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ABSTRACT 

Roof structure reconstruction is one of the more recent and active research directions in urban-related 

studies. Roof geometry information is needed for the generation of 3D models, which are used for 

applications such as solar potential estimation and telecommunication installation planning, wind flow 

simulations for pollutant diffusion analysis, etc. Given the advance in remote sensing technologies and the 

machine learning field, particularly deep learning, the prospects of deriving the roof structure information 

accurately and efficiently are promising. Many approaches for extracting roof structure have been proposed; 

however, there are still issues with output regularization, false detection and misclassification, and low 

computational efficiency, which leaves room for further improvement.  

In our study, we attempt to address these issues by proposing deep learning FCN-based methods for 

extracting roof structure from aerial imagery and Digital Surface Models (DSM) in the form of joined inner 

and outer rooflines directly in a regularized vector format.  We develop and compare two roof structure 

extraction methods. The methodology and implementation details of both models are identical, with the 

exception that one of them has frame field learning branches for inner rooflines and outer rooflines. Frame 

field is a 4-D PolyVector field that helps to extract more regularized building boundaries with the correctly 

detected corners. The methodology is comprised of outer and inner rooflines segmentation, vectorization 

and post-processing. The approach was evaluated using pixel-level IoU metric and line-level PoLiS, 

PrecisionPoLiS≤0.5, RecallPoLiS≤0.5 and F-scorePoLiS≤0.5 metrics on both outer and inner rooflines. The 

experimental study area is the Stadsveld – ‘t Zwering neighbourhood of Enschede, Netherlands.  

According to our experiments, both models showed quite good performance in extracting building roof 

structures. The frame field learning model slightly outperformed the no-field model on inner rooflines 

segmentation with an IoU value of 0.35 and a little worse than the no-field model on outer rooflines, 0.37. 

However, the no-field model performed better than frame-field learning on PoLiS distance with values of 

3,5 m and 1,2 m for outlines and inner rooflines, respectively. Besides, the no-field model scored higher on 

PoLiS-thresholded F-score for outlines and inner rooflines, having, 0.31 and 0.57 respectively. The no-field 

model produced better visual results, with straighter walls and fewer missed inner roofline detections. It can 

predict buildings with common walls thanks to the skeleton graph computation. To summarize, the frame 

field had little impact on the findings, and the proposed no-field method is suitable for urban applications 

and has the potential to be improved further. 

Keywords: image processing, image analysis, deep learning, roof structure extraction, roof vectorization, 

frame field learning
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1. INTRODUCTION 

1.1. Background and justification  

Buildings are essential attributes of an urban environment. Extraction of building contour is widely 

performed for topographic mapping, cadastral purposes, urban planning, disaster management and 

population density analysis (Sun et al., 2021). Other applications, such as solar radiation potential assessment 

to plan solar panel installation, wind flow simulations for pollutant diffusion analysis in the built 

environment and mobile telecommunication installations necessitate more detailed building geometry 

information including the roof shape knowledge (Macay Moreia et al., 2013). And thus, to generate 3D 

building models, reconstruction of the building roof structure is needed.   

As buildings are likely to change over time, there is a need for producing accurate models efficiently (Qin et 

al., 2019). Given the availability of decimetre-resolution aerial images and elevation data,  it is possible to 

extract more detailed information of building outlines and their roof geometry (Alidoost and Arefi, 2016). 

In this regard, the progress in machine learning gives a great opportunity to develop building extraction 

methods that consume less time and human labour resources(Luo et al., 2021). Furthermore, recent 

approaches based on deep learning (DL) algorithms, e.g., Convolutional Neural Networks (CNN), Fully 

Convolutional Networks (FCN), and Recurrent Neural Networks (RNN), showed high potential to 

recognize and extract detailed building features (Alidoost et al., 2019; Girard et al., 2020; Nauata and 

Furukawa, 2020; Qin et al., 2019; Zhang et al., 2020). Nonetheless, there are still remaining problems such 

as false detection and misclassifications, low computational efficiency, and the fact that the majority of the 

methods produce output in the raster format, which leaves the scope for further improvement (Hang and 

Cai, 2020). 

The research done in the building extraction field can be divided into two categories based on the output 

format, which can be either raster or vector. The raster-based output usually tends to have over-smoothed 

corners and imprecise and irregular contours. Thus, methods with vector-based output are preferred since 

they address the above-mentioned problems with a regularization process. Besides, the vector-based output 

is more widely used in Geographic Information System (GIS) applications (Girard et al., 2020; 

OpenStreetMap contributors, 2017). In recent years, more attention in building polygons extraction was 

given to the methods based on DL, a subfield of machine learning, which allows neural networks with 

multiple layers to learn data features at different scales. DL models are currently used in various tasks such 

as object detection, speech recognition, language processing and others (Lecun et al., 2015). These methods 

are not new in image classification and segmentation, but relatively novel in building polygons extraction. 

In the past few years, several valuable techniques have been proposed. For instance, Girard et al.(2020), 

Zhao et al., (2021a) and Sun et al. (2021) proposed DL-based methods to extract building footprints in 

vector format. Two successful models, and the basis for further improvement, are frame field learning 

(Girard et al., 2020) and Polymapper (Li et al., 2019). The idea of the frame field learning framework is to 

learn building edge directions that are useful to extract regularized building outlines in vector format. It 

improves segmentation performance and recognizes different types of buildings in size (small and big) and 

structure (regular and with inner holes). Polymapper, based on CNN-RNN architecture and regularization 

of graph structures, extracts topological features such as road networks and building footprints. Both 

methods facilitate straightforward vectorization from remotely sensed (RS) images and present higher 

performance than Mask R-CNN (Zhou et al., 2019) and PANet (Liu et al., 2018) based methods.  

A further step in building information extraction is to obtain the roof structure (Figure 1) of the building for 

a 3D model generation. The roof structure is comprised of outer and inner rooflines connected at their 
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vertices. Recent methods to fulfil this aim were proposed by Alidoost et al., 2019; Zhang et al., 2020; Zhao 

et al., 2021. The state-of-the-art methods presented are either end-to-end or consist of two-step approaches. 

End-to-end techniques output the building rooflines directly in vector format, while the two-step approach 

first generates output in raster format and then goes through the vectorization step. End-to-end approaches 

use Graph Neural Networks(GNN) to infer the relationships of the feature lines of the building (Zhang et 

al., 2020; Zhao et al., 2022). With our work, we propose a two-step approach in which the resulting raster 

information from the DL framework continues with an efficient vectorization step. 

 

  
Figure 1. Roof structures of individual buildings and corresponding VHR image 

1.2. Research problem  

Given the importance of 3D building models in addressing urban issues and the complex and changing 

nature of buildings, developing an automatic method that reduces costs, time, and human effort is critical. 

Up to now, there are only limited studies on automatically extracting building roof geometry in vector 

format. Such studies face problems such as false detection and misclassifications, low computational 

efficiency and limited to image patches with single buildings(Zhang et al., 2020; Zhao et al., 2021b). To 

contribute to the progress of roof structure extraction research, we design a deep learning-based method to 

extract building roof structures directly in a vector format. As mentioned previously, roof structure (Figure 

2-c) consists of building outlines(Figure 2-a), external edges of the building roof, and inner rooflines (Figure 

2-b), internal intersections of the main roof planes. Besides, in the context of this research thesis, we test 

the frame field learning idea further building on top of the work done by  (Girard et al. 2020). We also take 

advantage of the study of (Sun et al., 2021b) which proved that height information can improve the building 

segmentation results. Thus, we aim to generate not only the polygons of the building outlines but also the 

inner rooflines in a vector format.  
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Figure 2. a) Building outlines; b) Inner rooflines ; c) Building roof structure 

1.3. Research objectives  

1.3.1. General objective  

The general objective of the research is to design a DL-based method to extract building roof structures in 

vector format. 

1.3.2. Specific objectives  

The main objective of the proposed research thesis is to jointly extract the building outlines and inner 

rooflines in a regularized vector format from VHR images using deep neural networks. To achieve the 

objective, we set the following specific objectives (SO) and corresponding research questions:  

SO 1: To acquire knowledge in frame field learning for building segmentation (Girard et al., 2020); 

1. What is the framework of the segmentation process? 

2. How was the frame field learning implemented? 

SO 2: To prepare the dataset; 

1. What input data is needed for the approach? 

2. Do the inputs (e.g., roofline vector file) need correction? If yes, what needs to be corrected? 

SO 3: To design a DL approach to jointly extract building outline and inner rooflines; 

1. How to adapt the Frame Field Learning framework to extract inner rooflines?  

2. What backbone is to be used for building outlines and inner rooflines extraction? 

3. What loss functions need to be introduced to align and regularize rooflines? 

SO 4: To evaluate the accuracy of the proposed approach. 

1. What metrics are to be used to assess the accuracy of the approach? 

2. How accurate is the result of the approach? 

3. What are the strengths and limitations of the approach and how can this be improved? 

1.4. Conceptual framework  

The conceptual framework (Figure 3) depicts the interrelationships between the three main concepts of the 

research. Our research aims to extract building roof structures in the form of interconnected roof inner lines 

and outer lines. Sensor technology advancements and the growing availability of large amounts of Earth 

observation data can help to answer the need for a more precise and scalable roof structure extraction 

method. And among the latest methods of data analysis, DL algorithms outstand with their state-of-the-art 

performance. Their key benefit is learning abstract hierarchical representations of data which enable 

networks to uncover hidden spatial, spectral, and temporal patterns. Modern DL algorithms are filling the 
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gap between the performance of automated workflows and the demand for accurate and reliable information 

mandated by real-world applications(Persello et al., 2022). Thus, we use remote sensing data such as very 

high-resolution aerial images and normalized Digital Surface Model (nDSM) as an input dataset and DL to 

automize the workflow and achieve cutting-edge performance. 

 
Figure 3. Conceptual framework 

1.5. Thesis structure 

The structure of this thesis is as described below:  

Chapter 1. Introduction  

This chapter gives the background and justification of the research, clarifying the research problem, 

objectives and questions.  

