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Management Summary

In 2021, the IPCC has published their latest report describing their current findings of the impact
of human activity on climate change. They estimate that there will be an increase in hot extremes,
marine heatwaves, the rise of the sea levels, heavy precipitation, and agricultural/ecological prob-
lems due to droughts. The Netherlands is also subject to these exposures. This means financial
institutions that issue mortgages with the property as collateral, are also exposed to these physical
climate risks. When an event such as a flood occurs, a large number of properties will be affected.
The risk is that mortgage holders within the affected area can not pay back their debts due to
these events. In case this happens the underlying property has to be sold by the bank. Due to the
damages incurred, the bank might incur a loss on the difference between the mortgage loan and the
selling price of the property. The current literature has very limited resources available to quantify
the financial impact of these risks on mortgages in the Netherlands. This leads to main research
question of this thesis:

How can we quantify the financial impact of physical climate change events on the loss distribu-
tion, in particular the expected loss, on the bank’s residential mortgage portfolio in the Netherlands?

This thesis discusses two types of climate events that impact residential properties in the Nether-
lands: flooding and drought. Depending on the flood depth, a property can incur significant damage
to its structure. If this is not repaired, a decrease in the market value of a property is inevitable.
Periods of drought can impact properties where the foundation is built on wooden poles. These
wooden poles are the foundation of properties built on wet terrain before 1975. They are almost
always under water during the year. However, the moment the water evaporates due to prolonged
periods of drought, the poles are exposed to rotting. Over time these poles are not able to carry the
weight of the property. This will eventually result in subsiding of the property. Damages incurred
can become very expensive as reparations to the foundation and walls is very labor and materially
intensive. Again, if this is not repaired, a decrease in the market value of a property is inevitable.
This research first determines a way to quantify this damage impact given the climate exposure for
each property.

The location of each property in the mortgage portfolio is matched to the corresponding expo-
sure from the data provided by the Climate Adaptation Services (2021). In order to quantify the
damages for flooding, a damage function approach is used (Slager, 2017). For the pole rot data a
damage class approach is used (A. Kok, 2020). Based on the likelihood of occurrence from now until
2050, the damages are priced into the market value of the property. Doing this allows the bank to
calculate an Expected Loss (EL) until 2050 on the portfolio. By comparing the climate adjusted EL
to the non-climate adjusted EL allows the bank to observe the contribution of these climate events
to the total losses on the portfolio.

It is important to emphasize that the estimation of the impact is less accurate for pole rot than
for flooding. This is due to the quality of the data. The pole rot damage data are on a neighbour-
hood level and not an individual property level (which is the case for flooding). Also, not every
property built before 1975 is constructed on wooden poles. Therefore, the expected loss estimation
of pole rot gives an indication of the possible losses and should not be perceived as the actual ex-
pected loss.

The results from this model show that the contribution of flooding and pole rot to the EL for
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all exposed properties is 1.41% and 18.3% respectively. Within the portfolio a total of 21% of the
properties is exposed to pole rot and 36% to flooding. Here we observe that whilst the exposure is
larger for flooding, the impact is more profound with pole rot. The average property price decrease
of all properties is 0.3% for flooding and 3.1% for pole rot. The literature describes an expected av-
erage decrease between 2.5% and 10% due to these exposures (Calcasa, 2019). Whilst this is not the
case for the flooding, a small portion of exposed properties is within the 2.5% and 6% range, making
the flood property price impact estimation true for high risk areas. For flooding the municipalities
that run the largest risk for the bank on a portfolio level are Kampen and Culemborg. For pole rot
these municipalities are Bergen Op Zoom and Zoetermeer. In general, it is the case that we can only
observe the true impact of flooding and pole rot on the property market once these events occur.
However, a wider selection of data points could improve the damage estimation on the collateral
as we currently only look at the property type (Apartment/Single Home) and damage class/flood
depth for pole rot and flooding respectively. These outcomes and quantification methods therefore
serve as a starting point for the impact of climate events on mortgages in the Netherlands.

The impact of flooding is limited from an EL point of view whilst that of pole rot is a lot more
significant. However, in both cases the absolute expected loss is not large for the bank until 2050.
This indicates that the impact for the bank is limited. Whilst the impact on the EL is limited,
it is important to not forget the Unexpected Loss (UL). The UL is a worst-case measure of the
EL. This value can be significantly higher and is the direct measure used to determine the capital
requirements for the bank. The most important future research that should be done is looking into
the determination of this measure.
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1 Introduction

1.1 Problem Context

In 1990, the Intergovernmental Panel on Climate Change (IPCC) published its first document de-
scribing the effect of human activity on the environment (IPCC, 1990). In 2021, the IPCC (2021)
published their latest report describing their findings of the impact of human activity on the cli-
mate. Within this report they describe various possible climate scenarios such as increase in hot
extremes, marine heatwaves, sea level rise, heavy precipitation, agricultural and ecological problems
due to droughts in some regions, and an increase in cyclones as well as a reduction of snow cover and
permafrost (which in itself increases global warming). The global projected Sea Level Rise (SLR)
is between 54 and 121 cm for 2100 (KNMI, 2021), however it is not evenly distributed for every
location. The Netherlands is also exposed to some of these climate scenarios. For example, between
2006 and 2018 the sea level has risen 3.7 millimetres per year (increasing year over year) (KNMI,
2021) affecting areas that are subject to flooding even more. Furthermore, the Netherlands is also
exposed to longer periods of droughts due to a decrease in the speed of the polar jet stream and the
changing of the warm and cold water streams in the ocean (KNMI, 2021). Lastly, the amount and
severity of storms significantly increases due to a change in temperature extremes. These changes
to the climate will profoundly affect the way we live socially as well as economically. Due to the
projected consequences of climate change, over 196 countries signed the Paris Climate Agreement
to limit global warming below 2, preferably 1.5 degrees Celsius compared to pre-industrial levels
(Horowitz, 2016). This agreement forces economies around the world to invest in technologies and
business practices so global warming will not exceed the given threshold.

Banks are an important factor in the process for climate change. In order to facilitate change
in economic activities they are required by regulators and society as a whole to finance new loans
for companies that aim to create solutions that reduce the potential impact of climate change. How-
ever, financing such projects introduces the first climate change risk factor called “transitional risks”
(Walles, 2021). The likelihood that these investments all bear fruit is not guaranteed. When a com-
pany fails to generate a marketable solution, the issued loans will probably not be paid back. This
means that the bank makes a loss on this investment. Furthermore, policy and regulation are also
a big part of transitional risks. Governments around the world force changes in existing businesses
to make them more environmentally friendly. When these businesses do not adjust in time they run
the risk of large fines. This generates potential default risks as they might not be able to payback
their debt to bank due to these incurred fines.
The second climate risk banks are exposed to are called “physical risks” (Walles, 2021). Physical
risks are the climate events that are going to play out with climate change, for example an increase
in flooding or droughts. We can also make a distinction between two different types of physical risks;
acute climate risks and chronic climate risks. With acute climate risks we refer to actual climate
events occurring, such as storms, floods, hurricanes and cyclones (Smith, 2021). Chronic climate
risks are long-term shifts in climate patterns that may cause an increase in SLR or chronic heat
waves (Board et al., 2017). For banks, the exposure to physical risks occurs on assets that have
an exposure to one or more climate events (i.e. flooding/drought). An example of such an asset
is a mortgage with a physical property as collateral. Most banks have a mortgage portfolio that is
significantly exposed to flooding or drought. Mapping these potential risks for the bank can help
them improve their risk management framework and appease regulators.

The Volksbank is one of those banks that wants to investigate the effect of climate change on
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their mortgage portfolio. This thesis will focus on quantifying the impact of physical risks on their
mortgage portfolio. Within this chapter we further discuss the core problem, research objective,
research questions, and research approach.

1.2 Core Problem

Almost one third of the Dutch landmass is situated below sea level (Rijkswaterstaat, 2021a). A ma-
jor portion of the Dutch population also lives within these areas. This poses a risk to the people and
buildings in the area as there is higher probability that portions of the land will flood. Historically
this risk has always been present and there were moments in the past where actual flooding occurred.
The most known example is the North Sea Flood in 1953 leaving over 1800 people dead and a lot
of properties destroyed (Rijkswaterstaat, 2021b). Since then, the Dutch government has invested
heavily in protecting the Netherlands from these type of disasters. They built dikes along the coast
and rivers, the enclosing dike of the IJsselmeer through the Afsluitdijk, and the Delta Works in
Zeeland (Rijkswaterstaat, 2021a). Furthermore, many pumps are present to regulate water levels
throughout the country. To a large extent the Netherlands seem to be well protected from flooding.
However, because of the changes in the climate the current flood defences might not be enough for
protecting people and properties. As mentioned, flooding is not the only climate exposure that needs
to be considered. An increase in prolonged periods of drought and a change in storm intensities will
also affect people and buildings over time. These developments push banks such as the Volksbank
to investigate what the possible impact of climate change can be on their mortgage portfolio.

This thesis focuses on the impact of physical risks on the mortgage portfolio of the Volksbank.
In particular, we are looking at the impact on the Expected Loss (EL) of the mortgage portfolio
due to climate change. To make this problem more tangible, a problem cluster is made as shown in
Figure 1 that analyses the potential exposure for the bank.

Figure 1: Core problem identification.

Figure 1 shows that there are three major risks in the Netherlands related to the future projections
of climate change; flooding, droughts, and storms (KNMI, 2021). If the likelihood and intensity of
all risks increase, the result will be that there are more costs associated with maintenance, repairs
and increased protection for residential properties. This is set to increase as the effects of climate
change becomes worse over time.
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Most of the time mortgage holders can request an additional loan or pay out of their own pocket for
damage repairs when a climate event occurs. However, mortgage holders can also find themselves
in financial trouble due to job loss, personal circumstances, or the current macro-economic environ-
ment. When this is the case, the holder most likely does not have the cash to pay for the repairs.
Also, mortgage holders in financial trouble are often not eligible for an additional loan. Combining
this with the risk of the climate event, it will increase the Probability of Default (PD). Also, when a
climate event would occur for this holder, the damage on the property would then remain unrepaired.
This means that that the value of the collateral decreases. This in turn will increase the Loss Given
Default (LGD) and Expected Loss (EL) over time. Also, the decrease in the value of the collateral
will increase the Loan To Value Ratio (LTV) ratio. When this happens across a large portion of
the portfolio, the capital and liquidity requirements for the bank will increase. Furthermore, as the
EL increases so will the the Insurance Risk Premiums (IRP) the bank has on insuring the EL. In a
worst case scenario it might even be the case that as climate projections become worse and the EL
increases to such an extended that it becomes uninsurable. This means that the bank has to carry
the expected loss themselves which might result in insolvency problems.

There are also additional consequences that the bank might be exposed to because of these physical
climate risks. Firstly, interest payments on mortgages are on average 75% of the income for Dutch
retail banks (Vijlbrief, 2020). For the Volksbank it is even 90%. If a significant portion of mortgage
loans default due to physical climate risks, they lose a large portion of their income (the losses could
even be higher than the interest income of the bank). Even issuing new mortgages on the seized
collateral can lead to new default risks if the area is a high-risk area for climate events. This can
lead to solvency issues in the future due the loss of revenue.

Secondly, there is also pressure from regulators on banks to focus on Environmental, Social, and
Governance criteria within their business operations (EBA, 2020). ESG criteria are dimensions mon-
itoring the activities of companies for their contribution to the environment and society at large.
This includes the monitoring of physical and transitional risks. For example, the Dutch Central
Bank (DCB) states that material climate risks should be governed in a way that is consistent with
sound risk management (DNB, 2020). Furthermore, the European Central Bank (ECB) is creating
various different stress tests related to physical and transitional risks for all banks under its jurisdic-
tion (ECB, 2021). These types of statements and stress tests can lead to more regulation for banks
such as additional ESG requirements and restrictions for providing loans in high risk areas further
impacting the banks ability to make money.

By quantifying the financial impact of physical risks on the mortgage portfolio, banks are able
to measure their potential exposure and make plans to potentially fix/mitigate these problems.

1.3 Research Objective

This research quantifies the financial impact of physical climate change events on the residential
mortgage portfolio of the Volksbank. To achieve this quantification we have to define what the
knowledge gap is between our goal and the literature. Before discussing this gap, we first expand
on the research goal.

With the research goal we aim to merge climate data with mortgage data and create a model for
estimating losses on mortgages due to climate change. For climate change exposure in the Nether-
lands there are two data sources; the KNMI (2021) and the Klimaat Effect Atlas (2021). The former
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provides a general overview whilst the latter has location specific information for the Netherlands.
In turn, the mortgage data are provided by the Volksbank. Merging the most suitable climate data
with the mortgage data gives us the ability to analyze the impact of climate change. We specifically
aim to model the physical climate-adjusted Loss Given Default (LGD) for the portfolio. This can
be used to measure the expected losses due to physical climate risks on the mortgage portfolio. For
modelling the expected losses we also need to the Probability of Default (PD) and Exposure At
Default (EAD). The results of this research provides a starting point for the bank to make plans
for reducing physical risks for its balance sheet. Furthermore, it can also provide insights on how
to value mortgages with a climate event exposure. It also helps clients to be aware of the potential
climate risks for a certain property.

Most research with respect to climate change risk is performed in the private sector by financial
institutions. The United Nations published an overview of the research done in this area (Connell
et al., n.d.). For example, NatWest Group has done an assessment of flood risk to a sample of UK
residential mortgages. Here they consider a sample size of mortgages at risk and analyse the results
with the Loan To Value (LTV) ratio. As property values in high risk areas decrease in value, the
LTV ratio will increase. However, the method used is a scoring method and not an EL approach.
Furthermore, this approach only works for UK specific properties and climate risks. Also, the quan-
tification method is not described. A similar study by ClimateWise (2019) analyses the changes in
property values due to flooding on postal code level and not on an individual property level. This
makes the analysis a lot less accurate and more prone to errors. Also, the paper does not describe
how this can be incorporated in the risk management framework for a bank. There are two other
papers by Moodys (2021) and the Society of Actuaries (2020) that do shortly touch on how this
could be incorporated in the EL framework. The former does show that EL modelling approaches
have been used to estimate the impact on individual mortgages within the UK (By looking at both
LGD and PD). However, it also quantifies the exposure for individual properties based on a scoring
variable and not on actual loss numbers. For the latter a large pool of data points (LTV ratios,
insurance data, building characteristics, etc) is used to also estimate an EL through the KatRisk
Model. However, both the former and latter do not describe the mathematical methodology required
are for quantifying the impact. In both cases it must be procured through payment.

The gap between the literature and our research goal manifests itself in the available data, ac-
curate damage approximation methods for the Netherlands, and a corresponding climate adjusted
expected loss framework for the mortgage portfolio. We close this gap by answering our main
research question which is discussed in the next section.

1.4 Research Questions

Knowing the gap in our research allows us to construct our main research question as:

How can we quantify the financial impact of physical climate change events on the
loss distribution, in particular the expected loss, on the bank’s residential mortgage
portfolio in the Netherlands?

