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ABSTRACT,  
E-waste or also called WEEE is discarded electrical and electronic equipment 
(EEE). Right now, the waste management of e-waste is not good enough, only 
17.4% of the world’s total amount of e-waste is properly collected and recycled. 
This causes damage to the environment, to humans and makes that economic 
opportunities from the raw materials in e-waste are not used. Because e-waste is 
also one of the quickest growing waste streams, it is going to give big challenges to 
the EU. Given that the EU has been attempting for the past two decades to develop 
a circular economy, this paper researched which category of e-waste is going to be 
the major challenge for the EU. An Autoregressive Integrated Moving Average 
(ARIMA) model and an Artificial Neural Network (ANN) model were created to 
predict the future amounts of e-waste per category. This combined with the existing 
knowledge of recyclability, profitability and how good recycling facilities follow the 
EU directives about e-waste per category of e-waste, shows that the category of 
small equipment e-waste will be the major challenge for the EU.  
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1. INTRODUCTION 
Electrical and electronic equipment (EEE) has become an 
important part of daily life. Rapid advancements in material 
science, manufacturing processes and electronic products have 
created global markets with rapid diffusion of technology to 
consumers (Tansel, 2017). This rapid diffusion has caused that 
waste electrical and electronical equipment (WEEE) or also 
called e-waste is now one of the fastest-growing waste streams 
(Widmer, Oswald-Krapf, Sinha-Khetriwal, Schnellmann, & 
Böni, 2005). Four key global issues that make WEEE a priority 
waste stream are:  
1. Global quantities of WEEE  
2. Resource impact  
3. Potential health and environmental impacts  
4. Ethical concerns 
(Ongondo & Williams, 2011) 
 
Challenges faced by WEEE management are not only 
consequences of growing quantities of waste but also the 
complexity of WEEE; it is one of the most complex waste 
streams because of the wide variety of products from mechanical 
devices to highly integrated systems and the accelerating 
technological innovations (Ylä-Mella, Pongrácz, & Keiski, 
2004). Elements used in computers and high-tech devices that 
cause the WEEE add up to 49 different metals, including copper, 
gold, silver, palladium and platinum (Tansel, 2017). To some 
extent, the recovery of these metals from e-waste could reduce 
the global demand for new metal production. The recycling of e-
waste will also help reduce the number of toxic chemicals that 
end up in landfills. In 2019 only 17.4% of the world’s total 
amount of e-waste was properly collected and recycled (Forti, 
Baldé, Kuehr, & Bel, 2020). 
 
The first section of this paper gives an understanding of e-waste 
and the categories of e-waste. The second section will give 
information about waste management, recycling and the impact 
of e-waste. After this, it will be connected to the categories of e-
waste to give an overview including the differences between 
them. Then the EU legislation about e-waste will be explained, 
to show what is done about it right now. The third section is the 
methodology which gives information about the forecasting 
models used and how the data was collected and adapted. The 
fourth section is about the analysis, results and discussion of the 
time series forecast and, in the end, there is a conclusion about 
this. The research question of this paper is to find out which 
category of e-waste is going to be the major challenge for the EU.  

1.1 Definition  
Electrical and electronic equipment (EEE) is defined by the 
European Union (Directive 2012/19/EU) as: ‘‘. . . equipment 
which is dependent on electrical currents or electromagnetic 
fields in order to work properly and equipment for the generation, 
transfer and measurement of such currents and fields and 
designed for use with a voltage rating not exceeding 1000 Volts 
for alternating current (AC) and 1500 Volts for direct current” 
(European Union, 2012). Shittu, Williams, and Shaw (2021) say 
that “EEE is often designed to function for a period, after which 
it ceases to function (end-of-life) or performs sub-optimally 
(obsolescence). When this occurs, the user or owner of the device 
may choose to discard it; when an item is discarded, it becomes 
waste EEE (WEEE or e-waste)”. WEEE is also a term used to 
describe EEE and its subcomponents that have been, or intended 
to be, discarded by its owner with no intention of reuse (European 
Union, 2012). 
In this paper, the term “CENELEC standards”, refers generally 
to the series of European standards for the treatment of WEEE 

(EN 50625 series - collection, logistics & treatment requirements 
for WEEE) and the European standard on the requirements for 
the preparing for re-use of WEEE (EN 50614 - Requirements for 
the preparing for re-use of WEEE) (European Commission et al., 
2021).  

1.2 Categories of e-waste  
The European Union (EU) has made a directive about waste from 
electrical and electronical equipment (WEEE), in this directive, 
they divided e-waste in two different ways. In the transitional 
period from 13 August 2012 to 14 August 2018, e-waste was 
divided into the following categories: 1. Large household 
appliances 2. Small household appliances 3. IT and 
telecommunications equipment 4. Consumer equipment and 
photovoltaic panels 5. Lighting equipment 6. Electrical and 
electronic tools (except for large-scale stationary industrial tools) 
7. Toys, leisure and sports equipment 8. Medical devices (except 
for all implanted and infected products) 9. Monitoring and 
control instruments 10. Automatic dispensers. (European Union, 
2012) 
Since 15 Augustus 2018 the EU uses the following 6 categories:  

1.2.1 Temperature exchange equipment  
Temperature exchange equipment or as often called cooling and 
freezing equipment includes equipment like refrigerators, 
freezers, air conditioners and heat pumps. Aspects of this 
category that are relevant regarding environmental and health 
impacts are for example; oil in the cooling circuits of 
refrigerators and heaters and mercury-containing components in 
very old appliances (European Commission et al., 2021). 

1.2.2 Screens, monitors, and equipment containing 
screens having a surface greater than 100 cm²  
Examples of equipment that are included: are televisions, 
monitors, laptops, notebooks and tablets. In this category, you 
can see how a change in production technology can influence the 
amount of kg WEEE. The change comes from flat displays 
substituting CRT displays and monitors. The recycling process 
of CRT displays and monitors is luckily well-known and 
economically sustainable (P. Chancerel, Deubzer, Nissen, & 
Lang, 2012).  

