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Summary

Grasping and manipulation of deformable objects is still a challenging problem in industrial
automation and robotics. To grasp a deformable object the right amount of force needs to be
used to on the one hand have a stable grasp and on the other hand prevent damaging the ob-
ject. Besides, the object will deform when in contact with a grasping finger. Therefore, the
behaviour of a deformable object and its contact with a finger needs to be understood. This
thesis proposes a mass-spring-damper model with additional constraints for volume preser-
vation and spring deformation limits, and Hunt-Crossley (Hunt and Crossley, 1975) and stick-
slip contacts. Experiments with objects made of silicone rubber are conducted to acquire data
about the deformation of an object when impacted by an external fingertip. The influence of
model parameters on the simulation results are explored and fitted to minimize the error. The
results indicate that the proposed model can predict object deformations with a normalized
root mean square error of 2.2% in the explored situations. The model can be extended for sim-
ulation of grasping deformable objects.
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1 Introduction

1.1 Context

This project is part of the FlexCRAFT program (FlexCRAFT, 2021), a collaboration between
Dutch universities and companies, which aim is to research the handling of varying and de-
formable objects in the agri-food industry. This program consists of four research topics (active
perception, world modelling, planning and control, and gripping and manipulation) and three
use-cases (food processing, food packaging and greenhouse).

The topic of this MSc project is part of gripping and manipulation of deformable objects.
Grasping and manipulation of varying and deformable objects is still a challenging problem in
industrial automation and robotics. Although gripping rigid objects is very developed, research
in gripping deformable objects is limited but important for further automation. Nowadays,
due to the shortage of personnel, it is especially important to automate time-consuming tasks.
Grasping deformable and soft objects often requires specialized grippers specifically designed
for a certain task. To be more flexible and expand quickly, general grippers are needed that can
be used for a wide variety of (deformable) objects and situations. For that reason, state-of-the-
art soft and underactuated grippers are currently being researched.

1.2 Problem statement

Grasping and manipulation of objects requires a stable grasp to prevent slippage and pick up
and manipulate the object. For rigid objects it is sufficient if the grasping force is large enough
to generate enough friction. For deformable objects, however, the right amount of force needs
to be used to on the one hand have a stable grasp and on the other hand prevent damaging the
object. On top of that, the object will deform when a force is applied, which has to be taken
into account when grasping an object.

This thesis takes a step back to understand the behaviour of a deformable object during contact
with a gripper finger by creating a model and simulation. Researches on modelling deformable
objects have been conducted mainly in the medical sector.

Duan et al. (2013, 2014) created a model of soft tissues for an interactive surgical simulation.
The deformable organs are modelled by a volume conserved mass-spring-damper system and
the connection between organs are modelled by springs with high stiffness. The interaction
between the organs and surgical instruments are taken into account using a position-based
method by moving points of the object directly. The simulation has then been evaluated by
experiments with real porcine liver and gallbladder.

Mollemans et al. (2003) presented a soft tissue model to predict changes in the human face due
to skeletal changes. This model is used in a maxillofacial surgery planning simulation to plan
the operation and predict the facial changes. The modelling method used is a mass-spring
system with volume preservation.

Pathmanathan et al. (2008) used the finite element method and non-linear elasticity to create
a model of a patients breast. The model was used to simulate deformation of the breast shape
and predict tumor location.

Robotics and Mechatronics Jordi Luong



2 Deformation Modelling and Gripper Contact Simulation of Deformable Objects

Previous researches mainly focused on modelling soft tissues/deformable objects, while re-
search on the interaction between a gripper finger and the object is very limited.

1.3 Goals and approach

The goal of this project is to gain more insight in the behaviour of a deformable object when in
contact with a finger. In order to accomplish this goal, first literature research has been con-
ducted to get an overview of the research done on grasping deformable objects and modelling
methods. Thereafter, a model of deformable objects and contact with their environment is
proposed. This model is a mass-spring-damper model with additional constraints for volume
preservation and spring deformation limits, and Hunt-Crossley (Hunt and Crossley, 1975) and
stick-slip contacts. The model can be used to understand the behaviour of a deformable object
when in contact with a finger. Experiments with objects made of silicone rubber are conduc-
ted to acquire data about the deformation of an object when impacted by an external fingertip.
The influence of model parameters on the simulation results are explored and fitted to minim-
ize the error.

To summarize the steps to be taken to accomplish the project goal, the following objectives
have to be achieved:

• Conduct literature research on the grasping and modelling of deformable objects

• Develop a realistic deformable object model and contact model

• Acquire data from experiments to research the behaviour of real objects

• Develop a simulation to simulate the deformation of an object when in contact with a
finger and compare with the experiments.

The contributions of this report are therefore as follows:

• Development of a mass-spring-damper model and simulation for deformable objects
with external finger contact

• Performing experiments with deformable objects to collect data of the deformations

• Exploration of the influence of model parameters on the simulation error

1.4 Outline

Chapter 2 gives background information and previous researches about grasping and manipu-
lation of deformable objects and modelling methods for (deformable) objects. The paper writ-
ten for this thesis is shown in Chapter 3. This paper elaborates on the modelling of deformable
objects using the mass-spring-damper method and contact model. Furthermore, the simula-
tion and integration method are discussed. On top of that, the paper also explains the design of
the experiment to acquire real data and the results of the experiment and simulations. Finally,
Chapter 4 discusses the simulation software in a brief overview and Chapter 5 shows some ad-
ditional results.

Jordi Luong University of Twente
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2 Background

2.1 Grasping and manipulation of deformable objects

2.1.1 Object types

Objects are often divided into four main categories in research according to their geometry
(Sanchez et al., 2018):

linear
Linear objects are objects with one dimension significantly larger than the other two dimen-
sions. This type of objects have either no compression strength, such as ropes, cables and
strings, or large strain, for example elastic tubes.

cloth-like
Cloth-like objects have one dimension significantly smaller than the other two dimensions and
have no compression strength. Examples of this type of objects are cloth, fabric and curtains.

planar
Planar objects are similar to cloth-like objects, but with compression strength, for instance
paper.

solid
Solid objects are three-dimensional objects, for example food or sponges.

Linear, cloth-like and planar type of deformable objects are more researched than solid de-
formable objects. This is likely because of the computational cost and extra difficulty of the
additional dimension of a solid object.

Sanchez et al. (2018) gives an extensive overview of research conducted in grasping and ma-
nipulating deformable objects of the four different object types. Linear, cloth-like and planar
deformable objects will be mentioned shortly below, whilst solid objects will be more extens-
ively discussed as this will be the focus of this thesis.

Research conducted on linear objects are most often about grasping and manipulation of
ropes. Researches on tying a knot with a rope are performed by among others Yamakawa et al.
(2008), Vinh et al. (2012), Kudoh et al. (2015) and Yamakawa et al. (2010).

The most researched topics with planar objects are positioning the gripper fingers on the
object to get a stable grasp, for example conducted by Guo et al. (2013) and Jia et al. (2011),
and manipulating the shape of the object into a desired configuration by Fanson and Patriciu
(2010) and Das and Sarkar (2011).

Cloth-like objects are probably the most researched deformable object type. Examples of re-
search are from grasping clothes (Shibata et al. (2009), Monsó et al. (2012)), to manipulating
them into the desired configuration (Cusumano-Towner et al. (2011), Doumanoglou et al.
(2014)), to folding the clothes (Maitin-shepard et al. (2010), Bersch et al. (2011)).

As mentioned before, in order to successfully grasp a solid deformable object with a gripper,
the right amount of force is required to prevent slippage and provide a stable grasp, but without
damaging the object. To accomplish this, there are roughly two main approaches. The first ap-

Robotics and Mechatronics Jordi Luong
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proach is by using a model of the object to compute the optimal gripping force and the second
approach are model-free methods.

2.1.2 Model-based grasping

Models of objects can be used to determine the optimal grasping force, which is often the
minimal force required to prevent slippage and grasp the object stably. Section 2.2 gives an
overview of possible modelling methods for the modelling of deformable objects.