In order to answer this we have created a list of subquestions. Note, we make a difference be-
tween two different terms: physical climate events and physical risks. With the first term we refer to
the actual events occurring and the impact thereof. With the second term we refer to the financial
impact for financial institutions given the physical climate risks events.
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1. What are the future risks of physical climate change events in the Netherlands?

• Which areas can be considered high climate risk areas in the Netherlands?

• To what degree is each high-risk area exposed to different climate events?

• What are the projections of different physical climate events in the future for high-risk
areas?

2. How large is the exposure of the bank’s mortgage portfolio to the different physical climate
events in the Netherlands?

• What are the property price developments in the current climate event exposed areas for
the bank in the Netherlands?

• Which areas are considered high climate risk areas for the banks’ mortgage portfolio?

3. How can we quantify different physical climate change risks in financial terms on the collateral
of the mortgage portfolio?

• How are the non-climate adjusted expected loss models currently estimated?

• How can we model different physical climate events on different types of collateral?

• How can we model the physical-risk-LGD given the physical climate events for the mort-
gages in the portfolio?

4. What is the physical risk induced expected loss projection on the mortgage portfolio given
different macro-economic scenarios in the future?

1.4.1 Scope

The research questions capture the goal of the project. Nonetheless, there are limitations that affect
the scope.
Firstly, the assignment focuses only on the determination of the expected loss for the mortgage
portfolio given physical climate risks. This means that we do not study solutions to minimize the
potential impact of the physical risks. Secondly, there will be no research done on the impact of
these expected losses on the future pricing of mortgages. Thirdly, we mention in the core problem
that we want to model the physical risk adjusted PD for mortgages in the portfolio. Due to the
limitations of the data on this front, we keep this variable static by using the regular non-climate
adjusted PD. Lastly, in case any data limitations are found, assumptions are made to simplify the
problem.

1.5 Research Approach & Outline

1.5.1 Research Approach

The research approach followed the Managerial Problem Solving Method (MPSM). This method is
used because there are a lot of steps within the research questions that require new knowledge and
information. The way the method was applied is shown in the scheme of Appendix A. The appendix
shows us the steps that have been taken to answer each research question. Each subquestion has a
different colour as shown in the legend. We answer the subquestions in the sequence of the numbers.
Note that there are summation nodes in the Figure. These nodes all require input steps previously
completed in order to continue with the output. Also, there are validation/control points in green.
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These show the steps that require validation, which means discussion with the project supervisors.
The project supervisors are Marije Wiersma, Pieter Klaassen, and Hans Jacobs from Zanders and
the Volksbank. From the University of Twente supervisors are Berend Roorda and Reinoud Joosten.

1.5.2 Layout of the Document

After this chapter comes Chapter 2 which consists out of the literature research for this thesis. At
first, the concept of climate risk is discussed. Secondly, climate change itself is discussed in the
Netherlands for the present and the future. From that point forward the relation between climate
risk and credit risk is explored. Concluding from the relation between climate & credit risk, there
are multiple methods discussed that can possibly quantify damages due to climate change on resi-
dential properties. The chapter ends with data research on property prices with respect to the most
recent climate events in the Netherlands. This is done to observe whether a relation exists with the
literature from different areas in the world and similar events in the Netherlands.

Chapter 3 discusses the data that is used within this thesis. Here we look at the climate data,
the structure it has, and how it can be used for measuring climate exposure. Afterwards the mort-
gage data points are analysed that are required. Lastly, the data is discussed in a combined form.
From that an initial analysis is made to see if there are any observations that can already be made
with respect to climate risk areas for the mortgage portfolio.

Chapter 4 discusses the mathematical model that is used for quantifying climate risk. The model
choice, assumptions and mathematics are discussed.

Chapter 5 will discuss the model results and discuss various scenarios that show the impact of
climate change in different circumstances.

Finally, Chapter 6 will conclude the research and recommend new roads for further research.
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2 Literature Review

Here we discusses the relevant literature for this thesis. We first touch on the current climate event
exposures in the Netherlands from now until 2050. Then we look at the climate change predictions
after 2050. Having completed the climate literature, we look at climate change and its relation
to credit risk. Finally we look at analysing multiple quantification methods for estimating climate
event damages and a data analysis of property price developments in current climate event exposed
areas in the Netherlands.

2.1 Climate Change Risk

Financial climate change risks can be separated in two different categories: physical risks and tran-
sitional risks (Walles, 2021). Physical risks can be defined as the financial impact on business
operations and properties due to the chronic changes in the climate and the increase in acute cli-
mate events. Here chronic changes in the climate, or chronic climate risks, can be defined as the
subtle change of weather patterns over time in a certain region due to human induced climate change.
For example, due to an increase in temperatures in the summer for longer periods there is a larger
drought exposure over time. Acute climate events are events such as flooding, storms, and hurri-
canes. Furthermore, it can also be that chronic climate risks can lead to acute climate events. For
example, due to changes in precipitation levels for certain areas there can be a significant probability
of flooding even if there was almost none to begin with. Transitional risks can be defined as risks
related to the process of adjustment towards a low-carbon economy due to societal, technological,
and regulatory factors (BIS, 2021). As mentioned, this thesis focuses on physical risks only.

2.2 Current Climate Event Exposures in the Netherlands

The Netherlands is exposed to a variety of physical risks. The literature indicates that the major
exposures are storms, droughts, and floods (KNMI, 2021). Using the data from the Klimaat Effect
Atlas, we can determine the current climate exposures in the Netherlands. Within this sub chapter
we also discuss the first subquestion: What are the future risks of physical climate change events in
the Netherlands?.

2.2.1 Droughts

Looking at Figure 2 we observe the current and future drought risk in the Netherlands. The Figure
shows the risk of droughts from low relative exposure (light colours) to very high relative exposure
(dark colours). Relative exposure must not be read as an absolute impact. It is more a reflection
of how an area is exposed to droughts compared to another area. The Figure shows that there is
an overall increase in drought exposure in almost all areas of the Netherlands. Prolonged periods
of droughts affect all forms of life; the harvest output decreases, plants die due to water shortages,
animals have less food and water sources, and even humans can see their living standards decrease.
Furthermore, droughts also impact residential properties that have their foundation made of wooden
poles. These wooden poles were often used to build houses before 1975 on watery areas (Climate
Adaptation Services, 2021). Thus, if drought periods increase and intensify, these poles will be
exposed to rotting as the water evaporates. This damages the foundation of properties. Mainte-
nance and repairs of wooden poles is very expensive and can become a problem for property owners
overtime.
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To determine the exposure for properties in the Netherlands we refer to Figure 3. The map on
the left of Figure 3 shows the density of homes with wooden foundation within the country.

Figure 2: Present (2021) and future (2050) drought Risk in the Netherlands (Climate Adaptation
Services, 2021).

The map on the right in Figure 3 shows the pole rot exposure of all municipalities in the Netherlands.
Here we observe that the provinces of North Holland, South Holland, Friesland and Zeeland have
the highest number of properties with wooden foundation. Comparing with the left map in Figure 3,
we observe a large number of properties are also located in these areas. This is a significant financial
risk for residents that live in such properties. If no improvements are made, the market value of the
property can decrease over time. Furthermore, the costs of these improvements can be too large for
households that already have financial problems, creating a default risk for these customers on their
mortgage loans. Consequently, on a portfolio level mortgage lenders have to consider pole rot as a
physical climate risk on their portfolio.
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Figure 3: Properties with wooden foundation and pole rot exposure in the Netherlands (Climate
Adaptation Services, 2021).

2.2.2 Storms

Storm impacts are harder to predict with respect to climate change in the Netherlands. The mea-
surements show that at the end of the 20th century there were more storms on the North Sea (KNMI,
2020). However, since 1960 the wind speed has decreased on land and not near the coastal areas.
This is attributed by the KNMI to the ever increasing number of buildings that slow down the wind.
This decreases the intensity and number of storms on land. Furthermore, due to the lack of data it
is hard to predict changes with respect to storms for the future. There are nonetheless some facts
we know with respect to storms in the future. Firstly, the increase of temperatures on the oceans
will reduce wintertime storms in all of Europe (Haarsma et al., 2013). However, this is counteracted
by the increase of the height of the tropopause. If the height increases of this atmospheric level,
the air will cool down slower which increases heat release and as a consequence intensifies storms.
This effect is not huge with respect to climate change, but it will extend the breeding ground (and
therefore intensity) of tropical hurricanes. Hurricanes tend to move from the middle of the Atlantic,
to the Gulf of Mexico, to the east coast of the United States (losing most of its destructive power
on the land), and finish up as a regular storm close to Europe. As the intensity of Hurricanes in-
creases over time in the Americas, so will the storms coming from the Atlantic to Europe. Over time
this will also impact the Netherlands. As a consequence, properties are more likely to experience
damage. This will increase repair/maintenance costs and insurance risk premiums for the owner
of the property. Luckily, because storm damages are insurable the impacted for mortgage lenders
remains limited. For this research storms are excluded as there is no reliable data that can be used
to quantify a potential impact.
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2.2.3 Floods

One of the largest exposures the Netherlands has to climate change is the probability of flooding. As
mentioned in chapter 1.1, a large portion of the Netherlands is below sea level. If a flood occurs and
the protection measures fail it can result in deaths, loss of fauna, and economic damage in all forms.
From the Klimaat Effect Atlas data we are able to show the areas in the Netherlands that run the
risk of flooding with a certain height and probability in 2050. Furthermore, research has been done
to determine the maximum flood depths per region with a certain probability as well. Analyzing
these risks can show us the water exposure in the Netherlands. Note, whilst the probability of
flooding should increase with SLR, it actually decreases. This is because the data assumes that
more protection measures will be taken to decrease this probability (Climate Adaptation Services,
2021).

Figure 4: Exposed areas in the Netherlands to flooding and Flooding Probability of 20cm (Climate
Adaptation Services, 2021)

Figure 4 shows two types of geographical maps. The first map shows us the expected rise of water
levels close to the rivers in 2050. Here we see that the largest water rises can be expected around
the Ijsselmeer, Zeeland, Friesland, and Groningen. Furthermore, the rivers also show significant
increases in water levels over the coming decades. As part of the 2050 projections, the second
picture shows us the probabilities of a 20cm flood in specified areas. The largest probabilities of
flooding (P > 1/30), indicated in light blue is around the rivers and the Wadden Islands.
Figure 5 indicates the probabilities of 50cm floods on the left and 200cm on the right in 2050. Here
we observe that there is a lot of overlap between the 20cm and 50cm map by only showing that
some areas 20cm areas are not exposed to 50cm. However, the 200cm map shows that there are
major hot spots for very high flooding mostly centering around the river areas and the Flevopolder.
There are a large amount of properties in these areas that can incur significant damage because of
this.
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Figure 5: Flooding Probability 50cm and 200cm (Climate Adaptation Services, 2021).

Whilst these probability maps give us a good indication of the exposure in the Netherlands, they
fail to capture the maximum possible exposure an area can experience. Luckily, the Klimaat Effect
Atlas provides us with flood depth exposure with a certain probability per area in the Netherlands.
This is shown in Figures 6 and 7.

Figure 6: Flood Depth at various probabilities (Climate Adaptation Services, 2021).
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Figure 6 shows the flood depths in meters for a probability of P = 1/100.000. Note here that the
deepest flood depths are the most prominent in the middle of the country. As mentioned before,
these areas are densely populated and can incur a lot of damage in case of a flood. The reason why
this area runs a high risk is that it is the drain point of many rivers in Europe. When melting water
or intense rainfall occurs at the sources of these rivers, it will eventually end up in these areas. It is
of some comfort that most areas that are also exposed will most likely only experience floods below
1m. Thereby limiting the impact in most areas.

Figure 7: Flood Depth at various probabilities (Climate Adaptation Services, 2021).

Figure 7 shows the same type of results as Figure 5, but with higher probability of flood occurrence
with respect to flood depth per area. It is interesting to see that even with a yearly probability of
P = 1/100 there are areas that are dangerously exposed to very high water levels (>= 3m). With a
flood occurrence with P = 1/10, we observe that this holds true for the areas directly connected to
the waterways in the country. With respect to impact measurement, the results of the P = 1/100 is
the most interesting with respect to damage analysis as there are a lot of properties in the exposed
areas with a significant probability of occurrence. Again, it is however expected that these probabil-
ities will decrease in 2050. The reason being that the government will improve the countries defense
against flooding (Climate Adaptation Services, 2021).

This sub chapter answered the first two questions of the first subquestion. We found that for
properties the most significant events are flooding and pole rot. This is due to SLR and increased
precipitation which increase the probability of flooding. Pole rot occurs due to prolonged periods
of drought which will increase over the coming years. For both events there are different areas that
are exposed. For flooding its mostly in the river areas. For droughts the exposure is mostly present
in the lower parts of the Netherlands (Friesland, South Holland, North Holland) where buildings
historically had to be built on wooden poles due to soil characteristics. Indeed, it is the case that it
only affects properties older than 1975 for pole rot risk (A. Kok, 2020).
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2.3 Climate Change Predictions 2050 to 2085

For answering the first research question we still have to answer the third question, which is: What
are the projections of different physical climate events in the future for high-risk area’s.
We already talked about the projections up to 2050 in Chapter 2.2. However, the data lack infor-
mation for after 2050. For this, the KNMI has estimated the possibility of four different climate
scenarios up to 2085 in the Netherlands (KNMI, 2014). These scenarios are based on two variables:
global temperature rise and changes in airflow. An overview of the climate scenarios are displayed
in Figure 8. The Figure shows a graph with global temperature rise on the x-axis and the change
in air flow on the y-axis. In the entirety of the plot four different scenarios are plotted. Note here
that the squares indicate the ”area” of the four scenarios. These scenarios are MH , ML, HH , and
HL. The first letter indicates the temperature rise (Moderate or High) and the second letter the
changes in airflow (Low and High). The more to the upper-right you go, the worse the situation
will be with respect to the disruption of life due to climate change. For each of these scenarios an
impact analysis is approximated on changes in absolute SLR, rate of change of SLR, precipitation,
sunshine hours, evaporation, and mist hours. For our damage assessment to residential properties,
the variables that can increase the probability of flooding and droughts are the most important.
Figure 9 shows four different graphs. The upper two graphs display the Absolute SLR per year with
respect to moderate (MH ,ML) and high (HH , HL) temperature rises and changes in airflow. The
same is shown for the rate of change (ROC) of sea level rise per year in the bottom two graphs.

Figure 8: The four climate scenarios (KNMI, 2014).

Looking at the Absolute SLR per year we observe that in 2085 the expected sea level rise in the
moderate temperature rise scenario is projected to be between 20cm and 60cm. For the high scenario
this is between 40cm and 80cm. In both cases there is a significant increase in sea levels compared
to today. However, the ROC in sea levels projection is a lot more uncertain than the absolute SLR.
The moderate and high temperature scenarios standard error increases significantly year over year.
Consequently, this variable shows to much uncertainty compared too the absolute SLR graphs.
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Figure 9: SLR Climate Scenario Projections 2050/2085 (KNMI, 2014).

