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ABSTRACT 
 

Accurate deforestation mapping can provide useful information for efficient forest management. Frequent 

cloud cover often hampers deforestation mapping in tropical forests when only using an optical image. Since 

optical remote sensing is ineffective in cloudy weather conditions, a possible alternative is the use of all-day 

and all-weather Synthetic Aperture Radar (SAR). This study aims to overcome this limitation of the optical 

image by fusing optical (Sentinel-2) and SAR (Sentinel-1) images. With that, we aim to improve deforestation 

detection through Deep Learning (DL) based late fusion, using as a test site an area in Pará State, Brazil. We 

compared the accuracies of the deforestation maps generated for the year 2020 from standalone optical and 

SAR images with maps predicted using late fusion which includes both Sentinel-1 and Sentinel-2 sensor data 

as input. Results showcased that deforestation mapping using the combination of optical and SAR sensor 

data improved the overall classification accuracy which was also verified using McNemar’s statistical 

significance test. For cloud-free image, Sentinel-1/Sentinel-2 based late fusion provided an overall accuracy 

of 0.97, 0.94, and 0.91 on the full image, test set-1, and test set-2 respectively, while in the cloudy image, 

Sentinel-1/Sentinel-2 based late fusion provided an overall classification accuracy of 0.95, 0.91 and 0.88 

respectively. In the case of a cloud-free image, the overall accuracy using Sentinel-1/Sentinel-2 based late 

fusion was +3%, +3%, and +3% higher for full image, test set-1, and test set-2 respectively than Sentinel-1 

image and +2% and +1% higher for full image and test set-2 than Sentinel-2 image. In case of cloudy 

weather condition, the overall accuracy of late fusion using both Sentinel-1/Sentinel-2 image was +1%, 

+2% and +1% higher for full image, test set-1 and test set-2 respectively than Sentinel-1 image and +10%, 

+2% and +10% respectively higher than Sentinel-2 cloudy image. The presented approach using late fusion 

showed the advantage of fusing Sentinel-1 and Sentinel-2 sensor data for deforestation mapping compared 

to the standalone data source. Also, the results show significant benefits of fusing both Sentinel-1 and 

Sentinel-2 images even in the cloudy weather condition where 22-48% of the study area was covered with 

clouds in Sentinel-2 data. 

 

Keywords: Sentinel-1, Sentinel-2, Deforestation, Late Fusion, Semantic Segmentation, Deep Learning 
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1. INTRODUCTION 

1.1. Background and Problem Statement 

The availability of forests on our planet is essential for the lives of all human beings (Lee et al., 2020). Among 
all the reasons, one of the most important contributions of forests in mitigating climate change through the 
exchange of carbon dioxide with oxygen. They also help in preventing soil erosion and protecting the 
riverine ecosystems. Despite the benefits of forests, even now, deforestation activities are taking place on a 
large scale. Researches have estimated that deforestation is the second leading cause of emission of 
Greenhouse Gases (GHG) after emissions caused by the burning of fossil fuels (de Bem et al., 2020). Bem 
et al. (2020) estimated that this continuity of deforestation activities can lead to a decrease in seasonal rainfall 
globally. This makes early detection of deforestation caused by human-induced activities essential (Ortega 
et al., 2019).  
 
The Amazon rainforest  occupies approximately 5.5 million km2 (Andrade et al., 2020), contains half of all 
the tropical forests in the world, and generates more than 20% of the oxygen in our planet (Ortega et al., 
2019). For decades, the Amazon biome has been facing deforestation caused by human activities, like forest 
fires, illegal logging, the development of informal settlements, etc. World Wildlife Fund mentioned that, if 
the current amount of deforestation in the Amazon continues, by 2030 more than one-fourth of its forest 
will get vanished. This makes it urgent to develop policies to protect its forest, considering the necessary 
resources it provides for the protection and preservation of our planet (Ortega et al., 2019). Therefore, it is 
essential to have regular deforestation maps with a superior level of accuracy to help in formulating public 
policies for battling the fight against deforestation (R. V. Maretto et al., 2020). 
 