An example is the method developed by Howard and Bekey (1999), making use of a mass-
spring-damper model, where a Kelvin-Voigt model (spring and damper in parallel) describes
the connection, to determine the required grasping force. In this method, the grasping of the
deformable object is iteratively simulated on the model with two parallel grippers. Every iter-
ation, the grasping force is increased until the grasp is stable and the object can be lifted. This
grasping was then used as data to train a neural network that estimated the required grasping
force to lift an object based on the object’s stiffness and damping coefficients.

Another example of model-based grasping is proposed by Lin et al. (2015). This approach
makes use of a finite element method model to simulate the deformation based on the dis-
placements of the object due to the gripper. Two gripper fingers squeezes an object, while at
each time step the model is used to try to lift the object virtually. When the object can be lifted
in simulation, the fingers can stop moving and the real object can be lifted.

2.1.3 Model-free grasping

Model-free methods for grasping of deformable objects mainly uses sensors on the robot to get
information about the grasp. These are often tactile, force/pressure or vision/optical sensors.
Mostly, the sensors are used to detect slippage after which the gripping force is adjusted ac-
cordingly.

Kaboli et al. (2016) developed a method for manipulating deformable objects using tactile
sensors. The sensors on the fingers are able to measure the force in three directions. The force
sensors are used to estimate the weight of the object to compute the required grasping force
by measuring the force in vertical direction. Besides, the sensors are also used to detect slip by
measuring movement at the contact points. When slip has been detected, more gripping force
is needed.

Other researchers using sensors also use similar methods to increase the grasping force when
slip has been detected (Al-Mohammed et al., 2018). Force sensors, which detect slip by mon-
itoring changes of the force, are also used by Hasegawa et al. (2010) and Gunji et al. (2008).
Engeberg and Meek (2013) developed a method to detect slippage by measuring high frequency
vibrations with vibration sensors, while slip detection with optical sensors are researched by
Sani and Meek (2011) and Roberts et al. (2011).

Another approach was conducted by Delgado et al. (2015), who used a robotic hand that con-
sisted of multiple fingers equipped with tactile sensors. This robotic hand was used to grasp
and hold a deformable object. They computed the so called deformability ratio, which is a lin-
ear relationship between the forces measured by the tactile sensors and the positions of the
fingers. With the deformability ratio, the force to be exerted on the object will then be calcu-
lated to minimize the deformation of the object.

Jordi Luong University of Twente



CHAPTER 2. BACKGROUND 5

2.2 Modelling deformable objects

This section describes a few methods that can be used for the modelling of deformable objects.

2.2.1 Mass-Spring-Damper System

A Mass-Spring-Damper System (MSDS) (Zhang et al., 2018; Basloom, 2016; Golec, 2018) rep-
resents an object by discretizing the shape into a set of particles in a lattice structure, which are
connected by springs and dampers. Each particle is a point-mass on which the spring forces
and external forces act. A mass-spring-damper system is relatively simple to implement and
has a low computational cost. However, the low cost is in exchange for accuracy. This method
is widely used for the simulation of soft tissue deformations for surgical training because the
method can be solved real-time.

2.2.2 Position Based Dynamics

The approach of Position-Based Dynamics (Golec, 2018; Müller et al., 2006) is comparable to
the mass-spring-damper system, since they are both particle-based methods. The object is also
discretized into particles, but the particles are, in contrast to the MSDS, not linked by springs.
The positions of the particles are manipulated directly and constraints are used to limit the
positions. Stretch and bend constraints can for example be used to control the stretching and
bending of the object. Next to that, volume control can be achieved by adding a volume con-
straint. The physics of this method, however, is not accurate since it is not based on a physical
model and can only be used visually, for example in the gaming industry.

2.2.3 Finite Element Method

The Finite Element Method (FEM) (Basloom, 2016; Golec, 2018; Zhang et al., 2018) is a popular
method for performing simulations in the science and physics field. The method is widely used
for solving continuum mechanics problems and can handle complex geometries, for example
for analysis of structures, but also for heat transfer or fluids and many more. FEM discretizes
the object into a number of elements of finite size and solves partial differential equations by
computing approximations of the real solutions with high accuracy. The disadvantage of the
Finite Element Method is that it is very computationally expensive.

2.2.4 Boundary Element Method

The Boundary Element Method (BEM) (Basloom, 2016) discretizes only the boundary of an
object, in comparison to FEM, into a set of elements. Since only equations on the surface of
the object have to be solved, this method is obviously less computational expensive. BEM is
thus also only accurate on the boundary of the object.

2.2.5 Choice

The model will require sufficient accuracy to be useful, causing Position-Based Dynamics to
be dropped, since that method is not based on material properties. Also Boundary Element
Method will not be used because only results at the boundary is present. The remaining meth-
ods are Finite Element Method and Mass-Spring-Damper System. They are both good options
for the modelling of deformable objects, where FEM is more accurate but is computationally
expensive, and MSDS is faster but less accurate. The model will initially be used to simulate the
deformation of objects when in contact with a finger, and later for simulation of grasping and
eventually for real-time determining the required gripping force, grasping position or manipu-
lation of the object. With that in mind, MSDS will be the best option for this purpose, consider-
ing the potentially shorter simulation time. On top of that, MSDS is simpler to understand and
model, with a clearer understanding of what is happening.

Robotics and Mechatronics Jordi Luong
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Abstract—
Grasping and manipulation of deformable objects is still a

challenging problem in industrial automation and robotics. To
grasp a deformable object the right amount of force needs
to be used to on the one hand have a stable grasp and on
the other hand prevent damaging the object. Besides, the
object will deform when in contact with a grasping finger.
Therefore, the behaviour of a deformable object and its contact
with a finger needs to be understood. This paper proposes
a mass-spring-damper model with additional constraints for
volume preservation and spring deformation limits, and Hunt-
Crossley [9] and stick-slip contacts. Experiments with objects
made of silicone rubber are conducted to acquire data about
the deformation of an object when impacted by an external
fingertip. The influence of model parameters on the simulation
results are explored and fitted to minimize the error. The
results indicate that the proposed model can predict object
deformations with a normalized root mean square error of
2.2% in the explored situations.

I. INTRODUCTION

Grasping and manipulation of varying and deformable
objects is still a challenging problem in industrial automation
and robotics. Although gripping rigid objects is very devel-
oped, research in gripping deformable objects is limited but
important for further automation.

Grasping and manipulation of objects requires a stable
grasp to prevent slippage and pick up and manipulate the
object. For rigid objects it is sufficient if the grasping force
is large enough to generate enough friction. For deformable
objects, however, the right amount of force needs to be
used to on the one hand have a stable grasp and on the
other hand prevent damaging the object. On top of that, the
object will deform when a force is applied, which has to be
taken into account when grasping an object.

This paper takes a step back to understand the behaviour of
a deformable object and its contact with a finger by creating
a model. Researches on modelling deformable objects have
been conducted mainly in the medical sector. Duan et al. [6],
[7] created a model of soft tissues for an interactive surgical
simulation. The deformable organs are modelled by a volume
conserved mass-spring-damper system and the connection
between organs are modelled by springs with high stiffness.
The interaction between the organs and surgical instruments
are taken into account using a position-based method by
moving points of the object directly. The simulation has then

Fig. 1: Simulation result

been evaluated by experiments with real porcine liver and
gallbladder.

Mollemans et al. [12] presented a soft tissue model to
predict changes in the human face due to skeletal changes.
This model is used in a maxillofacial surgery planning sim-
ulation to plan the operation and predict the facial changes.
The modelling method used is a mass-spring system with
volume preservation.

Pathmanathan et al. [15] used the finite element method
and non-linear elasticity to create a model of a patients
breast. The model was used to simulate deformation of the
breast shape and predict tumor location.

