 voxels, batch size = 1, λ =
5000, number of downsampling steps = 5, and a constant learning rate of 0.001. A sliding window inferrer was used for patch combination
with a patch overlap of 0.5 and Gaussian blend mode. Early stopping was applied at iteration 260,000. The same criterion was used as for
the 2D model, evaluating every 20,000 iterations. The Adam optimiser [78] was used for both models with β1 = 0.5 and β2 = 0.999 as
momentum parameters and no weight decay.

The performance of the optimised 2D and 3D models was compared by evaluating image similarity only on the T1w images of patients in
the validation set (n = 10). Wilcoxon-signed rank tests were used to compare image similarity metrics between the two models statistically.

B. Results

The training times were 5.9 h and 31.3 h for the optimised 2D and 3D model, respectively. The 3D model significantly outperformed the
2D model for all three image similarity metrics (Table VI). Therefore, the 3D configuration was adopted.

TABLE VI
IMAGE SIMILARITY METRICS FOR SCT GENERATED BY THE OPTIMISED 2D AND 3D MODEL, COMPARED TO GROUND TRUTH CT.

Metric
Model

p-value
2D 3D

MAE [HU]
80.7 ± 14.3
[61.1 - 111]

71.3 ± 16.6
[55.3 - 111] 0.002

SSIM
0.848 ± 0.028
[0.794 - 0.882]

0.869 ± 0.033
[0.797 - 0.898] 0.002

PSNR [dB]
27.1 ± 1.45
[24.6 - 29.5]

28.0 ± 1.81
[24.6 - 30.4] 0.004

Metrics were calculated on T1w images of the validation set (n = 10) within
the intersection of the body contour of the sCT and CT. Mean values
and standard deviations (µ ± 1σ) and range ([min - max]) are reported.
Wilcoxon-signed rank tests were used for statistical comparisons. Values of
p < 0.05 were regarded as statistically significant.

C. Discussion

Few other studies have compared 2D and 3D networks for sCT generation for MR-only RT, obtaining mixed results. In [95], a 3D
configuration decreased discontinuities between slices compared to a 2D configuration but increased blurriness in the output sCT images.
Image similarity metrics and dosimetric comparisons favoured the 2D model [95]. In contrast, Fu et al. [96] reported results favouring a
3D model, in line with the findings in this work. Similar to [95], visual inspection of the network output revealed decreased discontinuities
between slices for the 3D model compared to the 2D model in this work.

F. MODEL OPTIMISATION: HYPERPARAMETER FINETUNING AND DATASET BALANCING

This section explains the final optimisation step. The ratio between T1w images with/without contrast and T2w images in the training set
was balanced, and the batch size was finetuned for the mix of input sequences. The ratios T1w:T1wGd:T2w = 1:1:2 or T1w:T1wGd:T2w
= 1:1:1 were compared by re-training the 3D model on a subset of fifteen patients to balance the ratio between T1w images with/without
contrast and T2w images in the training set. Values of 1 and 5 were considered for the batch size. In this step, decisions were based on the
MAE obtained for the validation set, using T1w, T1wGd and T2w images, i.e., the seen sequences3.

A batch size of 1 was chosen. The ratio of T1w:T1wGd:T2w = 1:1:2 was adopted for the training dataset, meaning the whole training
dataset (n = 60 patients) contained 60 T2w images, 30 T1w images and 30 T1wGd images.

3One patient was retrospectively excluded from the validation set after failure of registration between the T2w image and the CT was observed. Validation
of all models except the optimised 2D and 3D models was thus done on a nine-patient validation set.
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G. ILLUSTRATION OF THE EARLY STOPPING METHOD

This section illustrates how early stopping was applied throughout this work, using the early stopping of the Baseline model as a reference
(Fig. 22). The MAE was calculated for T1w, T1wGd and T2w images in the intersection of the body contours. Additionally, a combined MAE
was calculated as the average for the three sequences. The first iteration for which this combined MAE did not improve for the following
three iterations was selected, evaluating every 50,000 iterations. In this case, early stopping was applied at iteration 300,000 (dashed lines).

For models trained using different acquired MRI (e.g., T1w(Gd) images only), the sequences taken into account when calculating the
combined MAE were adjusted according to the training data.

Fig. 22. Learning curves for the Baseline model on the validation set (n = 9) for each sequence separately: the MAE in the intersection of the body
contour at each evaluated iteration is plotted against the iteration number. The combined MAE is the average over T1w(Gd) and T2w images. The
first iteration for which the combined MAE did not improve for the following three iterations was selected. The evaluation was done every 50,000
iterations.

H. IMAGE SEGMENTATION FOR CREATION OF A TRAINING DATASET OF LABEL MAPS: METHOD

The methods for segmentation used to generate synthetic training data were briefly explained in section III-F.1. This section provides a more
detailed explanation of the methods. Several methods were used to obtain an elaborate list of segmented structures (Table VII). Intracerebral
structures were automatically segmented in T1w images using the open-source FastSurfer DL network [79]. The network requires input
volumes of size [256, 256, 256]. Pre-processed T1w images were zero-padded if a dimension was less than 256 voxels, or zero-valued
voxels were cropped from the volume in the case of larger dimensions to adhere to these sizes. After network inference, output label maps
were reshaped to the original size of the T1w image. The segmentations of cerebrospinal fluid (CSF) and ventricles were grouped. OARs
were added through automatic segmentation of T1w MRI using a previously in-house developed segmentation algorithm (unpublished) based
on the DL model known as DeepMedic [81]. The model was previously developed for clinical use, employing the method as described in
[80].

The GTV was added from an MRI-based clinical segmentation. Voxels in this GTV that had already been segmented as part of a cerebral
structure with FastSurfer were assigned the corresponding FastSurfer label. Additionally, a clinical segmentation of the volume inside the
skull was used to complement the segmentation of the CSF. All voxels falling inside the skull with no previous label (GTV, OAR, or from
FastSurfer) were assigned the CSF label. A body contour was also obtained from the clinical segmentation. The intersection of this body
contour and the registered MRI mask was used as a body mask for segmentation of some additional structures from CTtrain.

