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Abstract

In this study we investigate why weight assignment algorithms that utilise cascade data
are suitable for community detection. In combination with the above, the most probable
way of cascade propagation in a network with community structure is also examined.
The SI epidemic model is used for the cascades. Intuitively enough, we find out that
given sufficient rates, the SI epidemic is more likely to infect every individual in the
community it originated before proceeding to the other community. Moreover, under this
type of epidemic the weights assigned to the edges of the network describe meaningful
communities and as a result can be used by a community detection algorithm.

Keywords: Community detection, Cascade data, SI model.
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1 Introduction

Being applicable in a vast amount of fields, ranging from marketing all the way to epi-
demiology, it is not surprising that community detection has received a lot of attention
in the field on network science in the last 20 years.

Networks consist of vertices and edges. In some networks the way the vertices are
connected through the edges hints at an interesting underlying structure, which we
call a community. A community consists of a group of vertices that are densely con-
nected internally. The most common example of network is a social network, where
the vertices represent people and an edge between two vertices represent a relation,
the most frequent being friendship. If we observe the social network of a individual,
it is highly likely that his friends are divided into different, possibly non-overlapping,
groups (school, work, university, etc). These groups are what we call the communities
of this network and the goal of community detection is to be able to find groups of this
kind in any given network.

Community detection itself is an ill-posed problem. We do not know how many, if
any, communities are on a network. Moreover communities can manifest in many
different ways, overlapping, disjoint, etc. For this reason many heuristics for community
detection have been developed in the last 20 years, most of them summarized in [9],
[10]. However due to the nature of the problem, the ground truth communities are
required to verify the effectiveness of a method. For that reason, benchmark networks
have been established to test new and existing methods alike [17].

The methods mentioned in the previous paragraph have the disadvantage of requiring
complete knowledge of the network. However in many cases this knowledge is not
available. It is common practice to model and study infectious diseases on networks
[16], [15]. Moreover, it has been studied how the community structure of a network
affects the spreading of a disease [13]. However when modeling human behaviour and
relations on networks it is highly unlikely that the connections (edges) between the
vertices (individuals) are known. Should the communities of such a graph need to be
found, a alternative approach is needed.

In [2], cascade data are used in order to find the communities of the network. Cascade
data contain information propagating through the network. For instance in this project
the cascades we use are infectious diseases. If we cannot observe the network, but rather
only a cascade that propagates through it, can we infer its communities?

Many papers about community detection through cascades have been published in the
last decade. Many of which [6], [11], [12], [20] present new methods and algorithms.
Our project draws its main motivation from [20]. In this paper a new heuristic for com-
munity detection through cascade data is proposed: the CLIQUE algorithm. Instead
of inferring the communities of the original network, CLIQUE first creates a surrogate
graph. This is done by observing a set of cascades propagating though the network and
then weighting any edge that was found.

To the best of our knowledge these heuristics have not been mathematically analysed in

4



the past. The contribution of this work is twofold. First we seek insight and mathemat-
ical justification onto why CLIQUE and perhaps other weight assignment algorithms
for community detection might work. Second, we investigate which is the most prob-
able way that a cascade can propagate into a network with community structure, and
how this way of cascade propagation affects community detection algorithms.

The report is structured as follows. In Chapter 2 we present the necessary background
material. In Chapter 3 we discuss about the setup of the project and we introduce
the problem. Afterwards, in Chapter 4 numerical results are presented and discussed.
The two following chapters contain the major bulk of theoretical results. In Chapter
5 we study the analytical properties of the weights that were introduced in Chapter 3,
and in Chapter 6 we investigate which is the most probable order that an SI epidemic
can spread in a network with community structure. In Chapter 7 we use the results
from Chapter 6 to expand the work done in Chapter 5. Chapter 8 discusses small
perturbations to the order established in Chapter 6. The report is concluded with a
discussion and a reflection on the results.
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2 Background and Preliminaries

This chapter serves to introduce background material that will be used throughout
the report. First we introduce the SI epidemic model on a network with community
structure. As we will see in Chapter 3, our networks will always have two communities
and the cascades we will be using will be SI epidemics.

Later we will have to work with increments of infection times. These infection times
will always be hypoexponentially distributed. As of this we present an overview of this
distribution. Moreover in Chapter 5 we will need to calculate the Laplace transform
of these increments. For this reason we will give the definition of the Laplace trans-
form of a general continuous random variable, as well as the Laplace transform of a
hypoexponential random variable.

2.1 Community based SI process

SI process is one of the many compartmental models in epidemiology. These models
assign labels to the individuals. In SI processes the label of an individual can either be
susceptible (S) or Infected (I). Susceptible individuals can become infected, but infected
individuals stay infected forever [16].

In this project we assume that the population is divided into two non overlapping
communities Cq, q = 1, 2. We denote as Sq, Iq, Nq the susceptible, infected and total
population of each community. Furthermore we have two infection rates. Individuals
of the same community infect each other with rate λin. While individuals that belong
to different communities infect each other with rate λout. It is a natural assumption
that λin > λout.

Finally the way in which the process evolves in discrete time is explained by the fol-
lowing equations:

S
{t+1}
1 = −λinI

{t}
1

S
{t}
1

N1

− λoutI
{t}
2

S
{t}
1

N1

,

S
{t+1}
2 = −λinI

{t}
2

S
{t}
2

N2

− λoutI
{t}
1

S
{t}
2

N2

.

(1)

2.2 Hypoexponential Distribution

Definition 2.1 (Hypoexponential distribution). Let Xk, k = 1, 2, .., ν, ν ∈ N be
independent exponentially distributed random variables each with rate λk. Then X =∑ν

k=1Xk is hypoexponentially distributed with rate (λ1, . . . , λν). We denoted it as
X ∼ Hypo(λ1, . . . , λν).

Definition 2.2 (Laplace transform). Let T be a continuous random variable with
density fT (y). Then the Laplace transform of T is defined as:

L{T}(y) =
∫ ∞

0

fT (t)e
−ytdt, t ∈ R+, y ∈ C.
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Let T be an exponentially distributed random variable with rate λ. Then the Laplace
transform of T is given by:

L{T}(y) = λ

y + λ
.

Let Tk, k = 1, 2, .., ν, ν ∈ N be independent exponentially distributed random variables
each with rate λk. Then the Laplace transform of T =

∑ν
k=1 Tk is given by:

L{T}(y) =
ν∏

k=1

L{Tk}(y) =
ν∏

k=1

λk

y + λk

.
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3 Problem Description

In this section we present the general setup of our research. We begin by giving some
already known definitions as a reminder. Then, we proceed by defining some new
quantities that we will be using throughout the project. Finally we introduce our main
goal.

3.1 Setup

Definition 3.1 (Simple Graph). Let G(V,E) be a graph, V a set of vertices and E a
set of edges. G is simple when there is no more than one edge between any two vertices
and no edge has both its endpoints on the same vertex.

Definition 3.2 (Complete Graph). A simple graph G(V,E) is complete when all pos-
sible pairs of vertices are connected with an edge.

In this project we will focus on complete graphs. We do that due to the many benefits
they offer. We are dealing with infections and on a complete graph each vertex can
infect any other vertex. Moreover, since the problem we are working on is very hard,
it is only natural to study it on complete graphs as a first step.

Furthermore, we assume that the vertices of G are separated into two non-overlapping
communities, C1 and C2. That is, we assume that there exists a partition of the vertex
set V, A = {C1, C2} , |C1| = N1, |C2| = N2, such that C1 ∪ C2 = V, C1 ∩ C2 = ∅ .
Of course there can be a number of ways to partition the set of vertices, but here we
consider the simplest one. We deliberately choose to simplify our setup as much as
possible so that we can focus on the problem without having to worry about technical
issues that might arise from a complicated setup.

3.2 Cascades and Infection Order

Definition 3.3 (Cascade). A cascade c that propagates on a graph G(V,E) with
|V | = N ∈ N∗ nodes is a record of vertices and activation times. I.e. c = (i, ti)

N
i=1, i ∈ V

and ti being the infection time of vertex i in the cascade.