1.2.3 Lamps  
Examples of equipment that are included are: fluorescent lamps, 
high-intensity discharge lamps and LED lamps. Mercury-
containing gas discharge lamps, which were estimated to be 84% 
of lamps put on the market in 2012, are the main impact of setting 
minimum treatment requirements for lamps (Commission & 
Environment, 2014). 

1.2.4 Large equipment  
Examples of equipment that are included are: washing machines, 
clothes, dishwashing machines, electric stoves, large printing 
machines, copying equipment and photovoltaic panels. In the 
research conducted photovoltaic panels will have a separate 
category. Because of the bigger variety in large equipment, it is 
less common to use CENELEC standards for collection, 
transport and treatment. (European Commission et al., 2021). In 
practice, this means that the minimum standards for the treatment 
of WEEE set by the EU are not attained.  

1.2.5 Small equipment  
Examples of equipment that are included are: vacuum cleaners, 
microwaves, ventilation equipment, toasters, electric kettles, 
electric shavers, scales and calculators. Because of the bigger 
variety in this category, it is less common to use CENELEC 
standards for the collection, transport and treatment of small 
equipment (European Commission et al., 2021). 



1.2.6 Small IT and telecommunication equipment 
Examples of equipment that are included are: mobile phones, 
GPS devices, pocket calculators, routers, personal computers, 
printers and telephones. In Germany, around 12% of mobile 
phones end up in the process of formal treatment and in the USA 
only 5% (Perrine Chancerel, 2009). A reason for this can be that 
a large proportion of the mobile phones are stored by the users, 
even when they don’t use them anymore. Additionally, small 
devices are also easier to throw away in bins which can play a 
role in the improper disposal of them (Cucchiella, D’Adamo, 
Lenny Koh, & Rosa, 2015). (European Union, 2012) 
Besides the above mentioned EU categories, nowadays a new 
category emerges from the waist of photovoltaic panels that is 
used in academic papers about e-waste. Therefore, an additional 
category is added. 

1.2.7 Extra category (not from the EU directive): 
photovoltaic panels (including converters) 
Photovoltaic panels is the most important category in terms of 
what can happen when it is not known and defined how to 
manage the future e-waste stream. Photovoltaic panels are 
nowadays reaching a wide diffusion in industrial and private 
markets (Antonelli & Desideri, 2014). But, some of them in the 
‘90s installed photovoltaic panels are now reaching their end of 
life. That’s why recyclers now have to start deciding if recycling 
is feasible or if it is better to put them into landfills (Cucchiella 
et al., 2015). 
In 2017 the quantity of e-waste in the EU mainly consisted of 
large equipment; 5.79 kilograms per inhabitant (KPI), small 
equipment; 5.42 KPI, and temperature exchange equipment; 3.25 
KPI. The other 3 categories consisted together of; 3.76 KPI. Over 
the last 5 years, the biggest growing categories were temperature 
exchange equipment with an average of +3.36%, small 
equipment with +1.47% and large equipment with +1.25%. An 
exceptionally high growth rate would be seen when we would 
only look at photovoltaic panels (including converters), this is an 
average growth rate of 127.39% per year. Lamps has +0.98%, 
small IT and telecommunication equipment has +0.79% and 
screens has a negative growth rate of -2.26%. Forti et al. (2020) 
say that “this decline can be explained by the fact that, lately, 
heavy CRT monitors and screens have been replaced by lighter 
flat panel displays, resulting in a decrease of the total weight even 
as the number of pieces continue to grow.”  

2. LITERATURE REVIEW 
2.1 Waste management  
Technological breakthroughs have led to quick improvements in 
a wide range of EEE and manufacturing processes, this allowed 
for a global scale of production and distribution of affordable 
systems on a worldwide scale. This caused the shortening of use 
time of EEE since there is now a culture of rapidly changing 
high-tech products. The Covid-19 pandemic has also caused an 
even higher usage of electronic devices. The infrastructure and 
formalized mechanisms are unable to match the speed of e-waste 
production and are not developed enough to effectively collect, 
recycle and dispose of this increased e-waste. Above the 
environmental, health and social impact e-waste has, it also poses 
a threat to data privacy and security when not handled properly 
(Kapoor, Sulke, & Badiye, 2021; Tansel, 2017).  
When the EEE has reached its end of life, the recycling process 
can be subdivided into three steps (P. Tanskanen & Takala, 
2006). The first step is the collection of waste, also called the 
take-back when speaking of consumer recycling initiatives. This 
step has logistical challenges. The second step; pre-treatment of 
the e-waste is normally done by recycling companies. These 

companies sort the e-waste, and different materials are separated 
before selling them further. The recyclable materials are sold 
where the valuable materials can be recovered and refined. Then 
the last step happens where the e-waste that is not recyclable will 
be used for incineration which can be used for energy generation 
or it will be disposed of in landfills. The difficulty of the second 
and third steps can be influenced by the product design, which 
has an impact on the recycling efficiency and costs. That is why 
the product should be designed in a way that it can be recycled 
as efficiently as possible (Pia Tanskanen, 2013).  
The product design improvements of recent years that increased 
the marketability and durability of the products caused more 
difficult recycling because of challenges with the separation of 
components. Surita and Tansel (2015) give the following 
example for this, “printed circuit boards (PCB), lamination of 
components and embedded systems increase the durability of 
components while reducing their size. However, structurally 
integrated materials make it difficult to disassemble and recover 
materials. In addition, coatings and sealants applied (e.g., 
polymers, siloxane-based materials) to improve the moisture 
resistance and durability of products need to be removed by acid 
dissolution or heat application”. 
To summarize; the main challenges for managing e-waste 
include the generation of high volumes, a large variety of 
products, lack of effective collection mechanisms and networks, 
presence of toxic materials, difficulty of separation (i.e., 
components being bolted, screwed, snapped, glued or soldered 
together), lack of financial incentives, and lack of adequate 
regulations (Lundgren, 2012). 