Chapter 2. Literature review  

Related literature for building roof structure extraction is reviewed in this chapter. Different state-of-the-art 

techniques are presented in this part. 

Chapter 3. Materials and methodology  

An overview of the research methodology and used materials is introduced in this chapter, followed by a 

detailed description of each step, including data preparation, outlines and inner rooflines segmentation, 

vectorization and post-processing. The details of evaluation metrics are also presented in this part. 

Chapter 4. Results  

The quantitative and qualitative analyses are presented in this chapter. 

Chapter 5. Discussion  

This chapter presents a broad discussion of the acquired results and recommendations for further 

improvements. 

Chapter 6. Conclusion 

The final remarks of the research and answers to the research questions are given in this concluding chapter. 

1.6. Summary  

This chapter gives information on the background of the research following with the main problem, general 

and specific objectives of the study.  To summarize, the goal of the research is to jointly extract outer and 

inner rooflines using deep learning in a regularized vector format for the generation of 3D building models.   
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2. LITERATURE REVIEW  

Building roof structure extraction is essential for many applications such as urban planning, manufacturing 

and solar potential assessment. Over the last decade, the research in this field has taken different directions 

from the perspective of data sources, methods and output formats. The overview of the recent studies is 

given below. 

2.1. Data sources for building roof structure extraction 

Roof structure extraction has been performed using different Earth observation data. The two main data 

sources for roof structure reconstruction are Light Detection and ranging (LIDAR) point clouds and remote 

sensing (RS) imagery. LIDAR point clouds are a suitable data source to reconstruct roof structures (Wang 

and Chu, 2009) due to their high accuracy (Novacheva, 2008). However, it also has drawbacks on data 

availability and affordability, outdatedness and the inability to differentiate boundaries with nearby objects 

(Hang and Cai, 2020). On the other hand, RS imagery, particularly very high resolution (VHR) satellite and 

aerial images, contains a huge amount of textural and spatial information and, given the lower/no cost, can 

be obtained for different areas and scales (Hang and Cai, 2020; Wang et al., 2021). Another option is to fuse 

different datasets, which was proposed in Alidoost et al., (2019); Awrangjeb et al., (2013). However, fusion 

also has challenges as different characteristics of data sources for the registration process, different spatial 

resolution and simultaneous availability (Liu et al., 2020). In our research, we focus on using an open-access 

aerial imagery dataset and nDSM for developing our method. This fusion was performed by Sun et al., 

(2021) for building outline delineation with a frame field learning framework, which showed higher 

performance than using solely aerial images. 

2.2. State-of-the-art methods in building roof structure extraction 

In recent years, there has already been research on methodologies for the recognition and extraction of roof 

structures in a raster format using DL algorithms, including the works of Alidoost and Arefi (2016), 

Castagno and Atkins (2018), Partovi et al. (2017), Muftah et al.(2021). Alidoost and Arefi (2016) designed a 

model-based method that can recognize and label different roof structures using CNN from LiDAR and 

aerial images. Similarly, Castagno and Atkins (2018) proposed a roof-type classification approach which 

performs feature extraction using CNN and classification with Random Forest from LiDAR data and 

satellite imagery. Partovi et al. (2017) designed a hybrid multiple steps method which consists of building 

contour extraction and refinement, image-based roof type classification using CNN, initialization and 

enhancement of geometric parameters of the roof models as prior knowledge for the 3D model fitting. The 

approach performs well on simple buildings but cannot handle complex roof types. 

The above-mentioned methods produce results in raster format. However, for urban applications, the main 

interest lies in vectorized output. Simple vectorization of the raster output is not sufficient to obtain a 

vectorized output of decent quality for real world applications. Therefore, regularization and simplification 

must be introduced to obtain straight edges and corners. Since automatically extracting building roof 

geometry in the regularised vector format is a challenging task, there are only limited studies that address 

this problem (Alidoost et al., 2019; Zhang et al., 2020; Zhao et al., 2021; Nauata and Furukawa, 2020; Partovi 

et al., 2017). The state-of-the-art methods presented are either end-to-end or consist of post-vectorization 

approaches. 

Alidoost et al.(2019) proposed an approach to reconstruct 3D model details such as height and rooflines 

from a single aerial RGB image. Based on an optimized multi-scale convolutional–deconvolutional network 

(MSCDN), their framework consists of multiple steps for feature extraction and subsequent prismatic and 
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parametric model generation. The MSCDN outputs line segments (eaves, ridges, hips) which then go 

through multiple steps. First, they use to create the initial primitive of the building model using eaves. Next, 

they take advantage of standard Hough transform (SHT) to generate regularized and simplified 

boundaries(eaves). It calculates the main orientation of the building. Then they use the minimum bounding 

rectangle (MBR)-based and the minimum bounding triangle (MBT)-based techniques to approximate the 

polygons and use ridges and hips to divide the roof into building parts. According to the quality metric, the 

accuracy of linear elements extraction accounted for 91% and 83.4% for two different manually digitized 

datasets.  

Nauata and Furukawa (2020) proposed an algorithm that uses CNN to detect geometric primitives (lines, 

corners and regions) and integer programming (IP) which collects the information as a planar graph. 

Similarly, Zhang et al.( 2020) propose a method which extracts building features as geometric primitives 

which form planar graphs from RGB images utilizing their new architecture Convolutional Message Passing 

Network. The method is highly dependent on pre-processing, computationally inefficient and does not show 

high accuracy.  

Wang et al. (2021) presented an approach for autonomous vectorization and 3D reconstruction using a 

single-channel photogrammetric DSM and a panchromatic (PAN) image. They start by filtering away non-

building objects and enhancing the building shapes of the input DSM with a conditional generative 

adversarial network (cGAN). A semantic segmentation network is utilized to detect edges and corners of 

building rooftops using the revised DSM and the input PAN image. Following that, a series of vectorization 

algorithms for building roof polygons is performed. Lastly, the corrected DSM height information is 

processed and provided to the polygons to generate a vectorized level of detail (LoD)-2 building model. 

This method is superior to another similar method (Partovi et al., 2019) by accurately reconstructing most 

of the building models, however, still has limitations such as missed line segments detection and 

incompleteness of building models due to the loss of building components. 

Gui and Qin (2021) suggest a model-driven approach for reconstructing LoD-2 building models using the 

"decomposition-optimization-fitting" paradigm. Building detection results are first vectorized into polygons 

using a "three-step" polygon extraction method, then decomposed into densely connected basic building 

rectangles prepared to fit primitive building models using a novel grid-based decomposition method. To 

further enhance the orientation of the 2D construction rectangle, they added OpenStreetMap (OSM) and 

Graph-Cut (GC) labelling as options. Building-specific parameters are used in the 3D modeling process to 

maximize the flexibility of employing a small number of basic models. Eventually, building roof types are 

updated, and nearby building models in one building segment are integrated into a complex polygonal 

model. Since the proposed strategy has limited model types in their library, it may not be applicable for some 

types of structures, such as those with dome roofs, as may over-partition building segments with complex 

shapes. 

Zhao et al. (2021) introduced an end-to-end roofline extraction approach using an integrally attracted 

wireframe parsing (IAWP) framework to generate a planar graph from VHR imagery. In this work, they also 

incorporated geometric line priors using Hough Transform into deep networks. The results showed that the 

method outperforms the Conv-MPN architecture proposed by Zhang et al. in F-score metrics by 0.7% for 

corner points and 8.8% for edges. Besides, the method has higher computational efficiency taking half time 

and only 0.6 of GPU memory. Nevertheless, this method only works with image patches containing a single 

building. It thus cannot map entire urban areas from images with the city coverage. Moreover, the approach 

still results in several missing detections and incorrect roof structure models. 
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In their most recent work, Zhao et al. (2022) proposed the Roof Structure Graph Neural Network 

(RSGNN) method that has 2 components: 1) a Multi-task Learning Module (MLM)  to extract and match 

geometric primitives, 2) a Graph Neural Network (GNN) based Relation Reasoning Module (RRM) for 

roof structure reconstruction. It outperforms state-of-the-art models but still faces similar issues to IAWP, 

which are missing line detections and single building extraction per patch.  

2.3. Summary 

This chapter gives an overview of the main data sources and state-of-the-art methods for roof structure 

extraction. LiDAR pointclouds as input data have high accuracy but can be unavailable, outdated or 

unaffordable. VHR images, on the other hand, have rich spectral information and can be obtained for large 

areas at low/no cost. The fusion of different data sources is also a common practice. The recent methods 

reach good performance however still have disadvantages such as a significant amount of missed and false 

detections, low computational efficiency, single building extraction per patch, dependence on predefined 

models library and others. 
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3. MATERIALS AND METHODOLOGY 

3.1. Polygonal Building extraction by Frame Field Learning  

The method of Girard et al.(2020) is used to test the frame field learning for roof structure extraction task. 

The original method extracts regularized building polygons using the DL approach in 3 main steps: building 

segmentation, frame field learning and Active Skeleton Model (ASM) polygonization. The central idea of 

the method is to use frame field learning for polygonization to have regularized building outlines with correct 

corners. The frame field is a 4-PolyVector field that defines each point on the place with 4 vectors {u, -u, v, 

-v} where two of them are restricted to be opposite to the other two. Since the frame field is used to detect 

the corners of the building, two directions define the frame with u; v ∈ C. To avoid sign change and 

relabelling ambiguity, the directions are converted to coefficients {c0,c2} using the polynomial given in 

equation 1. The properties of the frame field are followings: 1) at least one frame field direction aligns with 

the polygon tangent direction of the building along the building wall; 2) both field directions align with the 

tangent direction at building corners.  

𝑓(𝑧) = (𝑧2 − 𝑢2)(𝑧2 − 𝑣2) =  𝑧4 − 𝑐2𝑧2 + 𝑐0   (1) 

The model consists of the backbone and two branches that output building probability map in two channels 

(edges and interior) and a frame field with four channels (four vectors representing two directions: ±u, ±v). 

The backbone architectures used in this paper are UNet16 and UResNet101. More details about the 

segmentation and frame field losses are given in 3.8. 