We observe a set C of SI cascades propagating through G. Each cascade c ∈ C starts
from a uniformly picked vertex and lasts until all vertices of G have become infected.
In our case, only information of the community of the initial vertex is relevant. The
particular vertex that starts the process does not need to be specified as all vertices
of a community are interchangeable, since we are working on a complete graph. Each
infected vertex transmits the disease to its neighbours with rate λin if they belong in
the same community and with rate λout if they do not. Recall from Chapter 2 that
λin > λout.

Since vertices of the same community are interchangeable in the symmetric complete
graph, the order in which the cascade c evolved in G can be described completely
through a N × 1 vector O which we define as:
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Definition 3.4 (Infection Order). For a cascade c on a two communities graph
G(V,E) , with |V | = N ∈ N∗, we define the infection order O ∈ {1, 2}N on the
vertices of G as O =

(
Q(1), Q(2), . . . , Q(N)

)
. Where

Q(i) =

{
1 i ∈ C1,

2 i ∈ C2.

Where the vertices are numbered as in c.

Definition 3.5 (Smooth Order). An infection order O is called smooth and denoted
by O∗, when it has N1 ones followed by N2 two’s or vice versa. O∗ corresponds to the
cascade where one community is completely infected before any transmission to the
other community occurs.

Note that many different cascades result in the same O. Moreover we denote by ti the
time vertex i became infected in c. Finally for any i, j ∈ V , we use the relation i ≺ j
to indicate that i was infected before j. Subsequently, i ≺ j ⇐⇒ ti < tj.

3.3 Weights

After observing each c, we assign a weight to each edge {i, j} , i, j ∈ V, i ≺ j that
could have transmitted the disease. We denote this weight as w(i, j) and define it as
in [20] as:

w(i, j) =
e−α∆i,j∑
l:l≺j e

−α∆l,j
,

where ∆i,j = |ti − tj| and α ∈ R∗
+is a parameter that regulates how much the order in

which the vertices where infected affects the value of w(i, j).

Observe that the weight we just defined is random and also that the randomness of
w(i, j) is twofold. One source of randomness is that the times between infections, ∆,
are random, and the other source is the random order O of the infection. Therefore
not only ti are hypoexponentially distributed random variables, but the rate of their
distribution is random as well. To be able to analyze w(i, j) , we must find ways to
remove this randomness.

We start with removing the second source of randomness. We do this simply by condi-
tioning on O. Doing so immediately makes the distribution of all ∆i,j known. Moving
to the other one, the first natural approach is to examine the expectation of the weights.
However taking the expectation leads us to the following expression:

E (w(i, j | O)) = E

(
e−α∆i,j∑
l:l≺j e

−α∆l,j
|O

)
.

Here on the right hand size we have expectation of a fraction. Deriving an analytical
expression, calculating and working with this quantity is cumbersome. Instead we
can work with a first order Taylor approximation. Through this we approximate the
expectation of the fraction with the fraction of the expectations. This results in the
approximate expected weights conditioned on O.
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Definition 3.6 (Approximate expected weights). On a complete graph G(V,E) we
define the approximate expected weights between vertices i, j ∈ V, i ≺ j given the
infection order O if as

µ (i, j | O) =
E(e−α∆i,j | O)∑
l:l≺j E(e−α∆l,j | O)

.

Remark 1. µ (i, j | O) ̸= µ (j, i | O)

Remark 2. If j ≺ i in O then µ (i, j | O) = 0

Through the approximate expected weights we can define the Total Approximate Ex-
pected (TAE) weight of each community. These weights will be the main subject of
study of this project.

Definition 3.7 (TAE weights). On a complete graph G(V,E) with two communities
we define the total approximate weights for C1, C2 as well as the weight between them
given the infection order O as:

W (C1, C1 | O) =
2
∑

i,j∈C1,i≺j µ (i, j | O)

N1(N1 − 1)
, (2)

W (C2, C2 | O) =
2
∑

i,j∈C2,i≺j µ (i, j | O)

N2(N2 − 1)
, (3)

W (C1, C2 | O) =

∑
i∈C1,j∈C2,i≺j µ (i, j | O) +

∑
i∈C2,j∈C1,i≺j µ (i, j | O)

N1N2

. (4)

Even though we have two communities we will refer to all three weights as community
weights. We normalize the TAE weights by dividing them with the total number of
edges that take part in their calculation, as communities might not be of the same size.
For W (C1, C1|O) and W (C2, C2|O) that would be the total edges that belong to C1

and C2, which are N1(N1−1)/2 and N2(N2−1)/2 respectively. As for W (C1, C2|O) it is
N1N2 edges. Since each total weight is divided by the number of edges, what we actually
compute is an approximate mean weight per edge. Furthermore, the conditioning on
O will be omitted whenever there is no ambiguity.

3.4 Problem Statement

The primary goal of this project is to investigate if and under which infection orders,
circumstances and conditions, for the observed set of cascades C it holds that:∑

c∈C

W (C1, C1|O) >
∑
c∈C

W (C1, C2|O), (5)∑
c∈C

W (C2, C2|O) >
∑
c∈C

W (C1, C2|O). (6)

This is equivalent to stating that the total edge weights inside the communities are
greater than the total edge weights between the communities. Taking into consideration
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that many cascade based community detection algorithms like the ones used in [20] use
weight assignment, proving this is a important step towards understanding how they
work.
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4 Numerical Examples

In this section we will numerically compute the TAE weights (2)-(4). After the com-
putation we will compare their values with each other in an attempt to verify whether
inequalities (5), (6) hold. We do this on two separate graphs, K6 and K50 for various
infection orders and visualise the results.

4.1 Infection times

The TAE weights are composed by the approximate expected weights. Recall that the
approximate expected weights are defined as:

µ
(
i, j | O

)
=

E(e−α∆i,j | O)∑
l:l≺j E(e−α∆l,j | O)

.

In order to numerically compute the TAE weights we must compute the expectation of
the e−α∆i,j terms. To do this we need to know the distribution of the infection times ti.

To that end we first present a well known result from probability theory.

Lemma 1. Let Xk, k = 1, 2, .., ν be independent exponentially distributed random
variables each with rate λk. Then if X = min{X1, X2, . . . , Xν}, it is exponentially
distributed with rate

∑ν
k=1 λk.

Recall that Sq, Iq, q = 1, 2 denote the number of susceptible and infected vertices in
community Cq. We will use this Lemma to prove the following theorem.

Theorem 3. Consider a cascade on a complete graph with two communities C1 and
C2. Then conditioned on the infection order O, the infection time of a vertex i, ti, is
distributed as:

ti ∼ Exp
(
λin(S1I1 + S2I2) + λout(S1I2 + S2I1)

)
+ ti−1.

Proof. Every infected vertex is trying to infect a susceptible vertex. However a suscepti-
ble vertex will be infected by only one of the already infected vertices. The independent
identically distributed random variables T j

in who express the time until it gets infected
by vertex j of the same community are exponentially distributed with rate λin. The
independent identically distributed random variables T j

out who express the time until
it gets infected by vertex j of the other community are exponentially distributed with
rate λout. Moreover at any given time the I1 + I2 infected vertices are infecting each of
the S1 + S2 susceptible vertices. W.l.o.g we can assume i ∈ C1. If we want vertex i to
be the next infected we require:

ti = min{T 1
in, T

2
in, . . . , T

I1
in , , T

1
out, .., T

I2
out}+ ti−1,

where ti−1 is the infection time of vertex i − 1. In the expression above there are
S1I1 + S2I2 Tin terms and S1I2 + S2I1 Tout terms. Using this together with Lemma 1
completes the proof.
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Remark 4. Unless we condition on a order of infections O the rate at which ti is dis-
tributed is random as S1, S2, I1, I2 are not deterministic, since ti ∼ Exp(f(S1, S2, I1, I2))+
ti−1.

4.2 Setup for the numerical calculations

To be able to perform the numerical calculations of the TAE weights, we need to fix
most of the quantities. First of all we set N1 = N2 = N/2. We chose to have equally
sized communities so that the results are not biased due to the size. Moreover in the
following chapters we will explicitly require the two communities to have the same
size. Thus, requiring it here as well makes the report more consistent. By fixing the
community sizes we know exactly how many weights each community has. We also
fix the infection rates as λin = 0.66 and λout = 0.33. These numbers are picked for
convenience. Any pair of λin, λout would suffice as long as λin/λout > 1. We will
elaborate on this in Chapter 6.