2.2 E-waste impact 
The large number of toxic chemicals that are associated with e-
waste also causes concern. Research showed that toxic metals 
and polyhalogenated organics including polychlorinated 
biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) 
can be released from e-waste (Czuczwa & Hites, 1984; 
Robinson, 2009).   
Kiddee, Naidu, and Wong (2013) did extensive literature 
research about the impacts of e-waste on humans and the 
environment. Research on the recycling of e-waste confirmed 
that “significant levels of potentially toxic substances released 
during the recycling processes are building up in the 
environment. The potential hazards of persistent inorganic and 
organic contaminants (such as toxic (PCBs), (PBDEs), and 
metals) to the ecosystem and human health are expected to persist 
for many years to come”. For landfills, there is also sufficient 
evidence that when they accept e-waste, it causes groundwater 
contamination (Schmidt, 2002) and that pollutants have the 
potential to migrate through soils and groundwater within and 
around landfill sites (Kasassi et al., 2008).  
The metals included in e-waste can threaten human health when 
not appropriately managed. There are two different ways in 
which e-waste disposal has an impact on human health: 1. Issues 
with the food chain: byproducts enter the food chain. 2. Direct 
impact: occupational exposure to harmful compounds has a 
direct influence on workers who work in primitive recycling 
(Kiddee et al., 2013). 
But e-waste also brings its opportunities, because the materials 
that are present in e-waste are valuable secondary resources (K. 
Baldé, Wang, Kuehr, & Huisman, 2015). The main components 
of e-waste which offer economic advantages include metals, 
plastics, glass and rare earth elements (Tansel, 2017). The top 10 
materials that generate revenue when recovered from WEEE are; 
1. Gold 50.4%, Copper 13.9%, Palladium 9.5%, Plastics 9.2%, 
Silver 3.6%, Aluminium 2.5%, Tin 2.0%, Barium 1.8%, 



Platinum 1.7%, Cobalt 1.6% (Cucchiella et al., 2015). This adds 
up to a total value of e-waste worldwide of €48 billion (K. Baldé 
et al., 2015). An important part of this value comes from the 
printed circuit board, which accounts for 40% of the metal value 
in e-waste (Golev, Schmeda-Lopez, Smart, Corder, & 
McFarland, 2016). Recovering materials during the recycling 
process also reduces energy consumption compared to materials 
that get mined (Cui & Forssberg, 2003).  

2.3 Recycling per category 
Each different category has products with different lifetime 
profiles that can change over time. The lifespan of a computer, 
for example, was in 1992 four and a half years but was estimated 
to be only two years in 2005 (Widmer et al., 2005). This means 
that every e-waste category has its own economic values, waste 
quantities, and potential environmental and health impacts when 
not recycled appropriately. That is why, there is a difference 
between the recycling technologies and collection processes of 
each category, as well as that the attitude consumers have when 
they dispose of their EEE, differs for each product (C. P. Baldé, 
V., Gray, Kuehr, & Stegmann, 2017). An example of this is the 
comparison Zeng and Li (2016) make between the recyclability 
(r/bit) of 9 different WEEE products. The value of R reveals the 
average recycling possibility of e-waste per unit mass, which 
ranges from 20 to 60/bit. From easiest to most difficult; 
refrigerator 54 ± 3.7 (temperature exchange equipment),  desktop 
computer 52 ± 3.4 (small IT),  duplicator 49 ± 8.5 (large 
equipment), washing machine 48 ± 6.1 (large equipment), air 
conditioner 43 ± 5.1 (temperature exchange equipment), printer 
39 ± 5.6 (small IT), TV 37 ± 4.9 (screens), scanner 32 ± 0.07 
(small IT), mobile phone 28 ± 0.99 (small IT). After each type of 
WEEE, you see the category it belongs to, this was found by use 
of the HS code and the UNU-KEYS (Forti, Baldé, & Kuehr, 
2018), classification table and the link between UNU-Keys and 
HS code can be found in appendix D. Other research showed that 
the average treatment costs of small equipment and small IT is 
240 €/t, temperature exchange equipment is 177 €/t, lamps is 400 
€/t and of large household appliances it is 101€/t (European 
Commission et al., 2021) Large household appliances is one of 
the 10 old categories, which were later mostly split up in large 
equipment and temperature exchange equipment (appendix D). 
Due to the existence of a higher concentration of precious and 
crucial metals, Cucchiella et al. (2015) found that smartphones 
(small IT), tablets (screens) and notebooks (screens) are the most 
valuable products. Small IT and screens and monitors contain 
over 80% of platinum group metals and gold and more than 70% 
of the silver in all categories of e-waste (Golev et al., 2016). For 
collecting, transporting and treating the WEEE of large and small 
equipment the CENELEC standards have been less used. For 
example, small equipment and small IT and telecommunication 
equipment are frequently treated in the same facilities where only 
between 8% and 19% of the facilities are compliant with the 
CENELEC standards. This also counts for large equipment and 
photovoltaic panels, while for temperature exchange equipment 
and lamps this was 46% and for screens it was 35%. That’s why 
European Commission et al. (2021) say that when comparing the 
more homogeneous categories of lamps, screens and temperature 
exchange equipment to small and large appliances, additional EU 
WEEE treatment requirements are expected to cause major 
changes (environmental and health benefits and costs) for small 
and large equipment. 

2.4 Legislation 
Inside the EU there have been drafted and/or implemented 
several legislative documents that try to reduce the 
environmental impacts of WEEE.  

2.4.1 RoHS Directive 
The restriction of the use of certain hazardous substances in EEE 
(RoHS Directive 2002/95/EC) came into force in 2004. It 
prohibits the placing on the EU market of new EEE containing 
more than agreed levels of lead, cadmium, mercury, hexavalent 
chromium, polybrominated biphenyl and polybrominated 
diphenyl ether flame retardants (European Union, 2003a). The 
directive was subsequently recast (Directive 2011/65/EU) to 
expand the restriction of toxic substances to more types of EEE 
(European Union, 2011). 