Figure 10 shows the ROC of rainfall and the change in evaporation up to 2085. The ROC of rainfall
contributes to the increased probability of flooding and the changes in evaporation in the increased
probability of droughts. Whilst the general KNMI projections up to 2085 give us an indication of
what can happens with the SLR and drought exposure, they will not help us with determining the
impact on the mortgage portfolio. This is due to the fact that the impact of SLR, rate of change
in rainfall, and average increase evaporation are not uniformly distributed (Baart et al., 2019). For
example, for SLR the impact per area is different with respect to water density variations, water
current, gravitational effects, and more. This means that for each area the impact is different.
Consequently, we can not use these data for location specific information. This means that for this
project our best indicator are the more location specific maps as given in Chapter 2.2 and as far as
projections go up to 2050 and not beyond.

We have now answered the first subquestion by addressing all three points that had to be answered
to gain insight in the current and future risks of physical climate change events in the Netherlands.
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Figure 10: Precipitation & Evaporation Climate Scenario Projections 2050/2085 (KNMI, 2014).

2.4 Credit risk on Mortgages

Now that we know the physical exposures for properties in the Netherlands, we need to know what
the exposure of the bank is. Just because a flood or pole rot occurs, does not mean that the bank will
be affected as the residents themselves(or insurers) might pay for the damages. As long as mortgage
holders pay their debts the bank does not incur a loss. Losses only occur when a borrower defaults
on their loans. The uncertainty or risk of that occurring is a specific risk called credit risk. It is at
this point the bank is exposed. This exposure is partially measured through the Expected Loss. In
order to determine an expected loss model that incorporates climate risk, we have to understand how
regular expected losses on mortgages are quantified. This leads to the start of our third subquestion:
How can we quantify different physical climate change risks in financial terms on the collateral of
the mortgage portfolio?. Where the first subquestion discusses this topic: How are the non-climate
adjusted expected loss models currently estimated?.

2.4.1 Expected Loss

The expected loss calculation for a mortgage is considered a forecast of usual losses. It is a number
that must always be expected as it is the nature of doing business in loan activities (Marinier, 2018).
For a single mortgage the Expected Loss (ELit) on mortgage i at a given time t can be calculated
as:

ELit = PDitLGDitEADit. (1)

Here PDit stands for the probability of default on mortgage i at time t, LGDit for the Loss Given
Default on mortgage i at time t, EADit the exposure at default on mortgage i at time t, and Lit
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for the loss on mortgage i at time t. The LGD tells us the percentage loss given the EAD. EAD is
the amount the borrower has borrowed to pay for the collateral. The expected loss calculation for
financial institutions are based on the Internal Ratings Based (IRB) Approach. This means that
expected loss calculations vary from institution to institution. For regulation a standard model is
required, but that is not the IRB approach. Both the PD and LGD are estimated independently
with different methods. The Volksbank also has their own approximation of the EL. It calculates
two different competing expected loss models: the regular (Rg) and Direct Loss (DL) models. The
combination of both of them calculate the Expected Credit Loss for an arbitrary mortgage i. This is
shown in Figure 11.

Figure 11: Expected Loss Layout Bank.

The direct loss is the portion that is immediately lost when a customer defaults. The regular PD is
a combination of the Probability of Cure PC and the Probability of Foreclosure PF . Both probabil-
ities have their own losses associated with it (LGC, LGF). The exact estimation of the probabilities
is based on the financial information of the customer, current macro economic variables that deter-
mine the financial health of the customer, and historical defaults. LGDs are estimated by looking at
the collateral and its characteristics (i.e: structural, environmental, social) and the macro economic
variables influencing the price of the collateral. Unfortunately, the way the bank determines their
expected loss is confidential. This means that the basic approach has to be used for calculating the
non-climate adjusted expected loss and climate-adjusted expected loss.

This sub chapter answers the question of How are the non-climate adjusted expected loss models
currently estimated? The literature and internal banking documents tell us how to estimate the
expected loss as seen in Formula (1).

2.4.2 Unexpected Loss

For determining the credit risk exposure there is also a second part called the Unexpected Loss
(UL). The UL is defined as the worst-case loss the bank could incur on the entire portfolio due to a
particular loss event or risk realization (González et al., 2021). It is often calculated within the tail
of the expected loss distribution. Per definition, UL is unexpected and thus a statistical measure is
used to estimate it. For this thesis, unexpected losses are considered out of scope for climate change
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risks as there the first needs to be a firm understanding of what the actual expected losses are as
there currently are no expected loss distributions available for the portfolio.

2.4.3 Climate Change and Expected Loss Models

This research determines the influence of climate change on the expected loss. Modelling climate
risk is still in the beginning stages. As discussed in the research approach, there is literature from
the private sector, however there are some issues with these studies that we discussed in Chapter 1.3.
The methodology of determining a climate-adjusted expected loss was never discussed. Furthermore,
how the damage exposure is determined is also not explained. The only observation that we do have
is that once an exposure is determined it is priced in the market value of the property (Westcott et
al., 2019; Magni, 2021; Evans, 2020). This shows that the literature for expected loss models is not
widely available with respect to climate risk. What remains is building our own model that calculates
a climate adjusted LGD and PD. Here it is the case that we do not have any default information
due to climate change within the banks mortgage portfolio. Whilst this can be estimated, it is
more interesting for the bank to first gain more information what these losses might be and use the
current non-climate adjusted PD as a proxy for calculating the expected loss. As the PD’s of the
bank (PDreg, PF , PC) are non-climate adjusted and we do not have any climate defaults in any
of these cases available, it is better to keep the estimation of the expected loss on a more basic level
as given in (2):

ELcc
it = PDregular

it LGDcc
it EADit. (2)

Here we redefine the climate change Expected Loss as ELcc
it , the non-climate adjusted regular Prob-

ability of Default as PDregular
it , the climate change loss given default as LGDcc

it , and the exposure
at default EADit where all variables are for mortgage i at time t (in years).
As mentioned, the LGD at a certain moment t is determined by looking at the market value of the
collateral and the exposure at default. This leads us to how climate change can be quantified. There
is a yearly risk of a certain climate event that can damage a property. The risk of damage decreases
the market value of a property. Based on this new market value it is possible to determine a climate
adjusted LGD (LGDcc

it ). If it is possible to estimate future damages it is possible to determine a
climate adjusted LGD. The literature discusses various how damages due to flooding and pole rot
could be calculated. This is discussed further in Chapter 2.5.

2.5 Damage Impact of Climate Events

Here we discuss the available literature that quantifies the impact of climate events on residential
properties. This chapter aims to answer the second subquestion of subquestion three. Remem-
ber, this question states: How can we model different physical climate events on different types of
collateral? We first discuss the available literature on flooding and afterwards on droughts.

2.5.1 Impact due to Flooding

The literature describes various approaches in determining the economic impact on properties due
to flooding. Two different types are discussed in this thesis: Hedonic models and damage function
models. Hedonic models determine the market value of property given that floods have occurred.
The latter determines the maximum damage on a property type given that a certain type of flood
occurs. We discuss each approach separately.
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Hedonic Pricing

In general, hedonic pricing models are predictive models based on regression that can determine
the market price of a property based on tangible and intangible building characteristics (Monson,
2009). Mathematically we can calculate the market price of a property i (Pi) as a function of the
structural, locality/neighbourhood, and environmental characteristics (Baranzini et al., 2008). This
can be written down as:

Pi = f(xi;β) + ηi. (3)

Here xi is vector representing the structural, environmental, and neighbourhood characteristics of
the property. Furthermore, β represents the vector of coefficients that are estimated. Also, ηi is
the error within the model. This function can then be used to predict the price of any property i
through the price prediction variable P̃i:

P̃i = f(xi; β̃). (4)

If information of a single property is available for several periods one could calculate the property
price i adjusted for a given period with the log-linear model as:

lnPi = β′xi + βTiTi + ηi. (5)

Here Ti is the time dummy for any other future period for property i and βTi
the corresponding

vector of coefficients. The adjusted price then satisfies:

ln P̃i = β̃′xi + β̃Ti
Ti. (6)

Note here that if it the property would be sold in the starting period the price would be:

ln P̃i = β̃′xi. (7)

This allows for estimating a price index between the starting period and period Ti. For flooding
or hurricane damages, hedonic pricing models are adjusted with an extra variable to determine
event-related damages in certain regions. By using statistical modelling (regression) w.r.t to this
variable, the impact of for example flood damage can be estimated. An example of this approach is
described by Ismail et al. (2016). They use the base formula approach as given in (3) and adjust
it by adding the flood characteristics to the vector xi. Their log-linear function incorporates the
duration of the flood in hours with its coefficient. Using regression on historical data they found
that property values have decreased due to this flood occurrence. More examples of hedonic flood
and hurricane models models are also available. Zhang et al. (2019) observed a price decrease of
almost 13% in their analysis. Bin et al. (2013) and Nyce et al. (2015) both adjust hedonic pricing
models by incorporating flood/hurricane damages for insurance premiums. Bin et al. (2013) came
to the result that house prices decreased 5.7% after hurricane Fran and 8.8% after hurricane Floyd.
Fuerst et al. (2019) also used a hedonic model for a floodplane in Australia. In this case, they tried
estimate future property prices by considering SLR in that area. They used a barebone model that
assumed an area would be exposed to SLR if it would be below the sea level given 0.2, 0.5, 0.8, 1.0,
and 1.1 meters. Furthermore, flood risk was present for an area if the flood plane would flood once
in a hundred years. Fuerst et al. (2019) concluded that houses would decrease 3% in property value
after flood for a certain period of time. They measured no significant results that due to SLR a
property would be discounted. This seems counter intuitive which Fuerst et al. (2019) recognized
and mentioned that SLR is either deliberately not factored in, purchasers are not aware of the risks,
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or the risks are deemed to far ahead in the future.
The differences between these hedonic flood/hurricane pricing studies was the number of data points
available of each property. The more that is known about a properties characteristic, the lower the
error margin. The downside of these models is that they are based on data of a particular flood
in a specific region with different property types. The model might not be accurate in other situa-
tions if these parameters are very different. It is not immediately obvious how this can be applied in
the general case where a property has different characteristics and is exposed to different flood types.

Damage Functions

Damage functions are used to gain an approximated damage factor with respect to the maximum
damage an asset, such as a property, can incur. If a property enters the market and the damages
are not repaired, the value of the property will decrease depending on the damage impact. Con-
sequently, if one knows the damage a property has incurred and the value of the property before
the event, a new value can be approximated. However, depending on the current market situation,
the perception of a value decrease with respect to the damages incurred might not always translate
directly. Meaning, it might be that the market considers the damage on property worse then the
actual repair costs required. This is something to consider when looking at this approach.

The literature makes a distinction between two types of damage functions; vulnerability and fragility
functions (Lazzarin et al., 2022). Fragility functions consider a relationship between the hazard (i.e.
flood), the vulnerability of the asset, and the probability of having a certain damage. Whilst vulner-
ability functions consider the vulnerability curve relating to a hazard for a certain area, the exposure
in that area, and the assets vulnerability to damage.

A selection of fragility functions have been used to measure flood damage in various countries
and situations (Thapa et al., 2020; Pita et al., 2021; Nofal et al., 2020). Thapa et al. (2020) ap-
proximated the flood damages in the Khando River (Nepal) with fragility functions. They crated
five damage classes: minor, major, severe, beyond repair, and collapse. These damage classes are
determined based on the mean damage ratio that was assigned to each surveyed building. The
probability of reaching or exceeding a particular damage state given a certain flood depth is then
calculated through the log normal distribution function. This is done for all properties with a certain
damage class exposure. Using the flood data of the river and the rainfall data over a length of time,
they were able to predict the damage number given the likelihood of a certain flood scenario. A
similar approach is used by Pita et al. (2021) at the Paraguay river where they added extra vari-
ables for expert opinions as some information was lacking to use standard damage functions. One
of the more extensive fragility approaches has been done by Nofal et al. (2020). They determined
damage functions with a failure probability given a certain flood depth for all types of construc-
tion elements within in a property. This resulted in an approximated damage per property type.
The key factor for fragility functions is that past flood data is available for all the exposed properties.

For vulnerability functions there is also literature available (Amadio et al., 2019; Merz et al., 2013;
Huizinga, 2007; Kok et al., 2004). Huizinga (2007) created the damage functions known as JRC
curves. These curves only consider a single variable (namely flood depth) to determine the maximum
damage an asset type (such as a property) can incur. Amadio and Merz reported that JRC curves
report significant uncertainty with respect to multivariate models that are trained with machine
learning. However, both acknowledged that this is a good estimate if no other data is available. For
the Netherlands, Kok and Huizinga (2004) created more specific damage functions that measure the
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damage on different types of properties. These functions are constantly updated and are also known
as Standard Method functions. The most recent available methodology is from 2017 (Slager, 2017).
These functions can estimate damages due to flooding only knowing the type of property (single
home, apartment ground floor, apartment first floor, apartment higher floors) and flood depth. Note
here that the single home function is a combination of all different types of 1 and 2 story floor homes
in the Netherlands. These functions can be observed in Figure 12. By deriving the flood depth
exposure for a property in a certain region, we can derive a damage factor from the graph. Based
on this factor we can mathematically determine the damage incurred on a property given a certain
property type as:

S =

n∑
i=1

aiSiAi. (8)

Where S equals total flood damage on n properties, Si the maximum damage on property i per m2,
Ai the surface area in m2 of the property, and ai the damage factor on property i given a certain
flood depth as shown in Figure 12. For the Netherlands this will be more accurate than the general
country damage curve as mentioned in Huizinga (2007).

Figure 12: Property Type Damage Curves (Kok et al., 2004)

There is a second type of vulnerability damage function that is not only based on flood depth, but
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also on flood velocity. Lazzarin et al. (2022) described damage functions for various applications
including various building types. A variable W is used to measure the intensity of the hydrodynamic
conditions that produces the damage. This function is shown in (9):

W = (
Y

YW
)α(1 + βF 2) with YW > 0, α >= 1, β >= 0. (9)

Here Y is the water depth in meters, YW the reference depth that scales Y , F the Froude number

defined as F = U(gY )
−1
2 , g as gravity factor, U is flood velocity, and α and β are calibration factors

that measure the relative importance of static versus dynamic component W .
Then based on this function for a certain water depth and flood velocity they are able to measure
the relative damage to a property which can then be inserted as a value of ai in (8). Although
velocity is included here, the paper states that the impact of low velocities are marginal as damages
often are from wetting only. The impact is higher when flood depths and velocities are high. Flood
velocities and probabilities can be found per area in the Netherlands from governmental institutions
(Stuurgroep Water, 2018).

The literature shows us various different studies that have used hedonic pricing with/without ma-
chine learning approaches, vulnerability damage functions, and fragility damage functions. These
are often adjusted to better fit the characteristics that can be observed on a case by case basis.
Often the choice for a certain type of model depends on the data that is available within a project.

2.5.2 Damage due to Drought

From Chapter 2.2 we know that the impact of droughts on properties is the exposure to pole rot
which results in subsidence of properties. Pole rot is an acute climate event that develops on a
property over time. The literature on the quantification of pole rot in the Netherlands is severely
limited (Costa et al., 2020). In other areas of the world different methods are used such as contingent
valuation and expert judgement for the impact of pole rot on property values (Costa et al., 2020).
However, due to different building and environmental characteristics in the Netherlands these are
not usable. The only available data and damage approximation approach that can be used in the
Netherlands has been created by Costa et al. (2020) and Kok et al. (2020) through the Climate
Adaptation Services (2021).