As a result of fixing the infection rates, the TAE weights become functions of only α.
As of this we will calculate the TAE weights for α varying from 0 to 100 with a unit
step at a time. Unit step gives sufficient information on how the TAE weights depend
on α. However, had we had a more efficient code, we would be able to study even
smaller increments of α.

Before we proceed with the presentation of the results we want to point out that we do
not expect inequalities (5) and (6) to hold for α = 0, regardless of the infection order.
That is because when α = 0 each weight µ

(
i, j | O

)
is of the form 1/

∑
i≺j 1. Thus for

α = 0 the weight of an edge {i, j} is just the probability that j was infected by one of
the already infected vertices. That makes every already infected vertex equally likely
to infect j regardless of the community they are in, and that contradicts what we are
trying to show.

4.3 Results for single Orders

We will start by computing TAE weights given stand alone orders O. First we start with
K6, as it is the smallest complete graph where a community structure is meaningful.
Moreover the results we obtain for K6 can be "easily" verified, in contrast with the
results from K50.

The first order we examine is (1,1,1,2,2,2), shown in Figure 1. Recall that we call this
a smooth infection order. Afterwards we will start perturbing this smooth order until
no two vertices of the same community were infected consecutively. The results are
presented in Figure 4.

Figures 1-4 depict the values of the TAE weights plotted against the values of α on K6

for four different orders.
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Figure 1: Smooth order on K6. Figure 2: K6 with order 112122.

Figure 3: K6 with order 112212. Figure 4: K6 with order 121212.

Figures 1-4 show that inequalities (5) and (6) do not always hold. For example, they
hold in Figure 3 up until α exceeds some value, while on 4 they do not hold at all.
Specifically in Figure 4 we expected weight (4) to be the largest, due to the structure
of the order (1, 2, 1, 2, 1, 2). This order is always alternating between communities and
that points away from a community structure. Moreover, even for the orders for which
our inequalities hold, they only hold for α that exceed some specific value, α∗.

However K6 is too small and thus some of the results we got from it are misleading.
Figures 1-4 suggest that the TAE weights are monotonic in α. We will see bellow that
this is not always true. For a more accurate description on how the total expected
approximate weights behave we consider a bigger network, K50.

For K50 we again compute the TAE weights (2) - (4) for four different orders. The
first one is a smooth order, Figure 5. The second is identical to the first with the only
difference being that the last vertex of C1 is moved to the end of the order, Figure 6.
The third order has the vertices of C1 split into two groups around the nodes of C2,
Figure 7. Finally the last order alternates between the communities, Figure 8.
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Figure 5: Smooth order on K50. Figure 6: Small perturbation on the
smooth order on K50.

Figure 7: A bigger perturbation on
the smooth order on K50.

Figure 8: Alternating order on K50.

The TAE weight of C1, W (C1, C1) is not monotone in Figure 7. We could not observe
this in the smaller graph. Moreover, inequalities (5), (6) still hold for the smooth order.

4.4 Results on averaging on all possible Orders

Now let us assume that C contains all the N !/N1!N2! possible orders O of an SI cascade
on KN . We will calculate (2)-(4) for every c ∈ C and sum the corresponding weights
together. Unfortunately due to how rapidly the number of permutations increase with
N , we are only able to work on small graphs here. The two graphs we consider are K6

and K10.
∑

c∈C W (C1, C1),
∑

c∈C W (C2, C2),
∑

c∈C W (C1, C2) are shown in the Figures
bellow.

Figure 9: K6. Figure 10: K10.
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As shown in Figures 9, 10 above, our inequalities hold when we consider every possible
cascade. Although this result appears to be promising, it is only a heuristic justification
for community detection form cascade data. This is due to cascades not being equally
likely to appear.

In this chapter we numerically computed the TAE weights in an attempt to verify
whether inequalities (5), (6) hold. The most interesting results we obtained are the
following. First, the weights can be monotonic in α given an order O. However this
is not true for every O. This is an interesting analytical property. The second result
is that our inequalities always hold if the infection order is smooth. We will further
examine these results in the following chapter. Finally we saw that the weights describe
meaningful communities when the vertices of the same community are infected one after
another.
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5 Analytical properties of the Weights

In this chapter we focus on proving theoretical results about the TAE weights. We
investigate the limiting behaviour when α → ∞ and the monotonicity. To do this we
will first show that the expected weights, µ(i, j), behave differently when j = i + 1
and when j ̸= i + 1. Afterwards we introduce a new quantity σ. With the help of σ
we present a way to calculate the limits of the TAE weight given any infection order.
Afterwards we condition on a smooth infection order and study the monotonicity of
the TAE weights. Finally we prove the two inequalities (5) and (6), conditioned on a
smooth infection order.

We start by studying the limiting behaviour of the TAE weights when α → ∞. We
expect these limits to exist and be real numbers.

5.1 Limiting behavior when α → ∞

Recall the definition of the approximate expected weight between vertices i, j:

µ
(
i, j
)
=

E(e−α∆i,j)∑
l:l≺j E(e−α∆l,j)

.

In the previous section we gave a formula for the distribution of the infection time of
vertex i, ti in Theorem 3 and briefly touched upon the distribution of ∆i,j = |ti − tj|.
When vertex j was infected right after vertex i, then ∆i,j ∼ Exp(λj). Here λj is
an abbreviation for the actual rate. The use of an abbreviation makes our formulas
more compact and clear. The actual rate is a function of the number of infected and
susceptible vertices in both communities and the corresponding infection rates. When
vertices i, j are not infected consecutively then ∆i,j ∼ Hypo(λi+1, . . . , λj). For the
following we will use the term λh, h ∈ N as a abbreviation for the rate of the distribution
of ∆i,h. Now we can distinguish two cases for µ(i, j):

1. j = i+ 1,

2. j ̸= i+ 1.

Case 1:

µ
(
i, j
)
=

E(e−α∆i,j)∑
l:l≺j E(e−α∆l,j)

=

λj

λj+α∑j
h=2

∏j
h

λh

λh+α

=
1

1 +
∑j−1

h=2

∏j−1
h

λh

λh+α

.
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Taking the limit will make the term in the denominator vanish:

lim
α→∞

1

1 +
∑j−1

h=2

∏j−1
h

λh

λh+α

=

1

1 + limα→∞
∑j−1

h=2

∏j−1
h

λh

λh+α

=

1

1 + 0
= 1.

In this case limα→∞ µ(i, j) = 1.

Case 2:

µ
(
i, j
)
=

E(e−α∆i,j)∑
l:l≺j E(e−α∆l,j)

=

∏j
h=i+1

λh

λh+α∑j
h=2

∏j
h

λh

λh+α

=


1

1+
∑j−1

h=2

∏h
2

λh+α

λh

i = 1,

1

1+
∑i

h=2

∏i
h

λh
λh+α

+
∑j−1

h=i+1

∏h
i+1

λh+α

λh

else.

We take the limit once more:

lim
α→∞


1

1+
∑j−1

h=2

∏h
2

λh+α

λh

i = 1,

1

1+
∑i

h=2

∏i
h

λh
λh+α

+
∑j−1

h=i+1

∏h
i+1

λh+α

λh

else.

=


1

1+limα→∞
∑j−1

h=2

∏h
2

λh+α

λh

i = 1,

1

1+limα→∞
∑i

h=2

∏i
h

λh
λh+α

+limα→∞
∑j−1

h=i+1

∏h
i+1

λh+α

λh

else.

=0.

Since:

lim
α→∞

j−1∑
h=2

h∏
2

λh + α

λh

→ ∞,

and

lim
α→∞

i∑
h=2

i∏
h

λh

λh + α
= 0.

Thus in this case limα→∞ µ(i, j) = 0.
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So we have found out how the individual approximate expected weights behave when
α tends to infinity. That is, we found out that only the µ(i, j) defined on consecutive
vertices do not vanish and they tend to 1. We will now define σ.

Definition 5.1 (Infection counter). Given an infection order O and communities
Cq1 , Cq2 , q1, q2 = 1, 2 we define σ(Cq1 , Cq2|O) as a count of how many times the
infection moved from Cq1 to Cq2 .