Several structures were segmented using threshold operations on CTtrain. Unless stated otherwise, thresholds were determined empirically
based on one example patient from the training set and checked on two other patients. Background voxels and internal air were separated
by applying a threshold of -0.5 to CTtrain. The label for internal air was defined as those voxels falling inside the body mask but below the
threshold. Segmentation of bone (i.e., bone and vertebrae) was achieved using a threshold of -0.120. Total bone was then subdivided into
two classes (cortical bone and cancellous bone + bone marrow), using a threshold of 0.3216, with cortical bone defined as the voxels with
an intensity above the threshold. The two bone labels were prioritised over the CSF label. Soft tissue was defined as all voxels inside the
body mask that were not part of internal air and had not previously been assigned another label. Soft tissue was then divided into two classes
(skin + muscle and other soft tissue) by thresholding the CTtrain (-0.2078). This threshold was determined using Matlab’s implementation of
Otsu’s method [97]: automatic multi-threshold computation with four thresholds was applied to one example patient. The most appropriate
threshold was then chosen by manually checking the result.
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TABLE VII
LOOK UP TABLE FOR THE AUTOMATICALLY SEGMENTED LABEL MAP AND METHODS USED FOR THE SEGMENTATION OF EACH STRUCTURE.

Label Structure Segmentation method

0 Background Outside body mask (clinical segmentation, MRI mask)

1 Cortical white matter (L) FastSurfer [79] label 2

2 Cortical white matter (R) FastSurfer label 41

3 Cortical grey matter (L) FastSurfer labels 1000-1999

4 Cortical grey matter (R) FastSurfer labels ≥ 2000

5 Cerebellar white matter (L) FastSurfer label 7

6 Cerebellar white matter (R) FastSurfer label 46

7 Cerebellar cortex (L) FastSurfer label 8

8 Cerebellar cortex (R) FastSurfer label 47

9 Thalamus (L) FastSurfer label 10

10 Thalamus (R) FastSurfer label 49

11 Caudate nucleus (L) FastSurfer label 11

12 Caudate nucleus (R) FastSurfer label 50

13 Putamen (L) FastSurfer label 12

14 Putamen (R) FastSurfer label 51

15 Pallidum (L) FastSurfer label 13

16 Pallidum (R) FastSurfer label 52

17 Hippocampus (L) FastSurfer label 17

18 Hippocampus (R) FastSurfer label 53

19 Amygdala (L) FastSurfer label 18

20 Amygdala (R) FastSurfer label 54

21 Accumbens (L) FastSurfer label 26

22 Accumbens (R) FastSurfer label 58

23 Ventral diencephalon (L) FastSurfer label 28

24 Ventral diencephalon (R) FastSurfer label 60

25 Choroid plexus (L) FastSurfer label 31

26 Choroid plexus (R) FastSurfer label 63

27 White matter hypointensities (if exist) FastSurfer label 77

28 Brain stem FastSurfer label 16

29 CSF FastSurfer labels 4, 5, 14, 15, 24, 43 and 44
and voxels inside skull (clinical segmentation) with no other label

30 GTV Clinical segmentation, not labelled by FastSurfer

31 Eye (L) DeepMedic-based OAR segmentation network

32 Eye (R) DeepMedic-based OAR segmentation network

33 Lense (L) DeepMedic-based OAR segmentation network

34 Lense (R) DeepMedic-based OAR segmentation network

35 Cochlea (L) DeepMedic-based OAR segmentation network

36 Cochlea (R) DeepMedic-based OAR segmentation network

37 Lacrimal gland (L) DeepMedic-based OAR segmentation network

38 Lacrimal gland (R) DeepMedic-based OAR segmentation network

39 Optic nerve (L) DeepMedic-based OAR segmentation network

40 Optic nerve (R) DeepMedic-based OAR segmentation network

41 Pituitary gland DeepMedic-based OAR segmentation network

42 Optic chiasm DeepMedic-based OAR segmentation network

43 Bone: Cortical bone Thresholding CTtrain

44 Bone: cancellous bone + bone marrow Thresholding CTtrain

45 soft tissue: muscle + skin Thresholding CTtrain

46 soft tissue: other soft tissue Thresholding CTtrain

47 Internal air Thresholding CTtrain, falling inside body mask (clinical segmentation, MRI mask)
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I. DOMAIN RANDOMISATION - RANDOM CONTRAST: DATASET BALANCING

Dataset balancing experiments were conducted for the two domain randomisation methods compared in section III-H.3. This section
describes the dataset balancing experiment for the domain randomisation method using random contrast images.

A. Methods
For the domain randomisation method regarding RC images, dataset balancing was done by training two models on the whole training set

(n = 60). The RC-only model was trained on RC images only, i.e., the training dataset of this model consisted of label maps only (section
III-F.1; n = 60), which were converted to RC images on the fly. The training dataset of the RC+T1(Gd)+T2 model consisted of a mix of
label maps (n = 60) and acquired T1w (n = 30), T1wGd (n = 30) and T2w (n = 60) images. Both models were trained using the model
configuration and hyperparameters described in section III-E. For both models, early stopping was applied after 450,000 iterations, basing
the decision on the MAE in sCT generated from T1w, T1wGd and T2w images as illustrated in Appendix G.

Image similarity metrics were computed for both models on the FLAIR images of the validation set for the chosen iteration. Performance
was compared for all sequences: the model with the best performance of the two was chosen for comparison with the best model resulting
from dataset balancing for the linear combination-based domain randomisation strategy (Appendix J). The MAE was leading in the model
choice.

B. Results
The RC+T1(Gd)+T2 model outperformed the RC-only model on all sequences (Table VIII), with statistically significant differences in the

MAE obtained for T1w, T1wGd and T2w images (p-values in Table IX). The most considerable difference in MAE was obtained for T2w
images, finding values of 76.3 ± 10.9 HU and 128 ± 14.6 HU for the RC+T1(Gd)+T2 and RC-only model. For FLAIR images, values of
105 ± 20.5 HU and 109 ± 19.1 were found (p > 0.05). SSIM and PSNR are in line with the results for MAE, except the improvement
in SSIM on FLAIR images for the RC+T1(Gd)+T2 model was statistically significant. Based on these findings, the RC+T1(Gd)+T2 model
was chosen for comparison in section IV-A.3.