The damage class model is based on observing the properties of the substrate, the ground wa-
ter levels, and the building year of the property. The only properties with wooden poles are built
until 1975 (S. Kok, 2021). Table 1 shows the damage classes that have been determined. Here we
observe the restoration costs per m3 and what repair works are required for each damage class.
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Table 1: Damage classes for the impact of pole rot (Costa et al., 2020; A. Kok, 2020).

Damage Class
Restoration costs per

EUR/m3 Repair works per damage class

D1 3.25 Repainting

D2 15
Repainting, repairing wall cracks,

rent for repair tools

D3 53
Repainting, repairing wall cracks,

rent for repair tools, repair plastering work

D4 184
Repainting, repairing wall cracks, rent for
repair tools, repair plastering work, repair

window frames

D5 670
Repainting, repairing wall cracks, rent for
repair tools, repair plastering work, repair

window frames, repair foundation

The damages classes are used in Figure 3. The figure shows the damage class for all neighbourhoods
in the country for the 2050 climate low and high exposure. If a property is in such an area it is
possible to calculate the damage on a property given that it is in a certain type of neighbourhood
with a specific damage class exposure as:

S =

n∑
i=1

AihiCi. (10)

Here Ai is the surface area in m2 on the collateral of mortgage i, hi the height of the collateral of
mortgage i, and Ci the damage class cost per m3 on the collateral of mortgage i. This can be done
for all properties with a building year before 1975 located in a specific damage class area. The key
factor to note from this model is that it assumes that properties will not be fixed until 2050 and
stay in the state that they are in now. The data used assumes a worst case scenario with respect to
property states.

2.5.3 Conclusion Damage Impact of Climate Events

This sub chapter has answered which climate change impacts can (currently) be quantified on res-
idential properties. We were able to look at methods that incorporate different types of property
and climate event characteristics. Both flooding and pole rot have been considered. For flooding
a variety of options is available in the literature, whilst the literature for pole rot is limited. We
have now answered the second question of subquestion three: How can we model different physical
climate events on different types of collateral?
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Figure 13: Risk of pole rot in 2050 (Climate Adaptation Services, 2021).

2.6 Property Market Price Developments

Now that we have our answer with respect to subquestion one and some parts of subquestion three
we move on to subquestion two. Remember, subquestion two was defined as: How large is the
exposure of the banks’ mortgage portfolio to the different physical climate events in the Netherlands?
We answer this subquestion with two different questions. Here we focus on the first part which
states: What are the property price developments in the current climate event exposed areas for the
bank in the Netherlands? In particular, we want to focus on the regions affected by the flooding
in Limburg in the summer of 2021 and the house price developments of the earthquake areas in
Northern Groningen since the 2010s.
The reason why want want to look specifically at property prices in these areas is due to the
literature. As discussed in Chapter 2.5, the literature tell us that climate events around world show
that property prices decrease between 3% and 13%. We want to observe whether the same trend
can be found with other climate events in the Netherlands.

2.6.1 Property price development in North Groningen

Looking at Figure 14, we observe the average house price development of various municipalities in
the province of Groningen from 2011 until 2021. The top graph shows the absolute property price
changes and the bottom graph the percentage change of property prices for each municipality with
respect to the change in the dutch average of each year. The black line in the top graph shows us the
average property price developments of the country. The data is retrieved from an external party
that indexes the house price of the entire country every six months within the database of the bank.
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Figure 14: House price developments in municipalities of North Groningen

From the absolute house price change graph we observe that most municipalities are in line with the
national average. Within the percentage change graph we do observe some small deviations between
the municipalities and the average. There are multiple explanations possible for different property
prices for each municipality. For example, how close most properties are located to a major city, the
average physical state of each property, the property types, and other macro-economic variables such
as aging and limited economic opportunities within the region. Because of these different factors it
is not always easy to pinpoint the exact cause of an increase or decrease in property prices. We do
observe that the influence of media reporting over the years for some municipalities has influenced
the value of their properties.

At the start of the 2010s the property market was still recovering from the financial and euro crisis.
The years that followed show that the prices increased significantly as demand started to pick up.
The earthquakes started to occur from 2003 up to 2011. Every year on average the impact increased
slightly. The first major earthquake occurred in 2012 and received large scale media attention.
The epicenter was in Huizinge which is located in Loppersum. After this event the damages were
shown repeatedly on the news until today (Nationale Ombudsman, 2021). Looking at the percentage
change graph, we observe that property prices started to decline for a selection of municipalities. In
particular Loppersum, Veendam, and Westerwolde started deviating downwards from the national
average. However, almost all municipalities were significantly affected by the earthquakes and not
every region experienced property price decreases. Here we observe that the media plays a large role.
The municipalities that got reported on the most are Veendam and mostly Loppersum. This pattern
is observed in the percentage decrease map of Figure 14. Loppersum decreased approximately 6%
over the years and Veendam 2%. Westerwolde is also below the national average, but there are other
factors at play here such as location and economic opportunities that influence the property prices.
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From 2020 on wards we observe that almost all property prices start to increase. This is mostly
attributed to the COVID-19 pandemic housing boom. However, it is still the case that the impacted
regions remain significantly below the national average due to remaining exposure.

2.6.2 Property price development in Limburg

The price development of properties in Groningen shows to some degree that the market has priced
in the danger of earthquakes within certain municipalities. However, this is mostly for the regions
that have had the largest media exposure. Other municipalities that are also at risk do not show
significant market value decreases. Flooding is different for many individuals in the Netherlands as
they are better able to identify areas that are exposed to it. When flooding occurs it often happens
at key points where the water has the largest chance of either leaving a river or breaking a barrier as
earlier discussed in Chapter 2.2. Most individuals will not buy properties outside the dykes. This is
often already reflected in the price of those properties and insurance premiums on the property. This
is something to consider when we are looking at the property price developments after the flooding
of 2021. Looking at Figure 15, we observe the absolute property price changes and the percentage
change of property prices per municipality in Limburg with respect to the Dutch national average
over the last ten years.

The coloured time series show the municipalities that have flooded or ran the most risk of flooding.
There is not much to observe from this graph with respect to the price development after the flood.
When we translate this graph to the percentage change of each municipality with respect to the
national average per year, we do observe differences between them. However, it is currently impos-
sible to attribute any property price decreases to flooding. The flooding occurred in the summer of
2021 whilst the data shows only one extra period of property prices. Within this period we see that
almost all property prices decreased with respect to the national average. This can be due to the
flooding, but also because of the demand in other areas of the Netherlands or other macro-economic
factors. A larger period of time is required to observe if any price developments could be attributed
to flooding.
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Figure 15: House price developments within municipalities of Limburg

2.6.3 Conclusion Property price Development

As mentioned, in the literature the impact of flooding on property price developments has been
shown through various hedonic models. Indeed, Bin et al. (2013) and Zhang et al. (2019) reported
property price decreases between 5.7%-8.8% and 13.3% for their respective regions. A study from
Cambridge University (Zhang and Leonard, 2019) indicated that house prices recover after 5 or 6
years to the original house price after the flood occurrence. The same result was also found by
Bin et al. (2013). However, if floods become regular in a certain area it can lead to systemic
long-term discounting of property prices (Fuerst and Warren-Myers, 2019). For the Netherlands an
estimation has been made that climate change induced flooding can result in a total value decrease
of properties between 2.5% and 10% (Calcasa, 2019; Reeken, 2022). Whilst our data for Limburg
does not provide evidence for this, our data for Groningen do. For the municipalities in Groningen
there is a systemic long-term discounting for the affected regions with media attention: Loppersum
(−6%) and Veendam (−2%). Even though flooding is different from earthquakes, we do observe that
if a systemic climate risk is present property prices will drop within the same range as presented by
the literature.
With this we have answered our second question for subquestion two: What are the property price
developments in the current climate event exposed areas for the bank in the Netherlands? We
can conclude that the data are in line with the literature and that there already is a certain risk
exposure to climate events. Whilst there is nothing to conclude about the Limburg floods, based
on the earthquakes in Groningen (where an eartquake can be seen as a climate event) an impact is
measured on property prices due to these possible systemic long term climate risks. If more systemic
flooding would occur due to climate change the same can happen in Limburg with its property prices.
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3 Data Review

This chapter discusses the data used in this research. A portion of this chapter is used to discuss the
particularities of this data and another portion focuses on the second question of subquestion two:
How large is the exposure of the banks’ mortgage portfolio to the different physical climate events in
the Netherlands?

3.1 Climate Data Structure

The climate data from the Klimaat Effect Atlas have been obtained in the form of Geographic
Data Files. These files can be transformed to Geographic Data Frames (GDF) within the Python
programming language through the Geopandas package. This section discusses the way the data are
presented and how they are used to link climate exposure to individual properties.

3.1.1 Geographical Data Frame Structure

Before we analyse the various climate data frames we first discuss the structure behind geographical
dataframes. Secondly, we show how the data are transformed into usable data sets. One of the key
GDF’s that we use is displayed in Table 2.

Table 2: GeoDataFrame of the Netherlands.

Index NAME 1 NAME 2 TYPE 1 TYPE 2 Geometry
0 Drenthe Aa en Hunze Province Municipality POLYGON((...,...,...))
1 Drenthe Assen Province Municipality POLYGON((...,...,...))
... ... ... ... ... ...
490 Zuid Holland Zwijndrecht Province Municipality POLYGON((...,...,...))

Table 2 shows the entries for the Netherlands on a municipality level. The two columns of interest
here are: geometry and NAME 2.The geometry column has geographic coordinates of the munici-
pality stored in them. Depending on the shape of the municipality it is stored either in a polygon
or a multipolygon. A multipolygon is different from a polygon in it being a collection of multiple
individual polygons of various possible shapes and sizes. The coordinate system that creates the
size of the polygon is called the EPSG:4326. To show an example of how a plot would look like,
we have plotted the Netherlands with its municipalities in Figure 16. In here, the municipalities of
Aa en Hunze(Green), Assen(red), and Zwijndrecht(blue) are highlighted. These are the entries as
shown in Table 2. The x and y axis show the geographical position of each location based on the
coordinate system.

36



Figure 16: Map of the Netherlands with highlighted regions.

The climate data from the Climate Adaptation Services (2021) are also delivered in GDF form.
Using this standard map of the Netherlands we are able to map climate exposures and mortgage
data on top of it with its precise location using the geometry columns. In this way we can identify
areas of interest.

3.1.2 GeoDataFrame of the Flood Depth Exposure

Now that we know the basics we are able to discuss the climate data set that we are going to use.
A sample of the data frame belonging to the Flood Depth exposure is displayed in Table 3. This
dataframe has already been combined with the dataframe of the Netherlands as shown in Chapter
3.1.1.

Table 3: GeoDataFrame of Flood Depth at various probabilities

Index DN Geometry NAME 1 NAME 2 TYPE 1 TYPE 2
116 1 POLYGON((...,...,...)) Friesland Schiermonnikoog Province Municipality
117 1 POLYGON((...,...,...)) Friesland Schiermonnikoog Province Municipality
... ... ... ... ... ...
479961 0 POLYGON((...,...,...)) Limburg Vaals Province Municipality

The plotting of these polygons results directly in Figures 6 and 7 shown in Chapter 2.2. The key
column here is the DN column. This indicates the maximum flood depth that can be reached on
certain coordinate points of the geometry. The NAME 1 and NAME 2 columns indicate in what
province and municipality this point is located. Note that it is possible that a certain flood depth is
outside a city and municipality as it is on a coordinate level. In this case the NAME 1 and NAME 2
entries will be empty. These tables all look the same for every probability of occurrence of flood
depth level as indicated in the Figures 6 and 7.
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3.1.3 GeoDataFrame of Pole Rot Exposure

The GDF that is used for Pole Rot, as displayed in Figure 13, is shown in Table 4. This GDF is on a
neighbourhood (column: buurtnaam) level. This means that the geometry is based on this column.
This Table is used for both the low and high 2050 climate exposures. For the low climate exposure
we have the damage class column called mild cc 2 and for the high climate exposure the sterke cc
column. Because we only have our damage classes in integer variables each damage class entry is
rounded to the nearest integer for every neighbourhood.

Table 4: GeoDataFrame of Pole Rot Risk (HIGH & LOW) in 2050

Index buurtnaam
gemeente
code

gemeente
naam

mild cc
2

sterke
cc

Geometry

0
Oude Binnenstad
en Nieuwstad

GM0216 Culemborg 3.1225 3.1217
MULTI-
POLYGON((...,...,...))

1
Oude
Buitenwijken

GM0216 Culemborg 1.995 2.008
MULTI-
POLYGON((...,...,...))

... ... ... ... ...

13415 Konwerderzand GM1900
sudwest-
Friesland

0 0
MULTI-
POLYGON((...,...,...))

3.2 Mortgage Data Structure

In this section we discuss the mortgage data provided by the Volksbank. We aim to create an
overview of what the relevant data points of the mortgages are with respect to climate change.

3.2.1 Data Points for Impact Analysis

The bank has a lot of different data points for various different goals and purposes. The mortgage
data are no exception and contains a lot information from which customer and collateral data are
monitored. The banks internal models are based upon this data structure. With respect to climate
change it is important that we obtain as much information about the collateral as possible. After
all, a model choice can only be made if the required data points are available. Table 5 shows us a
list of 23 data points that show customer and collateral data that can be used for our model.
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Table 5: Data Points Of Mortgage Data.

Index Data Points Required Explanation

1 Customer ID
Identification number of the
customer at the bank

2 Collateral ID
Identification number of the
collateral within the portfolio

3 Land ID Country Identification number

4 Collateral Type ID
Identifcation ID of the type
of collateral (Appartment,
Single Home)

6 Active ID Is the Customer ID still a customer (y/n)
7 Customer Type Private or corporate client(y/n)
8 Postal Code Collateral location information
9 Street Name Collateral location information
10 House Number Collateral location information
11 City/Town Collateral location information
12 Province ID Collateral location information
13 Region/Municipality ID Collateral location information
14 Building Year Collateral Year in which the collateral was built

15 Surface area in square meters
Total area in m2 of the property or the
average m2 of properties in that region

16
Market Value Collateral Indexed
To the Gauge Date

Most recent market value of the property
index till gauge date

17 Principle Amount Principle amount borrowed at the start of the loan

18 Average interest paid by borrower
Interest that is being paid on average
year over year since loan origination

19 PD Regular
Probability of Default that is currently
calculated

20 Initial Exposure
Height of the mortgage at start
date

21 EAD Regular
Exposure at Default that is currently
calculated

22 Loan Type
Type Mortgage: Annuity, interest-only-
linear

23 Time To Maturity of Mortgage
Time it takes till the mortgage is not on
the balance sheet anymore

3.2.2 GeoDataFrame of Mortgage Data & Climate Data

In order to make the mortgage data compatible with the climate data we have to transform the
active collateral data in the portfolio to geographical coordinates. We do this through a process
called geocoding. Through various requests through Python we can map the property addresses
to geographical coordinates and save them in a GDF. The new GDFs are a combination of all the
information of Table 5 with Table 3 for flood risk and Table 4 for pole rot. The final GDF for flood
risk is displayed in Table 6 below.
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Table 6: Merged Flood & Mortgage Data Structure.