2.4.2 WEEE Directive 
The WEEE Directive (directive 2002/96/EC) was established 
based on the principle of extended producer responsibility (EPR), 
mandating manufacturers and importers in the EU to take back 
their products from consumers and ensure that they are disposed 
of using environmentally sound methods (European Union, 
2003b; Widmer et al., 2005). The objective of the directive is “as 
a first priority, the prevention of WEEE, and in addition, the 
reuse, recycling and other forms of recovery of such wastes so as 
to reduce the disposal of waste. It also seeks to improve the 
environmental performance of all operators involved in the life 
cycle of EEE, e.g. producers, distributors and consumers and in 
particular those operators directly involved in the treatment of 
WEEE” (European Union, 2003b). The directive also states that 
each member state is required to separately collect household 
WEEE at the annual rate of 4 kg/capita (European Union, 2003b). 
Challenges arose during the implementation phase, due to 
unequal development in operational and legislative progress in 
the member states. The experiences during the first years of the 
implementation indicated also some technical, legal and 
administrative problems (European Commission, 2008; Ylä-
Mella, Poikela, Lehtinen, Keiski, & Pongrácz, 2014). To address 
some of these problems, the WEEE directive was revised in 
2012. The recast directive (2012/19/EU) aimed to provide more 
clarity on the scope and set new collection targets based on 
WEEE generation in each member state (European Union, 2012; 
Ylä-Mella, Keiski, & Pongrácz, 2015). The recast WEEE 
Directive officially replaced Directive 2002/96/EC in 2014 and, 
from 2016, each member state has been required to collect, 
annually, a minimum of 45% of the average weight of EEE put 
on market (POM) in the preceding three years (Ylä-Mella et al., 
2015). From 2019, the minimum required collection rate is 65% 
of the average EEE put on market in the 3 preceding years, or 
85% of annually generated WEEE within each member state 
(European Union, 2012). 

2.4.3 A new Circular Economy Action Plan 
The EU wants to be climate neutral by 2050, a prerequisite for 
this is the transition to a circular economy. The action plan for 
this includes product design, encourages sustainable 
consumption, promotes circular economy and aims to prevent 
waste and retain resources in the EU economy for as long as 
possible. To attain this for e-waste, the European Commission 
presented a ‘Circular Electronics Initiative’ which includes, 
among others, the following actions: 1. devices have to be 
designed for energy efficiency and durability, reparability, 
upgradability, maintenance, reuse and recycling, 2. Right to 
repair, including obsolete software, 3. Improving the collection 
and treatment of WEEE, 4. Improving the collection and 
treatment of WEEE (European Commission, 2020). 

3. METHODOLOGY 
In order to answer the research question; which category of e-
waste is going to be the major challenge for the EU, the future 
based on the current data has to be predicted. Time series 
modeling piqued the interest of the scientific community in 



recent decades. The main goal of time series modeling is to 
construct a model that represents the structure of the time series, 
this is done by collecting and studying past observations. A time 
series is a collection of data points that are measured over a 
period of time. It is mathematically defined as a set of vectors 
x(t),t = 0,1,2,... where t represents the time elapsed (Cochrane, 
1997; Keith W. Hipel, 1994). The measurements obtained during 
an event are grouped in chronological order. Future values that 
will give a forecast are made using this model. That is why time 
series forecasting may be defined as the process of predicting the 
future by studying the past (Raicharoen, Lursinsap, & 
Sanguanbhokai, 2003). In practice, an appropriate model is fitted 
to the time series, and the associated parameters are calculated 
using known data. The process of finding a proper model that is 
fitting a time series is called time series analysis (Keith W. Hipel, 
1994).  
This research contains 2 different methods for time series 
forecasting, the first method used is an Autoregressive Integrated 
Moving Average (ARIMA) model, which was chosen due to its 
statistical properties as well as the methodological rigor. The 
second method, artificial neural network (ANN), is chosen 
because of its flexible nonlinear modeling capability. For both 
models, R was used to train, verify and forecast the model 
ARIMA   

3.1 Collecting and preparing the data 
The data used for these forecasts are from the Waste over Time 
(or WOT) Script (Van Straalen, 2016). Out of this data, the 
average kilograms of e-waste per inhabitant in the European 
Union was collected for each of the 6 categories and put in 
another dataset (this dataset can be found in Appendix A). To 
make sure there is enough data for the models the dataset was 
temporally disaggregated using the Denton-Cholette method 
made by E. B. Dagum and P. A. Cholette. This means that from 
the yearly e-waste data, quarterly data was disaggregated. 
Temporal disaggregation using this method is also one of the 
options European Statistical System (ESS) guidelines on 
temporal disaggregation, benchmarking and reconciliation 
(Dario Buono, 2018) advice. The temporal disaggregation was 
done by using the tempdisagg pack (Sax & Steiner, 2013). In 
Appendix E you can see how this was done in R. 
In the dataset the used category 4 is split up in: 
4a. Large equipment (excluding photovoltaic panels) 
4b. Photovoltaic panels (incl. converters) 

3.2 ARIMA model 
The Autoregressive Integrated Moving Average (ARIMA) 
model is widely used and one of the most important stochastic 
time series methods. The model is based on the premise that the 
time series under consideration is linear and follows a known 
statistical distribution. Although ARIMA models are quite 
flexible in that they can represent several different types of time 
series, i.e., pure autoregressive (AR), pure moving average (MA) 
and combined AR and MA (ARMA) series, their major 
limitation is the pre-assumed linear form of the model. That is, a 
linear correlation structure is assumed among the time series 
values and therefore, no nonlinear patterns can be captured by 
the ARIMA model (G. P. Zhang, 2003). Because the ARIMA 
model and its variants are based on the Box-Jenkins principle 
(G.E.P. Box, 1970; Keith W. Hipel, 1994) they are frequently 
referred to as Box-Jenkins models. In the model; p, d, and q are 
integers higher than or equal to zero that represent the order of 
the model's autoregressive, integrated, and moving average 
components, respectively. 
The Box-Jenkins methodology makes no assumptions about the 
particular patterns in past data of the series to be forecasted. It 

instead uses a three-step iterative strategy of model 
identification, parameter estimation, and diagnostic checking to 
determine the best parsimonious model of ARIMA models 
(G.E.P. Box, 1970; G. P. Zhang, 2003)[6, 8, 12, 27]. This three-
step approach is done multiple times until a suitable model is 
found. The model can then be used to forecast future values of 
the time series. In figure 1 you see the steps of the Box-Jenkins 
method.  