Looking at the issue of combatting illegal deforestation activities, the Brazilian government has developed 
some initiatives for monitoring deforestation with the Brazilian National Institute of Space Research (INPE) 
(Ortega et al., 2019). Firstly, the Amazon Deforestation Monitoring Project namely the Program for 
monitoring deforestation through satellite imagery (PRODES) (Amazônia, 2022) started in 1988 the 
estimation of the annual deforestation rates. Secondly, Near Real-Time Deforestation Detection (DETER) 
(INPE, 2019), was initiated to inform and reinforce the actions of controlling the illegal deforestation 
activities, for helping in maintaining policies. The aim of PRODES is to map the anthropic disturbances 
caused through the clear-cut of primary forests in the Amazon biome in the regions covered by vegetation 
forest formations as defined by the classification proposed by RADAM, (1978). PRODES map includes 
four classes (i) deforestation, (ii) non-forest, (iii) hydrography (iv) forest (INPE, 2019). Forest class includes 
all areas of the primary forest as defined by RADAM, (1978). Water bodies and rivers are part of the 
“hydrography” class, and the class “deforestation” includes areas of primary amazon forests which were 
deforested by clearcut having areas bigger than 6.25 ha. As the main goal of PRODES is to detect the 
disturbances in primary forests, the areas which were deforested in past and abandoned, presenting a 
regeneration of vegetation and became secondary forests, they are still identified under the “deforestation” 
class. The “deforestation” class is divided into sub-classes based on the deforestation which is detected every 
year, since the inception of this project. Lastly, the “non-forest” class includes all the other areas that do not 
belong to “forest”, “hydrography”, and “deforestation”. 
 
To come up with the final training image based on PRODES, the three classes namely “hydrography”, 
“non-forest” and “forest” were categorized together as “non-deforestation”. Every year based on the 
temporal series, the “deforestation” class is prepared including all the deforested areas until that year. In this 
research, for producing the labels of deforestation for the year 2020, the areas mapped under the class 
“deforestation” up to the year 2020 were counted as deforestation. It represents the accumulated 
disturbances in primary forests from 1988 until the year 2020. The drawback of these projects is their 
dependency on well-trained experts for manually mapping deforested areas based on their expertise, making 
them dependent on human interpretation (Adarme et al., 2020). This dependency makes deforestation 
detection costly and, time-consuming (R. V. Maretto et al., 2020). Hence, there is a demand for automatic 
methods for the detection of illegal deforestation, which may reduce the need for specialists and 
consequently the costs of the process (Andrade et al., 2020).  
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Recently, studies have shown that Deep Learning (DL) has achieved a strong potential in several fields, and 
also becoming state-of-the-art in the remote sensing community (de Bem et al., 2020). It shows countless 
possibilities, including image fusion, semantic segmentation, object detection, classification of land cover 
and land use, etc. In DL, it is possible to express various levels of representations of data to extract abstract 
and robust features which provide significant information (Ortega et al., 2019). Studies related to mapping 
deforestation using DL have accomplished a classification accuracy of as high as 95% (R. V. Maretto et al., 
2020). Most studies on deforestation detection using DL algorithms, like Isaienkov et al. (2021), Maretto et 
al. (2020), Shumilo et al. (2020), Matosak et al. (2020), Ortega et al. (2019), Andrade (2020) and de Bem et 
al. (2020) have been based on using only optical sensors. As stated by Adarme et al., (2020), some regions 
in the Amazon are covered by clouds for almost the entire year, which restricts the use of optical sensors. 
The annual mean cloud cover of the Brazilian Legal Amazon (BLA) is roughly 74% (Doblas et al., 2020). 
This limits the use of optical sensors for deforestation detection in the Amazon. Synthetic Aperture Radar 
(SAR), on the other hand, is a type of sensor which has an advantage of an all-day and all-weather capability 
to deliver land information, differently from what can be extracted using optical sensors (Nicolau et al., 
2021). This includes moisture, structure, etc. SAR sensors have presented then a good potential for 
deforestation monitoring, alerts, and preparation of land use land cover maps.  
 