Note that for a community, the number of µ(i, j) defined on consecutive vertices is
precisely σ. Thus we can conclude the following:

lim
α→∞

W (C1, C1) =
σ(C1, C1)

N1(N1 − 1)/2
,

lim
α→∞

W (C2, C2) =
σ(C2, C2)

N2(N2 − 1)/2
,

lim
α→∞

W (C1, C2) =
σ(C1, C2)

N1N2

.

(7)

And in case of a smooth infection order:

lim
α→∞

W (C1, C1|O∗) =
N1 − 1

N1(N1 − 1)/2
=

2

N1

,

lim
α→∞

W (C2, C2|O∗) =
N2 − 1

N2(N2 − 1)/2
=

2

N2

,

lim
α→∞

W (C1, C2|O∗) =
1

N1N2

.

It is clear that in the smooth infection order the limits of the intra-community weights
are much larger than the the limit of the inter-community weight. We know that the
TAE weights are continuous functions of α. Moreover we just found a way to calculate
their limiting behaviour for any infection order. A natural way to tie the continuity of
the TAE weights with their limiting behaviour is monotonicity.

5.2 Monotonicity of the weights

As we observed from the numerical results, the TAE weights are not always monotonic
(Figure 7). For that reason we will examine the monotonicity of the TAE weights
conditioned on a smooth infection order. We choose the smooth infection order for
two reasons. First, as we saw in Figure 1 and Figure 5 the TAE weights should be
monotone in the smooth infection order. Second, it reflects best a strong community
structure. Since the TAE weights are defined as a summation of approximate expected
weights, µ(i, j), it is only natural to study the monotonicity of these µ(i, j) first.

We will repeat what we did for the limiting behaviour. We distinguish between two
categories of µ(i, j). Similarly as before the first category is when j = i + 1. In that
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case:

µ(i, j) =
1

1 +
∑j−1

h=2

∏j−1
h

λh

λh+α

.

The λh

λh+α
terms are decreasing. Therefore we can conclude that µ(i, j) is an increasing

function of α when defined on consecutive vertices.

Now in case when j ̸= i+ 1:

µ(i, j) =


1

1+
∑j−1

h=2

∏h
2

λh+α

λh

i = 1,

1

1+
∑i

h=2

∏i
h

λh
λh+α

+
∑j−1

h=i+1

∏h
i+1

λh+α

λh

else.

When j ̸= i+ 1 and i = 1, µ(i, j) is a decreasing function of α, as the λh+α
λh

terms are
increasing in α. However when j ̸= i+1 and i ̸= 1 the monotonicity is not so straight-
forward to infer as the denominator has both increasing and decreasing terms. So we
need to analytically study these µ(i, j). Talking the derivative of such an expression is
not helpful at all. Even if we differentiate we have no means of establishing the sign of
the derivative. To avoid this we can simply set λh = 1 w.l.o.g. Thus the quantity we
need to study is of the form:

f(α) =
1

1 +
∑m

h=1(1 + α)−h +
∑n

h=1(1 + α)h
.

To get a feeling for the monotonicity we first consider the following heuristic. We
can further simplify f(α) by considering only the terms that have the biggest impact.
Through this second simplification the original expression reduces to:

g(α) =
1

1 + (1 + α)−1 + (1 + α)n
,

and

g′(α) =
(1 + α)−2 − n(1 + α)n−1

(1 + (1 + α)−1 + (1 + α)n)2
.

Now we have to examine the sign of the derivative.

g′(α) < 0

(1 + α)−2 < n(1 + α)n−1

1

n
<

(1 + α)n−1

(1 + α)−2

1

n
< (1 + α)1+n

α >
1+n

√
1

n
− 1.
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Now let

h(n) =
1+n

√
1

n
− 1,

then:

h′(n) =

ln(x)

(x+1)2
− 1

x·(x+1)

x
1

x+1

.

Ideally we would like to find the maximum value that h(n) can attain, hmax(n). Then
we could infer that for any α > hmax(n), µ(i, j) is decreasing in this case as well.
Unfortunately we cannot analytically solve the equation h′(n) = 0. However it sufficient
to observe that for any n ∈ N the following is true:

1 ≥ 1+n

√
1

n
.

That means:

h(n) ≤ 0, ∀n ∈ N.

Although it was not a solid proof, this heuristic indicates that if j ̸= i+ 1, then µ(i, j)
is a decreasing function of α, for any α > 0. We will regard this result as true and
we will use it whenever needed for the rest of the project. As a consequence, µ(i, j) is
an increasing function of α only when it is defined on consecutive vertices, and at any
other case it is decreasing.

5.3 Monotonicity of the weights in O∗

First we give this basic property of the approximate expected weights in the following
lemma:

Lemma 2. For the approximate expected weight defined as:

µ
(
i, j
)
=

E
(
e−α∆i,j

)
E
(∑

l:l≺j e
−α∆l,j

) , in every cascade c the following holds:∑
i≺j

µ(i, j) = 1,∀ j.

This is easy to verify though a simple summation.

Proof.∑
i≺j

µ(i, j) =
∑
i≺j

E
(
e−α∆i,j

)
E
(∑

l:l≺j e
−α∆l,j

)
=

E
(∑

i≺j e
−α∆i,j

)
E
(∑

l:l≺j e
−α∆l,j

)
= 1.
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Remark 5. We can use Lemma 2 to rewrite sums that are not equal to 1.

We can write:

∑
i≺j

µ(i, j) =

j−1∑
i=1

µ(i, j) = 1.

Then for β ∈ N∗:

j−1∑
i=β

µ(i, j) = 1−
β∑

i=1

µ(i, j).

In this section we will investigate the monotonicity of the TAE weights conditioned of
a smooth infection order. We do this with the help of Lemma 2 and the results of the
previous section. We assume the smooth order started from community 1. We start
with weight (2). Then we proceed with weight (4) and finally we examine weight (3).

Theorem 6. We observe a cascade on a complete graph KN whose vertices are divided
into two non-overlapping communities C1, C2, |C1| = N1 and |C2| = N2. The cascade
follows a smooth infection order, and we assume that it started in C1. Then:

1. W (C1, C1) is a constant.

2. W (C2, C2) is increasing in α.

3. W (C1, C2) is decreasing in α.

Proof. Recall the definition of TAE weight (2):

W (C1, C1) =
2
∑

i,j∈C1,i≺j µ(i, j)

N1(N1 − 1)
.

Since we want to make use of Lemma 2 we rewrite the numerator of W (C1, C1) by
breaking apart the big sum into smaller sums. One for each j ∈ C1.∑

i,j∈C1,i≺j

µ(i, j) = µ(1, 2) +
∑

i∈C1,i≺3

µ(i, 3) + · · ·+
∑

i∈C1,i≺N1

µ(i, N1).

According to Lemma 2 each term on the right hand side is equal to 1. Therefore:∑
i,j∈C1,i≺j

µ(i, j) = N1 − 1.

Note that it is not equal to N1 since there is no term for vertex 1.
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Thus the weight of community 1 can be written as:

W (C1, C1) =
2
∑

i,j∈C1,i≺j µ(i, j)

N1(N1 − 1)

=
2(N1 − 1)

N1(N1 − 1)
.

And thus:

W (C1, C1) =
2

N1

, (8)

which is a constant.

Now we continue with TAE weight (4). We follow the same approach. We rewrite the
numerator by breaking apart the big sum into smaller sums. To avoid confusion we
have to clarify that when we work with a smooth infection order that started in C1, the
vertices of C1 are (1, 2, 3, . . . , N1), while the vertices of C2 are (N1 +1, N1 +2, . . . , N2).∑

i∈C1,j∈C2,i≺j

µ(i, j) =
∑
i∈C1

µ(i, N1 + 1) +
∑
i∈C1

µ(i, N1 + 2) + · · ·+
∑
i∈C1

µ(i, N2).

The first term of the right hand side satisfies Lemma 2,∑
i∈C1,j∈C2,i≺j

µ(i, j) = 1 +
∑
i∈C1

µ(i, N1 + 2) + · · ·+
∑
i∈C1

µ(i, N2).