TABLE VIII
IMAGE SIMILARITY METRICS PER MRI SEQUENCE FOR SCT GENERATED BY THE RC-ONLY AND RC+T1(GD)+T2 MODEL, COMPARED TO GROUND

TRUTH CT.

Metric Model
Sequence
T1w T1wGd T2w FLAIR

MAE [HU]

RC-only 103 ± 15.7
[82.9 - 129]

100 ± 17.0
[75.6 - 134]

128 ± 14.6
[106 - 150]

109 ± 19.1
[74.9 - 136]

RC+T1(Gd)+T2 71.5 ± 12.1
[59.7 - 100]

69.6 ± 12.2
[56.6 - 98.6]

76.3 ± 10.9
[60.2 - 95.6]

105 ± 20.5
[74.1 - 142]

SSIM

RC-only 0.796 ± 0.0403
[0.701 - 0.837]

0.803 ± 0.0436
[0.700 - 0.844]

0.747 ± 0.0321
[0.697 - 0.793]

0.782 ± 0.0527
[0.690 - 0.851]

RC+T1(Gd)+T2 0.869 ± 0.0265
[0.801 - 0.889]

0.873 ± 0.0265
[0.804 - 0.895]

0.855 ± 0.024
[0.804 - 0.887]

0.803 ± 0.0467
[0.720 - 0.865]

PSNR [dB]

RC-only 25.4 ± 1.21
[23.9 - 27.2]

25.7 ± 1.36
[23.6 - 28.2]

23.7 ± 0.861
[22.4 - 25.2]

25.1 ± 1.51
[23.2 - 28.3]

RC+T1(Gd)+T2 28.1 ± 1.25
[25.7 - 29.9]

28.3 ± 1.38
[25.6 - 30.4]

27.5 ± 1.15
[25.8 - 29.4]

25.6 ± 1.50
[23.7 - 28.5]

Metrics were calculated on the validation set (n = 9) within the intersection of the body contour of the sCT and CT.
Mean values and standard deviations (µ± 1σ) and range ([min - max]) are reported.

TABLE IX
STATISTICAL COMPARISONS BETWEEN IMAGE SIMILARITY METRICS OBTAINED FOR THE RC-ONLY AND RC+T1(GD)+T2 MODEL. RESULTS AS

P-VALUES PER SEQUENCE.

Metric
Sequence
T1w T1wGd T2w FLAIR

MAE 0.04 0.004 0.004 0.3

SSIM 0.004 0.004 0.004 0.03

PSNR 0.004 0.004 0.004 0.1

Metrics were calculated on the validation set (n = 9) within the intersection of the body contour of
the sCT and CT. Wilcoxon-signed rank tests were performed for the computation of p-values.
Values of p < 0.05 were regarded as statistically significant.
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J. DOMAIN RANDOMISATION - LINEAR COMBINATIONS: DATASET BALANCING

Dataset balancing experiments were conducted for the two domain randomisation methods compared in section III-H.3. This section
describes the dataset balancing experiment for the domain randomisation method using linear combination images.

A. Methods
Dataset balancing was performed by training two models on the whole training set (n = 60). The LC-only model was trained on LC

images only: the chance of applying a linear combination was 1. The LC+T1(Gd)+T2 model was trained to study the effect of increasing
the probability of sampling a fully T1- or fully T2-weighted image.

The dataset from which LC images were generated consisted of acquired T1w (n = 60) images and T1wGd (n = 60) and T2w (n = 60)
images that had been registered to their T1w counterpart. For the LC+T1(Gd)+T2 model, this LC-specific dataset and the dataset of 30 T1w
images, 30 T1wGd images and 60 T2w images from previous experiments were used. A random choice was made whether or not to apply
a linear combination, with a 50 % chance of doing so. The original dataset was sampled if an LC image should not be used.

Both models were trained with the model configuration and hyperparameters described in section III-E. Early stopping was applied as
illustrated in Appendix G, stopping after 250,000 and 200,000 iterations for the LC-only and LC+T1(Gd)+T2 model. Image similarity
metrics were computed for both models on the FLAIR images of the validation set for the chosen iteration. The models’ performances were
compared, using the best model to compare with the model resulting from dataset balancing for the domain randomisation method based on
RC images (the RC+T1(Gd)+T2 model; see Appendix J).

B. Results
For each sequence, a lower MAE was obtained for the LC+T1(Gd)+T2 model than for the LC-only model (Table X), although the

differences were only statistically significant for T1wGd and T2w images (p-values in Table XI). For T1wGd images, an MAE of 74.8 ±
13.2 HU was obtained for the LC-only model, compared to an MAE of 71.0 ± 12.2 HU for the LC+T1(Gd)+T2 model. The MAE on T2w
images improved from 82.3 ± 12.1 HU for the LC-only model to 77.8 ± 11.4 HU for the LC+T1(Gd)+T2 model. The results for PSNR
are in line with the results for MAE. A conflicting result was found for SSIM on T2w images: contrary to the results found for the other
metrics, the SSIM for T2w images was statistically significantly better for the LC-only model. Differences in SSIM for the other sequences
were not significant. Altogether, the results favour the LC+T1(Gd)+T2 model. Therefore, this model was compared to the RC+T1(Gd)+T2
model in section IV-A.3.

TABLE X
IMAGE SIMILARITY METRICS PER MRI SEQUENCE FOR SCT GENERATED BY THE LC-ONLY AND LC+T1(GD)+T2 MODEL, COMPARED TO GROUND

TRUTH CT.