Optical sensors deteriorate from consequences related to illumination, shadows, and clouds (Hughes et al., 
2020). Likewise, SAR images also face challenges while classifying different applications of land (Joshi et al., 
2016). Some challenges refer to geometric deformations including foreshortening, microwave-radar shadow, 
and layover (Hughes et al., 2020). One problem faced in all SAR imagery is the occurrence of speckle noises, 
which increase the ambiguity in measurements and also result in reduced overall accuracy, which may need 
to be pre-processed by using speckle reduction filters (Joshi et al., 2016).  In brief, the individual limitations 
of SAR and optical data pose challenges but, most of these limitations do not overlap between both the 
sensors (only exception of topography which is a weakness in both). Because of this, complementarity is 
possible and both sensors can compensate for their limitations. Therefore, the synergy of the information 
extracted from both sensors can be utilized for improving deforestation detection.  
 
Image fusion is defined as the “combination of two or more different images to form a new image by using a certain 
algorithm” (Belgiu & Stein, 2019, p. 2). Optical-SAR data fusion has grown in remote sensing (Meraner et al., 
2020). In image classification, convolutional neural networks (CNN) directly extract features from Optical 
and SAR images (Han et al., 2021). However, currently, the state-of-the-art DL-based architecture used for 
detecting deforestation use only single data sources, as shown by Wahab et al. (2021), Hasret et al. (2018), 
Isaienkov et al. (2021), Maretto et al. (2020), de Bem et al. (2020), Andarme et al. (2020) and Lee et al. (2020). 
As mentioned by Adrian et al., (2021), combining the different yet complementary information of Optical 
and SAR images is an encouraging direction for DL in remote sensing. This fusion of complementary 
features has also been explored in the literature for many applications including crop-type mapping (Adrian 
et al., 2021), coastal wetlands monitoring (Wu, 2021), and wildfire monitoring (Rashkovetsky et al., 2021), 
etc. This study proposes a late fusion-based DL model which will be detailed out in Chapter 2 and also in 
Chapter 4. This late fusion model fuses two standalone DL models (using Sentinel-1 and Sentinel-2 data as 
input) for performing multi-modal data fusion for deforestation mapping. 
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1.2. Objectives and Research Questions 

 
Main Objective 
To exploit the complementarity of Optical and SAR sensors for mapping deforested areas through Deep 
Learning based data fusion. 
 
Sub-Objectives 

• To design a multimodal deep learning algorithm that explores complementarity among Sentinel-1 and 
Sentinel-2 images for mapping deforested areas.  

• To compare the classification results obtained using data fusion and using standalone Sentinel-1 and 
Sentinel-2 images. 

 
Research Questions 

• To what degree can SAR data support deforestation mapping when atmospheric conditions affect the 
optical image? 

• To what extent can the fusion of Optical-SAR data improve deforestation mapping relative to using 
standalone sensor images? 

1.3. Hypothesis 

Fusion of Optical-SAR data will improve deforestation mapping in comparison to standalone SAR and 
Optical data.  

1.4. Thesis Structure 

This Thesis report is divided into six chapters which are structured as follows: 
 
Chapter 1: Introduction 
This chapter details the background information and also the justification of why this research is essential, 
clarifying what is the research problem, objectives, and research questions. 
 
Chapter 2: Literature Review 
This chapter includes the details of previous research work conducted for similar applications along with 
the conceptual explanation of the methodologies and technologies used in this research for Multi-Modal 
Data Fusion. 
 