Index Address
Customer/
Collateral ID

Market
Value

...
Time to
Maturity

Flood
Depth

geometry

0
Streetname,
housenumber,
city, postal code

XXXXXXX 300000 ... 26 2 POINT((...,...))

1
Streetname,
housenumber,
city, postal code

XXXXXXX 175000 ... 13 2 POINT((...,...))

... ... ... ... ... ... ... POINT((...,...))

260699
Streetname,
housenumber,
city, postal code

XXXXXXX ... 28 5 POINT((...,...))

The final GDF for pole rot risk is shown in Table 7 below. This dataframe is available for both the
2050 High and low risk scenarios. Note, a damage class of 0 means that there is no damage due to
pole rot for the particular property in 2050.

Table 7: Merged Pole Rot & Mortgage Data Structure.

Index Address
Customer/
Collateral ID

Market
Value

...
Time to
Maturity

Damage
Class
2050

Geometry

0
Streetname,
housenumber,
city, postal code

XXXXXXX 300000 ... 26 3
POINT-
((...,...))

1
Streetname,
housenumber,
city, postal code

XXXXXXX 175000 ... 13 0
POINT-
((...,...))

... ... ... ... ... ... ...
POINT-
((...,...))

260699
Streetname,
housenumber,
city, postal code

XXXXXXX ... 28 2
POINT-
((...,...))

3.3 Physical Risk Exposure on the Mortgage Portfolio

Now that we have mapped the climate and mortgage data for both flood and pole rot risk we can
answer the second question from subquestion two: Which areas are considered high climate risk
areas for the banks mortgage portfolio?. We discuss each climate exposure separately.

3.3.1 Flood Risk

Appendix B shows every mortgage that has a certain flood depth exposure to it. We observe that
most properties in the portfolio at least have some exposure to a significant flood depth. As expected,
we observe that there are only a few mortgages that have a significant flood depth (> 3m). There
are however two problems with this representation. Firstly, we only observe the flood depth and not
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the corresponding probability of occurrence. Secondly, we see a lot of mortgages but we do not know
which areas have the largest exposure. Figure 17 shows the bar plot of the number of properties
in certain municipalities that are exposed to 5 and above 6 meter flood depths. Also, Appendix B
further shows us the bar plots of the 1m to 4m flood depths.

Figure 17: Bar Plot Flood Depth of 5m and larger than 6m.

Indeed, Figure 17 shows that there is a significant portion of properties in some municipalities that
have a large flood depth exposure. Interestingly but not unsurprisingly, a large portion of these
areas have direct connection to the Dutch rivers, we observe that the municipalities of Zaltbommel
(Province of Zuid-Holland), Berg en Dal (Province of Limburg), Zwolle/Kampen (Province of Over-
ijssel) have the largest exposure. This also because the banks portfolio in these municipalities has
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historically been large. Whilst this maps tells the bank what areas have the exposure to the largest
flood depths, it does not tell us anything about the losses for the bank as this is a combination of
flood maps as given in Figures 6 and 7 and the properties within the portfolio. In order to gain
further insight we have to start modelling the expected losses.

3.3.2 Pole Rot Risk

Pole rot is also a climate exposure on the banks portfolio. Recall that Figure 13 shows the pole rot
exposure of properties within the Netherlands. Note that damage class exposure is on a neighbour-
hood level. This means it is not as accurate as flood depth exposure which can observe the risk on
an individual property level. Appendix G shows us the pole rot exposure map in the Netherlands
for each individual property. In total 21% of the total portfolio is exposed to pole rot. To further
analyse the potential risks we want to sort the properties in terms of damage class exposure. This
can be seen in Figure 18.

Figure 18: Number of properties per damage class in the 2050 High and Low climate exposures.

We observe that the largest exposure is in the D3 damage class which accounts for the total reparation
costs of 53 EUR/m3 in 2050. Furthermore, we observe that there are limited number of properties
exposed to the D4 and D5 damage classes. We also deconstructed the number of properties within
these classes to their respective municipalities as given in Figure 19.

42



Figure 19: Number of properties in D4/D5 in the 2050 High and Low climate exposures)

Looking at D4 (showing the top 12 municipalities), we find that the largest exposure can be observed
in Maasgouw which is in the province of Limburg. Maasgouw is a municipality that lies next to
the Maas. It is also an area that is significantly exposed to flood risk. Historically the Volksbank
has a lot of properties in the south of the Netherlands which partially explains the large exposure.
The other municipalities are mostly located in the provinces of Utrecht, North Holland, and South
Holland. The differences in the 2050 low and high climate exposure scenarios do not seem large for
the D4 class.
For D5 we observe that in the 2050 low scenario only the municipalities of Maasgouw, Overbetuwe
and Utrecht are found which are all in the river areas. Interestingly, the 2050 high scenario shows
that two more municipalities join with a D5 exposure: Tynaarlo and Zwolle. Luckily, the number
of properties in this damage class are low compared to D4 and D3.
Again the same conclusion can be made as with flooding: To measure the impact for the bank we
have to look at the expected loss.

3.3.3 Conclusion Portfolio Climate Exposure

Our second question of subquestion 2 stated: Which areas are considered “high climate risk areas” for
the banks mortgage portfolio? We analysed both the flood and pole rot exposure for the bank where
we found that the exposure is largely in line with the original exposure maps as given in Chapter 2.2.
We were able to count the number of properties exposed in each area to assess the locations of interest
for the bank. We have now answered subquestion 2 which stated: How large is the exposure of the
banks’ mortgage portfolio to the different physical climate events in the Netherlands? We found from
our first question that there already are systemic decreases in property price developments in the
Netherlands due to ’climate events’. From our second question we found that the climate exposures
for both pole rot and flooding on the mortgage portfolio are 21% and 36% respectively when looking
at the number of mortgages.
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4 Mathematical Model

We are now able to formulate a mathematical model that will help us determine the climate-adjusted
expected loss model. In this chapter we first discuss the model choice and assumptions before we
continue with the actual model. This chapter also answers the entirety of subquestion 3 which stated:
How can we quantify different physical climate change risks in financial terms on the collateral of
the mortgage portfolio?.

4.1 Model Choice

Based on the literature of chapter 2.5 we can determine a model that quantifies the damage exposure
of properties within the mortgage portfolio with respect to flooding and pole rot.

For flooding we have two quantification methods as given in Chapter 2.5: The hedonic pricing
approach and damage function approach. The hedonic pricing method is insufficient as we do not
have all the data available for every property and past flood data for all regions in the Netherlands.
For example, the method posed by Bin et al. (2013) requires distances of houses to local urban
areas, the number of bedrooms, what type of bricks used, whether it has a fire place, size of the
acreage, in what flood plane the property is, prices before and after most recent floods and much
more. Our data set only provides the estimated flood depth on a property, the surface area of the
property, property type (i.e. apartment/single family home), and building year. As we lack these
data points and past flood data for the Netherlands this method is excluded.
The damage function approach is split into two different model types: vulnerability and fragility
functions. The fragility functions from Thapa (2020), Pita (2021), and Nofal et al. (2020) are a
good match if there are enough data points available. However, for this to function properly we
require past flood data to classify different damage classes. Again, we do not have this flood data,
thus we are not able to use this method effectively.
The current best approach for our situation in the Netherlands is using the damage functions from
Slager (2017). We have all the data-points that are required for applying this method: flood depth
on a property, square meter of the property, and most importantly property type (i.e. apartment or
single family home). This allows for the full usage of data points we have for the collateral. Also,
this method has been updated and refined over the years for the Netherlands by the institutions
that built them.

For pole rot there is only one model discussed in Chapter 2.5.2. This model is directly compat-
ible with the data from the Climate Adaptation Services (2021) as seen in Figure 13. The damage
class method is the closest estimation of possible damages for the mortgage portfolio we currently
have. The damage class assignment is on a neighbourhood level.

4.2 Model Assumptions

Our mathematical model for both flooding and pole rot is built upon a selection of assumptions and
limitations. We discuss them in the list below.

1. Climate risks are currently not priced in the market value of a property.

2. Due to current data limitations, the size of the collateral is the average municipality property
size from the Central Bureau of Statistics.
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3. The pricing in of damages depends on the life time of a property. This because there is a
certain probability of an event occurring each year. Thus, to consider all possible damage
occurrences over time, we have to take a look at the life time of the property. The lifetime
of an individual property is not easily identifiable. With the right amount of maintenance
properties can last up to multiple decades (even 100+ years), but due to other external factors
it might be only 20 years. To make our life easier we price in flood risk until 2050 as our
climate data is available to that date. However, it is not obvious if this is enough, too much,
or too little:

• Too Little: We only calculate a yearly expected damage for 20 years. The ideal property
value is determined based on the actual exposures until the end of its life, the priced in
damages might be to little.

• Too Much: The risk of climate events also exists after 2050, most likely for the entire
lifetime of the property. However, if this is the case and the probability of flooding or a
climate exposure is high, it means that the priced in value of the property should already
be very low. This is not how the market works as we clearly see that market values
increases even if the property is in a high risk area (Chapter 2.6).

4.3 Model

Now that we know the underlying assumptions we can move to the mathematical notation of the
model for both flooding and pole rot. In Table 8 the model abbreviations of the iterators are
described. Note that FD means ”Flood Depth” and iterator s is directly related to each map in
Figures 6 and 7.

Table 8: Model Abbreviations: iterators.

iterator Meaning Range Range explained
i Mortgage i i = 0, 1, ..., m

c Pole rot scenario c c = 0, 1
c = {Low Exposure 2050, —
High Exposure 2050}

k Mortgage type k k = 0, 1, 2
k = {linear mortgage, —
interest-only mortgage,
annuity mortgage}

j IFRS scenario j j = 0, 1, 2
j = {base scenario,
up scenario,
down scenario}

s Flood depth scenario s s = 0, 1, 2, 3

s = {FD map P = 1/10,
FD map P = 1/100,
FD map P = 1/1000,
FD map P = 1/100000}

t Time t in years t = 0, 1, 2, ...
τ Time τ in months τ = 0, 1, 2, ...
θ Month to year iterator θ θ = 0, 12, 24, ..., 360

In Table 9 the model parameters are shown in which we use the iterators of Table 8. Within the
model explanation we touch on how each value is retrieved.
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Table 9: Model Abbreviations: parameters

Parameter Meaning Extra
β Execution factor in case of foreclosure 15%
Ai Surface area in m2 on collateral of mortgage i

ai(fis) Damage factor on mortgage i as a function of fis
Cic Pole rot damage class exposure on mortgage i in scenario c

Dflood
i Sum of discounted flood damage on mortgage i Function of t

DPole Rot
ic Sum of discounted pole rot damage on mortgage i Function of t

dfloodis Flood damage on the collateral of mortgage i for scenario s
dPole Rot
ic Pole rot damage on the collateral of mortgage i for scenario c
fis Flood depth on mortgage i given flood depth scenario s
Gi Full monthly payment on mortgage i given annuity type
hi Height of collateral i in meters

HPIjt House Price Index in IFRS scenario j at time t
I Inflation factor for damages i 2%
litk Amount paid on mortgage i at time t given mortgage type k
Miτ Principal annuity payment in month τ for mortgage i
ps Probability of flood depth for scenario s
r Dutch risk free rate 1.4%

ryeari Yearly Interest rate on mortgage i
rmonth
i Monthly Interest rate on mortgage i
S Maximum damage on collateral for one square meter €1000

T loan
i Time to maturity of loan on mortgage i

T total
i Total duration of mortgage i

TPriceIn Max time time that is priced in for climate scenarios 28 years
vit Market value of mortgage i at time t

vinitiali Market Value of mortgage i within 2021
witc Pole rot damage on mortgage i at time t given climate scenario c
Yi Total principal amount of mortgage i

This leads us to the first formula that determines the flood damage for each property in the portfolio
given as:

dfloodis = ai (fis)AiS where ai (fis) ∈ {0, 1}. (11)

Where ai(fis) is the damage factor on mortgage i where the damage factor is based on the property
type of the mortgage as seen in Figure 12. It is a function of fis which indicates the flood depth for
mortgage i in scenario s. Note here that scenario s indicates to what scenario map it belongs to
(i.e. Figures 6 and 7). Also, the variable S is the maximum damage per square meter which is set to
€1000 (Slager, 2017). The parameter Ai is the surface area of the property belonging to mortgage
i. The data of the bank only shows if a property is an apartment or a single family home. It does
not indicate on what floor it is located. Therefore, we assume that all apartment types are located
on the ground floor for a worst-case assessment.
In case of pole rot our damage function on a single property is different. Remember that the pole
rot data has the average damage class for each neighbourhood in 2050 (Figure 13). Calculating the
damage on a property for a given pole rot damage class can be done with:

46



dPole Rot
ic = AihiCic. (12)

In here Ai is the surface area of the collateral of mortgage i in m2, hi the height of the collateral,
and Cic the damage class exposure on mortgage i given that we calculate it for the 2050 low or high
climate scenarios c.

In order to price the damage into the value of the property, we need to know the discounted climate
event expected damage (Di) over a certain period of time. For flooding we can define it as:

Dflood
i =

3∑
s=0

TPriceIn∑
t=1

λsI
tE

[
dfloodis

]
(1 + r)

t where E
[
dfloodis

]
= psai (fis)AiS ∀i. (13)

Here ps is the probability from scenario map s (Figures 6 and 7) and r is the discount factor based
on the Dutch 20-year government bond rate. Note that we sum in (13) over all periods t up to
TPriceIn. In our case we sum from 2022 to 2050, thus: TPriceIn = 28. We also account for 2%
annual inflation It in damages costs. The 2% is the inflation target from the European Central Bank
over time. Lastly, we observe the binary variable λs. The condition for this variable can be found
in (14):

λs =

{
1, if fis ̸= 0 then pick s where min(ps)

0, otherwise
(14)

The variable λs is used to give the appropriate probability of flooding to a property. Each flood
probability scenario from Figures 6 and 7 are assigned to a property such that if a flood depth exists
for a property in more than one flood scenario map, only one scenario map is assigned. The one that
is assigned must always be the highest probability so that the highest exposure for the property is
used. This is done because the relation between these scenario maps is unknown. Furthermore, the
Climate Adaptation Services (2021) estimates that the probability of flooding will decrease over the
coming years as protection measures are improved. In our case, we keep the probability of flooding
constant due to data limitations.