Previous researches mainly focused on modelling soft
tissues/deformable objects, while research on the interaction
between a gripper finger and the object is very limited. This
paper develops a model of deformable objects and contact
with their environment. This model is a mass-spring-damper
model with additional constraints for volume preservation
and spring deformation limits, and Hunt-Crossley [9] and
stick-slip contacts. The model can be used to understand
the behaviour of a deformable object when in contact with
a finger. Experiments with objects made of silicone rubber
are conducted to acquire data about the deformation of an
object when impacted by an external fingertip. The influence



of model parameters on the simulation results are explored
and fitted to minimize the error. The results indicate that
the proposed model can predict object deformations with a
normalized root mean square error of 2.2% in the explored
situations. Fig. 1 shows a comparison of the simulation
result of a finger compressing a deformable object with the
experiment. The contributions of this paper are as follows:

• Development of a mass-spring-damper model and sim-
ulation for deformable objects with external finger con-
tact

• Performing experiments with deformable objects to
collect data of the deformations

• Exploration of the influence of model parameters on
the simulation error

Sec. II will give background information about mod-
elling deformable objects by giving a short comparison of
a mass spring damper system and finite element method
as modelling method. Sec. III explains the modelling of
deformable objects using the mass-spring-damper method
and Sec. IV discusses the contact model. The simulation
and integration method are elaborated in Sec. V. The design
of the experiment to acquire real data will be explained in
Sec. VI and the results of the experiment and simulations
and their comparisons are discussed in Sec. VII. This paper
will finally be concluded with the conclusion (Sec. VIII) and
recommendations (Sec. IX).

II. BACKGROUND

Two widely used modelling methods for continuously
deformable objects are the Mass-Spring-Damper System
(MSDS) and Finite Element Method (FEM).

A Mass-Spring-Damper System [3], [8], [21] represents
an object by discretizing the shape into a set of particles
in a lattice structure, which are connected by springs.
Each particle is a point-mass on which the spring forces
and external forces act. A mass-spring-damper system is
relatively simple to implement and has a low computational
cost. However, the low cost is in exchange for accuracy.
This method is widely used for the simulation of soft tissue
deformations for surgical training because the method can
be solved real-time.

The Finite Element Method [3], [8], [21] is a popular
method for performing simulations in the science and physics
field. The method is widely used for solving continuum
mechanics problems and can handle complex geometries,
for example for analysis of structures, but also for heat
transfer or fluids and many more. FEM discretizes the object
into a number of elements of finite size and solves partial
differential equations by computing approximations of the
real solutions with high accuracy. The disadvantage of the
Finite Element Method is that it is very computationally
expensive.

III. OBJECT MODEL

This section elaborates the modelling of the deformable
object using the mass-spring-damper system. Sec. III-A first
introduces meshing methods to discretize the object, after
which the structure and forces of a mass-spring-damper
system are elaborated in Sec. III-B. Thereafter, model pa-
rameters that are derived from physical material properties
are discussed in Sec. III-C. Finally, additional constraints for
the model are introduced in Sec. III-D to alter the behaviour
of the model.

A. Meshing

For the modelling of an object using a mass-spring-damper
system, the object has to be discretized using a meshing
method. In 3D, the most common meshes are tetrahedral
(Fig. 2a) and hexahedral (Fig. 2b) meshes [8].

A tetrahedral mesh is more suitable for representing com-
plex objects than a hexahedral mesh. However, a hexahedral
mesh gives more accurate results compared to a tetrahedral
mesh with the same resolution [11].

(a) Tetrahedral mesh (b) Hexahedral mesh

Fig. 2: 3D meshes

In this work we choose to use tetrahedral meshing, as
being able to mesh complex objects will be important for
further research.

Fig. 3 introduces the naming of the different parts of a
tetrahedral mesh. The geometrical name is shown in regular
font and its representation in the model is given in bold face.

Fig. 3: Nomenclature



B. Mass-spring-damper system
Using a meshing method, the object is discretized in a

set of particles pi, with i ∈ N, of mass mi and position
xi ∈ R3. The particles are connected with each other by
springs with a stiffness constant k, initial length l0, and in
parallel a damper with damping constant d. Fig. 4 visualizes
the mass-spring-damper structure of a single tetrahedron.

Fig. 4: Mass-spring-damper structure of a tetrahedron

The force fi ∈ R3 acting on the particle and the relation
between the acceleration of the particle and the force is:

miẍi = fi, (1)

where mi is the mass of particle pi and ẍi is the second
time derivative of the position of particle pi.

The force that acts on the particle is a summation of
all the internal spring and damping forces originating from
the spring between pi and pj , gravitation force and external
forces:

fi = fs,i + fd,i + fg,i +
∑

fe,i (2)

1) Elastic spring forces: The spring force acting on a
particle pi is the summation of spring forces originating from
springs that connect pi to other particles. The spring force
is linearly proportional to the elongation of the spring and is
given by Hooke’s law [7], [6]:

fs,i =
∑

j

k(i,j)(∥xj − xi∥ − l0,(i,j)) ·
xj − xi

∥xj − xi∥
, (3)

where k(i,j) is the spring stiffness and l0,(i,j) the initial
length of the spring connecting pi and pj . The value of the
spring stiffness will be described in Sec. III-C.2.

2) Damping forces: The damping forces are computed
using the viscous damping of the springs and these are given
by [6], [7]:

fd,i =
∑

j

d(i,j)
(vj − vi) · (xj − xi)

∥xj − xi∥
· xj − xi

∥xj − xi∥
, (4)

where v is the velocity of the particle and d(i,j) the damping
constant of the damper connecting pi and pj . The damping
constant is given in Sec. III-C.3.

3) Gravitation: The gravitation force is acting on every
particle of the mass-spring-damper system and is given by

fg,i = mig, (5)

where g =
[
0 0 −9.81

]
is the gravitational acceleration.

4) External forces: External forces, fe,i, are forces
that are applied on the object. This includes for example
gripping forces that are applied by grippers grasping the
object or contact forces of the environment.

5) Implementation: Alg. 1 shows the computation of the
spring and damping forces. The spring force acting on
particle pi is also applied on particle pj but negated.

Algorithm 1 Compute spring and damping forces

for each spring connecting particle i and j do
fs ← k(i,j)(∥xj − xi∥ − l0,(i,j)) · xj−xi

∥xj−xi∥
fd ← d(i,j)

(vj−vi)·(xj−xi)
∥xj−xi∥ · xj−xi

∥xj−xi∥

fi ← fi + fs + fd

fj ← fj − fs − fd

end for

C. Physical parameters

A model contains many variables and parameters that need
to be chosen. A number of these are based on material or
geometric properties. This section describes the parameters
that are derived from the object’s material and meshing.
Deriving good physical parameters of the mass-spring-
damper system is required in order to get a useful model
with sufficient accuracy. The parameters that have to be
derived are the masses of the particles and the stiffness and
damping coefficients of the springs and dampers respectively.

1) Mass: The most common method to calculate the point
masses of the particles is by dividing the mass of the object
over the particles [6], [7], [8]. The mass of each tetrahedron
is calculated from its volume and the objects mass density
and assume it is equally distributed among its four vertices.
The mass mi of particle pi is then given by

mi =
∑

∀j∈Ti

1

4
ρVj , (6)

where Ti is the union of all tetrahedra that contain particle
pi, ρ the mass density of the object and Vj the undeformed
volume of tetrahedron j.

2) Stiffness: Obtaining the stiffness of the springs of
an object can be done in mainly two ways: parameter
identification using experimental data, or analytically,
based on physical properties of the object. The parameter
identification approach is adjusting the stiffness of the
springs according to data acquired from experiments.
Golec [8] created an overview of methods and examples



of data-driven parameter identification. This approach will
optimize for a specific object under specific circumstances,
hence this limits the robustness of a simulation and small
changes might change the behaviour. Analytical derivation
of stiffness results from object properties such as elasticity
and viscosity. Golec [8] gives an overview of different
methods to determine the stiffness.

In this work we use the method of Lloyd [10] for cal-
culating the spring stiffnesses. For an object divided into
tetrahedra, the spring stiffness of the spring connecting
particle pi and pj is determined by

k(i,j) =
∑

e∈T(i,j)

2
√
2

25
leE, (7)

where T(i,j) is the set of tetrahedron elements that contain
edge (i, j), E the Young’s modulus of the object’s material
and le the equivalent edge length of the tetrahedron element
given by

le = (Ve
12√
2
)

1
3 . (8)

The equivalent edge length le is required for non regular
tetrahedrons (edges are of different length) [6], [7], [10].