ASM polygonization step is inspired by the Active Contour Model (ACM) optimization. In this method, the 

contour of the interior probability map is optimized using an energy function that fits the contour points to 

the optimal position. In the case of ASM optimization is performed on the skeleton, which, in short, is the 

graph representation of the edge probability map. 

The proposed method significantly outperforms other state-of-the-art methods, e.g., PolyMapper, PANet 

and others(Li et al., 2019; Liu et al., 2018; Zorzi et al., 2020)  in building polygon extraction both in accuracy 

and computational efficiency. The frame field does not add any cost to the inference while yielding more 

regular building edges and correct sharp corners. Therefore, in our research, we decided to attempt to 

modify the Frame Field Learning model to our task and examine if frame field and ASM vectorization will 

be beneficial for roof structure extraction. 

3.2. Overall methodology 

In our study, we develop and compare two models for roof structure extraction. Both models are identical 

in their methodology and implementation details except one of them has frame field learning branches for 

building outlines and inner rooflines. It is expected that the frame fields will aid in the extraction of more 

regularized inner rooflines and building outlines with correctly detected corners. 

As illustrated in Figure 4, the proposed (no-field) method consists of the following steps:  

1. Data preparation. This step includes reference data correction, input data tile generation and distribution; 

2. Feature map extraction with one of the backbones(Unet16, UResNet101); 

3. Building outlines and inner rooflines segmentation. These tasks are performed in separate blocks and 

simultaneously;  
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4. Vectorization. The main steps include skeletonization, regularization and simplification of the 

segmentation output; 

5. Post-processing. This includes automated merging and correction of the building outlines and inner 

rooflines; 

6. Method evaluation consisting of pixel-level and line-level accuracy assessments. 

In the case of the frame field learning model, we add two frame field learning blocks, one for the outlines 

and the other for the inner rooflines. They are later used in the vectorization step for regularization of the 

lines and corner detection of the building. 

 
 

Figure 4 . Methodological flowchart 

3.3. Study area  

The study area selected for this research is the neighbourhood Stadsveld – t Zwering, a residential area, in 

Enschede city, Netherlands ((Figure 5). The choice of the study area was made due to the availability of the 

labelled dataset. 
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Figure 5. Study area 

 The dataset contains files mentioned in Table 1 below. 
Table 1. Dataset content 

Data Source 

BAG building footprints (vector format) 
Public Services On the Map 

(PDOK)(“PDOK,” 2013) 

Roofline (Eave, Ridge, Hip) (vector format) 
Produced by ITC Master’s degree graduate 

Mina Golnia 

Orthophoto (8 cm) from aerial imagery, 2021 PDOK 

nDSM (50 cm), 2019 PDOK 

3.4. Data preparation 

The input for our method is an RGB aerial orthophoto of 0.08 m spatial resolution and an nDSM of 0.5 m 

resolution, building footprint and inner lines reference data. nDSM was resampled to 0.08 m resolution 

using bilinear interpolation. RGB bands and nDSM were stacked as a 4-band input raster. Since originally 

reference data for outer and inner rooflines were manually digitized over the 0.25 m resolution image and 

had some minor mismatches or lack of features (Figure 6), it is modified in accordance with the resolution 

of the 0.08 m. Both 4-band raster and reference data were split into tiles of 1000x1000 size. The size was 

chosen based on the idea of having multiple buildings in the same tile for later evaluation. 
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Figure 6. Mismatches of the reference data with 0.08 m resolution RGB image 

Tiles distribution. The dataset was divided into training, validation and testing tiles in the proportion 7: 1: 2 

respectively (Figure 7, Table 2). The distribution of the tiles was random to have most of the roof types 

represented in training. Training and validation tiles were split again into patches of 500x500 pixels size to 

fit GPU memory and still cover more than one building in one patch. 

 
Figure 7. Tiles distribution(1000x1000): train(purple), validation(green), test (red) 

Table 2. Dataset tiles distribution 

Type Tile size Number of tiles 

Training  500x500 584 

Validation 500x500 84 

Testing 1000x1000 42 
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The tiles were generated using “Create Fishnet” in ArcGIS and were used to clip 4-band raster and shapefile 

of reference data. The “Clip Raster” tool clips a 4-band raster with a previously generated fishnet. The 

shapefile of the reference data both for inner rooflines and outlines was divided with the “Split” tool and 

converted to geoJSON format, the accepted format for the input to the method. The annotation file format 

geoJSON is an open standard geospatial data interchange format based on JavaScript Object Notation 

(JSON). It contains the information on the type, coordinate reference system, geometry type of the feature, 

coordinates and properties.  

In the preprocessing step implemented in the method, the building polygons and inner rooflines are 

rasterized for supervised learning in building interior & outline and building inner roofline segmentation 

branches. Polygons are rasterized into two bands – building interior and outlines(Figure 8-b), while inner 

rooflines are rasterized into one band(Figure 8-c). For frame field learning, building contours’ and inner 

rooflines’ angles of the unsigned tangent vector were computed. 

 
Figure 8. Pre-processing: rasterization of the reference data 

3.5. The backbone of the model 

In this study, we will use lightweight UNet16 and pre-trained UResNet-101, the backbone that provided the 

highest performance in (Girard et al., 2020). The feature extractor has the replaced downsampling section 

of U-Net with ResNet-101 (He et al., 2016), 101-layer Residual Network architecture and has been pre-

trained on ImageNet (Deng et al., 2010). U- Net (Figure 9) is a network architecture that is built upon FCN 

(Ronneberger et al., 2015). It was originally designed for biomedical image segmentation. The architecture 

consists of downsampling and upsampling paths to output the feature map of the size similar to the input.  

 
Figure 9. U-Net architecture (Ronneberger et al., 2015) 
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The backbone takes an image tile with 4 channels (RGB+nDSM) as an input and produces an F-dimensional 

feature output (F=number of extracted feature maps) with the height and width of input size, which is used 

in further steps. 

3.6. Building outlines and inner rooflines extraction 

3.6.1. Building interior & outlines segmentation map 

An F-dimensional feature map undergoes a fully convolutional block that outputs a building segmentation 

map. The block has the structure represented in Figure 10. This block consists of a 3x3 convolutional layer, 

a batch normalization layer, an Exponential Linear Unit (ELU) activation function, another 3x3 convolution, 

and a sigmoid nonlinearity. The output consists of 2 maps: interior mask and edges (building outlines). The 

interior mask is used to enforce the edges of the buildings to align their contour and later used in in 

vectorization to correct the building outlines mask. Tversky loss (Salehi et al., 2017) or the combination 

binary cross-entropy and dice loss {BCE+Dice} is used for both losses Lint and Ledge applied on the interior 

and edge outputs respectively. 

 

 

  

Figure 10. Building segmentation (Girard et al., 2020) 

3.6.2. Inner rooflines segmentation map 

The F-dimensional feature map and building segmentation map are inputs for a fully convolutional block 

that will output inner rooflines. The building segmentation map is used as input to guarantee building inner 

rooflines be inside the building interior. The block has the same structure as for building outline 

segmentation. The output consists of one channel – an inner roofline segmentation probability map.  

3.7. Frame field learning for outlines and inner rooflines  

Frame field for outlines. Building segmentation map and F-dimensional map will be further fed to the 

sub-head for frame field learning. This block consists of a 3x3 convolutional layer, a batch normalization 

layer, an ELU nonlinearity, another 3x3 convolution, and a tanh nonlinearity, as shown in Figure 11. The 

frame field for outlines will consist of 4 channels that correspond to c0 and c2 coefficients which recover 2 

directions comprising spatial information. Having 2 directions instead of 1 will facilitate corner detection. 
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Figure 11. Frame field with learned outlines directions (Girard et al., 2020)  

Frame field learning for inner rooflines. The sub-head takes an F-dimensional feature map and inner 

roofline output to generate a frame field for inner rooflines. The block structure is the same as for outlines. 

The output consists of 4 channels corresponding to {u, -u, v, -v} vectors as in frame field learning for inner 

rooflines. 

3.8. Loss functions 

The total loss function is comprised of multiple loss functions used for different learning branches: 1) outline 

edge and interior segmentation; 2) inner roofline segmentation; 3) frame field for outlines; 4) frame field for 

inner rooflines; 5) coupling losses.  

Building outline, interior and inner roofline losses. Building outline, interior and inner roofline 

segmentation tasks use the Tversky (Salehi et al., 2017)  or a combination of  Cross-Entropy and Dice {BCE 

+Dice} loss functions for learning.  

The {BCE+Dice} loss function is defined by equations 2-4 below: 

𝐿𝐵𝐶𝐸 (𝑦, �̂�)  =  
1

𝐻𝑊
∑ 𝑦(𝑥) ∙ 𝑙𝑜𝑔(𝑥𝜖𝐼 �̂�(𝑥)) +  (1 −  𝑦(𝑥))  ·  𝑙𝑜𝑔(1 − �̂�(𝑥)), (2) 

𝐿𝐷𝑖𝑐𝑒(𝑦, �̂�) =  1 −  2 ·
|�̂� · 𝑦|+ 1

|�̂� + 𝑦|+ 1
,      (3) 

𝐿{𝐵𝐶𝐸 +𝐷𝑖𝑐𝑒}(𝑦, �̂�)   =  𝛼 ·  𝐿𝐵𝐶𝐸 (𝑦, �̂�) +  (1 −  𝛼) ·  𝐿𝐷𝑖𝑐𝑒(𝑦, �̂�),   (4) 

where H and W are the height and the width of the image, ŷ is the predicted probability of the pixel being 

interior/outline/inner roofline, and y is ground truth equal to 1.  LBCE is the cross-entropy loss and LDice is 

the Dice loss, the combination of which is applied to the interior, outline and inner roofline output of the 

model. The  𝛼 is a hyperparameter which is set to 0.25 as it showed good results in a similar application 

(Girard et al., 2020; Sun et al., 2021b). 