For pole rot we discount the damages incurred at each time t until 2050. Pole rot damage is
different than flood damage. Flood damage is an instant form of damage whilst pole rot occurs over
time. Pole rot damage remains low until a tipping point is reached (A. Kok, 2020). Once reached,
the damage will grow exponentially. The pole rot data shows the total damage exposure depending
on the damage class for a certain area in 2050. This damage is the cumulative damage from now
until 2050. Our damage calculation is the cumulative damage development from 2022 to 2050. We
assume that the damage is 0 in 2022 and exponentially develops until the cumulative damage class
for the collateral of an arbitrary exposed mortgage i in 2050 is reached. Again, the damage cost
grows year-over year with 2% such that inflation is incorporated.
The damage for pole rot on mortgage i in year t given pole rot scenario c is defined as witc. Note
that scenario c indicates if it is the 2050 climate low or high scenario exposure. This yearly damage
will be discounted as:

DPole Rot
ic =

TPriceIn∑
t=1

Itwitc

(1 + r)t
. (15)
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Once the expected damage on a property is known, the value of the property with expected flood
or pole rot damage priced in at t = 0 can now be determined as:

vfloodi0 = vi0 −Dflood
i , (16)

vPole rot
ic0 = vi0 −DPole Rot

ic . (17)

Where vi0 is the current non-climate adjusted market value of the property for mortgage i as pro-
vided by the Volksbank. Note, that for pole rot we can calculate two possible property values: for
the low or high climate scenario indicated with c.

From this point forward the formula’s are the same for both flood and pole rot risk. We
now use cc which stands for Climate Change as the indicator for a climate adjusted parameter.
Furthermore, the iterator c, which indicates if pole rot exposure is calculated for the high or low
scenario, is excluded from notation but the calculation remains the same for c = 1 or c = 2.

Looking ahead from 2022 up to 2050, we can index the value of the property with the House
Price Index as given in (18). However, if we want to look at the additional expected loss of a climate
event we also have to calculate the regular market value of a property as given in:

vccitj = vcci0∆HPIjt where t ∈ TPriceIn, (18)

vregularitj = vregulari0 ∆HPIjt where t ∈ TPriceIn. (19)

Note here that HPIjt is the House Price Index of IFRS scenario j at time t. Also, vregulari0 is the non
damage adjusted market value of the property. IFRS stands for the International Financial Report-
ing Standard. In total there are three IFRS scenarios: the base, up, and down. Financial regulators
require that banks use these scenarios within their risk management framework for measuring their
exposure in different situations. Each scenario also has a House Price Index. This is an index that
forecasts the rise or fall in property prices for a long period of time. It also is inflation adjusted.
Appendix E shows the graph of each of these scenarios.

Now that we can calculate the value of all the properties in the portfolio for all mortgages, the
next step is to calculate an Exposure At Default (EAD) for all mortgages i at time t depending
on the mortgage type k (linear, annuity or interest-only mortgages). This exposure is the amount
outstanding of the principal for every mortgage loan at time t. This is calculated as given in (20):

EADit = EADi,t−1 − litk ∀t ∧ t = 0. (20)

Here litk is the amount of the principle paid back on mortgage i in year t for mortgage type k. The
amount depends on the mortgage type k. Let’s first discuss the mortgage types below:

• Linear Mortgage (k = 0)

– The amount of principal paid per month is constant until mortgage maturity.

– Interest is paid on the remaining exposure of the month before.

• Interest-only Mortgage (k = 1)
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– From the issue date until one month before maturity only the interest is paid on the
mortgage.

– At maturity the principal of the loan is paid off.

• Annuity Mortgage (k = 2)

– An equal amount is paid every month until maturity. However, it is a varying combination
of both the amount of principal and interest payments.

– At t = 0 the amount paid per month is the lowest with respect to the principal and the
highest with respect to the interest on the loan. Every month a payment is done, more
is paid on the principal and less on the interest compared to the previous month. This
occurs whilst the amount paid per month remains the same until maturity.

A key assumption in this model is that prepayments are not included for all mortgage types. With
this information we are able to construct the litk formula for each different mortgage type for the
payment per year:

litk =


Yi

T total
i

, k = 0

0, k = 1,∀t ∧ t ̸= T total
i

Yi, k = 1, t = T total
i

Jit, k = 2

(21)

Here k = 0 indicates a linear mortgage where the yearly contribution is determined by dividing the
principal of the loan Yi by the total duration of the loan T total

i . Looking at k = 1 indicating an
interest-only mortgage, for all years until t = T total

i − 1, nothing is paid to the reduction of the
principle. When t = T total

i , the total principle is paid off.
The annuity mortgage type (k = 2) is different with respect to its yearly payments. As indicated
earlier, the amount of principle and interest paid every month changes over the life time of the
mortgage, but the total payment per month always stays the same. First we calculate the equal
amount that has to be paid every month as:

Gi =
Yir

month
i

1− (1 + rmonth
i )(−12T total

i )
. (22)

Here Yi is the total principle amount borrowed, rmonth
i is the monthly interest paid on the mortgage,

and T total
i the total duration of the loan in years. The monthly interest is determined as:

rmonth
i = (1 + ryeari )

1
12 − 1. (23)

Here Gi is also known as the PMT formula which stands for payments. The monthly payments of
the principle, also known as the Principle Payments (PPMT), can then be determined as:

Miτ = −(1 + rmonth
i )(τ−1)(Yir

month
i −Gi). (24)

Here τ is the time in months. We indicate the monthly payments to the principle on mortgage i at
time τ as Miτ . Because the climate data are in years we transform this to yearly payments for each
mortgage as:

Jit =

θ+12∑
τ=θ

Miτ where t ∈ T loan
i − 1, θ ∈ {0, 12, ..., 360}. (25)
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When time in years t increases with 1, θ increases with 12. Note, θ starts at 0 (at τ = 0 the payment
is 0 as well). Also, when the last year of mortgage payments only consists out of 6 months, only
those will be added. Using this formula allows us to correctly show the EAD development of annuity
mortgages.

With these formulas we are now able to calculate the regular LGD (LGDregular
itj ) and the climate

adjusted LGD (LGDcc
itj) for mortgage i at each period t for IFRS scenario j as:

LGDregular
itj =

max
(
EADit − (1− β)vregularitj , 0

)
EADi0

where t ∈ T loan
i , (26)

LGDcc
itj =

max
(
EADit − (1− β)vccitj , 0

)
EADi0

where t ∈ T loan
i . (27)

Where β is the execution factor. Note here that the execution factor is the historical execution factor
in case a property is sold by the bank due to a foreclosure (after default) of a mortgage. This factor
is the % decrease of the property price. Banks do not want the collateral on their balance sheet as
it is a liability. Therefore they want to sell it as soon as possible. Because of that it is often below
the market value of the property, hence the execution factor. Here we use the execution factor as
calculated by the Volksbank.
Once we have calculated the EADit and LGDcc

itj for every mortgage i at period t and IFRS scenario
j, we can determine the regular and climate change adjusted expected loss for mortgage i in every
period t as given in (28) and (29):

ELregular
itj =

PDregular
it LGDregular

itj EADit

(1 + r)
t where t ∈ T loan

i , (28)

ELcc
itj =

PDregular
it LGDcc

itjEADit

(1 + r)
t where t ∈ T loan

i . (29)

Here it is again the case that the value is discounted over time. In order to get the life time (LT)
expected loss for each different IFRS scenario over all periods for a single mortgage i we can use
(30) and (31):

ELregularLT
ij =

T loan
i∑
t=1

E
[
Lregular
itj

]
, (30)

ELccLT
ij =

T loan
i∑
t=1

ELcc
itj . (31)

Using this we can now determine a delta expected loss such that we can see the total contribution
of climate change events on an arbitrary mortgage i in IFRS scenario j as given in (32):

∆ELij = ELccLT
ij − ELregularLT

ij . (32)

Then for the whole mortgage portfolio (PF) we can calculate the total expected loss for every scenario
j for the regular scenario and due to a climate change event up to 2050 as given in (33) and (34):
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ELregularPF
j =

m∑
i=1

ELregularLT
ij ∀j, (33)

ELccPF
j =

m∑
i=1

ELccLT
ij ∀j. (34)

Directly from this we can determine a delta expected loss on a portfolio level to see the contribution
of climate change events as given in (35).

∆ELPF
j = ELccPF

j − ELregularPF
j ∀j (35)

Applying this model can help us gain insight to see which mortgages in certain areas are exposed
with respect to pole rot and flood risk. This model calculates the current expected loss based upon
the assumptions as discussed in Chapter 4.2.

Note that we have now answered the last subquestion of subquestion three where it was defined
as: How can we model the physical-risk-LGD given the physical climate events for the mortgages in
the portfolio? The model explains that it is indeed possible.

4.4 Model Conclusions

This section answered subquestion 3 which stated: How can we quantify different physical climate
change risks in financial terms on the collateral of the mortgage portfolio? We looked at both
flooding and pole rot. For flooding we found a model that could be used (i.e. damage function
approach) and for pole rot also a damage class approach was found. We were able to use our credit
risk information about calculating the expected loss on single mortgages and the portfolio as a whole.
The result of this model is discussed in Chapter 5.
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5 Results

In this chapter we discuss the model results. We aim to find answer to the final subquestion which
states:

What is the physical risk induced expected loss projection on the mortgage portfolio given differ-
ent macro-economic scenarios in the future?

We separate the results from flooding and pole rot. The results show the contribution of flood
risk and pole rot risk to the total expected loss. We consider the expected loss under the IFRS HPI
base, up, and down scenarios.

Lastly, we also discuss how prices develop over the portfolio for all properties affected by flood-
ing and pole rot. This can give us a closer insight if it is inline with our observations in Groningen
and from the literature as indicated in Chapter 2.6.

5.1 Flood Risk

For flood risk on the mortgage portfolio we first look at the three base scenarios (HPI Base, HPI,
UP, HPI Down). We analyse the losses on a portfolio level and look at the individual municipalities
at risk for the bank. Afterwards we discuss various different scenarios to stress test our results.

5.1.1 Initial Model Results

Table 10 shows us the absolute contribution of flood risk to the total expected loss for all mortgages
that are exposed to flooding. This value is calculated according to Formula (35), also known as
the delta Expected Loss (∆EL) on the portfolio. The table shows the total contribution and the
contribution of the portfolio of mortgage types to flood risk (i.e linear, annuity, interest-only). Note,
the portfolio mortgage type results sum up to total number in the first column.

Table 10: IFRS Flood Induced Expected Loss.

∆EL Total
Mortgage Portfolio

∆EL Linear
Mortgage Portfolio

∆EL Annuity
Mortgage Portfolio

∆EL Interest-only
Mortgage Portfolio

HPI Base € 385.786 € 36.143 € 42.921 € 306.721
HPI Up € 375.151 € 30.002 € 30.950 € 314.198

HPI Down € 430.986 € 43.673 € 81.844 € 305.468

The losses incurred for the bank seem small in absolute terms. There are multiple reasons that
explain this result. Firstly, a lot of mortgages have an EAD that is significantly lower than the
market value of the property. Even if a mortgage has been issued in recent years, the market values
have risen significantly due to the current housing price boom. Consequently, even if a significant
damage due to flooding is expected, it is often offset by the high market valuation. Secondly, many
properties are not in high probability exposure areas. Significant market value decreases due to
flood risk only occur for properties in the p = 1/10 and p = 1/100 flood depth maps (Figures 6
and 7). There are only a limited number of properties exposed to very high probabilities and high
flood depths. Again, here it is often the case that these properties have very low EADs compared
to the market value of the property. Furthermore, one of our model assumptions is that the flood
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depth probability remains constant over time. In reality, this probability should be decreasing up
to 2050 according to the assumptions of the Climate Adaptation services (2021). This would result
in lower losses. However, this might be offset by another assumption which says that the Area Ai is
an estimation for the average property surface area in m2. There are quite some homes that have
larger surface areas which are located in high risk locations.

For the effect on a portfolio level of these absolute losses we refer to Table 11. Here we see the
percentage contribution of flood risk on the expected loss of all properties exposed.

Table 11: Percentage Contribution of Flooding to the Expected Loss

Percentage of
Total Losses
(All Mortgage
Types)

Percentage of
Total Losses
(Linear Mortgage
Type)

Percentage of
Total Losses
(Annuity
Mortgage Type)

Percentage of
Total Losses
(Interest-only
Mortgage Type)

HPI Base 1,44% 0,13% 0,16% 1,15%
HPI Up 1,53% 0,12% 0,13% 1,28%

HPI Down 1,36% 0,14% 0,26% 0,96%

The contribution of flood risk is only 1.41% in the base and up scenarios to the total expected loss of
all exposed properties. However, we observe that the total contribution decreases in the HPI down
scenario. Furthermore, the contribution of interest-only mortgages decreases, whilst the contribution
of linear and annuity mortgages increases. To see why this change happens we perform an extra
scenario (scenario 2), which will be discussed in Chapter 5.1.2.

The losses that we do observe are explainable through customers that have just received their
mortgage loan. This makes sense as they have not made any significant payments to their debt
yet and the market value of the property almost equals the exposure at default. Consequently,
within the first three to five years most losses are incurred on these mortgages if the flood risk
is priced in the current market value of the property. After five years it is almost always the case
that the flood adjusted market value of the property is higher than the customers EAD at that time.

When we look closer at the results and the different mortgage types we observe a couple of factors.
Firstly, on average for all scenarios, linear mortgages are 16% of the total number of mortgages,
annuity mortgages 50%, and interest-only mortgages 34%. The largest exposure is observed with
interest only mortgages at 80%, whilst it has the second largest percentage of mortgages. This is
because the principal payment is paid in full at the maturity date of the mortgage. During the
lifetime of the mortgage only interest is paid. This means that the EAD remains high until ma-
turity, hence making the losses larger for these types of loans. The annuity mortgage type is the
largest percentage of mortgages that is exposed due to flooding, but is 11% of the percentage of
delta expected losses. The amount paid of principal every month increases month over month. As
time goes on, more of the principal is paid. This decreases the EAD faster over time. This is
the reason why losses are limited compared to the interest-only mortgages. The smallest portion
of the portfolio is the linear mortgage type. Remember, linear mortgage payments are a constant
amount of the principal every month and an interest on the left over exposure from the previous
month. Interestingly, compared to the annuity mortgage type it has only 16% of the number of
mortgages in the portfolio, but it has approximately 9% of the losses. There are a variety of factors
that contribute to these findings, e.g, the height of the EAD, the market value of the underly-
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ing properties and the flood exposure. The real takeaway from the mortgage type analysis is that
the exposure is significantly higher for interest only mortgages. The other two types are less exposed.

Having discussed the results on a portfolio level, it is interesting to take a closer look at the losses on
a municipality level. Figure 20 shows two different geographical maps. For both pictures we observe
the number of properties with a delta expected loss. Remember, this ∆EL is the contribution of
flood risk to the expected loss on a mortgage. We observe that the left map shows the number of
properties with an EL > 0 and on the right with an EL > 200 (Appendix C shows us the maps and
bar chart of maps with EL > 500 and EL > 1000).

Figure 20: Municipalities with highest number of losses on average.

The ∆EL > 0 map shows that the number of properties exposed for the bank on a municipality
level is very similar to the regular climate exposure map as shown in Figure 7. The ∆EL > 200 map
excludes the low loss category from which we can see that only a select number of municipalities
have a significant contribution to the expected loss. We observe that the exposure for the areas
with EL > 200 is around the municipalities connected to the IJssel, Maas, Rijn, Waal, and at the
intersections of these rivers. These are also the areas that have the larger flood depth possibilities
(Figure 6). Appendix C gives us a deeper analysis by looking at the areas that have the largest
∆EL. These Figures show that only a limited number of properties is exposed to a significant loss.
The good thing is that from a risk management perspective the bank can consider possible solutions
on an individual mortgage basis. By creating awareness under customers the bank can help them
take the necessary precautions.