Metric Model
Sequence
T1w T1wGd T2w FLAIR

MAE [HU]

LC-only 75.0 ± 14.7
[62.1 - 112]

74.8 ± 13.2
[64.3 - 108]

82.3 ± 12.1
[68.2 - 106]

115 ± 27.8
[77.7 - 166]

LC+T1(Gd)+T2 72.3 ± 12.4
[57.3 - 100]

71.0 ± 12.2
[58.2 - 99.8]

77.8 ± 11.4
[63.0 - 100]

110 ± 23.9
[72.9 - 155]

SSIM

LC-only 0.865 ± 0.0299
[0.787 - 0.882]

0.867 ± 0.0266
[0.798 - 0.886]

0.859 ± 0.0275
[0.799 - 0.896]

0.788 ± 0.0542
[0.695 - 0.860]

LC+T1(Gd)+T2 0.870 ± 0.0255
[0.806 - 0.893]

0.871 ± 0.0257
[0.805 - 0.891]

0.854 ± 0.0247
[0.799 - 0.880]

0.793 ± 0.0474
[0.709 - 0.864]

PSNR [dB]

LC-only 27.9 ± 1.38
[24.9 - 29.7]

27.8 ± 1.28
[25.1 - 29.5]

26.9 ± 1.09
[25.2 - 28.6]

25.0 ± 1.85
[22.6 - 28.2]

LC+T1(Gd)+T2 28.1 ± 1.33
[25.8 - 30.3]

28.2 ± 1.35
[25.6 - 30.2]

27.4 ± 1.14
[25.7 - 29.2]

25.3 ± 1.72
[23.0 - 28.7]

Metrics were calculated on the validation set (n = 9) within the intersection of the body contour of the sCT and CT.
Mean values and standard deviations (µ± 1σ) and range ([min - max]) are reported.

TABLE XI
STATISTICAL COMPARISONS BETWEEN IMAGE SIMILARITY METRICS OBTAINED FOR THE LC-ONLY AND LC+T1(GD)+T2 MODEL. RESULTS AS

P-VALUES PER SEQUENCE.

Metric
Sequence
T1w T1wGd T2w FLAIR

MAE 0.1 0.004 0.008 0.055

SSIM 0.2 0.1 0.02 0.1

PSNR 0.1 0.004 0.004 0.055

Metrics were calculated on the validation set (n = 9) within the intersection of the body contour of
the sCT and CT. Wilcoxon-signed rank tests were performed for the computation of p-values.
Values of p < 0.05 were regarded as statistically significant.
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K. EXPERIMENTS: IMAGE SIMILARITY METRICS CALCULATED PER SEQUENCE FOR MODELS PRESENTED IN
EXPERIMENTS

As a complement to the mean values and standard deviations for MAE presented in section IV-A, Table XII presents results for MAE,
SSIM and PSNR per model trained in the experiments. The range is presented in addition to the mean value and standard deviation.

TABLE XII
IMAGE SIMILARITY METRICS PER MRI SEQUENCE FOR SCT GENERATED BY MODELS PRESENTED IN THE EXPERIMENTS, COMPARED TO GROUND

TRUTH CT.

Metric Model
Sequence
T1w T1wGd T2w FLAIR

MAE [HU]

Baseline 68.4 ± 14.2
[55.1 - 103]

67.8 ± 13.7
[55.7 - 101]

74.7 ± 13.3
[55.2 - 100]

114 ± 28.4
[75.6 - 172]

T1-only 67.2 ± 14.2
[54.3 - 101]

66.2 ± 14.7
[53.5 - 102]

136 ± 21.1
[106 - 164]

125 ± 31.6
[80.4 - 183]

RC+T1(Gd) 69.1 ± 12.6
[57.3 - 99.5]

68.2 ± 13.2
[56.7 - 99.4]

111 ± 14.6
[92.4 - 133]

100 ± 18.5
[71.0 - 132]

RC+T1(Gd)+T2 71.5 ± 12.1
[59.7 - 100]

69.6 ± 12.2
[56.6 - 98.6]

76.3 ± 10.9
[60.2 - 95.6]

105 ± 20.5
[74.1 - 142]

LC+T1(Gd)+T2 72.3 ± 12.4
[57.3 - 100]

71.0 ± 12.2
[58.2 - 99.8]

77.8 ± 11.4
[63.0 - 100]

110 ± 23.9
[72.9 - 155]

SSIM

Baseline 0.877 ± 0.0283
[0.806 - 0.899]

0.877 ± 0.0282
[0.805 - 0.898]

0.860 ± 0.0284
[0.798 - 0.896]

0.792 ± 0.0516
[0.696 - 0.865]

T1-only 0.880 ± 0.0278
[0.811 - 0.902]

0.880 ± 0.0298
[0.804 - 0.902]

0.747 ± 0.0399
[0.700 - 0.821]

0.771 ± 0.0589
[0.681 - 0.856]

RC+T1(Gd) 0.876 ± 0.0268
[0.807 - 0.893]

0.877 ± 0.0269
[0.809 - 0.987]

0.785 ± 0.0317
[0.731 - 0.835]

0.811 ± 0.0447
[0.729 - 0.870]

RC+T1(Gd)+T2 0.869 ± 0.0265
[0.801 - 0.889]

0.873 ± 0.0265
[0.804 - 0.895]

0.855 ± 0.024
[0.804 - 0.887]

0.803 ± 0.0467
[0.720 - 0.865]

LC+T1(Gd)+T2 0.870 ± 0.0255
[0.806 - 0.893]

0.871 ± 0.0257
[0.805 - 0.891]

0.854 ± 0.0247
[0.799 - 0.880]

0.793 ± 0.0474
[0.709 - 0.864]

PSNR [dB]

Baseline 28.5 ± 1.56
[25.3 - 30.5]

28.5 ± 1.63
[25.2 - 30.5]

27.7 ± 1.41
[25.6 - 30.2]

25.2 ± 1.89
[22.3 - 28.7]

T1-only 28.5 ± 1.54
[25.4 - 30.6]

28.6 ± 1.70
[25.0 - 30.7]

23.3 ± 1.09
[21.7 - 24.9]

24.6 ± 1.92
[22.0 - 28.1]

RC+T1(Gd) 28.4 ± 1.35
[25.6 - 30.1]

28.5 ± 1.52
[25.4 - 30.4]

24.8 ± 0.967
[23.3 - 26.3]

25.9 ± 1.50
[24.0 - 28.8]

RC+T1(Gd)+T2 28.1 ± 1.25
[25.7 - 29.9]

28.3 ± 1.38
[25.6 - 30.4]

27.5 ± 1.15
[25.8 - 29.4]

25.6 ± 1.50
[23.7 - 28.5]

LC+T1(Gd)+T2 28.1 ± 1.33
[25.8 - 30.3]

28.2 ± 1.35
[25.6 - 30.2]

27.4 ± 1.14
[25.7 - 29.2]

25.3 ± 1.72
[23.0 - 28.7]

Metrics were calculated on the validation set (n = 9) within the intersection of the body contour of the sCT and CT.
Mean values and standard deviations (µ± 1σ) and range ([min - max]) are reported.