Tversky loss is based on the Tversky index which handles the problem of data imbalance and gives a better 

trade-off between precision and recall. In our case, the number of pixels which contribute to building 

interior or edges is less than the non-interior or non-edge pixels. The equation of the Tversky index is 

defined below: 

𝑆(𝑃, 𝐺; 𝛼, 𝛽) =
|𝑃𝐺|

|𝑃𝐺|+𝛼|𝑃𝛤|+𝛽|𝐺\𝑃|
     (5) 

where P and G are the set of predicted and ground truth binary labels, α and β control the extent of penalties 

for False Positives and False Negatives, respectively. And Tversky loss is given by the equations below: 

𝑇(𝛼, 𝛽) =
∑ 𝑖=1

𝑁
𝑝0𝑖𝑔0𝑖

∑ 𝑖=1
𝑁

𝑝0𝑖𝑔0𝑖+𝛼 ∑ 𝑖=1
𝑁

𝑝0𝑖𝑔1𝑖+𝛽 ∑ 𝑖=1
𝑁

𝑝1𝑖𝑔0𝑖

   (6) 
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𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 1 − 𝑇(𝛼, 𝛽)       (7) 

where the p0i is the probability of pixel i being an edge/interior and p1i is the probability of a pixel being a 

non-building. Also, g0i is 1 for ground truth edge/interior for pixel i and 0 for a non-building pixel and vice 

versa for the g1i. 

Frame field losses for building outlines and inner rooflines. The frame field learning is performed 

separately on outlines and inner rooflines. For frame field for inner rooflines, the reference label is an angle 

θτ∈ [0, π) of the unsigned tangent vector of the inner rooflines, while for outlines it is an angle θτ ∈ [0, 

π) of the unsigned tangent vector of the polygon contour. τ is the tangent direction. The three losses are 

used for learning the frame field for inner rooflines/outlines are computed using the following equations: 

𝐿𝑎𝑙𝑖𝑔𝑛  =
1

𝐻𝑊
∑ 𝑦𝑒𝑑𝑔𝑒  (𝑥)|𝑓(𝑒𝜃𝜏𝑖;  �̂�0(𝑥), �̂�2(𝑥))|𝑥𝜖𝐼

2
,  (8) 

𝐿𝑎𝑙𝑖𝑔𝑛90  =
1

𝐻𝑊
∑ 𝑦𝑒𝑑𝑔𝑒 (𝑥)|𝑓(𝑒𝜃𝜏⊥𝑖; �̂�0(𝑥), �̂�2(𝑥))|𝑥𝜖𝐼

2
,  (9) 

𝐿𝑠𝑚𝑜𝑜𝑡ℎ  =
1

𝐻𝑊
∑ (||𝛻�̂�0(𝑥)|| + 𝛻 ||�̂�2(𝑥))||𝑥𝜖𝐼

2
),  (10) 

where H and W are the height and the width of the image, yedge  is outline edge segmentation map/inner 

roofline segmentation map, c0,c2  are output coefficients of the frame field, and τ⊥ =τ – π/2 .  

Each loss computes a specific feature of the field: 1) Lalign ensures that the frame field is aligned with the 

tangent directions; enforces alignment of the frame field to the tangent directions; 2) • Lalign90 facilitates the 

frame field to align with τ⊥ to avoid it from collapsing into a line field; 3) Lsmooth is a Dirichlet energy that 

measures how smooth ĉ0(x) and ĉ2(x) are as functions of image location x. 

Coupling losses. To ensure mutual integrity between the predicted outputs, we apply coupling losses:  

𝐿𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑎𝑙𝑖𝑔𝑛  =
1

𝐻𝑊
∑ 𝑓(𝛻�̂�𝑖𝑛𝑡(𝑥); �̂�0(𝑥), �̂�2(𝑥))𝑥𝜖𝐼

2
,   (11 

𝐿𝑖𝑛𝑙𝑖𝑛𝑒 𝑎𝑙𝑖𝑔𝑛  =
1

𝐻𝑊
∑ 𝑓(𝛻�̂�𝑖𝑛𝑙𝑖𝑛𝑒(𝑥); �̂�0(𝑥), �̂�2(𝑥))𝑥𝜖𝐼

2
 ,   (12) 

𝐿𝑜𝑢𝑡𝑙𝑖𝑛𝑒 𝑎𝑙𝑖𝑔𝑛  =
1

𝐻𝑊
∑ 𝑓(𝛻�̂�𝑒𝑑𝑔𝑒(𝑥); �̂�0(𝑥), �̂�2(𝑥))𝑥𝜖𝐼

2
,     (13) 

𝐿𝑖𝑛𝑡 𝑎𝑙𝑖𝑔𝑛  =
1

𝐻𝑊
∑ 𝑚𝑎𝑥(1 − �̂�𝑖𝑛𝑡(𝑥), ||𝛻�̂�𝑖𝑛𝑡(𝑥)| |2 ) ∙  | ||𝛻�̂�𝑖𝑛𝑡(𝑥)| |2 − �̂�𝑒𝑑𝑔𝑒(𝑥)|𝑥𝜖𝐼 (14) 

Linterior align, similarly to Lalign, enforces the spatial gradient (SG) of the predicted interior map yint to align with 

the frame field. Loutline align aligns the SG of the predicted outline map youtline with the frame field. Linline align 

aligns the SG of the predicted inner roofline edge map yinline with the frame field for inner rooflines. Lint edge 

gets the projected edge map equal to the norm of the predicted interior map's spatial gradient. 

Final loss. Since the losses have different units, we calculate a normalization coefficient for each loss by 

averaging its value over a random portion of the training dataset using a randomly-initialized network. The 

losses are linearly combined after being normalized by this coefficient. The goal of this normalization is to 

rescale losses to make them easier to balance. 

3.9. ASM vectorization of inner rooflines and outlines 

Active Skeleton Model vectorization is a framework introduced by Girard et al. (2020). It adapts the Active 

Contour Model (ACM) method (Kass and Witkin, 1988) to perform optimization on skeleton graphs instead 
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of contours. The ACM method uses energy minimization functions to fit the vertices to an optimal position. 

This energy is usually comprised of a term that fits the contour to the image and extra terms that restrict the 

degree of stretch and/or curvature. The main difference between the two methods is that ACM can only be 

used for vectorization of isolated buildings, while ASM, thanks to skeleton graph representation, can 

differentiate the individual buildings with adjacent walls. Skeleton graph (example Figure 12) is a collection 

of paths, polylines, connected with junction nodes, vertices. In the example below, skeleton graph represents 

two flat-roof buildings with an adjacent wall. Purple and orange polylines consisting of chain of vertices 

represent non-adjacent parts of the buildings, while cyan color represents common wall. The vertices 0 and 

4 are junction nodes shared between three polylines. 

 
Figure 12. The data structure of a skeleton graph representing two buildings with a shared wall (Girard et al., 2020) 

The vectorization for building outlines and inner rooflines follows the same procedure (Figure 13) with the 

differences in a few steps. In general, the framework consists of the thinning method, skeletonization, Active 

skeleton Model optimization, corner detection, non-corner vertices simplification and post-processing.  

 
Figure 13. ASM vectorization workflow 

First, an inner/outer rooflines segmentation mask is computed from the predicted probability map with a 

segmentation threshold≥0.5. Second, the mask is converted to a one-pixel wide representation using 

thinning method (Zhang and Suen, 1984). Third, the skeleton graph, which connects those pixels, is 

generated with Skan Python library. Third, Active Skeleton Model optimization (Figure 14) is performed on 

the graph to fit vertices to the optimal position by using energy minimization functions: (1) adjusting 

skeleton paths to the contour of the building interior mask (in case of outlines) and (2) aligning to the frame 

field for both tasks. Then, with corner detection operation and previously computed frame field vectors, 
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the paths are split and converted into sub-paths of polylines where each sub-path represents a single wall of 

individual buildings or inner roofline. Finally, the non-corner vertices are simplified with the Ramer-

Douglas-Peucker (RDP) algorithm (Ramer, 1972)  which allows to tune the complexity-to-fidelity ratio with 

the tolerance value of 5 and filtered with the IOU>=0.5 per feature.  

 
Figure 14. ASM optimization: an iterative process of adjusting polylines using energy function(Girard et al., 2020) 

3.10. Simple skeleton vectorization 

In the no-field model, since we do not have a frame field for optimization, the simple skeleton vectorization 

Figure 15) is performed. It is comprised of the thinning method, computation of the skeleton graph, 

conversion to polylines and RDP simplification which result in the collections of outlines and inner rooflines 

in vector format. 

 
Figure 15. Simple skeleton vectorization 

3.11. Post-processing: joining inner rooflines and outlines  

Finally, the predicted inner rooflines are matched with predicted building footprint polygons to compose 

the whole planar roof in the form of intersecting line segments.  First, building outlines and inner rooflines 

are merged in one feature class polylines (Figure 16-a). Then ArcGIS Extend Lines tool is used to 

automatically correct inner lines that do not reach the building contours (Figure 16-b) and Trim Lines tool 

for those that go beyond them (Figure 16-c). 
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Figure 16. Post-processing: a) raw predicted output; b) post-line extension output; c) post-line trimming output 

3.12. Implementation details 

For our experiment we set the maximum number of epochs to 350, training batch size 4, Adam optimizer 

with starting learning rate 10-3.  GPU used is NVIDIA Titan X (Pascal).  

The maximum number of epochs was chosen based on our previous experiments and the best epoch used 

for the test is set using the validation loss trend. The effective batch size that GPU memory can perform 

with is four. The optimizer and initial learning rate are selected based on studies by (Girard et al., 2020; Sun 

et al., 2021a). 

3.13. Method evaluation 

3.13.1. Pixel-level metric  

Intersection over Union is used for pixel-wise evaluation of the results. As given in equation 15, IoU is 

calculated by division of intersection area by union area of predicted segmentation mask (p) and ground 

truth (g). All the predicted pixels with the probability value≤0.5 make up the predicted segmentation mask. 