Chapter 3: Study Area and Images 
This chapter introduces our study area used for deforestation mapping and images that have been used in 
this research for performing multi-modal data fusion. 
 
Chapter 4: Methodology 
This chapter details the methodology followed to accomplish the research objectives and answer the 
research questions. It gives information about the data pre-processing and methods used for analysis and 
evaluating the models.  
 
Chapter 5: Results and Discussion 
This chapter depicts the results of deforestation using a standalone image as well as multi-modal data fusion 
on a cloudy and cloud-free image, followed by a detailed discussion on the results obtained.  
 
Chapter 6: Conclusion and Recommendation 
This chapter completes the research with some closing remarks on the entire research, its outcomes, and 
some possible future directions that this study can take.  
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2. LITERATURE REVIEW 

2.1. Image Fusion 

Image fusion methods can be clustered into three main categories (Figure 1), namely, pixel-level fusion, 
feature-level fusion, and decision-level fusion, as stated by Joshi et al., (2016). In pixel-level fusion, original 
pixels of different images are directly fused, while in feature-level fusion, features obtained from individual 
sensors are fused. Lastly, in decision-level fusion, the output of classification completed by individual 
sensors is fused. Decision-level fusion (Figure 1) deals with the identity declaration (ID) as was mentioned 
by Z. Lio et al., (2018). In the case of decision level fusion, the IDs are obtained from multiple input images 
which would be Sentinel-1 and Sentinel-2 images in our case by performing semantic segmentation using 
the DL architecture. In the process of fusion, a joint ID is generated from the input IDs. Fusion can be 
performed in various ways, averaging is one of the easiest forms of late fusion. As mentioned by Mahyoub 
et al., (2019), pixel-level fusion is considered unsuitable for Optical-SAR fusion because of the high 
occurrence of speckle noise in SAR data. This noise leads to issues like a layover, shadowing, and 
foreshortening (Mahyoub et al., 2019). Registration is a process to geometrically align imagery from various 
sensors, e.g., Sentinel-1 and Sentinel-2 (Kulkarni & Rege, 2020). Optical and SAR data acquired are geo-
referenced, but they suffer sometimes from incorrect alignment. The alignment of both sensors is relatively 
simpler in feature-level fusion (Figure 4) in comparison to pixel-level fusion (R.Pandit & J. Bhiwani, 2015).  

 
Figure 1: Image Fusion Techniques, (Z. Liu et al., 2018) 

One limitation of using the Feature Level Fusion (Figure 4) as was used by Audebert et al., (2018) is that 
both layers of encoders are supposed to be compatible to fuse the encoders after every convolution. This 
restricts the DL Architecture in the encoder part to be consistent and use exactly similar architecture. In this 
research, we proposed a different technique of fusion that depend on the late features in the last decoder. 
Those networks may or may not be topologically the same. In the case of late fusion, numerous standalone 
networks are used as the beginning for the preparation of DL-based architecture (Gadzicki et al., 2020). The 
standalone networks can be heterogeneous like one separate network for optical image and a separate 
network for SAR image, fitting only the image which they are specifically designed for. The real fusion is 
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then negligibly requiring only the merging of the individual results of each network which was performed 
by concatenation of convolution layers in the last decoders in this research (Figure 19).  

 
Figure 2: Late Fusion, (Audebert et al., 2018) 