3) Damping: The damping can be determined by choos-
ing a damping ratio ζ. The damper can be undamped (ζ = 0),
underdamped (0 < ζ < 1), critically damped (ζ = 1) or
overdamped (ζ > 1). For a critically damped system and
assuming that the system can be transformed into uncoupled
single degree of freedom systems, the damping coefficient
of the spring connecting pi and pj is given by

d(i,j) = 2

√
k(i,j)(mi +mj)

l0
, (9)

where k(i,j) is the stiffness, mi and mj the mass of pi and
pj respectively and l0 the initial length of the spring [8], [7],
[6], [14]. The damping coefficient is inversely proportional
to the initial length of the spring to ensure similar behaviour
for different meshing resolutions [14].

D. Additional constraints

The described linear mass-spring-damper model will
be accurate for small deformations but will lack accuracy
for larger deformations, which is important for a soft
deformable object, due to non-linearity. To change the
behaviour of the elongation and compression of springs
for larger deformations, spring constraints are introduced
in Sec. III-D.2. Another additional model constraint that is
applied is an approach to preserve the volume of an object,
as discussed in Sec. III-D.1.

1) Volume preservation: Many deformable objects can
be considered incompressible, meaning that the volume of
the object remains constant when deformation occurs.

For this model the volume preservation method of Molle-
mans et al. [12] is implemented. This method attempts to

preserve the volume by adding a correction force to the
particles. The force fi on particle pi now becomes

fi = fs,i + fd,i + fg,i +
∑

fe,i + αfvol,i, (10)

where fvol,i is the correction force and α a scaling constant
of which the influence is investigated in Sec. VII-C.3.

The method attempts to compensate for the volume dif-
ference by adding a correction force on the four particles of
the tetrahedron. Thereby the particles are pushed away from
or pulled towards the barycenter of the tetrahedron and the
volume of the element will increase or decrease respectively.
The force acting on particle pi is given by [8], [12]

fvol,i =
∑

∀j∈Ti

(Vj − V 0
j )

xi − xbj∥∥xi − xbj

∥∥ , (11)

where Ti is the union of all tetrahedra that contain particle pi,
Vj and V 0

j the current and initial volume of the tetrahedron
respectively, xi the position of particle pi and the barycenter
of the tetrahedron

xbj
=

1

4

4∑

i=0

xi. (12)

2) Spring constraints: Spring constraints [6], [7],
[16] are implemented to correct the position of particles
after integration as a post-processing step. These spring
constraints introduce non-linearity to the mass-spring-
damper system by limiting the elongation or compression
of springs for larger deformations.

When large forces are concentrated on the object, the
problem of large local deformation might occur, whereby
a small region of the object is overly and not realistically
stretched or compressed. By introducing constraints for
the spring length, this behaviour can be corrected. By
limiting the stretching and compression of the springs, the
deformation can be extended from a local region to a larger
region.

The idea is to find for each particle pi the mean of the
corrections ∆xi which satisfy the constraint functions and
update the integrated position by

xi = xi +
1

nconstraints

∑

ϵi

∆xi, (13)

where ϵi is the set of edges containing particle pi and
nconstraints the number of edges in ϵi.

For the over-stretching constraint a parameter τs is set.
When the spring length exceeds (1 + τs)l0, where l0 is the
initial length of the spring, the constraint tries to compress
the spring again to its maximum length.

The constraint is given by

Cstretch = (1 + τs)l0 − ∥xi − xj∥ ≥ 0. (14)



If Cstretch < 0, the spring length is larger than the maximum
length and the corrections ∆xi and ∆xj for particles pi and
pj respectively are computed by

∆xi =
1

2
Cstretch

xi − xj

∥xi − xj∥
∆xj = −

1

2
Cstretch

xi − xj

∥xi − xj∥
.

(15)

Fig. 5 illustrates an example of the influence of the over-
stretching constraint on the deformation by hanging an object
on its top two corners while subject to gravity. Fig. 5a shows
the initial mesh and Fig. 5b shows the result when no over-
stretching constraint is applied (τs =∞). In this case, large
deformation occurs at the corners of the object. In Fig. 5c
τs = 0.1, where it is clear that the springs at the corners are
less deformed and the deformation occurs more globally.

(a) Initial mesh (b) τs = ∞ (c) τs = 0.1

Fig. 5: Over-stretching constraint [7]

The over-compressing constraint is comparable to the
over-stretching constraint with a parameter τc. When the
spring length is less than (1 − τc)l0, the constraint will try
to elongate the spring back to the minimum length.

This constraint is given by

Ccompress = ∥xi − xj∥ − (1− τc)l0 ≥ 0. (16)

If Ccompress < 0, the spring length is smaller than the
minimum length and the corrections ∆xi and ∆xj are
computed using

∆xi = −
1

2
Ccompress

xi − xj

∥xi − xj∥
∆xj =

1

2
Ccompress

xi − xj

∥xi − xj∥
.

(17)

Fig. 6a depicts the influence of the over-compression
constraint with an example. The object is fixed at the top
and at the bottom an external force is applied in the center.
When no over-compression constraint is applied (τc = ∞)
the deformation of the object is large and local as shown in
Fig. 6b. By applying the over-compression constraint with
τc = 0.1 the deformation is reduced and more globally.

(a) Initial mesh (b) τc = ∞ (c) τc = 0.1

Fig. 6: Over-compression constraint [7]

The spring constraint parameters τs and τc have a
significant influence on the deformation properties of the
object. The impact of these parameters are explored in
Sec. VII-C.2 and Sec. VII-C.1.

3) Implementation: Alg. 2 shows the implementation of
the volume preservation correction forces and Alg. 3 the
implementation of the spring constraints.

Algorithm 2 Compute volume preservation forces

for each element j do
Vj ← 1

6 det
([
x1 − x4 x2 − x4 x3 − x4

])

for each particle i in j do
xbj
← xbj

+ 1
4xi

end for

for each particle i in j do
fi ← fi + α(Vj − V 0

j )
xi−xbj

∥xi−xbj∥
end for

end for

IV. CONTACT MODEL

For the contact model, the interacting object is simplified
and modelled as a sphere with center position xf and radius
Rf . The surface of the deformable object is divided into
facets (planar triangles) originating from the tetrahedra on the
boundary. The contact model consists of four parts. First, for
each facet within range of the finger, it is determined whether
there is contact between the finger and facet and what the
contact position then would be. When there is contact, the
normal and tangential forces are computed. Finally, the total
contact force is divided into nodal forces acting on the three
particles of the facet.

A. Contact detection

The detection of contact between the finger and facet
is done in two ways. First it is checked if the finger is in
contact with the face of the facet. When that is not the case,
contact on the edge of the facet is considered. If there is
also no edge contact, the finger is not in contact with the
facet.



Algorithm 3 Apply spring constraints

for number of iterations do
∆xi ← 0
∆xj ← 0

for each spring connecting particle i and j do
Cstretch ← (1 + τs)l0 − ∥xi − xj∥
if Cstretch < 0 then

∆xi ← ∆xi +
1
2Cstretch

xi−xj

∥xi−xj∥
∆xj ← ∆xj − 1

2Cstretch
xi−xj

∥xi−xj∥
end if

Ccompress ← ∥xi − xj∥ − (1− τc)l0
if Ccompress < 0 then

∆xi ← ∆xi − 1
2Ccompress

xi−xj

∥xi−xj∥
∆xj ← ∆xj +

1
2Ccompress

xi−xj

∥xi−xj∥
end if

end for

for each particle i do
xi ← xi +

1
n∆xi

end for
end for

1) Contact on facet: The plane of the facet is given by

Ax+By + Cz +D = 0. (18)

The normal vector of that plane is

n =
[
A B C

]T
. (19)

The equation for the sphere representing the finger f is

(x− xf)
2 + (y − yf)

2 + (z − zf)
2 = R2

f , (20)

where xf the x-position and Rf the radius of the finger.