 
Figure 1. The Box-Jenkins methodology for optimal model 
selection (Adhikari & Agrawal, 2013) 

3.3 Artificial Neural Network 
Artificial Neural Networks (ANNs) have become extremely 
popular for prediction and forecasting in a number of areas, 
including finance, power generation, medicine, water resources 
and environmental science (Maier & Dandy, 2000). Research 
into applications of ANNs has blossomed since the introduction 
of the backpropagation training algorithm for feedforward ANNs 
in 1986 (Rumelhart, Hinton, & Williams, 1986). 
Applied to time series ANNs are excellent for forecasting 
problems, this is because they don’t need any presumptions of 
the statistical distribution followed by the data, but still are 
inherently capable of non-linear modeling. This means that the 
model is adaptively formed on the data that’s given. ANNs, like 
human brains, attempt to discover regularities and patterns in 
input data, learn from experience, and then deliver generalized 
results based on their previously existing knowledge. Although 
ANNs were developed primarily for biological reasons, they 
have since been used in a wide range of applications, most 
notably forecasting and classification (J.M. Kihoro, 2004).  
The following sections will highlight the key characteristics of 
ANNs that make them popular for time series analysis and 
forecasting. ANNs are data-driven and self-adaptive by nature 
There is no need to describe a specific model form or make any 
prior assumptions about the statistical distribution of the data; the 
model that is desired is constructed adaptively depending on the 
data attributes. This strategy is highly effective in many real 
scenarios where no theoretical direction for an acceptable data 
generation process is given. Second, ANNs are intrinsically 
nonlinear, making them more accurate and practical in modeling 
complicated data patterns than standard linear approaches do. 
Finally, ANNs are universal approximators that can accurately 
approximate a wide range of functions. In the literature, there are 
numerous ANN forecasting models. The most frequent and 
widely used are multi-layer perceptron’s (MLPs), which have a 
single hidden layer Feed Forward Network (FNN) (G. Zhang, 
Eddy Patuwo, & Y. Hu, 1998; G. P. Zhang, 2003). 



4. TRAINING 
4.1 ARIMA model 
For each category, the optimal model was found using the box-
Jenkins method. This was done by following a three-step 
approach of model identification, parameter estimation and 
diagnostic checking.  
1. The first step in identifying the best model is checking if the 
variable is stationary or non-stationary. In all categories, this was 
non-stationary, because there can be a trend seen. This means that 
the ARIMA model instead of the ARMA model will be used in 
all categories. After this, the correlogram was checked to 
determine P and Q. This was done using the Autocorrelation 
Function (ACF) and the Partial Autocorrelation Function 
(PACF). From there, the possible model parameters for AR and 
MA are found. For small equipment, this means that AR has to 
be 1, and MA can be between 1 and 20 (in APPENDIX B is a 
further explanation of how this was found). 
2. For each category, the optimal parameters were found by 
looking at the lowest Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), lowest Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE) and the 
Mean Absolute Percentage Error (MAPE). For example, in the 
case of small equipment, this means an ARIMA (1,1,5) has the 
best model evaluation.  
3. The last step is the diagnostics checking of model adequacy, 
this is essentially to see if the model assumptions about errors are 
met. It was checked by looking at the ACF of the residuals (G. P. 
Zhang, 2003).  

4.2 Artificial Neural Network model 
For the neural network, the dataset was split up into a training set 
(the first 90% of the data) and a test set (the last 10% of the data). 
In this way, the model can first be created based on the training 
data and afterward be checked on the test data. Three different 
models were tested on this data, after which the MAE between 
the output of the model and test data was calculated. The first 
model is a neural network autoregression (nnetar) from the 
forecasting package in R. This was run as a standard model and 
with some tweaks, a BoxCox.lambda function was added to find 
the best possible lambda. The second and third models are from 
the package nnfor, these are a Multilayer Perceptrons (MLP) 
model and an Extreme Learning Machine (ELM) model. The 
MLP model was run as a standard model and with the tweak of 
finding the optimal amount of hidden notes using the 
hd.auto.type function. The ELM model was only run as a 
standard model. After finding the model with the best MAE 
score, the model was applied to the whole dataset. In the case of 
small equipment this means that the standard MLP fit with 5 
hidden nodes and 20 repetitions model gives the best MAE;  
Table 1. Comparison of the MAE of each model 

 
How the models were made and how the best one was chosen are 
shown in Appendix C. 

5. FORECASTS 
The forecasts made by the ARIMA model and the ANN model 
can be seen in figures 4 and 5. The uninterrupted lines are from 
the data gained from the (WOT) script (from 1993 to 2017) and 
the dashed lines are the forecasted data from (2018 to 2027) 
predicted by the models.  

5.1 ARIMA  
Out of the forecast generated by the ARIMA model can be seen 
that the biggest category of e-waste in 2027 is still large 

equipment (excluding PV panels) with 6.15 kilograms per 
inhabitant (KPI). This means that it is still bigger than small 
equipment with 5.93 KPI. This is because the average increase 
of e-waste per year is 0.95% for small equipment, but 0.70% for 
large equipment. The average increase was 2.42% for 
temperature exchange equipment and 0.39% for small IT. 
Screens was the only category that has seen a decrease with an 
average of -4.90% per year. Between lamps and PV panels 
happened a big change, while screens increased by only an 
average of 0.23%, PV panels increased by an average of 28.51% 
per year. Because of this PV panels is now almost the bigger 
category with 0.1891 KPI, compared to the 0.2205 KPI of lamps.   