Hence we can write weight (4) as:

W (C1, C2) =
1 +

∑
i∈C1

µ(i, N1 + 2) + · · ·+
∑

i∈C1
µ(i, N2)

N1N2

. (9)

Observe that every µ(i, j) above is defined on non-consecutive vertices and thus they
are decreasing functions of α. As a result W (C1, C2) is a decreasing function of α as
well.

Finally we will examine W (C2, C2). Instead of working with the weight itself we can
rewrite every term on the numerator in relation (9) by using the remark of Lemma 2.
This results in the following pattern:∑

i∈C1

µ(i, N1 + 2) = 1− µ(N1 + 1, N1 + 2),∑
i∈C1

µ(i, N1 + 3) = 1− µ(N1 + 1, N1 + 3)− µ(N1 + 2, N1 + 3),

. . . ,∑
i∈C1

µ(i, N2) = 1−
N2−1∑

i=N1+1

µ(i, N2).

23



Observe that the summation of the sums on the right hand sides above are actually the
numerator of the TAE weight (3). Then once again we will rewrite W (C1, C2).

W (C1, C2) =
N2 −

∑
i,j∈C2,i≺j µ(i, j)

N1N2

. (10)

By multiplying equation (10) by 2
N2−1

we can make W (C2, C2) appear and through
some basic operations, we obtain the following expression for TAE weight (3):

W (C2, C2) =
2− 2N1W (C1, C2)

N2 − 1
. (11)

Since we showed before that W (C1, C2) is decreasing in α it follows from relation (11)
that W (C2, C2) is increasing in α.

Moreover we can use equation (11) to find an expression that links all 3 TAE weights.

First we multiply equation (11) with N2 − 1.

(N2 − 1)W (C2, C2) = 2− 2N1W (C1, C2).

Then we divide by N1.
N2 − 1

N1

W (C2, C2) =
2

N1

− 2W (C1, C2).

Finally we use equation (8):
N2 − 1

N1

W (C2, C2) = W (C1, C1)− 2W (C1, C2).

Or:

W (C1, C1) =
N2 − 1

N1

W (C2, C2) + 2W (C1, C2).

5.4 Proof of inequalities (5), (6) conditioned on O∗

In this section will directly prove inequalities (5), (6) conditioned on a smooth infection
order. The proof will follow naturally from equations (8),(10).

Theorem 7. When conditioned on a smooth infection order O∗ that started from
C1, inequality (5) always holds. Assume there exist some α∗ for which W (C2, C2) =

2
2N1+N2−1

. Then for any α > α∗ inequality (6) is true.

Proof. For inequality (5) we will substitute W (C1, C1),W (C1, C2) by relations (8) and
(10). This results in the following:

W (C1, C1) > W (C1, C2) ⇐⇒
2

N1

>
N2 −

∑
i,j∈C2,i≺j µ(i, j)

N1N2

⇐⇒

2 >
N2 −

∑
i,j∈C2,i≺j µ(i, j)

N2

.
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The quantity on the right hand side of the inequality is at most 1 so inequality (5)
holds trivially when we have a smooth infection order.

For inequality (6) we will substitute W (C1, C2) with relation (10) and work from there.

W (C2, C2) > W (C1, C2) ⇐⇒

W (C2, C2) >
N2 −

∑
i,j∈C2,i≺j µ(i, j)

N1N2

⇐⇒

W (C2, C2) >
2

2N1 +N2 − 1
.

Assume that W (C2, C2) attains the value 2/(2N1+N2−1) for some α∗. We also showed
that W (C2, C2) is increasing in α. Thus inequality (6) holds ∀ α > α∗.

In this chapter we first studied the limiting behaviour of the µ(i, j) and the TAE weights.
With the use of σ we found a formula to calculate the asymptotic behaviour of the TAE
weights for any given infection order O. Afterwards we studied the monotonicity of the
µ(i, j). With the use of a heuristic we found out that unless j is infected exactly after
i µ(i, j) are decreasing functions of α. Using this result, we conditioned on a smooth
infection order and studied the monotonicity of the TAE weights. Finally we used their
monotonicity to prove inequalities (5), (6). Of course analogous results are derived if
we assume that the smooth order originated in C2.
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6 Is the smooth infection order the most probable order?

Almost the entirety of the previous chapter was dedicated to the behaviour of the TAE
weights in a smooth infection order. In this section we will try to justify the exclusive
use of the smooth infection order by showing that whenever λin is larger than λout then
the smooth infection order becomes the most probable order.

We will do this by using the fact that a SI process is a Markov chain. This enables
us to use a dynamic programming approach. We begin by defining some elements of
the markov chain. Afterwards we present a brief explanation on how the dynamic
programming approach works. Then we proceed by giving a concrete example on K6.
Finally we will attempt to generalise for any complete graph KN . For this chapter we
explicitly require that N1 = N2.

6.1 SI process

6.1.1 State and stage

Definition 6.1 (Markov chain). A stochastic process is called markov when it has the
memoryless property.

Remark 8. The memoryless property refers to future states of the system only de-
pending on the current state and not the whole history.

Theorem 9. Let KN be a complete graph with N vertices. We assume the vertices
are divided into two communities C1, C2, each having N1, N2 vertices respectively.
The SI process on KN with state space S = {(I1, I2)}, I1 = {0, 1, 2, . . . , N1}, I2 =
{0, 1, 2, . . . , N2} is a Markov chain. I1, I2 are the number of infected vertices in each
community.

Proof. Since the rate of a new infection only depends on the current number of infected
and susceptible vertices, (1), the SI process satisfies the Markov property.

Definition 6.2 (Stage of the process). We define the stage of the SI process as S =
I1 + I2. A stage contains all the states (I1, I2) for which I1 + I2 = S holds.

6.1.2 Transition probabilities

The process starts on either state (1, 0) or (0, 1) with equal probability. Afterwards
it advances to a new state with some probability until it reaches state (N1, N2). The
transition probability from state s, to state s

′ is denoted as P(s
′ |s) and is equal to:

P
(
s
′ |s
)
=



S1I1λin+S1I2λout

[(S1I1+S2I2)λin+(S1I2+S2I1)λout]
if s = (I1, I2), s

′
= (I1 + 1, I2),

S2I2λin+S2I1λout

[(S1I1+S2I2)λin+(S1I2+S2I1)λout]
if s = (I1, I2), s

′
= (I1, I2 + 1),

1 if s = (N1, I2), s
′
= (N1, I2 + 1),

1 if s = (I1, N2), s
′
= (I1 + 1, N2),

0 else.

(12)
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6.2 Dynamic programming for establishing the most probable order

First we define the cost of a state s, Cost(s). and the cost of an infection order O.

Definition 6.3 (Cost of a state). The cost of a state s is defined recursively as the
maximum of the costs of the states that can be reached from s,(s1, s2), multiplied by
the respective transition probabilities.

Cost(s) = max{Cost(s1)P(s1|s), Cost(s2)P(s2|s)}.

In the special case where s = (N1, I2) or s = (I1, N2), Cost(s) = 1.

Definition 6.4 (Cost of an infection order). The cost of an infection order O is the
product of the costs of the respective states s1, s2, . . . , sN that are part of the order.

Remark 10. Every infection order O contains exactly N states.

Since SI process is a Markov chain we can use dynamic programming to establish
the most probable order. Dynamic programming is an algorithmic optimisation tech-
nique that breaks a maximisation (minimisation) problem into smaller sub-problems
in a recursive manner [18]. Our problem is a maximisation problem. We seek the
infection order ( sequence of states) that has the largest Cost, under the condition
λin = κλout, κ > 1.

The algorithm starts at the final stage S = N at state s = (N1, N2). We set Cost(N1, N2) =
1. At each step we move backwards, to the previous stage S = N − 1 and for each
state s ∈ S we compute its cost. The algorithm stops at stage S = 1 after comput-
ing Cost(1, 0) and Cost(0, 1). After we have computed the cost of each state we can
calculate the cost of each infection order.