This metric is used to evaluate the accuracy of predicted interior, outline and inner roofline segmentation 

masks. 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 (𝑝 ⋂ 𝑔)

𝐴𝑟𝑒𝑎 (𝑝 ⋃ 𝑔)
    (15) 

3.13.2. Line-level metric 

To evaluate the similarity of predicted lines to ground truth, polygons and line segments measurement 

(PoLiS) was computed on predicted outlines and inner rooflines. The metric originally calculates the distance 

between the predicted polygon and ground truth. It takes into account both positional and shape changes 

by treating polygons as a series of connected edges rather than just point sets. For our output, we did minor 

changes to perform the procedure on the line segments. So, a PoLiS distance between predicted line 

segments A and ground truth B is calculated with equation 16, by taking the average of the distances between 

each vertex aj  ∈ A, j = 1,..., q of line A and the nearest point b ∈ ∂B (not necessarily a vertex) on line B plus 

the average of the distances between each vertex bk  ∈ A, k = 1,..., r of line B and the nearest point a ∈ ∂A 

on line A. Normalization factors (1/2q) and (1/2r) are used to calculate the total average dissimilarity per 

pair of predicted and reference polygons. The PoLiS distance units are the same as the line segment vertices 

unit. 

𝑝(𝐴, 𝐵) =   
1 

2𝑞
∑ 𝑚𝑖𝑛

𝑏∈𝜕𝐵
‖ 𝑎𝑗 −  𝑏‖ 𝑎𝑗∈𝐴 +  

1 

2𝑟
∑ 𝑚𝑖𝑛

𝑎∈𝜕𝐴
‖ 𝑏𝑘 − 𝑎‖ 𝑏𝑘∈𝐵     (16) 

The PoLiS distance between two objects is illustrated in Figure 17. Similarly, the distance is computed 

between two line segments. The black line depicts the distance between a vertex of one polygon to the 

closest point of another polygon. The predicted polygon is represented with the orange color. The bold blue 
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and dotted blue lines show two different ground truth representations of the same building with the same 

vertices. However, the PoLiS distance calculated for them is different since the distance to the closest point 

differs in the upper right corner. Thus, PoLiS distance considers shape changes. 

 
Figure 17. PoLiS distance between predicted building A (orange) and reference building (blue) marked with a black line  

(Zhao et al., 2021a) 

For our task, to ensure that the metric is evaluating the roof structure per building, we calculate PoLiS 

distance per line segment, then average it for individual building and then on the test set. 

To further evaluate the accuracy of our model, we introduce Precision, Recall and F-score with the specific 

PoLiS tolerance value. Precision indicates the fraction of the predicted outer/inner rooflines being real 

outer/inner rooflines of the building on the ground. Recall indicates the fraction of the reference 

outer/inner rooflines being predicted by the model. F-score combines precision and recall in a form of 

harmonic mean.  Since not all the predicted line segments can be correct, we set the tolerance value for 

geometric precision PoLiS≤0.5 m and consider the line segments with PoLiS distance below this value as 

correctly predicted. There is no reference to rely on for setting this tolerance, thus we derive it from the 

resolutions of our input data. The resolution of the RGB image is 0.08 m which can be considered a too 

strict threshold, so we use the original resolution of nDSM which is 0.5 m as PoLiS tolerance. The tolerance 

value is set with the consideration of results applicability. Then, we compute Precision, Recall and F-score 

using the given equations 17-19, where True Positive is the number of predicted line segments with the 

PoLiS≤0.5 m, False Positive is the rest of the predicted line segments and False Negative is the correct line 

segments that were not predicted by the model. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑃𝑜𝐿𝑖𝑆≤0.5 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (17) 

 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑜𝐿𝑖𝑆≤0.5 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (18) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑃𝑜𝐿𝑖𝑆≤0.5 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (19) 

3.14. Summary 

In this chapter, a detailed step-by-step explanation of the two proposed methods is given. Both methods 

share data preparation, inner and outer roofline segmentation and post-processing steps. However, one of 

the models has additional frame field learning branches for both of the rooflines and ASM vectorization 

step where frame fields are utilized. Another no-field model undergoes a simple skeleton vectorization 

procedure. The methods are evaluated using pixel-level IoU metric, line-level PoLiS and Precision, Recall 

and F-score with the PoLiS≤0.5 m. Both models also have the same implementation details. The maximum 

number of epochs is 350, the training batch size is 4 and the used optimization algorithm is Adam with 

starting learning rate 10-3.    
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4. RESULTS  

Throughout our study, we performed experiments with multiple models: 

1) No-field model with UResNet101 backbone pre-trained on ImageNet dataset and Tversky loss; 

2) Frame field learning models with UResNet101/UNet16 backbone pre-trained on ImageNet dataset 

and Tversky/{BCE+Dice} losses; 

3) Frame field learning UResNet101 models pre-trained on the whole Enschede city BAG building 

with Tversky/{BCE+Dice} losses. 

However, in the results section, we will only look at three of the best performing models that use the same 

pre-trained UResNet101 backbone but have different losses – two frame field learning models with Tversky 

and {BCE+Dice} losses and the no-field model with Tversky loss. Since we do not have a frame field 

needed for ASM vectorization in the last model, we perform simple skeleton vectorization. Other models, 

frame field learning model using the UNet16 backbone and frame field learning model UResNet101 with 

pre-trained weights on the Enschede footprint dataset, produced lower quality results, possibly because the 

former model is too simple for our task and not pre-trained as UResNet101, and the latter model did not 

significantly improve after pre-training for segmentation of building interiors and outlines and performed 

worse on inner rooflines segmentation.  

4.1. Quantitative analysis 

We analyse our models’ outcomes from pixel-level and line-level perspectives. As has been outlined in 3.13, 

the pixel-wise evaluation is performed using IoU for building outlines and inner rooflines segmentation 

maps, while to evaluate line-level accuracy we compute the PoLiS metric. To assess inner and outer rooflines 

detection accuracy, Precision, Recall and F-score with the PoLiS≤0.5 m threshold are calculated. 

Table 3 shows the IoU achieved on the predicted building interior, outer and inner rooflines segmentation 

map. The frame field learning UnetResnet-101 model with Tversky loss function has a higher IoU on almost 

all building elements, with values of 0.85, 0.37, and 0.35 for the building interior, outer and inner rooflines, 

respectively compared to the same model with {BCE+Dice} loss. This indicates that the model predicts 

better than the frame field learning model with {BCE+Dice} loss function and almost the same as the 

model without frame field learning. All models perform much better when it comes to predicting the interior 

of the building since the building interior is made up of all the pixels that correspond to the footprint. 

Predicting outlines and inner rooflines, on the other hand, is a more difficult task as it requires predicting 

line elements with far fewer pixels than the building footprint (Figure 8). 

Table 3.  IoU of the predicted interior, outlines and inner rooflines probability maps 

Model IoUinterior IoUoutlines IoUinner rooflines 

UnetResnet-101, Tversky  0.85 0.37 0.35 

UnetResnet-101, {BCE+Dice} 0.81 0.22 0.22 

UnetResnet-101, Tversky, no field 0.85 0.38 0.32 

Line-level evaluation (Table 4). The model with Tversky loss and no field outperforms the other models, 

with an average PoLiS distance of 3.5 m for outlines and 1.2 m for inner rooflines. The frame field learning 

model with {BCE+Dice} loss performs worse than the frame field learning model with Tversky loss, with 

the PoLiS distance for outlines (4.2 m)  larger by 0.6 m and inner rooflines (3.9 m) by 1.9 m.  
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Table 4. PoLiS distance of outlines and inner rooflines 

Model PoLiSoutlines (m) PoLiSinner rooflines (m) 

UnetResnet-101, Tversky  3.6 2 

UnetResnet-101, {BCE+Dice} 4.2 3.9 

UnetResnet-101, Tversky, no field 3.5 1.2 

Using the PoLiS threshold for defining our true positive predictions, we calculated the Precision, Recall and 

F-score for both building outlines and inner rooflines. According to Table 5, the model without a frame field 

outperforms in almost all the metrics, constituting 0.28, 0.34, 0.31 for Precision PoLiS≤0.5, Recall PoLiS≤0.5 and 

F-score PoLiS≤0.5 for building outlines respectively. For the inner rooflines, the Precision PoLiS≤0.5, Recall PoLiS≤0.5 

and F-score PoLiS≤0. are 0.72, 0.47 and 0.57 respectively.  Table 5 also demonstrates that the models’ 

performances are not yet sufficient for outlines, but that they perform better for inner rooflines. This mostly 

happens due to two reasons. First, the model occasionally misses the shared wall between the adjacent 

buildings (Figure 18-a) in which case the computed PoLiS distance will have a high value. Second, the model 

predicts very small buildings (Figure 18-b), e.g., storage sheds, which are not included in the reference data. 

In this case, the PoLiS will be calculated to the closest line segment that does not actually correspond to the 

predicted building and this also results in a high value. 

Table 5. Precision, Recall and F-score for the inner rooflines and outlines with PoLiS≤0.5 

Model Outlines Inner rooflines 

Precision 

PoLiS≤0.5 

Recall 

PoLiS≤0.5 

F-score 

PoLiS≤0.5 

Precision 

PoLiS≤0.5 

Recall 

PoLiS≤0.5 

F-score 

PoLiS≤0.5 

UnetResnet-101, Tversky  0.26 0.34 0.29 0.59 0.39 0.47 

UnetResnet-101, 

{BCE+Dice} 

0.10 0.28 0.15 0.17 0.46 0.25 

UnetResnet-101, Tversky, 

no field 

0.28 0.34 0.31 0.72 0.47 0.57 

 

 
Figure 18. Cases with high PoLiS distance: a -missed detections of adjacent walls (PoLiS – 1.56 m); b – storage sheds on 

the backyard which are not included in the reference data (PoLiS – 3.56 m 7.01 m for both sheds) 
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4.2. Qualitative analysis 

Figure 19 illustrates the post-processed results obtained with the three models, frame field learning 

UResNet101 models with Tversky and {BCE+Dice} losses and no field UResNet101 model with Tversky 

loss, as well as corresponding reference data. Intuitively, it can be seen that all models in general perform 

well on the test data. However, the no-field UResNet101 model with Tversky loss delivers considerably 

better results with straighter and accurately detected roof lines, more aligned to the roof outer and inner 

edges(Figure 19.(1-5)-d). The frame field model with Tversky loss performs slightly worse than the no-frame 

field model by misdetecting (Figure 19.4-c) or missing inner rooflines (Figure 19.3-c). Nonetheless, we can 

observe the contribution of the frame field to the corner detection procedure. Both models are better trained 

at predicting outer rooflines and ridges, the horizontal line on the intersection of two opposite roof slopes, 

because the reference dataset has much more of their examples. With more examples of roof hips and 

valleys, the outwards and inwards diagonal joints formed by the intersection of two roof slopes, it is certain 

that the model predictions will have substantial improvement on them too.  