The normal vector n passing through the center of the
finger is given by the following parametric line equation [1]:

L = xf +At, yf +Bt, zf + Ct. (21)

The intersection between the line and plane is then found by
first substituting Eq. 21 into Eq. 18, resulting in

A(xf +At) +B(yf +Bt) + C(zf + Ct) +D = 0. (22)

By eliminating t the following expression is found:

t = −Axf +Byf + Czf +D

A2 +B2 + C2
. (23)

The intersection point on the plane is then

xc =



xf +At
yf +Bt
zf + Ct


 . (24)

Thereafter, it is checked whether the intersection point lies
within the facet and the distance between the finger center
and the intersection point is smaller than the finger radius.

If these conditions are met, the intersection point is also the
contact point between the finger and facet.

2) Contact on edge: To determine the possible contact
point on an edge of the facet, the projection with the smallest
distance of the finger position xf onto each of the three edges
of the facet are computed with the following formula [13]:

xc = xA +
(xf − xA) · (xB − xA)

(xB − xA) · (xB − xA)
(xB − xA), (25)

where A, B and C are the vertices of the facet.

When the distance between the closest projection and the
finger center is smaller than the finger radius, that projection
point is also the contact point of the finger on the edge. The
normal vector n is then given by the vector between the
finger center position and the contact point.

B. Normal force model

The method used for the computation of the normal
forces is the Hunt-Crossley model [9]. We provide a brief
overview here.

The normal force [5], [19] of a facet j when in contact
with a finger is given by

fn,j = Kδnj

(
1 +

3(1− ϵ)

2

δ̇j

δ̇0,j

)
nj , (26)

where K is the contact stiffness depending on material
properties and shape of the finger and object, ϵ the coefficient
of restitution, δj the penetration depth of the finger into the
facet, δ̇0,j the relative normal velocity between the finger
and facet when the contact was initially detected and nj

the direction of the normal force.

For the contact between a sphere (finger) and plane (facet
of the object), the contact stiffness K is given by

K =
4

3(σf + σo)

√
Rf , (27)

where Rf is the radius of the spherical finger and σf and σo

are expressed by

σf =
1− ν2f
Ef

, σo =
1− ν2o
Eo

, (28)

where Ef and Eo are the Young’s modulus of the finger
and object respectively, and νf and νo the Poisson’s ratio.

The penetration depth δj of the finger into facet j is

δj = Rf − ∥xf − xc,j∥ , (29)

where Rf the finger radius, xf the finger position and xc,j

the contact position. Fig. 7 shows a schematic side view of
the finger in contact with a facet.



Fig. 7: Side view of the finger in contact with a facet

C. Tangential force model

The tangential force is formulated using a stick-slip model
[5], [19] with the sticking force fstick at low velocities and
slipping force fslip at high velocities.

A transition function is used for a smooth transition
between the two forces as given by the following formula
for the tangential force:

ft,j = Sfstick,j + (1− S)fslip,j , (30)

where S is the transition function

S = e−(vT
t,jvt,j)/v

2
stick , (31)

where vt,j is the tangential velocity and vstick the velocity of
the transition between stick and slip. The transition function
S has the following behaviour:

S =

{
0 ∥vt,j∥ ≫ vstick

1 ∥vt,j∥ = 0
(32)

The tangential velocity is derived as

vt,j = ẋc,j − (nT
j · ẋc,j)nj , (33)

where ẋc,j the velocity of the contact point and nj the
normal vector at the contact point.

The slipping force is given by Coulomb’s law of friction

fslip =

{
0 ∥vt,j∥ = 0

−µ ∥fn∥ vt,j

∥vt,j∥ ∥vt,j∥ > 0
(34)

where µ is the friction coefficient.

The sticking force is given by

fstick =

{
0 d = 0
fstick

d

(
I − njn

T
j

)
(xc,j − xstick,j) d > 0

(35)
where xc,j the contact position, xstick,j the initial contact
position at the moment of first contact, d = ∥xc,j − xstick,j∥
and

fstick = −kstickd− cstickḋ, (36)

where kstick and cstick the stiffness and damping coefficient
of the stiction model.

D. Nodal forces

The total contact force on a facet is the sum of the normal
force and tangential force:

fj = fn,j + ft,j (37)

The contact force on each facet then has to be converted into
nodal forces, meaning that the force needs to be distributed
amongst the three particles of the facet. The nodal forces are
computed using the matrix shape function H [20], which is
based on the areas of the facet as shown in Fig. 8. The shape
function Hj for facet j is

Hj =




A1,j
Aj

0 0
A2,j
Aj

0 0
A3,j
Aj

0 0

0
A1,j
Aj

0 0
A2,j
Aj

0 0
A3,j
Aj

0

0 0
A1,j
Aj

0 0
A2,j
Aj

0 0
A3,j
Aj


 (38)

where Aj is the area of facet j.

Fig. 8: Division of facet j into three areas by the contact
point xc,j

The nodal forces are then calculated with


f1,j

f2,j

f3,j


 = HT

j fj (39)

E. Implementation

Alg. 4 shows the implementation of the contact model
consisting of a contact detection, normal force model and
tangential force model.

V. SIMULATION

Fig. 9 gives the simulation overview of the mass-spring-
damper and contact model. First the object will be meshed
for discretization in particles, as discussed in Sec. III-A.
Thereafter, the simulation loop will start running. Every
time step, several steps are executed. At first, the spring
forces (Sec. III-B) and contact forces (Sec. IV) are computed.
Subsequently, the correction forces for volume preservation
are computed, as described in Sec. III-D.1. After computing
the forces, the states are updated by calculating the new
position and velocity of the particles and finger(s). The
integration is elaborated in Sec. V-A. Next, spring constraints
are applied to modify and correct the behaviour of the model
as explained in Sec. III-D.



Algorithm 4 Calculate contact forces

for each facet j do
for each finger f do

if ∥xj − xf∥ ≤ cRf then
if contact on facet then ▷ facet contact

xc,j ← contact point on facet
nj ← normal of facet

else if contact on edge then ▷ edge contact
xc,j ← contact point on edge
nj ← xc,j−xf

∥xc,j−xf∥
else ▷ no contact

continue
end if

▷ normal force
δj ← Rf − ∥xf − xc,j∥
if δj ≤ 0 then

fn,j ← 0
else

fn,j ← Kδnj

(
1 + 3(1−ϵ)

2
δ̇j
δ̇0,j

)
nj

end if
▷ tangential slipping force

vt,j ← ẋc,j − (nT
j · ẋc,j)nj

if ∥vt,j∥ = 0 then
fslip ← 0

else
fslip ← −µ ∥fn∥ vt,j

∥vt,j∥
end if

▷ tangential sticking force
d← ∥xc,j − xstick,j∥
if d = 0 then

fstick ← 0
else

fstick ← fstick
d

(
I − njn

T
j

)
(xc,j−xstick,j)

end if
▷ tangential force

ft,j ← Sfstick,j + (1− S)fslip,j

fj = fn,j + ft,j[
fj,1 fj,2 fj,3

]T
= HTfj

end if
end for

end for

A. Integration method

The mass spring damper system can be written as a system
of first order differential equations:

{
v̇ = f(t,x,v)

m ,

ẋ = v.
(40)

This system needs to be solved using an integration method.

Both explicit and implicit integration methods [8],
[21] are considered. Using explicit integration, the next
state is determined explicitly from the current state. The
implementation of this kind of integration is simple and

Fig. 9: Simulation overview

computationally inexpensive, since all required values are
already known from the current state. The disadvantage
however, is that an explicit integration is only conditionally
stable and requires a very small time step, resulting in a
slow simulation.

An implicit integration method, on the other hand, is
unconditionally stable. The future state is computed from
the current and future state. Therefore, it needs to solve a
system of equations to acquire the next state. This results in
a longer computation time for each time step, however, due
to the stability of implicit integration the time step can be
increased significantly.

1) Implicit Euler: The implicit Euler (backward Euler)
scheme [2] is used for the integration of the system. The
system of equations to be solved is then given by
{
xn+1 = xn +∆x = xn +∆t vn+1

vn+1 = vn +∆v = vn +∆t M−1f(tn,xn+1,vn+1)
(41)

where M is the mass matrix and f(tn,xn+1,vn+1) is the
Taylor expansion

f(tn,xn+1,vn+1) = fn +
∂f

∂x
∆x+

∂f

∂v
∆v, (42)

where ∂f
∂x and ∂f

∂v are the Jacobians.
By substituting Eq. 41 into Eq. 42 and after rewriting, the

following equation is found:
(
M −∆t

∂f

∂v
−∆t2

∂f

∂x

)
∆v = ∆t

(
fn +∆t

∂f

∂x
vn

)
.