To explore the contribution of each municipality further, we would like to see the percentage con-
tribution of each municipality to the ∆EL. This can be seen in Figure 21 (see Appendix C for
the geographical map). This percentage overview shows which areas for the bank require the most
attention. If a flood occurs, these areas pose the largest risk on the expected loss metric. Here we see
that the regions of Culemborg, Amsterdam, and Veenendaal have the largest exposure. Interestingly
we observe that Culemborg has the largest exposure in the HPI base scenario with 12.5%, making
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this a location of interest.

Figure 21: Percentage contribution of each municipality to the ∆EL.

With respect to the absolute expected loss we observe that the impact is limited. There are a couple
of factors that make the EL less severe. Firstly, the property market has very high valuations due
to demand which do not reflect regular market conditions. Secondly, the HPI forecast only considers
property prices going up (even the downturn scenario only considers 1 year of 1% decrease and
increases afterwards). In recession situations, there are longer periods of year over year decreasing
property prices. Finally, the probability of occurrence is low which means that damages are also
low. However, when a flood does occur it is often the case that a larger area is hit and the damages
become real. This loss is not captured by the EL, but by the Unexpected Loss (UL). The UL considers
the tail risk probability of occurrence (in our case a high probability of flooding) and calculates the
corresponding loss. This increases losses significantly. The UL has a direct impact on the capital
requirements for the bank.
In our scenario analysis we address the first point by adjusting the market value of the property
(Scenario 1 below). The second point will be addressed by creating a recession type HPI and will
be combined with scenario one as well (Scenario 2 below). The third point will not be addressed as
it is outside the scope of this project.

5.1.2 Scenario Analysis

This section discusses two different scenarios that stress the expected loss on a portfolio level for the
bank. The results should show the contribution of flooding to the EL on a portfolio level through
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changes in the initial property values (scenario 1) and a change in the HPI (scenario 2).

5.1.2.1 Scenario 1: Property Market Value Shock Shocking the market value of the prop-
erty requires an adjustment to the price in formula of the mathematical model. The function that
has to be adjusted is:

vfloodi0 = vi0 −Dflood
i ∀i, (36)

which will be adjusted with a factor 1− ϕ. This will change the function too:

vfloodi0 = (1− ϕ)vi0 −Dflood
i ∀i where ϕ ∈ {0, 1}. (37)

Once this parameter is set, the regular model calculation continues with function (18) and a ∆EL is
calculated. This will be done until a ∆EL is calculated for every percentage decrease of the initial
property value (i.e. ϕ goes from 0 to 0.2 with steps of 0.01). The corresponding graph can then be
plotted as given in Figure 22. Note that for Scenario 1, the HPI down scenario is used.

Figure 22: Scenario 1.

Here we observe that the delta expected loss on the portfolio increases almost linearly for each
percentage decrease in the initial market value of all properties in the portfolio. An interesting
observation is that the delta expected loss almost triples in absolute losses in case of a 20% percent
decrease in property values. The almost linear relation is a consequence of a couple of factors.
Firstly, a decrease in property values within the portfolio results in an increase in the number of
mortgages that now have an EAD higher than the underlying property value. This means that for
a couple of years their EL > 0. The flood risk exposure of these properties is often very low but can
be different from each other which creates non-linearity. Secondly, the way the exposure develops
is different for each mortgage type. On a portfolio level this creates slight non-linearity but evens
out with a large data set. The relatively stable increase in flood risk exposure is favourable for the

56



bank as it means that the total contribution of flood risk stays relatively the same over time. From
this we can conclude that shocking the initial property value will not significantly increase the EL
for the bank.

5.1.2.2 Scenario 2: House Price Index Shock One of the reasons why the EL due to
flooding is low is because of the development of the HPI over time. To show the effect of the HPI
we refer to Figure 23. Note here that y-axis is the multiplication factor of the initial market value
of a property as shown in (18).

Figure 23: Scenario 2.

The figure shows four different HPI scenarios. The blue, orange, and green lines are the IFRS
scenarios that are used in the results of Chapter 5.1.1. The red line is the House Price Index Shock.
This shock is made to stress the housing market for a significant period of time. The price decreases
until 2025 and makes a recovery afterwards. The result of this model scenario is shown in Table 12.

Table 12: Scenario 2: Results.

∆EL Total
mortgage portfolio

∆EL Linear
mortgage portfolio

∆EL Annuity
mortgage portfolio

∆EL Interest-only
mortgage portfolio

HPI
Scenario 2
Percentage

1.13% 0.09% 0.29% 0.75%

HPI
Scenario 2

€ 943.970 € 76.234 € 239.858 € 627.877

With the alternative HPI scenario we observe that the losses more then double (119%) compared
to the IFRS HPI base scenario as shown in Table 11. We also observe that the contribution to the
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percentage of total losses decreases slightly compared to Table 10. Looking closer at the percent-
ages, the contribution of interest-only and linear mortgages decreases compared to the IFRS down
scenario. Whilst the contribution of annuity mortgages increases. This can be explained by the fact
that the number of mortgages with an annuity mortgage type has increased. This means that there
are more annuity mortgages with an exposure to flood risk that now have a market value that is
lower than the exposure for the first couple of years. Also, there are no major changes in the way
the EL develops compared to the initial HPI indices. Flood risk is still not a large contributor to
the total expected mortgage losses.

To see the contribution of each municipality to the delta expected loss with Scenario 2 we refer
to the bar chart in Figure 24. Two different patterns emerge with respect to Figure 21. Firstly, the
total contribution of Culemborg decreases, whilst the contribution of other municipalities increase.
Secondly, the largest exposure is now observed in Kampen instead of Culemborg. The first point is
a result of the fact that as property prices decrease across the board, there are a larger number of
properties in other municipalities that now have flood exposure. This decreases the total contribu-
tion of the initial large exposure areas. The second point is that the municipality of Kampen has
a larger exposure once property prices decrease. This makes it a problematic area with respect to
flood risk.

Figure 24: Scenario 2: Percentage Delta Expected Losses for the top 15 municipalities.

The original IFRS HPI scenarios show that the percentage contribution of flooding to the total losses
decreases 0.31% for HPI Scenario 2 index compared to the base scenario. This is due to the decrease
in property values. To see whether this trend holds we combine Scenario 1 and 2 and see how the
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percentage contribution of flood risk changes to the total losses on the portfolio and the different
mortgage types. Figure 25 shows how for each percentage decrease in the initial market value of the
property, the contribution of flood risk on the total portfolio decreases. The linear (green), annuity
(orange), and interest-only (red) lines sum up to the total portfolio contribution (blue). As the
total contribution decreases, so does the interest-only contribution. However, we do observe that
the contribution of linear and annuity mortgage types stays relatively constant. This means that
their contribution actually increases but keeps stable as a percentage. Overall we can conclude that
the regular LGD contributes more than the flood-adjusted LGD.

Figure 25: Scenarios 1+2: Contribution of flood risk to the total portfolio.

As Scenario 1 also included an analysis of the absolute losses with percentage decreases in the initial
market value of all the properties, we refer to Appendix F for this result. Here we observe that
the same linear relation still exists only with higher absolute values compared to HPI of Scenario
2. Here the same applies as before, shocking the initial property value will not significantly increase
the EL due to flood risk for the bank. It remains as the percentage contribution as given in Figure
25.

5.2 Pole Rot Model Results

Pole rot also generates interesting results that are discussed here. Again, we first look at the base
IFRS House Price Index results and afterwards we look at various different scenarios to observe how
the losses can develop.

5.2.1 Initial Model Results

Looking at Table 13, we can see the absolute expected loss caused only by pole rot. This is referred
to as the Delta (∆) Expected Loss. Note, the first column is the sum of total losses from the linear,
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annuity, and interest-only mortgage portfolio.
Our first observation is that the losses are significantly higher than with flooding. Most of the losses
are on the interest-only mortgage portfolio.

Table 13: IFRS Pole Rot Induced Expected Loss.

∆EL Total
Mortgage Portfolio

∆EL Linear
Mortgage Portfolio

∆EL Annuity
Mortgage Portfolio

∆EL Interest-only
Mortgage Portfolio

HPI Base € 3.754.436 € 207.979 € 431.028 € 3.115.428
HPI Up € 3.620.682 € 178.632 € 338.429 € 3.103.619

HPI Down € 3.949.407 € 263.523 € 613.373 € 3.072.509

To see the impact of pole rot on the total losses of all properties with an exposure to pole rot
(including non-climate adjusted losses), we refer to Table 14. Here we see the percentage contribution
to the total expected loss for each of the IFRS HPI scenarios for the total portfolio (column 1) and
all individual mortgage type portfolios (column 2,3,4). Here we observe that the total contribution
of pole rot is 18.3% in the Base scenario, 19.0% in the Up scenario and 16.8% in the Down scenario.
Compared to flood risk this is a significant portion of the total losses.

Table 14: Percentage Contribution of Pole Rot to the Expected Loss.

Percentage of
Total Losses
(All Mortgage
Types)

Percentage of
Total Losses
(Linear Mortgage
Type)

Percentage of
Total Losses
(Annuity
Mortgage Type)

Percentage of
Total Losses
(Interest-only
Mortgage Type)

HPI Base 18,3% 1,0% 2,1% 15,2%
HPI Up 19,0% 0,9% 1,8% 16,3%

HPI Down 16,8% 1,1% 2,6% 13,0%

From these results we observe that pole rot is a larger problem than flood risk until 2050 within our
model. There are more properties exposed to high pole rot damage than large flood damage. The
exposure is more widespread with large portions of land having significant damage class exposures.
When we look at flood damage it is the case that the probability of occurrence determines the dam-
age. In general, most properties in the Netherlands are not in a high probability of a certain flood
depth area. Which means that the probability of large losses occurring is limited only to a small
region.

Now that we know the additional loss due to pole rot, it is interesting to observe what the con-
tribution of each municipality is to this number. For this we refer to Figure 26. Note, we consider
the HPI base scenario for this assessment. Here we observe the 15 municipalities with the largest
contribution to the additional expected loss caused by pole rot. The top contributing factor to the
losses is Zoetermeer with almost 13%. The number two (Steenwijkerland) and number three (het
Bildt) contribute 7% and 5% respectively. The same applies here as with flooding but to a lesser
degree: mostly it is only a couple of properties that contribute to this percentage. For further in-
formation for the entire Netherlands we refer to Appendix H for all municipalities which are shown
with a geographical map. Note that these results are in line with Figure 13.

When we look back at our damage exposure graph in Figure 19 we saw that Maasgouw had the
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largest exposure for possible damages. However, we see it only contributes 4% to the calculated
delta expected loss. This is due to the fact that the EAD of all these mortgages is lower for this
municipality. This again shows that just because there is an exposure of pole rot (or flood depth),
it does not mean that the bank is at risk. This only occurs when the exposure is significantly higher
than the climate-adjusted market value of the property.

Figure 26: Percentage of losses contributed to the Total ∆ Expected Loss by the top 15 munici-
palities.

A very important fact to consider is that pole rot is measured on a neighbourhood level and not on
an individual property level. This means that whether or not a property is exposed to the degree
of pole rot as given in the data is not certain. Furthermore, the data from the Climate Adaptation
Services (2021) estimated that only a selection of properties is built on wooden poles within each
neighbourhood based on the building style before 1975. This is also not entirely certain as it might
very well be that only a small portion of properties with a building year of below 1975 is built on
wooden poles. This means that the pole rot damage is conservative estimate with a large degree of
uncertainty compared to our flood damage assessment.

With flooding we talked about the Unexpected Losses (UL) which are often greater with a higher
order of magnitude compared to the EL. This affects a banks capital requirements. As the projected
damages are already high with the EL, this can have a significant impact on the portfolio. However,
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as we just mentioned there is a lot of uncertainty with this data. This means that when we calcu-
late the UL it might not represent the actual situation. Further research is required to make these
findings more solid.

Just as with flooding we aim to see what happens in different property market situations. For
this we perform the same scenario analysis as before.

5.2.2 Scenario Analysis

In this section we discuss our stress testing results of the market value of the property. Again, we
first discuss the regular property market value shock in Scenario 1 and afterwards we discuss the
House Price Index shock in Scenario 2.

5.2.2.1 Scenario 1: Property Market Value Shock This analysis adjusts the initial property
value with a factor (1 − ϕ) such that it will decrease from 1% to 20%. What happens is that we
adjust the following equation:

vPole rot
ic0 = vi0 −DPole Rot

ic ∀i, c (38)

To:
vPole rot
ic0 = (1− ϕ)vi0 −DPole Rot

ic ∀i, c where ϕ ∈ {0, 1} (39)

After doing this adjustment, the regular model will continue from equation (18) on wards. We do
this 20 times and then we get the result as given in Figure 27. On the x-axis we have the changes
in ϕ (change in phi from 0 to 0.2 with steps of 0.01) and on the y-axis the delta expected loss that
results from a percentage point change in ϕ.

Figure 27: Scenario 1.
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This graph shows us that there is a relatively linear increase in the delta expected losses if the
value of the underlying decreases. The non-linearity can be explained by multiple factors. First,
what has to be understood is that when we price in the initial exposures (i.e. phi = 0), the largest
exposures are already priced in. As phi increases (and the market value decreases), the increase in
expected loss comes from properties that now have both a market value lower then their exposure
and through the properties where now the market value has decreased significantly such that the
price in of pole rot now has an impact. With every percentage point decrease, the price in value on
the properties increases almost linearly. However, the exposure of each customer is different due to
the different mortgage types. As can be imagined, the interest-only mortgages do not have principal
payments and thus their exposure remains high. This slightly increases the losses in a non-linear
fashion. This (almost) linear increase in delta expected losses results that over time a decrease in
the overall contribution of pole rot on the portfolio decreases. This will be shown more clearly in
Scenario 2.

5.2.2.2 Scenario 2: House Price Index Shock The second scenario uses the same HPI
Scenario 2 as seen in Figure 23. The results are shown in Table 15. In Appendix I we see Scenario
2 and the absolute property price development of Scenario 1.

Table 15: Scenario 2: Pole Rot Results.

∆EL Total
mortgage portfolio

∆EL Linear
mortgage portfolio

∆EL Annuity
mortgage portfolio

∆EL Interest-only
mortgage portfolio

HPI
Scenario 2
Percentage

13.3% 0.8% 2.7% 9.8%

HPI
Scenario 2

€7.416.596 €465.709 € 1.478.486 € 5.472.399

Comparing these results to Tables 13 and 14 we observe that the absolute losses are an increase of
95% compared to the original base scenario. Furthermore, we also observe that the total contribu-
tion decreases with 5% compared to the base scenario. As property values go down, the impact of
regular losses increases faster than those of pole rot. Just as with flood exposure, as market values
decrease, more mortgages with small exposures arrive in the expected loss territory.