L. RESULTS: P-VALUES OBTAINED WITH STATISTICAL COMPARISONS IN THE EXPERIMENTS AND FINAL COMPARISON

This section provides the p-values obtained with Wilcoxon-signed rank tests conducted for comparisons presented in the body of this work,
both for image similarity metrics (experiments and final comparison) and for dosimetric accuracy (final comparison only). In the experiments,
statistical comparisons of image similarity metrics for pairs of models were made per sequence (Table XIII), with metrics calculated on the
validation set (n = 9). Similarly, image similarity metrics obtained on the test set (n = 25) per sequence were compared for pairs of models
included in the final comparison (Table XIV). For the models in the final comparisons, p-values obtained with statistical comparisons are
shown in the violin plots in the body of this work.
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TABLE XIII
STATISTICAL COMPARISONS BETWEEN IMAGE SIMILARITY METRICS FOR PAIRS OF MODELS THAT WERE COMPARED IN THE EXPERIMENTS.

RESULTS AS P-VALUES PER SEQUENCE.

Metric Compared models
Sequence
T1w T1wGd T2w FLAIR

MAE

Baseline vs T1-only 0.2 0.04 0.004 0.004
RC+T1(Gd) vs T1-only 0.1 0.055 0.004 0.004
RC+T1(Gd) vs Baseline 0.3 0.7 0.004 0.004
RC+T1(Gd)+T2 vs LC+T1(Gd)+T2 0.3 0.2 0.2 0.04

SSIM

Baseline vs T1-only 0.01 0.07 0.004 0.004
RC+T1(Gd) vs T1-only 0.004 0.07 0.004 0.004
RC+T1(Gd) vs Baseline 0.3 0.5 0.004 0.004
RC+T1(Gd)+T2 vs LC+T1(Gd)+T2 0.9 0.4 0.4 0.07

PSNR

Baseline vs T1-only 0.5 0.2 0.004 0.004
RC+T1(Gd) vs T1-only 0.4 0.3 0.004 0.004
RC+T1(Gd) vs Baseline 0.4 0.6 0.004 0.004
RC+T1(Gd)+T2 vs LC+T1(Gd)+T2 1 0.6 0.4 0.07

Metrics were calculated on the validation set (n = 9) within the intersection of the body contour of the sCT and CT. Wilcoxon-signed
rank tests were done for the computation of p-values.
Values of p < 0.05 were regarded as statistically significant.

TABLE XIV
STATISTICAL COMPARISONS OF IMAGE SIMILARITY METRICS BETWEEN MODELS FOR BASELINE, BASELINE+FLAIR AND DOMAIN RANDOMISATION

MODEL. RESULTS AS P-VALUES PER SEQUENCE.

Metric Compared models
Sequence
T1w T1wGd T2w FLAIR

MAE
Baseline vs Baseline+FLAIR 0.007 0.1 3 ∗ 10−4 1 ∗ 10−5

Baseline vs Domain Randomisation 2 ∗ 10−4 3 ∗ 10−5 2 ∗ 10−4 3 ∗ 10−5

Baseline+FLAIR vs Domain Randomisation 4 ∗ 10−4 5 ∗ 10−4 0.4 1 ∗ 10−5

SSIM
Baseline vs Baseline+FLAIR 0.054 0.3 5 ∗ 10−4 1 ∗ 10−5

Baseline vs Domain Randomisation 0.002 2 ∗ 10−4 0.002 3 ∗ 10−4

Baseline+FLAIR vs Domain Randomisation 0.003 9 ∗ 10−4 0.99 1 ∗ 10−5

PSNR
Baseline vs Baseline+FLAIR 0.007 0.07 4 ∗ 10−4 1 ∗ 10−5

Baseline vs Domain Randomisation 7 ∗ 10−4 2 ∗ 10−4 0.001 0.002
Baseline+FLAIR vs Domain Randomisation 0.002 0.007 0.6 1 ∗ 10−5

Metrics were calculated on the test set (n = 25) within the intersection of the body contour of the sCT and CT. P-values were calculated
with Wilcoxon-signed rank tests.
Values of p < 0.05 were regarded as statistically significant.

For each model included in the final comparison, dosimetric accuracy was statistically compared between sequences (Table XV).
Additionally, comparisons were made in dosimetric accuracy between pairs of models, with p-values reported per sequence (Table XVI).
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TABLE XV
STATISTICAL COMPARISONS OF METRICS FOR DOSIMETRIC ACCURACY BETWEEN SEQUENCES FOR BASELINE, BASELINE+FLAIR AND DOMAIN

RANDOMISATION MODEL. RESULTS AS P-VALUES PER MODEL.

Metric Compared sequences
Model
Baseline Baseline+FLAIR Domain Randomisation

γ3%,3mm

T1 vs T1gd 0.6 0.9 0.4
T1 vs T2 0.8 0.97 1
T1 vs FLAIR 0.02 0.1 0.4
T1gd vs T2 0.6 1 0.7
T1gd vs FLAIR 0.01 0.3 0.1
T2 vs FLAIR 0.1 0.08 0.8

γ2%,2mm

T1 vs T1gd 0.2 0.4 0.98
T1 vs T2 0.04 0.06 0.2
T1 vs FLAIR 0.001 0.2 0.005
T1gd vs T2 0.3 0.3 0.1
T1gd vs FLAIR 0.005 0.2 0.01
T2 vs FLAIR 0.1 0.5 0.2

γ1%,1mm

T1 vs T1gd 0.5 0.8 0.3
T1 vs T2 0.7 0.04 0.3
T1 vs FLAIR 5 ∗ 10−5 0.03 4 ∗ 10−4

T1gd vs T2 0.4 0.1 0.09
T1gd vs FLAIR 1 ∗ 10−5 0.001 1 ∗ 10−4;
T2 vs FLAIR 1 ∗ 10−4 0.9 0.01

DD

T1 vs T1gd 0.2 0.4 0.2
T1 vs T2 0.4 0.9 0.2
T1 vs FLAIR 2 ∗ 10−4 0.2 2 ∗ 10−5

T1gd vs T2 0.8 0.5 0.2
T1gd vs FLAIR 2 ∗ 10−4 0.8 3 ∗ 10−5

T2 vs FLAIR 4 ∗ 10−4 0.4 1 ∗ 10−5

Metrics were calculated on the test set (n = 25) within the intersection of the body contour of the sCT and CT. P-values were calculated
with Wilcoxon-signed rank tests.
Values of p < 0.05 were regarded as statistically significant.