(43)
This equation is in the form of a matrix-vector system

A∆v = b. Using the conjugate gradient method this system
can be solved by approximating ∆v. Consequently, ∆x can
then also be computed and the position and velocity of the
particles can be updated.

2) Conjugate gradient method: The conjugate gradient
method [17] is an iterative method for solving large systems
of equations of the form Ax = b, where A a known
square matrix, b a known vector and x the solution vector.



This method tries to approach the solution by solving the
following minimization problem:

min
x

f(x) =
1

2
xTAx− bTx. (44)

3) Implementation: Alg. 5 gives the implementation of
integration and Alg. 6 the algorithm of the conjugate gradient
method.

Algorithm 5 Update / Integrate

for each spring do
compute Jacobians

end for

Solve A∆v = b

for each particle i do
vi ← vi +∆vi dt
xi ← xi + vi dt
fi ← 0

end for

for each finger f do
update finger

end for

Algorithm 6 Conjugate gradient method

i← 0
r ← b−A∆v
d← r
δnew ← rTr
δ0 ← δnew

while i < imax and δnew > ϵ2δ0 do
q ← Ad
α← δnew

dTq
∆v ← ∆v + αd
r ← r − αq
δold ← δnew
δnew ← rTr
β ← δnew

δold
d← r + βd
i← i+ 1

end while

VI. EXPERIMENT DESIGN

Experiments are performed to validate and fit the model
and simulation. The goal of the experiment is to collect
data of the behaviour and deformation of deformable objects
when a finger is in contact. Therefore, a set-up is designed
to apply finger contact on an object with increasing force.
That data can then be used for the validation and parameter
fitting of the model.

A. Objects

Several objects are used for the experiment of different
materials and shapes.

The following silicone rubber materials are used for the
test objects:

1) Ecoflex 00-20
2) Dragonflex 20

The objects are of the following shapes:
1) cuboid, 50 x 50 x 20 mm
2) cylinder, �80 x 53.3 mm

B. Experimental set-up

The experimental set-up consists of a frame and a con-
struction that can move vertically, as shown in Fig. 10. The
construction is on the one end attached to a platform for
weights to be placed on and on the other end to a force
sensor. The other side of the force sensor is connected to
a finger holder where fingers can be easily changed. The
different fingers are approximations of the fingertips of a
gripper and are used for the contact with the objects. The
fingers are spherical fingertips with varying radius and a flat
plate as shown in Fig. 11.

Fig. 10: Experimental set-up

Fig. 11: Different fingers



By putting weight on the platform, a certain force
is applied on the object. The force sensor is an extra
measurement to make sure there is no unforeseen friction
that affects the force.

Experiments are performed by increasing the weight/force
and determining the deformation of the object at several
points as shown in Fig. 12. Points 0 to 7 are positions
on the object and point 8 is the position of the finger.
The corresponding points of the simulations will then be
compared to these points from the experiment to compute the
simulation error. Note however that the position of the points
are only evaluated in two directions and there will be no
information about the depth of the points in the experiment.
The experiment has been repeated for different combinations
of objects and fingers.

Fig. 12: Points on an object

C. Model parameters fitting

As described in Sec. III-D, a few model parameters
needs to be chosen that are not derived from material or
geometric properties. The parameters τs and τc define the
spring constraints and limit the stretching or compression of
the springs, and α is the impact of the volume preservation
correction force. The main interest when choosing these
parameters is the effect on the deformation of the object.
Using the data from the experiments, these parameters can be
fitted by minimizing the error of the model using the points
as described above. The parameters of the stick-slip contact
model are not explored in-depth as these will impact the
friction between the object and finger, and will not influence
the deformation behaviour of the object significantly.

D. Error calculation

To calculate the error of the model/simulation in compar-
ison with the experimental data, the root mean square error
(RMSE) is computed for the eight points of the object. The
formula for the root mean square error is given by

RMSE =

√√√√ 1

n

n∑

i=1

∥xsim,i − xexp,i∥2, (45)

where n = 8 is the number of points, xsim,i the position
of point i of the simulation and xexp,i the same point of
the corresponding experiment. The root mean square error

is subsequently normalized by dividing by the length of the
object:

normalized RMSE =
RMSE

l0
. (46)

By assuming the object is incompressible and the volume
remains constant, which can be assumed for silicone rubbers
if not all directions are constrained [18], the error in volume
is computed by

volume error = |V − V0|, (47)

where V0 the initial volume of the object, and the normalized
volume error is

normalized volume error =
volume error

V0
. (48)

VII. RESULTS

This section shows some results of a small selection of
the experiments and simulations performed.

A. Results experiments

Fig. 13 shows two images of the experiment with the
cuboid object of the relatively soft material Ecoflex 00-20.
The object is deformed by a larger finger and the results are
shown at two different weights.

(a) Weight of 553 g (b) Weight of 1460 g

Fig. 13: Cuboid Ecoflex 00-20 with large finger

Two results of the cuboid made from the stiffer material
Dragonskin 20 are shown in Fig. 14. Here the deformations
with a small finger are shown.

(a) Weight of 2159 g (b) Weight of 3176 g

Fig. 14: Cuboid Dragonskin 20 with small finger



Fig. 15 shows the result at two different weights for the
cylinder object of Ecoflex 00-20, compressed by a flat plate.

(a) Weight of 1634 g (b) Weight of 3347 g

Fig. 15: Cylinder Ecoflex 00-20 with plate

Since the deformation of the cuboid made of Ecoflex
00-20 in combination with the large finger gives the most
interesting results, this scenario will be the main focus of
this section. Fig. 16 shows the points, as defined by Fig. 12,
of the object for weights ranging from 0 to 1460 grams.
Note that the lines between the points are only connecting
the points and are not representable for the boundary of the
deformed object, as the object boundary will be curved as
can be seen in Fig. 13. From Fig. 16 it is clear that for an
increasing weight/force the object will be compressed by the
finger on the top and the sides will bulge out as expected. It
can also be seen that the top corners of the object slowly bend
inwards and that the bottom points do not deform, probably
due to friction.

Fig. 16: Points of the object for range of weights

B. Young’s modulus

For the simulation, the material property Young’s modulus
has to be set correctly for the object, since this will affect
the stiffness of the deformable object. The Young’s modulus
is found by using the acquired experimental data from the
experiments with the flat plate at different weights, the
compression test. For each weight/force the stress σ and

strain ϵ are computed which are given by

σ =
F

A
, ϵ =

∆l

l0
, (49)

where F is the force, A the area the force is applied on, ∆l
the change in length and l0 the initial length of the object
in the direction of the force, as shown in Fig. 17. Fig. 18
shows the stress-strain curve of the three different objects.

Fig. 17: Compression test

Fig. 18: Results of compression test

The Young’s modulus E is then found by fitting a line
through the initial linear part of the stress-strain curve
(dashed lines in Fig. 18) and computing

E =
σ

ϵ
. (50)

Tab. I shows the found Young’s moduli of the three objects
using data from the compression test.

TABLE I: Young’s moduli

Material Shape Young’s modulus E

Ecoflex 00-20 cuboid 57.6 kPa
Ecoflex 00-20 cylinder 76.6 kPa
Dragonskin 20 cuboid 679.8 kPa

C. Parameters fitting
For the fitting of the model parameters, a large collection

of simulation data is acquired for the situation where the
Ecoflex 00-20 cuboid is deformed by the large finger with a
weight of 992 grams or 9.73 N.



1) Compression constraint parameter τc: Simulations
have been executed for a range of values for τc, ranging
from 0.01 to 0.25, where the other two parameters are set
to τs = 0.15 and α = 7 · 106. Fig. 19a shows the contours
of the object for a few simulations and the points from the
experiment. It is clear from this figure that for a low value
of τc, meaning that the springs are not allowed to compress
much, the deformation of the object is also small and does
not reach the depth of the experiment. For an increasing
value of τc the finger deforms the object more and the depth
also increases. Meanwhile, when τc is set too high, the
object is overly compressed. Another behaviour to notice is
that the sides of the object bulges out more for increasing
compression.