UResNet101 model with {BCE+Dice} loss fails to have straight walls and correct corners since the 

probability maps for inner rooflines and outlines do not have clear predictions for them, the example for 

which in comparison with ground truth and the other model can be seen in Figure 20. Besides targeted outer 

and inner rooflines the model has noisier results and detects with high probability other roof elements or 

installations such as chimneys(Figure 19.1-b), solar panels (Figure 19.5-b) and skylights(Figure 19.(2,4)-b), etc. 

At the same time, the model cannot partition well the adjacent buildings. All models misdetect trees as part 

of the buildings (Figure 19.1-(b-c)) since some of the buildings in our training data are also covered by a tree, 

and secondly, perhaps the 4th band nDSM, in which trees sometimes have the same height as the near 

building, confuses the network. However, the UResNet101 model with {BCE+Dice} loss also has false 

positives on trees not surrounded by any building (Figure 19.(2,4)-b) indicating that the model sometimes 

cannot differentiate between building and tree. False positives for small buildings are observed among all 

models. Most of them are garden or storage sheds, and, as mentioned before, not all of them are digitized 

as ground truth data. 
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Figure 19. Results obtained with three models: UResNet101 with {BCE+Dice} loss, UResNet101 with Tversky loss, no-

field UResNet101 with Tversky loss and corresponding reference data 
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Figure 20. Segmentation results: first row - interior (red) and outline(yellow) probability maps; second row – inner 

roofline(purple) probability maps 

Figure 21 shows the rooflines extracted by three models, as well as the corresponding reference data for 

comparison. The outlines and inner rooflines extracted by the model with Tversky loss have PoLiS distances 

of 0.16 m and 0.05 m, respectively, while the values for the model with {BCE+Dice} loss are 1.87 m and 

4.2 m.  As illustrated in the figure below, the latter (Figure 21-b) extracts roof elements outside of the scope 

of our interest and the true inner rooflines both in the predicted outline and inner roofline probability maps, 

resulting in two overlapping lines. The UResNet101 model without the frame field learning (Figure 21-d) 

obtained almost the same results as the identical model with Tversky loss but with a frame field learning 

branch(Figure 21-c).  

 
Figure 21. Rooflines of the building extracted by the models with {BCE+Dice} and Tversky losses. UResNet with 

{BCE+Dice} :PoLiS outline – 1.87 m, PoLiS inner roofline – 4.2 m; UResNet101 with Tversky : PoLiS outline – 

0.16 m, PoLiS inner roofline – 0.05 m;  UResNet101 with Tversky, no field : PoLiS outline – 0.13 m, PoLiS inner 

roofline – 0.17 m 
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4.3. Summary 

In this chapter, three models are quantitively and qualitatively compared. The models with Tversky loss with 

and without frame field perform better than the model with {BCE+Dice} loss at extracting roof structure. 

Between models with Tversky loss, the frame field learning model slightly outperformed the no-field model 

on inner roofline segmentation with the IoU value of 0.35 and performed a little worse on outlines, 0.37. 

The no-field model showed better results on PoLiS distance with the values of 3,5 m and 1,2 m for outlines 

and inner rooflines respectively. In addition, the no-field model had a higher PoLiS-thresholded F-score of 

0.31 for outlines and 0.57 for interior rooflines. 
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5. DISCUSSION 

5.1. Reflection on the performance of frame field learning model 

In the previous section, we compared the performance of the three models – two frame field learning models 

with the {BCE+Dice} and Tversky loss respectively, and no field model with Tversky loss. Both models 

with Tversky loss show better and similar quantitative results for the roof structure extraction task. 

Qualitatively, the model without the frame field is better at extracting the inner lines of the roof. The key 

distinction between these two models is that the frame field learning model has two additional branches for 

learning frame fields for inner rooflines and outlines. The losses for frame field learning ensure the 

smoothness of frame field lines and not collapsing of directions into one. The latter means always having 

90 degrees angle between two outlines/inner rooflines. While this rule can be useful for most of the 

buildings due to their right corners, it is not facilitating the extraction of inner rooflines as they do not have 

the right angle in between. However, according to the results (Figure 19.(1-5)-b,c), the frame field learning for 

outlines still did not improve the results of outline vectorization and frame field learning for inner rooflines 

has a negative effect on the vectorization of inner rooflines. The frame field learning showed considerable 

improvement to the vectorization step in Girard et al. (2020). Perhaps, the contribution of the frame field 

becomes small when using the very high-resolution image and height information as they provide a rich 

amount of details. It was expected that the vectorization with the inner and outer rooflines orientation from 

frame fields would result in more regularized edges and correctly detected corners. However, as can be 

observed from Figure 19, the simple skeleton vectorization procedure without the frame field has similar 

output in terms of regularization and corner detection. Besides, even though, the segmentation of the frame 

field learning model has a slightly higher IOU, it is still predicting worse in some cases of inner rooflines 

(Figure 22-b). There are two reasons for this: 1) not enough examples of the inner roof elements in the 

training data compared to outlines; 2) having a combined loss for four tasks can be confusing for the model 

during training. Overall, this implies that the frame field's influence is negligible. However, learning about 

and developing this method contributed significantly to the acceptable performance of another model, 

UResNet101 with Tversky loss but no frame field: 

1) testing the model with the pre-trained UResNet101 backbone. As can be observed from the 

performance of our no-field model, this backbone alone gives quite a good performance for 

segmentation of rooflines; 

2) branching the tasks of building footprint segmentation and frame field learning which inspired us 

to branch the task of interior & outline and inner roofline segmentation; 

3) using interior & outline segmentation output as a 5th band input to the inner roofline segmentation 

task. Thanks to this, we were able to restrict the prediction of inner rooflines within the building 

footprint; 

4) using interior building mask to correct the prediction of outlines; 

5) thinning method and the following computation skeleton graph, which are the core steps of the 

ASM vectorization procedure. The thinning method converts the predicted segmentation into a 

one-pixel wide representation that is practical for the next step. The skeleton graph is extremely 

beneficial in the case of adjacent buildings with common walls.   

5.2. Benefits and drawbacks of the roof extraction approach 

Since the best roof extraction approach is a no-field model with a pre-trained UResNet101 backbone and 

Tversky loss, we outline the advantages and disadvantages of this model. The benefits of the method are 

given as followings: 
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1) no handcrafted features were used. To improve the segmentation, vectorization and corner 

detection we tried to implement frame field learning. Even though it adds only a small cost to the 

training and inference time, it does not improve the results. 

2) the model can perform roof structure extraction for multiple buildings in one image patch 

compared to other state-the-art roof structure extraction methods. This advantage facilitates both 

training and prediction since for training there is no need to selectively generate an image patch and 

reference having one building, and during prediction, we can output multiple roof structures at 

once; 

3) the model can detect the shared walls of the buildings with the usage of outline segmentation and 

computation of the skeleton graph; 

4) the method outputs the closed building outlines thanks to the separate branching for building 

interior & outline segmentation and correction of outlines with the contour of the building interior. 

The proposed method, however, has several drawbacks. First, the output can have missed detections for 

which we apply post-processing with the extend/trim lines tools. Though, we still have missed inner 

rooflines (Figure 22-c) since the extension is limited to the distance of up to 4 m and will only work if there 

is at least some part of the line segment predicted. Second, since the extension is automatic and attempts to 

join the closest endpoints, it can also lead to odd results, as can be observed in Figure 23. 

 
Figure 22. Limitations of the method: missed predictions of the inner rooflines(yellow circle) and odd results of the 

extension(purple circle) 

 
Figure 23. Odd results of the extension procedure 
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In contrast, the model is better at predicting simpler roofs consisting of only outlines and ridges, as shown 

in Figure 24. The majority of the inner rooflines in our dataset belong to the ridges from what we can deduce 

that the model prediction could improve if the reference dataset had more examples of other roof elements 

such as hips and valleys. 

 
Figure 24. Predicted roof structures with straight walls and correct corners 

Lastly, the model predicts objects such as trees as part of the building if they stand at a near distance since 

they may have a similar height to the building (Figure 25). 
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Figure 25. False-positive example - a tree extracted as part of a building 

The main causes of the method’s drawbacks are the insufficiency of training data and mismatching of the 

buildings in training data with their real-life appearance. Even though the pre-processing was performed on 

the reference dataset, due to the time limitations the correction was only made on the outlines and inner 

rooflines with severe mismatches. Another cause is mismatching between the RGB image and nDSM as 

they have been generated in different years, 2021 and 2019 respectively. 

5.3. The applicability of the method and recommendations for improvement 

Having in mind the previously discussed advantages and disadvantages of the method, the proposed method 

can be considered useful for urban applications. It can be improved using the following recommendations 

which can be seen as suggestions for the further studies: 

1) The collection of a larger amount of the training data; this can definitely improve the performance 

of the model, particularly for the inner rooflines; 

2) Performing nDSM refinement before using an input to the network. This has been done in the 

proposed method of (Wang et al., 2021). Using refined nDSM will facilitate the elimination of trees 

in the predictions of the model. 

3) Incorporation of an additional final block based on Graph Neural Networks will help to ensure the 

connectivity of the rooflines, which was done in (Zhang et al., 2020; Zhao et al., 2022). For this 

task besides predicting rooflines, we can add an extra branch for predicting vertices and take 

advantage of existing skeleton graph computation. This will be practical as it can possibly substitute 

the imperfect post-processing step of extension and trimming of rooflines. 