6.3 Most probable order on K6 using dynamic programming

In this section we will follow the dynamic programming approach on K6. We assume
λin = κλout, κ > 1. First we give the transition probability matrix.
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Transition probability matrix for K6

(0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (0, 3) (1, 2) (2, 1) (3, 0) (1, 3) (2, 2) (3, 1) (2, 3) (3, 2) (3, 3)
0 0 2κ

2κ+3
3

2κ+3
0 0 0 0 0 0 0 0 0 0 0 (0, 1)

0 0 0 3
2κ+3

2κ
2κ+3

0 0 0 0 0 0 0 0 0 0 (1, 0)
0 0 0 0 0 κ

κ+3
3

κ+3
0 0 0 0 0 0 0 0 (0, 2)

0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 (1, 1)
0 0 0 0 0 0 0 3

κ+3
κ

κ+3
0 0 0 0 0 0 (2, 0)

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (0, 3)
0 0 0 0 0 0 0 0 0 2κ+1

4κ+5
2κ+4
4κ+5

0 0 0 0 (1, 2)
0 0 0 0 0 0 0 0 0 0 2κ+4

4κ+5
2κ+1
4κ+5

0 0 0 (2, 1)
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 (3, 0)
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 (1, 3)
0 0 0 0 0 0 0 0 0 0 0 0 1

2
1
2

0 (2, 2)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 (3, 1)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (2, 3)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (3, 2)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (3, 3)


It is worth noting the existence of a symmetry with respect to the communities. E.g the
probability P ((0, 3)|(0, 2)) = P ((3, 0)|(2, 0)). We could only study half of the process
by exploiting this symmetry but since this is a numerical example we will study it
completely.

We will now perform a backwards pass in a dynamic programming manner.

Stage 6:
We start at stage S = 6. The only state is s = (3, 3) and as we mentioned earlier
Cost(3, 3) = 1.

Stage 5:
There are two states in stage S = 5. These are (3, 2) and (2, 3). From both we transition
to state (3, 3) with probability 1 and Cost(3, 3) = 1. Thus Cost(3, 2) = Cost(2, 3) = 1.

Stage 4:
There are three states in stage S = 4. For the first two,(3, 1), (1, 3) there is only one
transition for each, which is to a state of unit cost, hence Cost(3, 1) = Cost(1, 3) = 1.
For the third one (2, 2), there are two equally probable transitions towards unit cost
states. Thus Cost(2, 2) = 1

2
.

Stage 3:
There are four states in stage S = 3. For the first two,(3, 0), (0, 3) there is only one
transition for each, which is to a state of unit cost, hence Cost(3, 0) = Cost(0, 3) = 1.
The costs of the remaining two states, (1, 2) and (2, 1), will be equal. For reference we
will calculate Cost(1, 2).

Cost(1, 2) = max

{
2κ+ 1

4κ+ 5
Cost(1, 3),

2κ+ 4

4κ+ 5
Cost(2, 2)

}
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Substitute Cost(1, 3) = 1, Cost(2, 2) = 1
2
.

Cost(1, 2) = max

{
2κ+ 1

4κ+ 5
,
1

2

2κ+ 4

4κ+ 5

}
Recall we have assumed that κ > 1. Then:

2κ+ 1

4κ+ 5
>

1

2

2κ+ 4

4κ+ 5
⇐⇒

2κ+ 1 > κ+ 2 ⇐⇒
κ > 1.

Thus Cost(1, 2) = Cost(2, 1) = 2κ+1
4κ+5

.

Stage 2:
There are three states in stage S = 2. We start with state (1, 1). From (1, 1) there are
two equally probable transitions to (2, 1) or (1, 2). Recall that at the previous stage we
showed that Cost(2, 1) = Cost(1, 2). As a result Cost(1, 1) = 1

2
Cost(1, 2). We know

that Cost(0, 2) = Cost(2, 0). We calculate the former for reference.

Cost(0, 2) = max

{
κ

κ+ 3
Cost(0, 3),

3

κ+ 3
Cost(1, 2)

}
Substitute Cost(0, 3) = 1 and Cost(1, 2) = 2κ+1

4κ+5
. Then:

Cost(0, 2) = max

{
κ

κ+ 3
,

3

κ+ 3

2κ+ 1

4κ+ 5

}
Recall we have assumed that κ > 1. Then:

κ

κ+ 3
>

2κ+ 1

4κ+ 5

3

κ+ 3
⇐⇒

κ > 1 or κ < −6

8
.

So Cost(0, 2) = Cost(2, 0) = κ
κ+3

.

Stage 1: In the last stage there are only two stages: (1, 0) and (0, 1). We compute
Cost(0, 1) for reference.

Cost(0, 1) = max

{
2κ

2κ+ 3
Cost(0, 2),

3

2κ+ 3
Cost(1, 1)

}
= max

{
2κ2

(2κ+ 3)(κ+ 3)
,

6κ+ 3

2(2κ+ 3)(4κ+ 5)

}
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From here it sufficient to observe:

κ > 1 ⇐⇒
2κ2

(2κ+ 3)(κ+ 3)
>

6κ+ 3

2(2κ+ 3)(4κ+ 5)
.

Thus Cost(0, 1) = 2κ
2κ+3

Cost(0, 2).

Bellow we present a table showing the cost of each state when κ > 1. It is clear that
the most probable paths are the ones that follow the smooth infection orders.

Stage State Cost
6 (3,3) 1

5 (2,3) 1
(3,2) 1

4
(1,3) 1 Cost(2,3)
(3,1) 1 Cost(3,2)
(2,2) 1/2

3

(0,3) 1 Cost(1,3)
(1,2) 2κ+1

4κ+5
Cost(1,3)

(2,1) 2κ+1
4κ+5

Cost(3,1)
(3,0) 1 Cost(3,1)

2
(0,2) κ

κ+3
Cost(0,3)

(1,1) 1
2
Cost(1,2)

(2,0) κ
κ+3

Cost(3,0)

1 (1,0) 2κ
2κ+3

Cost(0, 2)
(0,1) 2κ

2κ+3
Cost(2, 0)

We have shown that in K6 whenever λin > λout then the smooth infection order is the
most probable. However K6 is only but an instance. Our aim is to generalise for any
complete graph KN with two equally sized communities.

6.4 Most probable order on KN

In this section we will attempt to generalise the results we obtained for K6. That is,
show that if λin = κλout and κ > 1 then the smooth order is the most probable order.

However, having a general graph KN makes the use of dynamic programming for every
state impossible. The reason for this is that the state space can be arbitrarily large.
However we can walk around this roadblock by exploiting the structure of the pro-
cess. Firstly, the process is symmetric with respect to the communities. That is, the
probabilities P

(
(J1 + 1, J2)|(J1, J2)

)
and P

(
(J2, J1 + 1)|(J2, J1)

)
are both equal to:

J1(N/2− J1)λin + J2(N/2− J1)λout[
[(J1(N/2− J1) + J2(N/2− J2)]λin + (J1(N/2− J2) + J2(N/2− J1)λout]

.

That means we can ignore half the states in each stage. Moreover we can distinguish
two types of stages. Those that S < N/2 and those that S > N/2. We will use the

30



fact that for the stages that S > N/2 the cost of the states that are part of the smooth
order is equal to 1. I.e states of the form (N1, β), or (β,N2) β ∈ N.

We start by proving the following theorem.

Theorem 11. Assume we have an SI process on a complete graph KN with two equally
sized communities C1, C2 with |C1| = N1, |C2| = N2. For the infection rates λin and
λout holds that λin = κλout, κ > 1. Then for any state of the SI process of the form
(N1 − 1, N2 − β) the optimal cost is obtained by transitioning to a state that is part of
the smooth infection order, i.e to state (N1, N2 − β).

Proof. We will show this by using induction. First we work with state (N1−1, N2−1).
The possible transitions from (N1−1, N2−1) are either to state (N1, N2−1) or to state
(N1 − 1, N2). It easy to verify that both transitions have probability 1/2. Moreover
Cost(N1, N2 − 1) = Cost(N1 − 1, N2) = 1. Thus Cost(N1 − 1, N2 − 1) = 1/2. Now for
the induction base we use state (N1 − 1, N2 − 2). We set,

P1 = P(N1, N2 − 2|N1 − 1, N2 − 2).

Then,

Cost(N1 − 1, N2 − 2) = max {P1Cost(N1, N2 − 2), (1− P1)Cost(N1 − 1, N2 − 1)}
= max {P1, (1− P1)/2} .