The effect of τc is reflected in the error of the simulations
compared to the experiment. Fig. 20a shows the normalized
root mean square error, showing the error of each simulation
as an orange marker and a fitted curve in blue. It can be seen,
as expected from Fig. 19a, that the error is at its minimum
for values of τc where the depth of the deformation is around
the point of the experiment. For an increasing or decreasing
value, the error will increase.

2) Stretching constraint parameter τs: To see the effect
of τs, simulation have been performed, where τs ranges
from 0.01 to 0.25, τc = 0.15 and α = 7 · 106. The
contours of the object after simulation and the points of the
corresponding experiment are shown in Fig. 19b. The effect
of τs is less clear than for τc, since the finger compresses
the object. However, it can be noticed that τs does not have
much influence on the compression of the object by the
finger. The effect is more visible at the top corners of the
object, where for lower values of τs the corners are pulled
down and inwards by the deformation, since the springs
between the contact point and the corners cannot stretch a
lot. While for larger values of τs the deformation is more
local and the corners are less affected.

The normalized RMSE of the simulations are shown in
Fig. 20b. It can be concluded that indeed τs has less influence
on the deformation and thus error than τc, as shown by the
flatter curve. This could be explained by the fact that the
experiment mostly puts the object under compressive stress.
For this specific situation the minimum error is achieved
at τs ≈ 0.15 and for lower values the error only increases
slightly. However, for values larger than where the minimum
error occurs, the error will increase rapidly.

3) Volume preservation parameter α: For the volume
preservation coefficient α simulations are conducted for
values ranging from 105 to 108 and τs = τc = 0.15. Fig. 21
shows the normalized volume error of the simulations in
comparison with the initial volume of the object, assuming
the object is incompressible and the volume stays constant.
The figure shows that for larger values of α the error
decreases, as expected since for higher values the volume
correction force is also higher.

(a) τc ∈ [0.01, 0.25], τs = 0.15 and α = 7 · 106

(b) τs ∈ [0.01, 0.25], τc = 0.15 and α = 7 · 106

Fig. 19: Simulation results for different values of parameters

4) Parameters τs, τc and α: In order to find the best fit
for the parameters and minimize the error, it is not sufficient
to only know the effect of a single parameter. All three
parameters influence the behaviour of the object model and
thus the error has to be minimized for a set of parameters
τs, τc and α. First, Fig. 22 shows the normalized RMSE for
τs and τc ranging from 0.01 to 0.25 and a fixed α. This plot
shows the best combinations of τs and τc for a specific α.
It can be seen that the error is minimal in the center area of
the surface, where the value of τs and τc are around 0.15.

To also include the effect of α, Fig. 23 shows the same
plot as before for three values of α. Note that for these plots
the number of values for τs and τc are reduced. Fig. 23a
shows a comparable result as Fig. 22, where there is a clear
valley around τs = τc = 0.15. For α = 107 and α = 108,
Fig. 23b and Fig. 23c respectively, the valley is elongated
towards lower values of τs, where τc is still 0.15.



(a) τc ∈ [0.01, 0.25], τs = 0.15 and α = 7 · 106

(b) τs ∈ [0.01, 0.25], τc = 0.15 and α = 7 · 106

Fig. 20: Errors for different values of parameters

Fig. 21: Error for α ∈ [105, 108], τs = 0.15 and τc = 0.15

D. Simulation results

The best fit of the model parameters is achieved by
minimizing the root mean square error and is found for
τs = 0.16, τc = 0.155 and α = 6 · 106. The RMSE
and normalized RMSE are 1.11 mm and 2.2% respectively.
Fig. 24 shows two figures comparing the contours of the
simulation result with the image of the experiment. It can
be seen that the simulated deformed object and the position
of the finger mostly matches with the experiment. Fig. 25
shows images of the simulation itself.

Fig. 22: Error for τs ∈ [0.01, 0.25], τc ∈ [0.01, 0.25] and
α = 7 · 106

Fig. 24: Comparison of simulation result with experiment

VIII. CONCLUSIONS

This paper proposed a model of deformable objects and
their contact with fingers. The model is a mass-spring-
damper model with additional constraints for volume preser-
vation and spring deformation limits, and Hunt-Crossley [9]



(a) α = 106 (b) α = 107 (c) α = 108

Fig. 23: Errors for different values of α and τs ∈ [0.01, 0.25], τc ∈ [0.01, 0.25]

Fig. 25: Images of the simulation with the best fit parameters

and stick-slip contacts. This model is used to understand
the behaviour of a deformable object when in contact with
a finger. Experiments with objects made of silicone rubber
are conducted to acquire data about the deformation of an
object when impacted by an external fingertip. The influence
of model parameters on the simulation results are explored
and fitted to minimize the error. The results indicate that
the proposed model can predict object deformations with a
normalized root mean square error of 2.2% in the explored
situations. The simulation can later be extended by grasping
and picking up an object and be used for planning the
grasping and manipulation of deformable objects.

IX. RECOMMENDATIONS

To extend and improve the model and simulation a few
recommendations are proposed.

First of all, several additions to the contact model are
presented. Currently, the finger is simplified to a sphere
with a center position and radius for easy and fast contact
detection. To account for fingers with other geometries, the
contact model can be extended with for example cubic or
cuboid fingers. Therefore, the contact detection and contact
force will change. The next step would be to combine

multiple simple geometries to create a more complex fin-
ger. Optimally, the finger is also represented by a meshed
(deformable) object, however that would increase the com-
putation time drastically, since a large amount of possible
contacts have to be checked and computed. Another contact
improvement is to add collision of the object with the ground
or table, allowing the object to fall and slide on the ground.
The last contact addition is self-collision to prevent the object
from moving into itself.

For the volume preservation a more complex method could
be used that also depends on material properties. Baudet et
al. [4] proposed a method to take into account the Young’s
modulus and Poisson ratio for determining the spring stiff-
ness and correction forces for volume preservation. Golec [8]
gives an overview of other methods for volume preservation.

Friction of the contact model between the object and finger
is important for grasping the object. In order to extend the
simulation to grasping and manipulation and create a reliable
model, the friction behaviour has to be investigated in more
details. Therefore, it is recommended to conduct experiments
to find the friction coefficients, and the stick-slip behaviour
and parameters.

The meshing method and resolution will influence the
behaviour of the model. To find the optimal mesh, as far



as possible since that will differ for each object, the effect
of meshing (e.g. tetrahedral/hexahedral/other geometries or
structured/unstructured) and resolution of the mesh might be
investigated.
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4 Software overview

The simulation software with the model is implemented in C++ of which the class diagram is
shown in Figure 4.1. This diagram gives the structure of the classes of the implementation.

4.1 Simulator

The Simulator represents the simulation, which stores the Object, one or multiple
Fingers, optionally aViewer to visualize the simulation and simulation parameters (volume
preservation constant α, over-stretching and over-compression constraint parameters τs and
τc respectively) and the simulation time step. The Simulator is also responsible for the flow
of the simulation by running the simulation loop. For each time step, at first the spring forces
and the contact forces are computed. Thereafter, the correction forces for volume preservation
are calculated and the states are updated by computing the new position and velocity of the
particles and finger(s). After the integration, the spring constraints are applied.

4.2 Object

The Object class represents the deformable object and is a container for all parts represent-
ing the discretized object for a mass-spring-damper system. The Object has a mass density,
Young’s modulus and Poisson’s ratio and consists of Particles, Springs, Elements and
Facets. The mesh is generated by the library TetGen (Si, n.d.), which divides a geometry into
tetrahedra using the Delaunay triangulation algorithm.

Particle

A Particle represents a mass point of the discretized object. The Particle keeps track of
its mass, position, velocity, acceleration, force and whether it is fixed.

Spring

A Spring represents the spring and damper in parallel between two Particles. A Spring
has a stiffness and damping value, and an initial length.