2.2. Deep Learning and Fusion 
DL has been explored for multi-modal data processing (Audebert et al., 2018). Initially, audio and video 
data have been fused effectively using two branches in the DL architectures, where one branch was used 
for audio and the other branch was used for video. Both branches were posteriorly merged in the center of 
the DL architecture (Ngiam et al., 2011). FuseNet also used by Hazirbas et al., (2017) expanded this concept 
of fusing two branches to fully convolutional networks (FCN) using Red, Green, Blue, and Depth (RGB-
D) data for performing semantic segmentation by using an early fusion method within SegNet Architecture 
(Figure 3). With the advances in computer vision projects using DL algorithms, the remote sensing 
community also embraced and utilized these techniques for different applications in Earth Observation. 
The very first effective patch-based Convolutional Neural Network (CNN) architecture was used within the 
remote sensing community for the extraction of buildings and roads (Mnih & Hinton, 2010). Vakalopoulou 
et al., (2015) expanded the method to multi-spectral satellite imagery which contains visible and infrared 
bands. More recently, a lot of tasks related to semantic segmentation have been shifted to FCN Algorithms 
(Volpi & Tuia, 2017). This is because FCN models like the SegNet (Figure 3) perform semantic 
segmentation of satellite imagery. It can also capture the spatial dependencies between different classes, with 
no pre-processing methods e.g. super-pixel segmentation resulting in the prediction of classes in high 
resolution. Further, the SegNet architecture is composed of an encoder-decoder structure where feature 
maps are up-sampled in the decoder which is in line with the encoder to match it back to the input resolution. 
This results in performing pixel-wise prediction of labels specifically at 1:1 resolution. In the past, the multi-
modal fusion of complementary sensors has been explored within the remote sensing community to 
determine different properties of an area in the semantics being segmented (Audebert et al., 2018). 
Paisitkriangkrai et al., (2015) utilized LiDAR and Optical data by fusing features using the Random Forest 
algorithm. Liu et al., (2017) integrated features from auxiliary images which included LiDAR and NDVI 
data along with their higher-order Conditional Random Field (CRF) for improving the classification of 
optical data in DL networks. 
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Figure 3: SegNet Architecture, (Badrinarayanan et al., 2017) 

 
Further, Audebert et al., (2017) explored the late fusion (Figure 2) technique for fusing optical and LiDAR 
data for performing semantic segmentation through fusing the results of standalone classifiers. The use of 
a multi-modal network was also explored by Audebert et al., (2017) for fusing optical data with 
OpenStreetMap data, used as auxiliary data, for performing semantic segmentation through the FuseNet 
Architecture (Figure 4). This multi-modal data fusion has been explored in DL for many remote sensing 
applications including crop type mapping (Adrian et al., 2021), land cover mapping (Ienco et al., 2019), sea 
ice classification (Han et al., 2021), wildfire detection (Rashkovetsky et al., 2021), etc. But, it is yet to be 
explored for deforestation detection using DL with Sentinel-1 and Sentinel-2 images. Considering the works 
already done in the literature, this study uses a late fusion technique by fusing the features on the last decoder 
based on the SegNet architecture (Figure 3). This was done to perform a multi-modal data fusion of Sentinel-
1 and Sentinel-2 images for mapping deforested areas in the Brazilian Amazon. 
 

 
Figure 4: FuseNet using Optical and OSM Data, (Audebert, Saux, et al., 2017) 
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3. STUDY AREA AND IMAGES 

3.1. Study Area 

The high occurrence of clouds is an issue for monitoring forests in tropical regions (Andrade et al., 2020). 
This scenario is also observed in the Brazilian Amazon for nearly an entire year, thereby challenging the use 
of optical sensor data and making SAR data a favorable possibility (Adarme et al., 2020). In recent decades, 
within the Brazilian Legal Amazon (BLA), the majority of the deforestation activities have happened within 
Pará state (152,475 km2) followed by Amazonas (26,972 km2), Mato Grosso (146,159 km2 ), and Rondônia 
(61,677 km2) (Brovelli et al., 2020). Pará State (Figure 5) shows a variety of locations with varying 
characteristics, including coastal zones, protected areas, and riverside areas (R. V. Maretto, 2020). Because 
of the active deforestation, presence of protected areas, and also the high frequency of cloud coverage, Pará 
state seemed to be appropriate for this research. The area selected is positioned on coordinates of 03°17’23” 
South and 050°55’08” West (Carrero et al., 2020). Within Pará State, a subset was selected based n the 
availability of both cloudy and cloud-free Sentinel-2 images. The subset is a square of dimensions 112.64 x 
112.64 km. The total deforested area within the subset is 4925.14 km2, from 1988 until the year 2020 based 
on data from PRODES. 
 