Since we want to make the transition to the smooth path most probable we require:

P1 >
1− P1

2
⇐⇒

P1 > 1/3.

By substituting P1, (12), it is easy to verify that the inequality holds iff κ > 1.

κ(N1 − 1) +N2 − 2

κ(N1 − 1 + 2N2 − 4) + (2N1 − 2 +N2 − 2)
>

1

3
⇐⇒

κ > 1.

Now for the induction step we assume that our statement holds for state (N1, N2 − β).
That means that

Cost(N1 − 1, N2 − β) = max {P2Cost(N1, N2 − β), (1− P2)Cost(N1 − 1, N2 − β + 1)}
= P2Cost(N1, N2 − β) = P2,

where,

P2 = P(N1, N2−β|N1−1, N2−β) =
κ(N1 − 1) +N2 − β

κ[N1 − 1 + (N2 − β)β] + (N1 − 1)β + (N2 − β)
.

Now we have to show that it also holds for state (N1 − 1, N2 − β − 1).
Set P(N1, N2 − β − 1|N1 − 1, N2 − β − 1) = P3. We have

Cost(N1 − 1, N2 − β − 1) = max {P3Cost(N1, N2 − β − 1), (1− P3)Cost(N1 − 1, N2 − β)}
= max {P3, P2(1− P3)} .
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Where,

P3 =
κ(N1 − 1) +N2 − β − 1

κ[N1 − 1 + (N2 − β − 1)(β + 1)] + [(N1 − 1)(β + 1) +N2 − k − 1]
.

Now all that is left to do is show κ > 1 ⇐⇒ P3 > P2(1− P3).

P3 > P2(1− P3) ⇐⇒

κ2(N1−1)[N1−N2+2β]+κ[(N1−N2)(1−2β)−β(β−1)−(N1−N2)
2]+(N2−β)2+β−N1N2 > 0.

Instead of explicitly finding the roots, we will set κ = 1 and check whether it is indeed a
root. Doing so indeed causes everything to cancel out. Therefore κ = 1 is a root of the
polynomial in the left side of the inequality. Thus when κ > 1 implies P3 > P2(1−P3).
And Cost(N1 − 1, N2 − β − 1) = P3 and the optimal transition is towards the smooth
order. Thus the proof is completed.

We continue with proving that the smooth is the most probable order when κ > 1.
Using Theorem (11) by setting β = N2 we conclude that from state (N1 − 1, 0) the
optimal transition that maximises the cost is the one towards the smooth order. That is
towards state (N1, 0). From here we could do another induction, this time on (N1−β, 0).
Unfortunately we cannot do that as we have no means of knowing the cost of states
(N1 − β, 1).

Instead we will use another approach. Recall that in our process, once a community
is infected completely,then all subsequent transitions happen with probability 1. Also
every infection order has exactly N1 + N2 transitions. Then it follows logically that
the sooner one community is completely infected, the bigger the Cost(O) , since it will
have more terms equal to 1. Lastly, for some orders, we can calculate their total cost,
as it is a product of the probabilities of the transitions.

Theorem 12. Assume we have an SI process on a complete graph KN with two equally
sized communities C1, C2 with |C1| = N1, |C2| = N2. For the infection rates λin and
λout holds that λin = κλout, κ > 1. Then a smooth infection order is asymptotically
the most probable. That is, for any non-smooth infection order O

′ :

lim
κ→∞

Cost(O
′
)

Cost(O∗
1)

= 0.

Proof. We will make use of the dynamic programming approach once more.

The cost of a state is the total probability of reaching (N1, N2) from it. Each transition
probability is a function of κ. So there is a one to one correspondence between infecting
a community as soon as possible and maximizing cost, since Cost(State) ≤ 1. The cost
of the smooth order O∗

1 is given by:

Cost(O∗
1) =

N1−1∏
n=1

nκ

nκ+N2
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In a smooth infection order a whole community is infected by stage N/2 = N1. Assume
that exist an infection order O

′ for which Cost(O
′
) > Cost(O∗

1). We will consider two
cases.

First case: O
′ infects a whole community by stage N1 as well. Then O

′ is a smooth
order as well.

Second case: O
′ infects a whole community by stage N1 + β, β ∈ N. That means

that in that order at least one inter community transition occurred. The first of which
contributed to the total cost of O′ a term of the form ρ2

ρ1κ+ρ2
, ρ1, ρ2 ∈ N. In the simplest

case where only such transition happened and it happened in stage 2 the cost of O′ is
given by:

Cost(O
′
) =

N2

N2 + (N1 − 1)κ

N1−1∏
n=1

(N2 − n)nκ+ n

[(N2 − n)n+N1 − 1]κ+ n+ (N1 − 1)(N2 − n)
.

Here we have assumed that O
′ started at a vertex of community 1 and then infected

the entire community 2. It is clear that Cost(O
′
) is of order O(κN1−2), where Cost(O∗

1)
is of order O(κN1−1).

Thus:

lim
κ→∞

Cost(O
′
)

Cost(O∗
1)

= 0.

Thus either there exist no order O
′ such that Cost(O

′
) ≥ Cost(O∗) asymptotically, or

if it exists, it is another smooth order, in this case Cost(O
′
) = Cost(O∗).

In this chapter we tried to justify the exclusive use of the smooth infection order.
Intuitively the smooth order should be the most probable given sufficient infection rates
and indeed, our findings support that intuition. More specifically the last theorem of
the chapter states precisely that.
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7 Averaging over many cascades

All the work we did in the previous chapters had a major simplification. The set of
cascades C contained only a single cascade c in it. Here we drop this simplification
and we examine the two inequalities (5),(6) when we sum the TAE weights over many
cascades. However, in light of the work done in the previous chapter it makes sense to
focus on C containing cascades that follow a smooth infection order. We again require
N1 = N2.

7.1 Repeating the same smooth cascade

Assume that every cascade c ∈ C follows a smooth infection order that started at C1.
In this case everything we proved in Chapter 5 automatically applies here as well and
we have nothing new to prove.

7.2 Different smooth cascades

Here we will examine the case where C contains cascades that follow a smooth infection
order but this time the cascades can originate from any of the two communities. For
clarity we denote the smooth infection order that started at C1 by O∗

1 and the one that
started at C2 by O∗

2. First consider a simple case: C contains two cascades, one that
follows O∗

1 and one that follows O∗
2. Then inequalities (5),(6) hold.∑

c∈C

W (C1, C1) >
∑
c∈C

W (C1, C2)

W ((C1, C1)|O∗
1) +W ((C1, C1)|O∗

2) > W ((C1, C2)|O∗
1) +W ((C1, C2)|O∗

2)

To show that this inequality holds we will use two simple facts: The values of the TAE
weights W (C1, C1), W (C2, C2) swap values in the two smooth cascades but W (C1, C2)
remains the same.

To elaborate, in O∗
1 vertices

{
1, 2, . . . , N

2

}
∈ C1 but in O∗

2 these vertices
{
1, 2, . . . , N

2

}
∈

C2. So the weights themselves remain numerically the same but they belong to different
communities. Therefore, in O∗

1 the numerator of (2) is equal to:

∑
i,j∈C1,i≺j

µ(i, j|O∗
1) = µ(1, 2) +

i=2∑
i=1

µ(i, 3) + · · ·+
N
2
−1∑

i=1

(i,
N

2
).

But in O∗
2 the numerator of (3) is equal to:

∑
i,j∈C2,i≺j

µ(i, j|O∗
2) = µ(1, 2) +

i=2∑
i=1

µ(i, 3) + · · ·+
N
2
−1∑

i=1

(i,
N

2
).

This symmetry is caused by the equally sized communities.
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Thus we can re write the inequality as:

W (C1, C1|O∗
1) +W (C2, C2|O∗

1) > 2W (C1, C2|O∗
1).

This can be broken down into two inequalities:

W (C1, C1|O∗
1) > W (C1, C2|O∗

1),

which we showed that in always holds in Chapter 5, and

W (C2, C2|O∗
1) > W (C1, C2|O∗

1),

where in Chapter 5 we showed that it holds for any α > α∗.

A generalisation follows naturally.