Element

An Element represents a tetrahedron and contains four Particles and six Springs. Each
Element has a current and initial volume, equivalent length, mass density and Young’s mod-
ulus.

Facet

A Facet represents a triangular planar face of a tetrahedron that lies on the boundary of the
object and consists of three Particles. The Facet keeps track of the contact between a
finger and itself, assuming each facet can at most be in contact with one finger.

4.3 Finger

AFinger is a simplification of a gripper finger in a sphere. AFinger has the properties mass,
radius, Young’s modulus and Poisson’s ratio, and position, velocity, acceleration and force. A
Finger can be actuated in two ways. The first method is force-controlled, whereby the finger
moves due to a force acting on it or gravity. The second method is velocity-controlled, where
the finger moves at a certain speed.
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4.4 Viewer

The Viewer visualizes the Object, Fingers, contact points and forces using the Easy3D
(Nan, 2021) library.

Figure 4.1: Class diagram of the software
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5 Results

Section 5.1 shows some additional results of the experiments and Section 5.2 some of the sim-
ulation results.

5.1 Experiment results

5.1.1 Cuboid Ecoflex 00-20

Figure 5.1 visualizes results of the experiment with the cuboid object made of Ecoflex 00-20
with the large finger compressing the object. The experiment is performed for weights up to
1.46 kg. Figure 5.1a to Figure 5.1c shows the deformation of the object at three different weights.
Figure 5.1d shows the eight points of the object after deformation for different weights. Note
that the lines between the points are only connecting the points and are not representable for
the boundary of the deformed object. It can be seen that for an increasing weight/force the
object will be compressed by the finger on the top and the sides will bulge out as expected. It
can also be seen that the top corners of the object slowly bend inwards and that the bottom
points do not deform, probably due to friction. Figure 5.1e shows the x and z positions of the
points, where the same behaviour can be seen.

(a) Weight of 605 g (b) Weight of 992 g (c) Weight of 1460 g

(d) Points of experiments (e) x and z positions of the points

Figure 5.1: Cuboid Ecoflex 00-20 with large finger
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Figure 5.2 shows similar images and plots as Figure 5.1 for the situation where the same object
is compressed by a smaller finger. The results are comparable to the large finger, but with a
more local deformation due to the smaller contact area of the smaller finger.

(a) Weight of 600 g (b) Weight of 825 g (c) Weight of 1185 g

(d) Points of experiments (e) x and z positions of the points

Figure 5.2: Cuboid Ecoflex 00-20 with small finger

Figure 5.3 shows the experiment results of a flat plate compressing the cuboid object. As can
be expected, by increasing the weight, the object compresses and bulges out more.
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(a) Weight of 1001 g (b) Weight of 1630 g (c) Weight of 2269 g

(d) Points of experiments (e) x and z positions of the points

Figure 5.3: Cuboid Ecoflex 00-20 with flat plate

5.1.2 Cylinder Ecoflex 00-20

Figure 5.4 to Figure 5.6 shows images of the experiments on the cylinder object of the material
Ecoflex 00-20. The large finger, small finger and flat plate are respectively pushing on the object.
It can be seen that the fingers do not compress the object significantly and that there is only a
slight deformation visible in the width of the object. The large and small fingers deform the
object very locally, resulting in the fingers being enclosed by the object.

(a) Weight of 992 g (b) Weight of 2170 g (c) Weight of 3183 g

Figure 5.4: Cylinder Ecoflex 00-20 with large finger
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(a) Weight of 600 g (b) Weight of 1187 g (c) Weight of 2158 g

Figure 5.5: Cylinder Ecoflex 00-20 with small finger

(a) Weight of 1160 g (b) Weight of 1984 g (c) Weight of 3019 g

Figure 5.6: Cylinder Ecoflex 00-20 with flat plate

5.2 Simulation results

Figure 5.7 shows the contours of the deformed object from simulations during the model para-
meters exploration mentioned in Chapter 3. The white markers are points of the object from
the experiment.

Figure 5.7: Simulation results for a wide range of parameters
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In Figure 5.8 the same object (cuboid Ecoflex 00-20) is compressed by the large finger with three
different weights. The model parameters are set to the same value (as found in Chapter 3), only
the weight of the finger has been changed. The results of the simulations are in accordance
with the experiments in Figure 5.1.

(a) Weight of 605 g (b) Weight of 992 g (c) Weight of 1460 g

Figure 5.8: Simulation of cuboid Ecoflex 00-20 with large finger

The same simulation is performed on the cylinder object with the large finger. Figure 5.9 shows
the deformation at three different weights.

(a) Weight of 992 g (b) Weight of 2170 g (c) Weight of 3183 g

Figure 5.9: Simulation of cylinder Ecoflex 00-20 with large finger

Figure 5.10 visualizes the deformation of the object at three time steps during a grasping simu-
lation. The cuboid object is being pinched by two fingers that are slowly moving towards each
other. This kind of simulation can help understanding the behaviour of the object during a
grasp and find the optimal gripping position.
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Figure 5.10: Simulation of two fingers pinching cuboid Ecoflex 00-20 at three moments
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6 Conclusions

This thesis proposed a model of deformable objects and their contact with fingers. The model
is a mass-spring-damper model with additional constraints for volume preservation and spring
deformation limits, and Hunt-Crossley Hunt and Crossley (1975) and stick-slip contacts. This
model is used to understand the behaviour of a deformable object when in contact with a fin-
ger. Experiments with objects made of silicone rubber are conducted to acquire data about
the deformation of an object when impacted by an external fingertip. The influence of model
parameters on the simulation results are explored and fitted to minimize the error. The res-
ults indicate that the proposed model can predict object deformations with a normalized root
mean square error of 2.2% in the explored situations. The simulation can later be extended by
grasping and picking up an object and be used for planning the grasping and manipulation of
deformable objects.
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Appendices

A Experimental set-up

Figure A.1 shows the set-up for the experiment.

Figure A.1: Experimental set-up
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B Try-outs

In order to get more insight in the modelling of deformable objects and test the feasibility and
software, simple or less complex models have been implemented.

B.1 State-space in MATLAB

First simple mass-spring-damper systems in 2D have been created in a state-space model in
MATLAB. A state-space model is described in the form

ẋ = Ax +Bu

y =C x +Du
(B.1)

where x is the state (position and velocity of each particle), u the input (external forces) and y
the output.

These models gave fast and good initial results, but a state-space representation is very limited
for simulation. The reason for this is that the complete system is completely described initially
and cannot depend on external factors such as gripper interactions.

B.2 ODE in MATLAB

To solve the limitation of the state-space models, deformable object models in 2D have been
rewritten in ordinary differential equations. Therefore, a second-order differential equation
has to be rewritten in two first order differential equations for each particle. This results in

d y

d t
= f (t , y)

y =
[

x
ẋ

] (B.2)

where t is the time and x the positions of the particles.

The differential equations are then solved by the ODE-solvers of MATLAB. This method gave
good results as well, with more freedom to interact with the object. However, when extending
to 3D, more particles or more complex situations, the description of the state in one vector y is
messy and confusing.

Figure B.1 shows a simulation where the object rests on a fixed table while a force is applied on
the top. Figure B.2 illustrates the simulation with a parallel gripper squeezing the object, where
Figure B.2a and Figure B.2b shows the state before and after compression of the object by the
gripper respectively.

B.3 OOP in Python/C++

To account for the complexity, the model and simulation have been rewritten in Python and
C++ in an Object-Oriented Programming (OOP) manner. OOP is a method to structure a soft-
ware program by introducing classes and objects. A class is a description of an object or thing
with certain properties and methods or functions to execute some action. Multiple instances,
called objects, with their own data, can then be created from a class.
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(a) Object at time = 0 s (b) Object at time = 10 s

Figure B.1: 2D simulation of an object on a table with a force applied on the top

(a) Object at the beginning (b) Object after compression

Figure B.2: 2D simulation of an object being compressed by a parallel gripper

The feasibility and structure of the algorithm have first been implemented and tested in Py-
thon. In order to get more speed and more extensive possibilities for mesh generation, the
simulation is finally implemented in C++, which is discussed in Chapter 4.
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