 
Figure 5: Selected Study Area within Para State 
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3.2. Images 

3.2.1. Sentinel-1 

This study used freely available data from the Sentinel-1 platform, which comprises 2 parallel satellites 
namely Sentinel-1A and 1B (Kumar, 2021) released on the 3rd of April 2014 and the 25th of April 2016 
respectively (Shrestha, 2018). Both satellites carry a C-Band SAR sensor providing images between the 2 
different orbits. This reduces the temporal resolution to 6 days, instead of 12 days for each satellite 
individually. It flies at an altitude of 693 km with a swath width of 400 km (Kumar, 2021). It delivers single 
and dual polarization data in C-Band in two specific formats namely Single Look Complex (SLC) and 
Ground Range Detected (GRD). Sentinel-1 collects data in 4 acquisition modes with different swath and 
spatial resolutions with a single (Horizontal Horizontal (HH) or Vertical Vertical (VV)) and dual-polarization 
(Vertical Vertical (VV) + Vertical Horizontal (VH) or Horizontal Horizontal (HH) + Horizontal Vertical 
(HV)) (Shrestha, 2018). Table 1 shows the characteristics of the four modes. Further, Sentinel-1 data has 
three levels: level-0 raw data, level-1 geo-referenced time-tagged data (Single Look Complex, Ground Range 
Detected), and level-2 ocean-use data (European Space Agency, 2012). For this research, Sentinel-1 Ground 
Range Detected (GRD) with Interferometric Wide Swath Mode (IW) was used as also used in literature by 
Wahab et al., (2021) and Hasret et al., (2018) for mapping deforestation. This image was selected for two 
specific dates including 22nd July 2020 (Figure 6a) and 26th October 2020 (Figure 6b), which were the closest 
Sentinel-1 images available, to match with the cloud-free and cloudy Sentinel-2 images respectively. To avoid 
any confusion, from now on in this research, we will use the terminology cloud-free Sentinel-1 image for 
the image acquired on 22nd July 2022 when weather condition was cloud-free in the Sentinel-2 image. 
Similarly, we will use the terminology cloudy Sentinel-1 image, for the image acquired on 26th October 2022 
when weather condition was cloudy for the Sentinel-2 image. 

 
Table 1: Characteristics of 4 Acquisition Modes, (European Space Agency, 2012) 

Modes Properties 

Strip map Mode (SM) 80 km Swath 

Interferometric Wide Swath Mode (IW) 240 km Swath 

Extra Wide Swath Mode (EW) 400 km Swath 

Wave Mode (WV) 20 km * 20 km Vignettes 

 
Data Pre-Processing 
Pre-Processing steps were implemented for Sentinel-1 sensor data in the Sentinel Application Platform 
(SNAP), developed by ESA. The specific pre-processing steps are shown as follows: 
 
1. Apply Orbit File: In SAR source products, the orbit information is generally inaccurate. Thus, the 

accurate orbit information auto-downloaded by SNAP needs to be applied. 
2. Thermal Noise Removal: During the acquisition of the Sentinel-1 satellite image, the background 

energy created by the imaging received instruments gets incorporated as thermal noise in the backscatter 
signals of radar (Phuntsho, 2020). SAR products are highly influenced by thermal noise, specifically in 
the case of cross-polarization. The thermal noise removal step helps to reduce thermal noise. 

3. Radiometric Calibration: Calibration is a process that transfers the digital pixel values to calibrated 
SAR backscattered signals. In this step, backscatter signals are saved in Sigma format. 