We trained and tested our model in a typical Dutch residential neighbourhood with a variety of roof types. 

When the same method is used in different geographical locations, the results may vary. Our pre-trained 

model can have good spatial transferability to the other residential area in the Netherlands or another 

country if the area has a similar residential architecture design. However, if the new test area has non-

repeating buildings with complicated roof structures (e.g., New York, Tokyo, Sofia), the pre-trained model 

may produce poor results. Even if we retrain the model on a subset of building roofs in the selected area, 

the test results may be unsatisfactory because the roof types are complex and unique to the training and test 

sets. On the other hand, if most of the buildings in the test area have flat roof types and are not connected, 

the model will perform better because there will be no need to detect the inner rooflines and outlines of the 

buildings with adjacent walls. Furthermore, as the model can detect the building with shared walls, this 

method can also be used for slum areas where the built-up environment is very dense. Besides, with some 

modifications, the method can be used for the extraction of road maps, cadastral or agricultural boundaries. 
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6. CONCLUSION 

The roof structure is compulsory information for many 3D modelling applications. 3D models with roof 

geometry information are used for various purposes such as solar radiation potential assessment to plan 

solar panel installation, wind flow simulations for pollutant diffusion analysis in the built environment and 

mobile telecommunication installations planning. Besides, the buildings can get constructed, reconstructed 

or demolished throughout time. Thus, there is a need for an efficient way of extracting and updating roof 

structure information. On that account, the thesis is focused on developing a method to extract building 

roof structures in a regularized vector format. 

In this study, we use open-access very high-resolution aerial imagery for spectral information and nDSM 

for 3D information as the input data and DL as the main tool. We primarily create two DL models 

comprised of segmentation and vectorization procedures, one of which also learns the frame fields. Frame 

field learning aids segmentation by imposing additional losses that force inner rooflines/outlines to align 

with the frame field, and it is used in vectorization to detect corners and regularize line segments. Another 

no-field model is utilized to evaluate the contribution of the frame field to the method's performance.  

According to our experiments, both models showed quite good performance in extracting building roof 

structures. The frame field learning model slightly outperformed the no-field model on inner roofline 

segmentation with the IoU value of 0.35 and performed a little worse on outlines, 0.37, while the no-field 

model showed better results on PoLiS distance with the values of 3,5 m and 1,2 m for outlines and inner 

rooflines respectively. Besides the no-field model scored higher on PoLiS-thresholded F-score for outlines 

and inner rooflines, having, 0.31 and 0.57 respectively. Visually, the no-field model obtained better results 

with straighter walls and fewer missed detections of inner rooflines. Thanks to the computation of the 

skeleton graph, it can predict buildings with common walls. However, it still has limitations such as 

predicting trees as false positives, extracting building shapes inaccurately, and having an imperfect post-

processing procedure that can lead to odd outcomes. 

To conclude, in this study, the frame field did not improve the performance model. Perhaps, in the case of 

using the limited amount of data and height information, the contribution of the frame field becomes 

insignificant.  Secondly, the better-performing no-field model can be applied for roof structure extraction 

task with some improvements to be made. In further studies, collecting more training data will benefit the 

performance. Besides, preliminary nDSM refinement can remove the false positive predictions of objects 

other than buildings. Lastly, adding another block based on the GNN can help with the retaining connection 

within building roof elements. Moreover, with some changes to the segmentation block, the proposed 

method could also be used for the extraction of road maps, cadastral or agricultural boundaries and slum 

studies.  

6.1. Answers to research questions 

SO 1: To acquire knowledge in frame field learning for building segmentation (Girard et al., 2020); 

1. What is the framework of the segmentation process? 

The framework of the segmentation process consists of feature extraction and building interior and outline 

segmentation blocks. For feature extraction pre-trained UResNet101 backbone or lightweight UNet16 can 

be used. The interior and outline segmentation block consist of a 3x3 convolutional layer, a batch 

normalization layer, an Exponential Linear Unit (ELU) activation function, another 3x3 convolution, and a 
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sigmoid nonlinearity. The output consists of 2 maps: interior mask and edges (building outlines). The interior 

mask is used to enforce the edges of the buildings to align their contour. Tversky loss (Salehi et al., 2017) or 

the combination of binary cross-entropy and dice loss {BCE+Dice} is used for losses applied on the interior 

and edge outputs. 

2. How was the frame field learning implemented? 

Frame field is a 4-D PolyVector field that helps to extract more regularized building boundaries with the 

correctly detected corners. Building segmentation map and F-dimensional map are further fed to the sub-

head for frame field learning. This block consists of a 3x3 convolutional layer, a batch normalization layer, 

an ELU nonlinearity, another 3x3 convolution, and a tanh nonlinearity The frame field for outlines will 

consist of 4 channels that correspond to c0,c2 coefficients which recover 2 directions comprising spatial 

information. Having 2 directions instead of 1 facilitates corner detection. 

SO 2: To prepare the dataset; 

1. What input data is needed for the approach? 

As an input, the 0.08 m resolution RGB image and 0.5 m resolution nDSM resampled to the RGB image 

resolution were used. We train the model using reference data for building outlines in polygon shapefile 

format and for building inner rooflines in a form of polylines in shapefile format which are rasterized in 

pre-processing step.  

2. Do the inputs (e.g., roofline vector file) need correction? If yes, what needs to be 

corrected? 

Yes, the nDSM needed to be resampled to 0.08 m resolution and reference data required manual correction. 

The ground truth data had mismatches with the RGB image such as non-existent buildings, reconstructed 

buildings, new buildings and not correctly digitized inner rooflines and outlines. 

SO 3: To design a deep learning approach to jointly extract building outlines and inner rooflines; 

1. How to adapt the Frame Field Learning framework to extract inner rooflines?  

The sub-head takes an F-dimensional feature map and inner roofline output to generate a frame field for 

inner rooflines. The block structure is the same as for outlines. The output consists of 4 channels 

corresponding to {u, -u, v, -v} vectors as in frame field learning for inner rooflines. 

2. What backbone is to be used for inner rooflines extraction? 

The same backbones are shared between the outline, inner roofline segmentation branches and frame field 

learning branches for outlines and inner rooflines. We used lightweight Unet16 and deeper UResNet101 

with pre-trained weights on the ImageNet dataset. 

3. What loss functions need to be introduced to align and regularize rooflines? 

Tversky and the combination of BCE and Dice losses are used interchangeably for building outlines and 

inner rooflines segmentation. Besides, there are smoothing, frame field aligning and coupling losses used 

for training and incorporation of the frame fields. 

SO 4: To evaluate the approach accuracy. 
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1. What metrics are to be used to assess the accuracy of the approach? 

The results were assessed using pixel-level and line-level metrics. For pixel level, the IoU for predicted 

building interior, outlines and inner rooflines was computed. At the line level, we used the PoLiS metric that 

computes the distance that considers shape and positional changes between line segments and polygons. 

Using the PoLiS threshold for defining our true positive predictions, we subsequently calculated the 

Precision, Recall and F-score for both building outlines and inner rooflines. 

2. How accurate is the result of the approach? 

According to our experiments, both models showed quite good performance in extracting building roof 

structures. The frame field learning model slightly outperformed the no-field model on inner roofline 

segmentation with the IoU value of 0.35 and performed a little worse on outlines, 0.37, while the no-field 

model showed better results on PoLiS distance with the values of 3,5 m and 1,2 m for outlines and inner 

rooflines respectively. Besides the no-field model scored higher on PoLiS-thresholded  F-score for outlines 

and inner rooflines, having, 0.31 and 0.57 respectively. Visually, the no-field model obtained better results 

with straighter walls and fewer missed detections of inner rooflines. Thanks to the computation of the 

skeleton graph, it can predict buildings with common walls. 

3. What are the strengths and limitations of the approach and how can this be improved? 

The benefits of the method are given as followings: 

1) no handcrafted features were used. To improve the segmentation, vectorization and corner detection 

we tried to implement frame field learning. Even though it does not add any cost to the training and 

inference, it does not improve the results either. 

2) the model can perform roof structure extraction for multiple buildings in one image patch compared 

to other state-the-art roof structure extraction methods. This advantage facilitates both training and 

prediction since for training there is no need to selectively generate an image patch and reference having 

one building, and during prediction, we can output multiple roof structures at once; 

3) the model can detect the shared walls of the buildings with the usage of outline segmentation and 

computation of the skeleton graph; 

4) the method outputs the closed building outlines thanks to the separate branching for building interior 

& outline segmentation and correction of outlines with the contour of the building interior. 

 

The proposed method, however, has several drawbacks: 

1) the output can have missed detections for which we apply post-processing with the extend/trim lines 

tools. Though, we still have missed inner rooflines since the extension is limited to the distance of up 

to 4 m and will only work if there is at least some part of the line segment predicted.  

2) since the extension is automatic and attempts to join the closest endpoints, it can also lead to odd 

results such as an overextension.  

3) The model can fail to predict roof lines such as hips and valleys (Figure 19.(3,4)-d). In contrast, the 

model is better at predicting simpler roofs consisting of only outlines and ridges. The majority of the 

inner rooflines in our dataset belong to the ridges from what we can deduce that the model prediction 

could improve if the reference dataset had more examples of other roof elements such as hips and 

valleys. 

4) the model predicts objects such as trees as part of the building if they stand at a near distance since 

they may have a similar height to the building.  
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The main causes of the method’s drawbacks are the insufficiency of training data and mismatching of the 

buildings in training data with their real-life appearance. Even though the pre-processing was performed on 

the reference dataset, due to the time limitations the correction was only made on the outlines and inner 

rooflines with severe mismatches. Another cause is mismatching between the RGB image and nDSM as 

they have been generated in different years, 2021 and 2019 respectively. 