TABLE XVI
STATISTICAL COMPARISONS OF METRICS FOR DOSIMETRIC ACCURACY BETWEEN MODELS FOR BASELINE, BASELINE+FLAIR AND DOMAIN

RANDOMISATION MODEL. RESULTS AS P-VALUES PER SEQUENCE.

Metric Compared models
Sequence
T1w T1wGd T2w FLAIR

γ3%,3mm

Baseline vs Baseline+FLAIR 0.7 0.97 0.9 0.003
Baseline vs Domain Randomisation 0.1 0.7 0.7 0.07
Baseline+FLAIR vs Domain Randomisation 0.04 0.4 0.8 0.006

γ2%,2mm

Baseline vs Baseline+FLAIR 0.8 0.2 0.5 0.01
Baseline vs Domain Randomisation 0.4 0.7 0.6 0.3
Baseline+FLAIR vs Domain Randomisation 0.7 0.4 0.9 0.053

γ1%,1mm

Baseline vs Baseline+FLAIR 0.003 0.1 0.2 2 ∗ 10−4

Baseline vs Domain Randomisation 0.7 0.5 0.5 0.005
Baseline+FLAIR vs Domain Randomisation 0.04 0.07 0.07 9 ∗ 10−5

DD [%]
Baseline vs Baseline+FLAIR 0.01 7 ∗ 10−4 0.002 4 ∗ 10−5

Baseline vs Domain Randomisation 0.3 0.1 0.06 0.06
Baseline+FLAIR vs Domain Randomisation 0.003 2 ∗ 10−4 4 ∗ 10−5 1 ∗ 10−4

Metrics were calculated on the test set (n = 25) within the intersection of the body contour of the sCT and CT. P-values were calculated
with Wilcoxon-signed rank tests.
Values of p < 0.05 were regarded as statistically significant.
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M. FINAL COMPARISON: DOSIMETRIC ACCURACY

As a complement to the results for dose accuracy (3D γ-pass rate with 1%,1mm criterion and DD in the high dose region) presented in
section IV-C, Table XVII presents results for the γ-pass rates with 3%,3mm and 2%,2mm criteria.

TABLE XVII
DOSE EVALUATION (γ3%,3mm AND γ2%,2mm) FOR SCT GENERATED BY THE BASELINE, BASELINE+FLAIR AND DOMAIN RANDOMISATION

MODELS PER MRI SEQUENCE.

Metric Model
Sequence
T1w T1wGd T2w FLAIR

γ3%,3mm [%] a

Baseline 99.99 ± 0.01
[99.96 - 100]

100 ± 0.01
[99.9 - 100]

99.99 ± 0.01
[99.97 - 100]

99.99 ± 0.02
[99.9 - 100]

Baseline+FLAIR 100 ± 0.01
[99.95 - 100]

100 ± 0.01
[99.97 - 100]

99.99 ± 0.01
[99.96 - 100]

100 ± 0.01
[99.97 - 100]

Domain Randomisation 99.99 ± 0.01
[99.95 - 100]

99.99 ± 0.01
[99.95 - 100]

99.99 ± 0.01
[99.96 - 100]

99.99 ± 0.01
[99.95 - 100]

γ2%,2mm [%] a

Baseline 99.95 ± 0.1
[99.7 - 100]

99.95 ± 0.1
[99.6 - 100]

99.9 ± 0.1
[99.7 - 100]

99.9 ± 0.2
[99.4 - 100]

Baseline+FLAIR 99.96 ± 0.1
[99.7 - 100]

99.95 ± 0.1
[99.7 - 100]

99.9 ± 0.1
[99.7 - 100]

99.95 ± 0.1
[99.7 - 100]

Domain Randomisation 99.95 ± 0.08
[99.7 - 100]

99.95 ± 0.1
[99.6 - 100]

99.9 ± 0.08
[99.7 - 100]

99.9 ± 0.1
[99.5 - 100]

Dosimetric accuracy was assessed through plan re-calculation on water-filled sCT compared to the water-filled acquired CT. Mean
values and standard deviations (µ ± 1σ) and range ([min - max]) are reported. aCalculated in the D > 10 % prescribed region.
bCalculated in the D > 90 % prescribed region.

As part of the dosimetric evaluation of the generated sCT, DVH differences in Dmedian and Dmax between sCT- and CT-based dose plans
were evaluated for the brainstem, optic chiasm, lenses, cochleae and pituitary gland. Boxplots representing these differences are shown per
sequence in Fig. 23 (Baseline model), Fig. 24 (Baseline+FLAIR model) and Fig. 25 (Domain Randomisation model). Section IV-C discusses
the main differences.

Fig. 23. Boxplots for DVH differences between sCTwf generated by the Baseline model and CTwf-based dose plans in Dmax and Dmedian for OARs:
brainstem, optic chiasm, lenses, cochleae and pituitary gland. Results are shown per sequence (top to bottom: T1w, T1wGd, T2w and FLAIR
images). Dots represent outliers, with each colour representing a different patient.



34 M.SC. ASSIGNMENT BIOMEDICAL ENGINEERING, ACADEMIC YEAR 2021-2022

Fig. 24. Boxplots for DVH differences between sCTwf generated
by the Baseline+FLAIR model and CTwf-based dose plans in Dmax
and Dmedian for OARs: brainstem, optic chiasm, lenses, cochleae
and pituitary gland. Results are shown per sequence (top to
bottom: T1w, T1wGd, T2w and FLAIR images). Dots represent
outliers, with each colour representing a different patient.