 
Figure 2. 6 categories of e-waste ARIMA 10-year forecast 

5.2 Artificial Neural Network  
Out of the forecast generated by the ANN model can be seen that 
large equipment with 6.19 KPI just stays bigger than small 
equipment with 6.13 KPI. This can be explained by the average 
increase of 0.79% for large equipment per year, compared to 
small equipment’s average increase of 1.31% per year. The 
average increase per year for temperature exchange equipment 
was 3.09% and small IT was 0.46%, while screens has dropped 
down to 0.87 KPI having an average decrease of -6.22% per year. 
PV panels with 0.2565 KPI are now bigger lamps with 0.2230 
KPI. 

 
Figure 3. 6 categories of e-waste neural network 10-year 
forecast 

6. DISCUSSION 
To determine the category of e-waste that is going to be the major 
challenge for the EU, it was researched what the differences 
between the e-waste categories are in recyclability, profitability 
and how good recycling facilities follow the EU directives about 
e-waste. There were also 2 forecasts about the amount of e-waste 
per category in 2027. The models predict that the KPI of every 
category except screens will increase over the years, this means 
that the recycling infrastructure needs to grow with it. Knowing 
that the recycling infrastructure cannot handle the amount of e-
waste that is currently produced as seen in chapter 2, e-waste is 
becoming a bigger challenge for the EU in the near future. To 

Model nnetar MLP ELM nnetar2 MLP2
MAE 0.0667 0.0225 0.0521 0.0679 0.0252



solve this, there need to come solutions to effectively collect, 
recycle and dispose of this increase in e-waste. To attain the 
circular economy plan in 2050, for e-waste, legislation from the 
EU needs to be improved and recycling facilities need to be better 
controlled on their recycling standards. It needs to be more 
incentivized to recycle the e-waste, by either increasing the 
penalties for disposing e-waste or rewarding the recycling. 

6.1 Comparison 
In the forecasts is seen that although the general trend of the 
ARIMA model and the ANN model are the same, there are still 
differences between the output. This happens because the 
ARIMA model uses very strict assumptions about the data 
generation process, while the ANN model is more flexible. 
In table 2 the categories are ranked on KPI in 2027, for this the 
average of the ARIMA and ANN output was used. When looking 
only at the ANN model the ranking stays the same, but for the 
ARIMA model numbers 6 and 7 are changed. Out of this ranking 
can be concluded that the KPI of small equipment and large 
equipment stand out above the rest.  
Table 2. Ranking the categories on kilograms per inhabitant. 

 
In table 3 the categories are ranked on the average increase per 
year, for this the average of the ARIMA and ANN increase was 
used. For both models, the ranking stays the same when looked 
at them separately. At the top can be seen that the photovoltaic 
panels have a huge increase. But when compared to the rest 
(excluding photovoltaic panels), temperature exchange 
equipment and small equipment have a high average increase.  
Table 3. Ranking the categories on average increase 

 
For the recyclability of e-waste, small IT products are the most 
difficult to recycle. Small IT and small equipment are often 
recycled in the same facilities, so the difficulty probably also 
counts for small equipment. Below is a comparison of the 
average costs of recycling for each category that was found by a 
study of the European Commission. For screens and photovoltaic 
panels, no data was found. Lamps are the most expensive, 
followed by small equipment and small IT.  
Table 4. Ranking the categories for cost of recycling 
(European Commission et al., 2021) 

 

6.2 Limitations 
A limitation of this research is the data available about the 
amount of e-waste. The Waste of Time script uses the ‘apparent 
consumption method’, and the ‘sales lifetime approach’. Briefly 
put, this means estimating the physical sales by production plus 

imports minus exports of the product. The weight of those sales 
is then integrated with the curves of the expected lifespan of 
electronic and electrical equipment. This enables forecasting of 
the future volumes of e-waste as a function of time. Another 
limitation is that for the forecasting models, only historical data 
on the kilograms per inhabitant was used. Another option would 
be looking at the total number of e-waste products. Research on 
the profitability and recyclability of e-waste has mostly been 
done for metals, plastics, glass and rare earth elements. Towards 
certain products research has been done, but only limited. During 
this research, there was no data found on the data of recyclability 
and profitability over the range of the 6 categories defined by the 
EU. Only one study about the costs of recycling from some 
categories of e-waste was found.  This makes the conclusions 
about these aspects limited. 

6.3 Further research 
Further research could be done when the data of recent years 
would be gathered. When the new data would be available this 
could be compared to the forecasts made to see how accurate they 
are, or new forecasts could be made upon this new data. 
Furthermore, models not based on the kilograms per inhabitant 
but on the quantity of e-waste could be explored. The focus of 
this research was mainly a forecast about e-waste, but further 
research on the effect legislation has per category or a better 
overview of recyclability and profitability per category could be 
built on this paper.    

7. CONCLUSION 
Based on the forecasts and the literature research, the category of 
e-waste that is going to be the major challenge for the EU in the 
years to come is small equipment. When following the current 
trend of the ARIMA model and the ANN model it will eventually 
become the biggest category of e-waste. Small equipment is also 
the second most expensive category to recycle, reasons for this 
are the big challenges due to the variety of products in this 
category. Small equipment is the category where the CENELEC 
standards for the collection and transport are the least 
implemented, making it the category that needs the most 
improvement. Although small equipment is the category that is 
going to be the major challenge for the EU, photovoltaic panels 
should also be carefully watched. This is because of the predicted 
average 28.51% increase per year according to the ARIMA 
model and the predicted average 42.23% increase per year 
according to the ANN model, the unknow average recycling 
costs also causes concerns. 
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APPENDIX 
Appendix A: dataset used for the 
predictions. 
A.1 Original dataset 

 



A.2 Temporal disaggregated dataset 

 