Figure 28 shows the bar plot of the percentage contribution for Scenario 2 of each municipality.
The largest changes with respect to Figure 26 occurs at the top. We now observe that Bergen op
Zoom contributes 7% to the total expected loss and Zoetermeer decreased to only 6%. Furthermore,
most other municipalities increased in their contribution compared to before. This shows that as
property prices decrease, so does the contribution of each municipality. Also, Bergen Op Zoom is
particularly sensitive to decreases in property prices compared to the other municipalities. This
means that the bank has to keep a closer look on the mortgages within that area.

Looking at the contribution of each mortgage type and the total losses to the delta expected loss we
refer to Figure 29. This is a combination of Scenarios 1 and 2 where on the x-axis the percentage
property shock (ϕ) is shown and a corresponding percentage contribution of each mortgage type is
determined on the y-axis.
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Figure 28: Scenario 2: Percentage of losses contributed to the Total ∆ Expected Loss by the top
15 municipalities.

A pattern again emerges that the contribution of pole rot drops with market value decreases of
properties. Interestingly, we do observe that again the drop is high for interest-only mortgages and
stable for other mortgage types. Note that the percentage of the number of mortgages in all shock
situations stays the same! This means that the total exposure of the linear and annuity mortgages
contribution increases and interest-only mortgages decreases as the market decreases in sentiment.

For pole rot the impact on the expected loss is high, however it is expected that the UL will
be a lot higher. The UL impacts the capital requirements for the bank. However, as mentioned the
accuracy is low with respect to the actual exposure. Because of this, caution is advised in taking
these numbers as actual expected losses.
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Figure 29: Scenario 1+2: Contribution of pole rot to the total Delta Expected Loss.

5.3 Impact on Property Prices

Now that we know the impact on the expected loss for the mortgages exposed to flooding and pole
rot, we also want to observe the impact on property prices given these two events. Our mathematical
model makes changes to the current market value of the property. One way that we can confirm the
validity of the model is to look at the average property price decreases in the Netherlands. We have
data available from Groningen and the literature (Chapter 2.6). Remember, the average property
price decrease in Groningen due to earthquakes is estimated to be between 2% and 6%. From the
literature a decrease between 2.5% and 10% is expected (Calcasa, 2019). Note, that Calcasa (2019)
considers these percentages when an area is perceived in having high climate exposure.

We analyse the property price differences for both flooding and pole rot in percentages with the
initial property market value (vi,t=0) and the value with the event priced in (vcci,t=0). Figures 30 and
31 show us the property price developments for both flooding and pole rot for all properties that
are exposed to flood risk.
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Figure 30: Percentage property price development for flooding.

Looking at the property price developments with respect to flooding we observe that most property
exposures are within the 0%-2% range. There is a limited numer of properties exposed between
the 2% and 7% range. On average we find that the property price decreases with only 0.3%. This
decrease is for all properties that are exposed in all probability maps. It seems that this is not in
line with our observations in Groningen and from the estimations of Calcasa (2019). However, the
areas with the high probability exposure have the decreases in the tail of the distribution (between
2% and 7%) which is inline with the literature and our observations.
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Figure 31: Percentage property price development for pole rot.

The percentage developments for pole rot are shown in Figure 31. Here we see that, whilst the
number of properties is less than for flooding, the percentage decrease is significantly higher. The
largest bulk of properties is within the 0% and 4% range. However, a significant number of prop-
erties is within the 2% and higher category. For a very small selection of properties there can even
be 18% decrease in property value. On average the property price decrease is 3.1%. This is due to
the large amount of properties below the 2% range. For the areas with the largest exposure we can
conclude (between 2% and 10% with some outliers upwards) that it is in line with what we observe
in Groningen and the estimations of Calcasa (2019).

The property price decreases for flooding and pole rot show mixed results for property price de-
creases. For flooding we observe that only a small number of properties is exposed to large price
decrease, but on average it is below the expected decrease of Calcasa (2019). For earthquakes we do
find that it is in line with the literature, but a large number is still within the 0% and 2% range. As
mentioned in Chapter 2.6 and by Calcasa (2019), the perception of climate exposure is important.
Once it is known by the market that an area is exposed, property prices will decrease across that
region. This can already be observed for the municipality of Loppersum in Groningen. As time goes
on we do expect that the property values will reflect the climate exposure once more events occur
over that triggers a change in market sentiment.
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6 Conclusion

This chapter discusses the results and draws a conclusion. Afterwards we recommend the next steps
for further research.

6.1 Discussion

At the start of the research we aimed to find an answer to the question:

How can we quantify the financial impact of physical climate change events on the loss distribu-
tion, in particular the expected loss, on the bank’s residential mortgage portfolio in the Netherlands?

The result of this question was answered through four subquestions. We first identified what the
climate risks are. Afterwards we looked at what the exposure is for the bank with respect to these
risks. Then we looked at how these exposures can be quantified in financial terms. The last step
was looking at what the eventual loss projection is on the portfolio.

Here we briefly summarize the result of these subquestions. We researched two different physi-
cal climate event exposures that could have an impact on the mortgage portfolio of the Volksbank:
flooding and pole rot. The former is caused by an increase in SLR and the higher likelihood of
longer periods of (intense) precipitation. The latter is caused by a higher likelihood of longer pe-
riods of drought. These climate events could damage the underlying property of the mortgage,
hence decreasing its value. The degree to which each underlying property is exposed depends on
the probability of flooding and the exposure in 2050 with respect to a certain damage class for pole
rot. The location of each property in the portfolio is matched to the corresponding flood or pole rot
exposure from the data provided by the Climate Adaptation Services (2021). In order to quantify
the damages for flooding, a damage function approach is used (Slager, 2017). For the damages of
pole rot, a damage class approach is used (A. Kok, 2020). Based on the likelihood of occurrence
from now until 2050 and the property characteristics, the damages are priced into the market value
of the property. Doing this allows the bank to calculate a climate-adjusted expected loss until 2050
on their mortgage portfolio. By comparing the climate adjusted expected loss to the non-climate
adjusted expected loss allows the bank to observe the contribution of these climate events to the
total credit losses of the bank.

With respect to flooding, a total of 36% of all properties within the portfolio is exposed. How-
ever, our results show that the expected loss contribution in 2050 is limited on a portfolio level, but
can be catastrophic for a small percentage of mortgage holders. The impact is limited because the
total contribution of flooding to the expected loss on exposed mortgages is only 1.44% in the base
HPI scenario (absolute losses equal €385.786,-). Our lowest scenario (Scenario 2) shows that the
contribution even decreases to 1.13%. From the base scenario we observed that the largest exposure
is in the municipality of Culemborg with a contribution to the flood adjusted expected loss of 17.5%.
However, as property prices decrease in Scenario 2, the contribution of Culemborg decreases to 7%
as largest exposed municipality becomes Kampen at 9%. This means that the largest exposures
with respect to flooding is in Kampen in a down turn scenario for the property market. Nonetheless,
both areas must be analyzed accordingly. From an expected loss point of view it seems that other
risks, such as the current macro-economic environment, are more important. Note however that the
bank measures its potential credit losses through the expected and Unexpected Loss (UL). It could
be that flooding would have more impact on the UL than the calculated impact on the EL. The
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impact on the UL is outside the scope of this thesis.

For pole rot, 21% of the properties in the total portfolio is exposed to pole rot. For the bank
pole rot is a larger problem than flooding. It is 18.3% of the total expected loss of the properties
exposed to pole rot in the base scenario. Also, in terms of absolute losses it is almost 10 times higher
than flooding. However, as property values decrease the contribution becomes lower and reduces to
13.3% for Scenario 2. The main municipalities at risk in the base scenario is Zoetermeer with 12%
contribution to the expected loss. However, in scenario 2 when property prices decrease significantly,
Bergen Op Zoom contributes more than 7% and Zoetermeer decreases to 6%. This shows that the
municipality of high interest is Bergen Op Zoom as it quickly adds to the losses as property prices
decrease. Sadly, there is one catch with pole rot risk. The damage calculations for pole rot are less
accurate than for flood risk, as the damage class for a property is linked to the average exposure on a
neighbourhood level and not on the individual property level. Also, it is assumed that all properties
before 1975 are on wooden poles in these exposed areas. However, this does not have to be the case
as the data did not verify this. Users of this model must therefore be careful with the loss calculation
of pole rot. The flood damage calculations do not have this problem as the accuracy of the climate
data is on an individual property basis.

When we look at property price developments with the 28 year priced in climate events, we see
an average decrease of 0.3% for flooding and 3.1% for pole rot. Whilst the average is low, a signifi-
cant number of property price decreases is between 2% and 10% for pole rot. However, for flooding
there are only a couple of properties between the 2% and 7% range. The literature describes a de-
crease between 2.5% and 10% for exposed areas (Calcasa, 2019). When we consider high-risk areas
for flooding, our results agree with the literature, but our average does not. For pole rot there does
seem overlap between the literature and the result. In general, it is the case that we can only observe
the true impact of flooding and pole rot on the property market once these events occur. This would
allow for a more accurate estimation of these property prices as historic data would then be available.

With the model limitations and results in mind, this thesis managed to answer the main research
question by quantifying the financial impact of both flooding and pole rot with respect to the ex-
pected loss on the banks residential mortgage portfolio. The next Section indicates future research
that will add to the research done in this thesis.

6.2 Limitations & Future Research

Credit risk in combination with climate exposure for financial institutions for both physical and
transitional risks is still in its early stages. More research should be done that would improve/add
towards the results in this thesis.

First looking at the model presented in this thesis, the first steps for improvement is to elimi-
nate some assumptions that have been discussed in Chapter 4.2. The ones that can be eliminated
require the right data sets which have to be obtained through various institutions. Firstly, there
are data available through Kadaster that would enable mapping the correct surface area to each
individual property. Secondly, Kadaster also provides updated data on which floor each apartment
is located. Thirdly, HKV Consultants have data that map a more accurate probability of flooding
to each individual property given the maximum flood depth. Fourthly, due to the inaccuracy of
pole rot exposures, a key step that the bank can take is to do an assessment around its customers
for the state of the collateral with respect to pole rot. Our estimation indicates that the damages
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can be significant, but because the accuracy is not as large as with flooding; more data and anal-
ysis are required to quantify these risks. Fifthly, the model does not incorporate prepayments on
mortgages. For our loss estimation this means that payments are only done at the moment they
are due. In reality a large portion of customers chooses to pay more to lower their exposure. If
this is included this would decrease the expected loss. However, if physical events occur, mortgage
holders might also be more likely to stop prepaying as they require the money for repairs. This
should be considered whilst implementing prepayment structures. Lastly, the impact of flooding
seems low with only 0.3% average property price decrease. It is interesting to investigate Assump-
tion 3 in Chapter 4.2. This assumption prices in flood risk until 2050. By pricing in for a longer
period of time the results might be more in line with he literature and our data research of Groningen.

Additional research can be done on methods to quantify the impact of physical climate risk on
the PD for mortgages in the Netherlands. This would increase the accuracy of the expected loss
estimations. A climate adjusted PD could increase the expected loss as an additional risk is ob-
served. The non-climate adjusted PD is determined based on defaults that occurred historically and
their corresponding data points (i.e. credit rating, financial situation, macro economic environment,
etc). The challenge is to link these climate events to a possible increase in this probability as no
representative event has yet occurred that can verify this.

Also, there are more modelling approaches that could be used if the right data are available for
determining the market value of a property. If the properties in the portfolio are analysed closer (i.e
number of rooms, bathrooms, location, distance to nearest city center, energy label, etc) a compar-
ison can be made with hedonic pricing model for before and after a flood for their value. If these
data is gathered for a representative sample of all areas in the Netherlands, a better estimation
could be possible. The literature as described in Chapter 2.5 describes multiple studies that used
this approach.

Furthermore, there is also transitional risks for mortgages. Properties with lower energy labels
can possibly reduce in value or the value increase is lower over time. This could also impact possible
losses for the bank in the future.

Lastly, this thesis has discussed the impact of flooding and pole rot. However, there are two other
climate events that also could have an impact: forest fires and storms. The prediction of the fre-
quency and intensity of these events are a lot harder to quantify (Climate Adaptation Services,
2021). As data becomes available these methods should be further explored.
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A Appendix A

Plan of Approach scheme as described in section 1.5.

73



B Appendix B

Figure 32 shows all the properties in the mortgage portfolio that are exposed to a certain flood
depth. It start with all properties with a maximum of 1m flood depth in the top left and ends with
all properties with a flood depth of 6 meter and higher in the bottom right.

Figure 32: Flood Depth Map of all properties on the portfolio

Figure 33 shows the bar chart with the number of properties exposed for each municipality given
1m, 2m, 3m, and 4m flood depths.
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Figure 33: Bar Plot Netherlands 1
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C Appendix C

Figure 34 shows two maps with the number of properties with an EL > 500 and EL > 1000 in each
municipality for the IFRS HPI base scenario.

Figure 34: Map of number of properties with EL 500 and EL 1000

Figure 35 is the direct geographical map of Figure 21. Note here that the dark blue point is
Culemborg.

Figure 35: Contribution Map
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Figure 36 shows the bar chart with the top 10 municipalities.

Figure 36: Bar Plot of municipalities with total number of houses with an EL > 500, EL > 1000
.

It can be seen that there are only 53 properties exposed with an EL > 500 and only 29 properties
with an EL > 1000.
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D Appendix D

Four maps showing the number of properties with a delta expected loss above 0, 200, 500 and 1000
(the contribution of flood risk to the toal losses). Note that this is for scenario 2: HPI shock.

Figure 37: Scenario 2: Map of number of properties with EL 0 and EL 200

Figure 38: Scenario 2: Map of number of properties with EL 500 and EL 1000
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E Appendix E

The graph below shows us the IFRS House Price Index base, down, and up scenarios from within the
Volksbank. Note here that the general trend is upwards from the moment this HPI was published.

Figure 39: HPI base, up, down
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F Appendix F

This Figure shows the total delta expected loss for flooding given the Scenario 2 HPI for every
percentage decrease of the property values. This means that if the x-axis is at 2%, the non-climate
adjusted market value of all properties is decreased by 2%. From that point forward the HPI is used
to calculate the delta expected loss. We observe that it is the case that the relation is linear just as
with the IFRS base, up, and down scenarios.

Figure 40: Scenario 1 and 2 combined
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G Appendix G

The Figure below shows us the total exposure of the bank to pole rot with respect to the damage
classes. Note here approximately 21% of the total portfolio is exposed to pole rot.

Figure 41: Portfolio Pole Rot exposure

81



H Appendix H

This appendix shows the map of the percentage contribution to the total expected loss of areas
that are affected by pole rot. An interesting observation is that the areas with the relatively large
exposure according to Figure 13 are not the largest contributor to the total expected loss. This is
due to the nature and number of properties within the portfolio.

Figure 42: Pole Rot Contribution Map
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I Appendix I

This Figure shows the total delta expected loss for pole rot given the Scenario 2 HPI for every
percentage decrease of the property values. This means that if the x-axis is at 2%, the non-climate
adjusted market value of all properties is decreased by 2%. From that point forward the HPI is used
to calculate the delta expected loss. We observe that it is the case that the relation is linear just as
with the IFRS base, up, and down scenarios.

Figure 43: Pole Rot: Scenario 1+2 Percentage Decrease
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