Fig. 25. Boxplots for DVH differences between sCTwf generated
by the Domain Randomisation model and CTwf-based dose plans
in Dmax and Dmedian for OARs: brainstem, optic chiasm, lenses,
cochleae and pituitary gland. Results are shown per sequence (top
to bottom: T1w, T1wGd, T2w and FLAIR images). Dots represent
outliers, with each colour representing a different patient.

N. SEARCH STRATEGY FOR PREVIOUS LITERATURE ABOUT CONTRAST-AGNOSTIC DEEP LEARNING-BASED
MRI-TO-CT SYNTHESIS

This section provides the search strategy adopted to verify that no previous work explored whether a single cGAN network can be trained
for sCT generation from multiple MRI sequences without (re)training the network on new, unseen sequences.

A comprehensive search for studies published in the scientific database Scopus was performed on April 29th, 2022. The search strategy
included the following search terms: (sCT OR ”synth* CT” OR ”CT synth*” OR pseudoCT OR ”pseudo CT” OR ”pseudo-CT” OR pCT
OR ”MRI-to-CT”) AND (generalis* OR generaliz* OR ”contrast-agnostic” OR ”contrast-agnostic” OR sequence OR contrast) AND (GAN
OR ”generative adversarial net*” OR ”deep learning” OR CNN OR Unet OR U-Net OR ”neural net*”). The search was performed on title,
abstract and keywords with no limitation on the publication date or language.
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O. COMPARISON TO LITERATURE: SCT SYNTHESIS FROM BRAIN MRI
A. Search strategy

On April 29th, 2022, a systematic literature search was done in the scientific database Scopus for studies about the accuracy of DL-based
sCT generation from brain MRI for MR-only RT planning. The search strategy included the following keywords: (sCT OR ”synth* CT”
OR ”CT synth*” OR pseudoCT OR ”pseudo CT” OR ”pseudo-CT” OR pCT OR ”MRI-to-CT”) AND (brain OR cerebr* OR head OR
skull) and (GAN OR ”generative adversarial net*” OR ”deep learning” OR CNN OR Unet OR U-Net OR ”neural net*”). The search was
performed on title, abstract and keywords with no limitation on the publication date or language. The titles and abstracts were reviewed to
select studies for full-text review. Any doubts about inclusion were resolved by screening the full text.

The MAE obtained from the comparison of sCT to acquired CT had to be reported, possibly with additional metrics SSIM, PSNR and
γ-pass rates with 3%,3mm, 2%,2mm or 1%1,mm criterion. Only studies aiming to generate sCT from brain MRI scans for MR-only RT
planning were considered for inclusion. Articles were excluded if: a. the full text was unavailable in Dutch or English; b. the article was a
conference paper or review; c. the aim was CT-to-MRI translation instead of MRI-to-CT translation; d. patients were solely head-and-neck
cancer patients instead of brain cancer patients; e. either the input sequence was not a T1w, T1w+Gd, T2w or T2w FLAIR image, or the
input sequence was undefined; or f. the article was a duplicate evaluation of a DL model already evaluated in an earlier study.

B. Data extraction
A spreadsheet was designed for data extraction, extracting the following information from the included articles: a. basic information,

including the first author to allow identification, year of publication, journal; and b. data needed for comparison with results obtained in the
current work: input MRI sequence, model configuration, type of model, image similarity metrics (MAE, SSIM, PSNR), and γ-pass rates for
3%,3mm, 2%,2mm and 1%,1mm criteria. Dose differences were not considered because of the large variability in reported metrics.

C. Results
Only three studies were identified that presented results for T2w FLAIR images separately. Most included studies (n = 17; Table XVIII)

used T1w images as input sequence, followed by T1wGd images (n = 7) and T2w images (n = 5). The MAE obtained for models taking
T1w images as input sequences ranged between 45.4 HU [83] to 131 HU [84], in addition to one exceptionally low MAE of 9.02 HU [98]
(Table XVIII). For T1wGd images, mean MAEs ranged from 44.6 HU [83] to 89.3 HU [85]. Values between 45.7 HU [83] and 68.3 HU
[57] were identified for T2w images. For T2w FLAIR images, two identified studies reported MAE values of 51.2 HU [83] and 59.3 HU
[87], and one study reported an MAE of 115 ± 22. Additionally, in [99], a mean MAE of 61.9 ± 22.6 was obtained for a model trained on
a mix of T2w images with and without FLAIR. However, no statistical comparisons were provided between groups of patients with different
imaging protocols [99].
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TABLE XVIII
LITERATURE REVIEW: BRAIN SCT WITH IMAGE SIMILARITY METRICS AND GAMMA ANALYSIS.

Training
sequence Reference Ptsa Conf.b Model

Image similarity Gamma analysis
MAE
[HU]

SSIM PSNR
[dB]

γ3%,3mm
[%]

γ2%,2mm
[%]

γ1%,1mm
[%]

T1w

Han 2017 [100] 18 2D U-net 84.8±17.3 - - - - -
Dinkla 2018 [45] 26 2D+c CNN 67±11 - - 99.9±0.2 99.1±0.80 97.0±2.2
Xiang 2018 [101] 16 2.5Dd U-net 85.4±9.24 - 27.3±1.1 - - -
Gupta 2019 [102] 47 2D U-net 81.0±14.6 - - - - -
Koike 2019 [103] 15 2Dp GAN 120±20.4 - - 99.7±0.5 98.7±1.2 94.2±4.9
Lei 2019 [104] 24 3Dp GAN 55.7±9.4 - 25.8±1.81 - - -
Neppl 2019 [95] 57 2D U-net 116±26 - - - 98±2 -
Shafai-Erfani 2019 [105] 25 3Dp GAN 54.6±6.81 - - 99.96±0.21 98.4±3.51 90.8±7.8
Spadea 2019 [31] 12 2D+e U-net 54±7 - - - - -
Alvarez-Andres 2020 [86]f 134 3Dp CNN 84±25 - - 99.8±0.18 99.6±0.33 97.9±1.16
Massa 2020 [83] 81 2D U-net 45.4±8.52 0.65±0.05 43.0±2.02 - - -
Xu 2020 [98] 33 2D GAN 9.02±0.82 0.75±0.77 - - - -
Irmak 2021 [84] 20 2D GAN 131±14.3 - - - 99.0±0.4 95.2±1.9
Sreeja 2021 [106] 19 2D U-net 67.5±17.3 0.86±0.05 - - - -
Tang 2021 [107] 27 2D GAN 60.8±14.0 - 49.23±1.92 99.96 98.0 -
Zimmermann 2021 [57]f 33 3D U-net 68.1±5.4 0.97±0.00 - - - -
Gholamiankhah 2022 [108] 86 2D CNN 114±27.5 0.95±0.04 28.7±1.59 - - -
Wang 2022 [87]g 145 2D GAN 50.2±18 0.92±0.03 31.8±2.6 - - -