Appendix B: ARIMA model 6 categories e-
waste. 
B.1 Script written for the ARIMA model: 

 
Step 1: Check the ACF and PACF of the data 

 

 
Step 2: check the best error measures 

 
Step 3: diagnose the model with the ACF of the residuals 

 
B.2 Best model for each category 

 

EU6_PV1 quarterEU6_PV2 quarterEU6_PV3 quarterEU6_PV4a quarterEU6_PV4b quarterEU6_PV5 quarterEU6_PV6 quarter
0,681567 0,815014 0,101948 2,172902 2,305964 0,654704
0,703409 0,838162 0,103157 2,225467 2,342457 0,662773
0,725252 0,861311 0,104365 2,278033 2,378951 0,670842
0,747094 0,88446 0,105573 2,330598 2,415444 0,67891
0,769387 0,906735 0,106675 2,382186 2,450919 0,686553
0,791679 0,92901 0,107776 2,433774 2,486395 0,694195
0,813972 0,951285 0,108878 2,485362 2,52187 0,701838
0,836265 0,97356 0,109979 2,53695 2,557346 0,70948

0,85907 0,995551 0,111045 2,588368 2,593373 0,717564
0,881875 1,017541 0,112111 2,639786 2,629401 0,725647

0,90468 1,039531 0,113177 2,691205 2,665429 0,733731
0,927485 1,061522 0,114243 2,742623 2,701456 0,741814

0,94987 1,081861 0,11519 2,790892 5,64E-08 2,733928 0,748522
0,972256 1,1022 0,116136 2,839161 1,02E-07 2,766399 0,75523
0,994642 1,122539 0,117083 2,887431 1,48E-07 2,798871 0,761938
1,017027 1,142878 0,118029 2,9357 1,94E-07 2,831342 0,768645
1,039026 1,161869 0,118928 2,981185 4,13E-07 2,863358 0,775878
1,061025 1,18086 0,119827 3,02667 6,32E-07 2,895373 0,783111
1,083023 1,199851 0,120726 3,072155 8,51E-07 2,927389 0,790344
1,105022 1,218842 0,121625 3,117641 1,07E-06 2,959404 0,797577
1,127198 1,237613 0,122532 3,161818 1,63E-06 2,991687 0,806545
1,149375 1,256384 0,123439 3,205996 2,19E-06 3,02397 0,815514
1,171551 1,275154 0,124346 3,250173 2,75E-06 3,056253 0,824482
1,193728 1,293925 0,125253 3,294351 3,31E-06 3,088537 0,833451
1,215484 1,312466 0,12612 3,336969 4,40E-06 3,121453 0,843925

1,23724 1,331006 0,126986 3,379587 5,50E-06 3,15437 0,854398
1,258997 1,349547 0,127853 3,422205 6,59E-06 3,187287 0,864872
1,280753 1,368087 0,12872 3,464823 7,68E-06 3,220204 0,875345
1,302382 1,387144 0,129577 3,505777 9,54E-06 3,250985 0,886314
1,324012 1,4062 0,130434 3,546731 1,14E-05 3,281765 0,897283
1,345642 1,425256 0,13129 3,587684 1,32E-05 3,312546 0,908251
1,367271 1,444312 0,132147 3,628638 1,51E-05 3,343327 0,91922
1,393355 1,463523 0,132932 3,667729 1,80E-05 3,367908 0,930234
1,419439 1,482734 0,133717 3,706821 2,09E-05 3,392488 0,941248
1,445523 1,501945 0,134503 3,745913 2,38E-05 3,417068 0,952262
1,471607 1,521156 0,135288 3,785004 2,67E-05 3,441648 0,963276

1,50003 1,540694 0,136106 3,824418 3,12E-05 3,468655 0,974265
1,528452 1,560231 0,136924 3,863831 3,57E-05 3,495662 0,985255
1,556874 1,579769 0,137742 3,903245 4,02E-05 3,522669 0,996245
1,585297 1,599307 0,138561 3,942658 4,47E-05 3,549676 1,007235
1,616633 1,620171 0,139539 3,982676 5,22E-05 3,583574 1,018247
1,647969 1,641036 0,140517 4,022694 5,96E-05 3,617473 1,029259
1,679306 1,661901 0,141495 4,062711 6,71E-05 3,651371 1,040271
1,710642 1,682765 0,142473 4,102729 7,45E-05 3,68527 1,051284
1,743765 1,705313 0,143641 4,143148 8,95E-05 3,725802 1,064246
1,776888 1,727861 0,144809 4,183566 1,04E-04 3,766335 1,077208
1,810012 1,750409 0,145977 4,223985 1,19E-04 3,806867 1,09017
1,843135 1,772957 0,147145 4,264404 1,34E-04 3,847399 1,103132
1,876133 1,798648 0,148472 4,30716 1,64E-04 3,889063 1,117757
1,909131 1,824339 0,149799 4,349917 1,93E-04 3,930728 1,132383
1,942129 1,85003 0,151125 4,392673 2,23E-04 3,972392 1,147008
1,975128 1,875721 0,152452 4,435429 2,52E-04 4,014056 1,161633
2,006745 1,904476 0,153854 4,479786 3,02E-04 4,057522 1,175251
2,038363 1,933231 0,155256 4,524143 3,52E-04 4,100987 1,188869
2,069981 1,961986 0,156658 4,5685 4,02E-04 4,144452 1,202487
2,101599 1,990741 0,158059 4,612856 4,53E-04 4,187918 1,216105