In further studies, collecting more training data will benefit the performance. Besides, preliminary nDSM 

refinement can remove the false positive predictions of objects other than buildings. Lastly, adding another 

block based on the GNN can help with the retaining connection within building roof elements. Moreover, 

besides improving this method for roof structure extraction, with some modifications, it could be used for 

the extraction of road maps, cadastral or agricultural boundaries and slum studies.



 

36 

LIST OF REFERENCES 

 
Alidoost, F., Arefi, H., 2016. Knowledge Based 3D Building Model Recognition Using Convolutional 

Neural Networks From Lidar and Aerial Imageries. Int. Arch. Photogramm. Remote Sens. Spat. Inf. 
Sci. XLI-B3, 833–840. https://doi.org/10.5194/isprs-archives-xli-b3-833-2016 

Alidoost, F., Arefi, H., Tombari, F., 2019. 2D image-to-3D model: Knowledge-based 3D building 
reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs). 
Remote Sens. 11. https://doi.org/10.3390/rs11192219 

Awrangjeb, M., Zhang, C., Fraser, C.S., 2013. Automatic extraction of building roofs using LIDAR data 
and multispectral imagery. ISPRS J. Photogramm. Remote Sens. 83, 1–18. 
https://doi.org/10.1016/J.ISPRSJPRS.2013.05.006 

Castagno, J., Atkins, E., 2018. Roof shape classification from LiDAR and satellite image data fusion using 
supervised learning. Sensors (Switzerland) 18. https://doi.org/10.3390/s18113960 

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, Li Fei-Fei, 2010. ImageNet: A large-scale hierarchical 
image database 248–255. https://doi.org/10.1109/cvpr.2009.5206848 

Girard, N., Smirnov, D., Solomon, J., Tarabalka, Y., 2020. Polygonal Building Segmentation by Frame 
Field Learning, in: ArXiv. pp. 1–30. https://doi.org/10.1109/IGARSS39084.2020.9324080 

Gui, S., Qin, R., 2021. Automated LoD-2 model reconstruction from very-high-resolution satellite-derived 
digital surface model and orthophoto. ISPRS J. Photogramm. Remote Sens. 181, 1–19. 
https://doi.org/10.1016/J.ISPRSJPRS.2021.08.025 

Hang, L., Cai, G.Y., 2020. CNN based detection of Building Roofs from High Resolution Satellite Images, 
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 
- ISPRS Archives. International Society for Photogrammetry and Remote Sensing, pp. 187–192. 
https://doi.org/10.5194/isprs-archives-XLII-3-W10-187-2020 

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition, in: Proceedings of 
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. pp. 770–
778. https://doi.org/10.1109/CVPR.2016.90 

Kass, M., Witkin, A., 1988. Snakes: Active Contour Models. Int. J. Comput. Vis. 321–331. 
Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. 

https://doi.org/10.1038/nature14539 
Li, Z., Wegner, J.Di., Lucchi, A., 2019. Topological map extraction from overhead images, in: Proceedings 

of the IEEE International Conference on Computer Vision. Institute of Electrical and Electronics 
Engineers Inc., pp. 1715–1724. https://doi.org/10.1109/ICCV.2019.00180 

Liu, K., Ma, Hongchao, Ma, Haichi, Cai, Z., Zhang, L., 2020. Building extraction from airborne lidar data 
based on min-cut and improved post-processing. Remote Sens. 12, 1–25. 
https://doi.org/10.3390/rs12172849 

Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. Path Aggregation Network for Instance Segmentation. Proc. 
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 8759–8768. 
https://doi.org/10.1109/CVPR.2018.00913 

Luo, L., Li, P., Yan, X., 2021. Deep learning-based building extraction from remote sensing images: A 
comprehensive review. Energies 14. https://doi.org/10.3390/en14237982 

Macay Moreia, J.M., Nex, F., Agugiaro, G., Remondino, F., Lim, N.J., 2013. From DSM To 3D Building 
Models: a Quantitative Evaluation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1/W1, 
213–219. https://doi.org/10.5194/isprsarchives-xl-1-w1-213-2013 

Muftah, H., Rowan, T.S.L., Butler, A.P., 2022. Towards open-source LOD2 modelling using 
convolutional neural networks. Model. Earth Syst. Environ. 8, 1693–1709. 
https://doi.org/10.1007/s40808-021-01159-8 

Nauata, N., Furukawa, Y., 2020. Vectorizing World Buildings: Planar Graph Reconstruction by Primitive 
Detection and Relationship Inference, in: Lecture Notes in Computer Science (Including Subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp. 711–726. 
https://doi.org/10.1007/978-3-030-58598-3_42 

Novacheva, A., 2008. Building roof reconstruction from LiDAR data and aerial images through plane 
extraction and colour edge detection. Int. Arch. Photogramm. … 53–58. 

OpenStreetMap contributors, 2017. Open Street Map [WWW Document]. URL https://planet.osm.org/ 



 

37 

(accessed 10.5.21). 
Partovi, T., Fraundorfer, F., Azimi, S., Marmanis, D., Reinartz, P., 2017. Roof type selection based on 

patch-based classification using deep learning for high resolution satellite imagery, in: International 
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS 
Archives. International Society for Photogrammetry and Remote Sensing, pp. 653–657. 
https://doi.org/10.5194/isprs-archives-XLII-1-W1-653-2017 

Partovi, T., Fraundorfer, F., Bahmanyar, R., Huang, H., Reinartz, P., 2019. Automatic 3-D building model 
reconstruction from very high resolution stereo satellite imagery. Remote Sens. 11, 1660. 
https://doi.org/10.3390/rs11141660 

PDOK [WWW Document], 2013. URL https://www.pdok.nl/introductie/-/article/basisregistratie-
adressen-en-gebouwen-ba-1 (accessed 11.24.21). 

Persello, C., Wegner, J.D., Hansch, R., Tuia, D., Ghamisi, P., Koeva, M., Camps-Valls, G., 2022. Deep 
Learning and Earth Observation to Support the Sustainable Development Goals: Current 
Approaches, Open Challenges, and Future Opportunities. IEEE Geosci. Remote Sens. Mag. 30. 
https://doi.org/10.1109/MGRS.2021.3136100 

Qin, Y., Wu, Y., Li, B., Gao, S., Liu, M., Zhan, Y., 2019. Semantic segmentation of building roof in dense 
urban environment with deep convolutional neural network: A case study using GF2 VHR imagery 
in China. Sensors (Switzerland) 19, 1164. https://doi.org/10.3390/s19051164 

Ramer, U., 1972. An iterative procedure for the polygonal approximation of plane curves. Comput. 
Graph. Image Process. 1, 244–256. https://doi.org/10.1016/S0146-664X(72)80017-0 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image 
segmentation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 
Bioinformatics) 9351, 234–241. https://doi.org/10.1007/978-3-319-24574-4_28 

Salehi, S.S.M., Erdogmus, D., Gholipour, A., 2017. Tversky loss function for image segmentation using 
3D fully convolutional deep networks. Lect. Notes Comput. Sci. (including Subser. Lect. Notes 
Artif. Intell. Lect. Notes Bioinformatics) 10541 LNCS, 379–387. 
https://doi.org/10.48550/arxiv.1706.05721 

Sun, X., Zhao, W., Maretto, R. V., Persello, C., 2021a. Building polygon extraction from aerial images and 
digital surface models with a frame field learning framework. Remote Sens. 13, 4700. 
https://doi.org/10.3390/rs13224700 

Sun, X., Zhao, W., Maretto, R. V., Persello, C., 2021b. Building outline extraction from aerial imagery and 
digital surface model with a frame field learning framework. Int. Arch. Photogramm. Remote Sens. 
Spat. Inf. Sci. - ISPRS Arch. 43, 487–493. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-
487-2021 

Wang, L., Chu, C.H.H., 2009. 3D building reconstruction from LiDAR data, in: Conference Proceedings - 
IEEE International Conference on Systems, Man and Cybernetics. pp. 3054–3059. 
https://doi.org/10.1109/ICSMC.2009.5345938 

Wang, Y., Zorzi, S., Bittner, K., 2021. Machine-learned 3D building vectorization from satellite imagery, 
in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 
pp. 1072–1081. https://doi.org/10.1109/CVPRW53098.2021.00118 

Zhang, F., Nauata, N., Furukawa, Y., 2020. Conv-MPN: Convolutional message passing neural network 
for structured outdoor architecture reconstruction, in: Proceedings of the IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition. pp. 2795–2804. 
https://doi.org/10.1109/CVPR42600.2020.00287 

Zhang, T.Y., Suen, C.Y., 1984. A Fast Parallel Algorithm for Thinning Digital Patterns. Commun. ACM 
27, 236–239. https://doi.org/https://doi.org/10.1145/357994.358023 

Zhao, W., Persello, C., Stein, A., 2022. Extracting planar roof structures from very high resolution images 
using graph neural networks. ISPRS J. Photogramm. Remote Sens. 187, 34–45. 
https://doi.org/10.1016/J.ISPRSJPRS.2022.02.022 

Zhao, W., Persello, C., Stein, A., 2021a. Building outline delineation: From aerial images to polygons with 
an improved end-to-end learning framework. ISPRS J. Photogramm. Remote Sens. 175, 119–131. 
https://doi.org/10.1016/j.isprsjprs.2021.02.014 

Zhao, W., Persello, C., Stein, A., 2021b. End-To-End Roofline Extraction From Very-High-Resolution 
Remote Sensing Images, in: International Geoscience and Remote Sensing Symposium (IGARSS). 
pp. 2783–2786. https://doi.org/10.1109/IGARSS47720.2021.9554162 



 

38 

Zhou, K., Chen, Y., Smal, I., Lindenbergh, R., 2019. Building segmentation from airborne vhr images 
using mask r-cnn. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 42, 155–161. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-155-2019 

Zorzi, S., Bittner, K., Fraundorfer, F., 2020. Machine-learned regularization and polygonization of building 
segmentation masks, in: Proceedings - International Conference on Pattern Recognition. Institute of 
Electrical and Electronics Engineers Inc., pp. 3098–3105. 
https://doi.org/10.1109/ICPR48806.2021.9412866 

 