T1wGd

Emami 2018 [85]
and Liu, 2021 [109]h

15 2D GAN 89.3±10.3 0.83±0.03 26.6±1.2 - 99.9±0.2 99.0±1.5

Kazemifar 2019 [110] 63 2D GAN 47.2±11.0 - - 99.2±0.8 94.6±2.9
Liu, 2019 [111] 40 2D CNN 75±23 - - 99.2 -
Alvarez-Andres 2020 [86]f 133 3Dp CNN 87±28 - - 99.9±0.18 99.6±0.30 97.9±1.07
Massa 2020 [83] 81 2D U-net 44.6±7.48 0.64±0.03 43.4±1.22 - - -
Li 2021 [56] 18 2D GAN 74.9±15.6 0.83±0.04 27.7±1.43 - - -
Zimmermann 2021 [57]f 24 3D U-net 71.6±9.4 0.96±0.01 - - - -

T1w + T1wGd
Alvarez-Andres 2020 [86]f 242 3Dp CNN 81±22 - - 99.8±0.19 99.6±0.32 97.9±1.06
Maspero 2020 [63]g 40 2D+e GAN 61.0±14.1 - 26.7±1.9 99.7 ±0.6 99.6±1.1 -
Jabbarpour 2022 [99]i 60 2D GAN 62.7±30.7 0.88±0.05 27.0±3.38 99.0±1.10 95.0±3.68 90.1±6.05

T2wGd

Li 2020 [112] 28 2D U-net 65.4±4.08 0.97±0.004 28.84±0.57 - - -
Massa 2020 [83] 81 2D U-net 45.7±8.78 0.63±0.03 43.4±1.18 - - -
Ranjan 2021 [113] 18 2D GAN 0.03±0.02j 0.82±0.06 21.4±3.96 - - -
Zimmermann 2021 [57]f 32 3D U-net 68.3±7.3 0.98±0.00 - - - -
Wang 2022 [87]g 145 2D GAN 53.7±21 0.91±0.02 32.5±2.2 - - -

T1w + T1wGd +
T2w Zimmermann 2021 [57]f 33 3D U-net

T1w:
69.1±5.7

T1w:
0.97±0.00

- - - -

T1wGd:
70.0±8.4

T1wGd:
0.97±0.01

- - - -

T2w:
67.3±7.1

T2w:
0.98±0.00

- - - -

FLAIR
Alvarez-Andres 2020 [86]f 134 3Dp CNN 115±22 - - - - -
Massa 2020 [83] 81 2D U-net 51.2±4.5 0.61±0.04 44.9±1.15 - - -
Wang 2022 [87]g 145 2D GAN 59.3±22 0.91±0.03 31.3±2.0 - - -

T2w + FLAIR Jabbarpour 2022 [99]i 65 2D GAN 61.9±22.6 0.84±0.05 27.1±2.25 - - -

Multichannel:
T1w + T2w +
FLAIR

Koike 2019 [103] 15 2Dp GAN 108±24.0 99.8±0.3 99.2±1.0 95.3±4.7- -

For references where multiple models were compared, results are only reported for the best performing model unless models were trained for different
MRI sequences. aNumber of patients in the training set. bConfiguration, p: patch-based training. cThree orthogonal slices as input. dThree consecutive
slices as input. eCombined output from three networks that take one direction from the three orthogonal planes as input. fResults reported for several
single-sequence models and a combined model. gPaediatric population. hDosimetry reported in [109] for the model presented in [85]. iHeterogeneous
imaging protocol, incl. images +/- Gd and +/- FLAIR. jMAE not in HU.
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P. EXAMPLE SCT IMAGES ILLUSTRATING POSSIBLE EFFECTS OF DATA IMPERFECTIONS ON NETWORK PERFORMANCE

This section contains two images illustrating the effects of an imperfection in training and test data on model performance, as mentioned
in V.

Partial volume effects were observed for T2w images, which may have influenced the performance of all models trained in this work for
this specific sequence. For instance, in the illustrative T2w image from the test set shown in Fig. 26 (left), the border between the skull and
surrounding tissues is blurred, causing the skull to be mapped too thick in the sCT generated by the Baseline model in this area (right).

Fig. 26. T2w image (left) of PT16 for whom partial volume effects can be observed near the border of the skull (rectangle). The image on the right
shows the difference between the corresponding sCT generated by the Baseline model and the acquired CT, with a discrepancy between the two
in the same area (rectangle).

Figure 27 illustrates how a possible error registering the acquired MRI to the corresponding CT might affect the MAE. The transversal
slice shown suggests the input MRI was rotated to the corresponding ground truth CT. If such misregistrations occur in the training data,
network performance might be negatively influenced [88]. Likewise, suppose the test data are not correctly registered. In that case, the
networks might be penalised for discrepancies between sCT and acquired CT that are, in reality, caused by errors in registration and not by
improper mapping from MRI to CT.

Fig. 27. Difference between acquired CT and the sCT produced by the Baseline model from a T1w image for an example patient showing the effect
of misregistration: the transversal slice suggests the input MRI was rotated to the corresponding ground truth CT. Similar results were obtained for
this patient for the other models.
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