Theorem 13. Assume C has ξ1 cascades that follow O∗
1 and ξ2 cascades that follow

O∗
2. Then inequalities (5),(6) hold.

Proof. We have the following inequality:∑
c∈C

W (C1, C1) >
∑
c∈C

W (C1, C2) ⇒

ξ1W ((C1, C1)|O∗
1) + ξ2W ((C1, C1)|O∗

2) > (ξ1 + ξ2)W ((C1, C2)|O∗
1) ⇒

ξ1W ((C1, C1)|O∗
1) + ξ2W ((C2, C2)|O∗

1) > (ξ1 + ξ2)W ((C1, C2)|O∗
1).

This, again, holds term-wise for any any α > α∗.

In this chapter we showed that inequalities (5),(6) hold when we sum over cascades
that follow a smooth infection order. And this is independent of the community where
the cascade originates from.
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8 Small Perturbations on the Smooth Order

Throughout the project we have thoroughly studied the behaviour of the TAE weigths
under a smooth infection order. In this final chapter we will investigate how a small
perturbation of the smooth infection order affects the behaviour of the TAE weights.
The perturbation we choose is a very simple one. Assuming we have a smooth order
O∗

1 we move the last vertex of community 1 to the end of the order. Formally, we move
the N1 vertex to the N position of our order. We will be referencing this new order as
O∗

1,p. Thus Q∗
1,p(N1) = 2 and Q∗

1,p(N) = 1 . Recall that we had a numerical example
of this order on K50 back in Chapter 4, in Figure 6. So we have a strong indication
of what we can expect, namely W (C1, C1) to become a decreasing function of α with
this perturbation. Recall that W (C1, C1|O∗

1) was a constant equal to 2
N1

. But before
we examine the monotonicity we will first have a look at the limiting behaviour of the
TAE weights conditioned on O∗

1,p.

8.1 Limiting Behavior in O∗
1,p

Recall from Chapter 5 the formula we found for calculating the limiting behaviour
of the TAE weights conditioned on any infection order by using equations (7). For
O∗

1,p specifically we have that σ(C2, C2|O∗
1,p) = N2 − 1 since the order in which the

vertices of C2 were infected remains as it was in O∗
1. Moreover, σ(C1, C1|O∗

1,p) = N1 −
2, σ(C1, C2|O∗

1,p) = 2. Thus the limits of the TAE weights when α → ∞ conditioned
on O∗

1,p are:

lim
α→∞

W (C1, C1|O∗
1,p) =

N1 − 2

N1(N1 − 1)/2
,

lim
α→∞

W (C2, C2|O∗
1,p) =

2

N2

,

lim
α→∞

W (C1, C2|O∗
1,p) =

2

N1N2

.

8.2 Monotonicity in O∗
1,p

Theorem 14. Conditioned on the infection order O∗
1,p, W (C1, C1) is a decreasing

function of α and W (C2, C2) is an increasing function of α.

Proof. We begin by investigating the monotinicity of W (C1, C1|O∗
1,p). We follow the

same approach as we did in Chapter 5, which is breaking up the big sum in the numer-
ator into smaller sums and use Lemma 2.
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∑
i,j∈C1,i≺j

µ(i, j) = µ(1, 2) +
2∑

i=1

µ(i, 3) + ...+

N1−2∑
i=1

µ(i, N1 − 1) +

N1−1∑
i=1

µ(i, N)

= N1 − 2 +

N1−1∑
i=1

µ(i, N).

Observe that
∑N1−1

i=1 µ(i, N) is a sum of µ(i, j) that are defined only on non consecutive
vertices. In Chapter 5 we used a heuristic to show that µ(i, j) that are defined on
non consecutive vertices are decreasing functions of α. Therefore W (C1, C1|O∗

1,p) is a
decreasing function of α. This is exactly what we observed in Figure 6.

Since we did not move any vertex of C2, the monotonicity of W (C2, C2|O∗
1,p) is the same

as in W (C2, C2|O∗
1), increasing in α.

Finally, we examine W (C1, C2|O∗
1,p) by using the same method as above. We do this

separately from the other two weights as we will not give a formal proof but rather a
heuristic.

∑
i∈C1,j∈C2,i≺j

µ(i, j) +
∑

i∈C2,j∈C1,i≺j

µ(i, j) =
∑
i∈C1

µ(i, N1 + 1) +
∑
i∈C1

µ(i, N1 + 2)

+ · · ·+
∑
i∈C1

µ(i, N − 1) +
∑
i∈C2

µ(i, N)

= N2 −
∑

i,j∈C2,i≺j

µ(i, j) +
∑
i∈C2

µ(i, N),

where:∑
i∈C2

µ(i, N) =
∑

i∈C2/{N−1}

µ(i, N) + µ(N − 1, N).

So
∑

i∈C2
µ(i, N) is composed of N2 − 1 decreasing functions and a single increasing

function µ(N − 1, N). In particular µ(N − 1, N) is the smallest valued weight in O∗
1,p,

as it is the weight of the last infection. Then we can conclude that
∑

i∈C2
µ(i, N) is a

decreasing function of α as well. Thus W (C1, C2|O∗
1,p) is a decreasing function of α.

In this section we studied if and how a small perturbation in a smooth infection order
affects the behaviour of the TAE weight (2)-(4). What we found is a swift in the
monotonicity of W (C1, C1) which was constant in O∗

1 but became decreasing in O∗
1,p.

As for the other two TAE weights, their monotonicity remains intact.
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9 Conclusion, further research and limitations

The main goal of this project was to provide a mathematical explanation onto why
algorithms for community detection though cascade data that utilise weight assignment
work. We found out that a major catalyst is the way that the cascade propagates
through the network. We showed that for sufficiently bigger intra-community rate
the smooth infection order is asymptotically the most probable. On top of that we
established that in the smooth order the intra-community weights are much bigger
than the inter-community weight. That is, we assume that given a smooth infection
order, an algorithm like CLIQUE [20] is guaranteed to work. Proving this could be a
natural continuation of this project. Apart from this, we feel that there are many more
aspects that need to be considered and examined.

First of all, do our findings hold when the communities are not of equal size? Recall
that for some results in was necessary to impose this restriction on the size of the
communities. More specifically on Chapter 6 it we had to impose this condition. In
that instance we did it in order to preserve the symmetry that the process had. This
symmetry allowed the process to evolve in a identical way regardless of the community
it originated in. This reduced the study of the whole process (N states), to the study
of half the process (N/2 states). Furthermore we used the equal sized communities for
the argument that smooth order infects a community at stage N/2. If we drop the
assumption of equal communities this symmetry disappears. Will the smooth infection
order still be the most probable? Another case where we required the two communities
to be of equal size is Chapter 7. This made W (C1, C2|O∗

1) = W (C1, C2|O∗
2) and enabled

for a swift proof. Should we drop the assumption N1 = N2 the weights will become
unequal as well. Do our findings still hold?

In this project we studied two infection orders: O∗ and O∗
1,p. Can we define a "distance"

between these infection orders? We also know that the two inequalities (5), (6) hold for
both of these orders. That hints that these infection orders are not that "far" apart.
How big can this "distance" between any order O and the smooth order become, before
inequalities (5), (6) do not hold for O?

It is our duty to pinpoint limitations that our research has. First, most benchmark
networks for community detection have many communities. However the networks
that we worked with in this project have only two. As we mentioned this was done
in an effort to simplify the problem and in turn make the study easier. Nevertheless
this is a big drawback. We have no means of verifying whether our findings extend,
or even hold, when the network have many communities. How our research extends
if we allow the communities to overlap? Moreover these benchmark networks usually
have much bigger communities. We were only able to perform numerical calculations
up until 50 nodes in every community. Just by making the code used for the numerical
calculations a bit more efficient, we would be able to simulate realistic sized networks.
Furthermore all the networks we used were assumed to be complete. This was done in
order to make the existence of each edge deterministic. A natural extension is to move
to random graphs, however in such a case we have to make sure that the probability
for intra-community edges is sufficiently high (or even 1).
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Despite of the drawbacks and the limitations we believe this work was a solid first
step into understanding how and why algorithms such as CLIQUE would work. Re-
laxing some of the assumptions we made in this project would be a natural way into
generalising the results.
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