2,13369 2,020902 0,159748 4,653827 5,29E-04 4,235941 1,226959
2,165781 2,051064 0,161438 4,694798 6,06E-04 4,283964 1,237813
2,197873 2,081226 0,163127 4,735769 6,82E-04 4,331987 1,248668
2,229964 2,111387 0,164816 4,77674 7,59E-04 4,38001 1,259522
2,259962 2,142217 0,166873 4,813807 8,69E-04 4,423567 1,268703
2,289959 2,173046 0,16893 4,850874 9,80E-04 4,467125 1,277884
2,319957 2,203876 0,170987 4,887941 1,09E-03 4,510682 1,287065
2,349954 2,234705 0,173044 4,925008 1,20E-03 4,55424 1,296245
2,376988 2,26456 0,175385 4,958261 1,36E-03 4,58817 1,302518
2,404021 2,294416 0,177726 4,991514 1,52E-03 4,622099 1,308791
2,431055 2,324271 0,180068 5,024768 1,68E-03 4,656029 1,315064
2,458088 2,354126 0,182409 5,058021 1,84E-03 4,689959 1,321337
2,485044 2,381347 0,184884 5,089234 2,08E-03 4,724101 1,326704

2,512 2,408569 0,187359 5,120447 2,32E-03 4,758243 1,332071
2,538956 2,43579 0,189834 5,15166 2,55E-03 4,792384 1,337438
2,565912 2,463011 0,192309 5,182872 2,79E-03 4,826526 1,342805
2,594467 2,485843 0,194534 5,2132 3,16E-03 4,857285 1,349072
2,623023 2,508675 0,19676 5,243529 3,53E-03 4,888044 1,355339
2,651578 2,531507 0,198986 5,273857 3,90E-03 4,918803 1,361605
2,680133 2,55434 0,201211 5,304185 4,27E-03 4,949562 1,367872
2,706114 2,568526 0,202891 5,329205 4,87E-03 4,973554 1,373473
2,732095 2,582712 0,20457 5,354226 5,46E-03 4,997546 1,379074
2,758076 2,596899 0,20625 5,379247 6,06E-03 5,021538 1,384676
2,784057 2,611085 0,207929 5,404268 6,66E-03 5,045531 1,390277
2,808892 2,615874 0,209156 5,425362 7,61E-03 5,067495 1,394536
2,833727 2,620662 0,210382 5,446457 8,57E-03 5,089459 1,398796
2,858562 2,625451 0,211608 5,467551 9,52E-03 5,111423 1,403055
2,883397 2,630239 0,212834 5,488646 1,05E-02 5,133387 1,407315
2,907207 2,624373 0,213624 5,50704 1,19E-02 5,156613 1,411255
2,931017 2,618506 0,214414 5,525435 1,34E-02 5,179839 1,415195
2,954827 2,612639 0,215204 5,543829 1,48E-02 5,203065 1,419135
2,978636 2,606773 0,215993 5,562224 1,62E-02 5,22629 1,423075
3,005287 2,592984 0,216499 5,584052 1,83E-02 5,244654 1,425604
3,031938 2,579195 0,217004 5,60588 2,03E-02 5,263017 1,428133
3,058588 2,565406 0,217509 5,627708 2,23E-02 5,28138 1,430662
3,085239 2,551616 0,218014 5,649536 2,43E-02 5,299743 1,433191

3,10693 2,525567 0,21806 5,662312 2,70E-02 5,314473 1,434681
3,128621 2,499518 0,218106 5,675088 2,98E-02 5,329203 1,436171
3,150312 2,473469 0,218152 5,687864 3,25E-02 5,343933 1,437661
3,172003 2,447419 0,218198 5,70064 3,52E-02 5,358663 1,439151
3,192106 2,414551 0,218171 5,710982 3,87E-02 5,372941 1,440696
3,212209 2,381682 0,218145 5,721323 4,21E-02 5,387219 1,442241
3,232313 2,348814 0,218119 5,731665 4,56E-02 5,401497 1,443786
3,252416 2,315945 0,218092 5,742006 4,91E-02 5,415775 1,445332

Category Best model
Temperature exchange equipment (EU6PV_1) ARIMA(1,1,2)
 Screens (EU6PV_2) ARIMA(1,1,4)
Lamps (EU6PV_3) ARIMA(1,1,4)
Large equipment (excluding photovoltaic panels) (EUP6PV_4a) ARIMA(1,1,4)
Photovoltaic panels (incl. converters) (EU6PV_4b) ARIMA(1,2,1)
Small equipment (EU6PV_5) ARIMA(1,1,5)
Small IT and telecommunication equipment (EU6PV_6) ARIMA(1,1,4)



Appendix C: Feed-forward Neural Network 
model 6 categories e-waste. 
C.1 Script written for the neural network model: 

 
 
Step 1: create test set and training set 

 

 
Step 2: compare the know data to the model prediction 
Visual output comparison mlp 

 
Compare the MAE of each model 
MAE.nnetar    MAE.MLP    MAE.ELM  
0.06668837     0.02254374   0.05205347 
 
Best model is MLP fit with 5 hidden nodes and 20 repetitions. 
 

Step 3: apply this model on the know dataset to forecast 

 

 
C.2 Best model for each category 

 

Appendix D: classification table and link 
between UNU-Keys and HS code. 
D.1 Description of the UNU product classification 
and its correlation to other e-waste classifications. 

 

Category Best model

Temperature exchange equipment (EU6PV_1) ELM fit with 86 hidden nodes and 20 repetitions.

 Screens (EU6PV_2) MLP with 5 hidden nodes and 20 repetitions.

Lamps (EU6PV_3) nnetar with an average of 20 networks, each of which is a 1-1-1 network with 4 weights.

Large equipment (excluding photovoltaic panels) (EUP6PV_4a) MLP with 5 hidden nodes and 20 repetitions.

Photovoltaic panels (incl. converters) (EU6PV_4b) The best model was: MLP with 5 hidden nodes and 20 repetitions.

Small equipment (EU6PV_5) The best model was: MLP with 5 hidden nodes and 20 repetitions.

Small IT and telecommunication equipment (EU6PV_6) The best model was: MLP with 5 hidden nodes and 20 repetitions.



 
D.1 Link between the UNU-KEYS and HS code 
(only relevant code in the appendix) 

 

Appendix E: temporal disaggregation of the 
dataset using the tempdisagg package in R. 

 

 

 