4. Speckle Filtering: Speckle noise caused by coherent processing of backscattered signals makes it 
difficult to interpret images. To reduce the influence of speckles, the “Lee Sigma” filter was applied 
using a 3 x 3-pixel moving window through the tool “Single Product Speckle Filtering” in SNAP. 

5. Geometric Correction: Distortions caused by the side-view characteristic of this sensor (overlapping 
and shadow) may reduce the quality of SAR images. The Range-Doppler method was chosen for image 
registration.   

 
Further, a median filter of 3x3 kernel was run on the geometrically corrected raster for reducing speckle 
noise. After this, the images were re-sampled to the spatial resolution of Sentinel-2 raster (10m) and 
converted to TIFF format for further processing by using it as input in the DL algorithm, and also for its 
fusion with Optical data. 
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Figure 6: Sentinel-1 VHVV stacked bands for the year 2020 

3.2.2. Sentinel-2 

The sentinel-2 platform contains two parallel satellites, namely Sentinel 2A and 2B, released on the 23rd of 
June 2015 and the 7th of March 2017 respectively. It provides us, together, with a revisit time of five days 
with 10m, 20m, and 60m spatial resolution and 13 spectral bands (Table 2), available from the visible 
spectrum to short-wave infrared (European Space Agency, 2015). Both images were taken from the open-
source Copernicus hub (Sentinelhub, 2022) by the European Space Agency (ESA). Though our SegNet-
based DL architecture was able to absorb all the available Sentinel-2 bands. In this research, the highest 
spatial resolution (10m) bands were used including Red, Green, Blue, and NIR to map the deforested areas. 
These 4 bands were also selected by Pacheco et al., (2022), Torres et al., (2021), and John et al., (2022) for 
deforestation mapping. Also, studies related to deforestation mapping using Landsat-8 usually use all bands 
as also used by Torres et al., (2021). However, due to the larger size of Sentinel-2 images compared to 
Landsat-8, the processing time taken for Sentinel-2 was higher than Landsat-8. Further, Sentinel-2 images 
are nine times larger than Landsat-8 as was mentioned by Torres et al., (2021). This was also one of the 
reasons of taking four bands as more bands take more computational resources and is also a limitation of 
this study. For our study, we downloaded both cloudy image (Figure 7b) dated 25th October 2020 and cloud 
free image (Figure 7a) dated 27th July 2020. The Area of Interest (AOI) was extracted from different tiles 
with cloud coverage ranging from 22 to 48%. Since Sentinel-2 Level-2 (S2L2) data products remove 
atmospheric errors and provide Bottom of Atmosphere (BoA), the pre-processing on Sentinel-2 was not 
required (Rahimi, 2020). 
 

Table 2: Sentinel-2 Dataset including Selected four Bands, (European Space Agency, 2015) 

Sentinel-2 Bands 
Central Wavelength 

(μm) 
Resolution (m) Bandwidth (nm) 

Band 1: Coastal Aerosol 0.443 60 27/45 (2A/2B) 

Band 2: Blue 0.490 10 98 

Band 3: Green 0.560 10 45/46 (2A/2B) 

Band 4: Red 0.665 10 38/39 (2A/2B) 

Band 5: Vegetation Red Edge 0.705 20 19/20 (2A/2B) 

Band 6: Vegetation Red Edge 0.740 20 18 

Band 7: Vegetation Red Edge 0.783 20 28 

Band 8: NIR 0.842 10 115 

Band 8A: Narrow NIR 0.865 20 20 

Band 9: Water Vapor 0.945 60 20 

Band 10: SWIR-Cirrus 1.375 60 20 

Band 11: SWIR 1.610 20 90 

Band 12: SWIR 2.190 20 180 
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Figure 7: Sentinel-2 cloud free on the left side and cloudy on the right side for the year 2020 

3.2.3. Deforestation Data 

For deforestation data to be used for training and validation of the late fusion model, images generated by 
PRODES were used as ground truth until the year 2020. INPE uses satellite data to monitor annual 
deforestation since 1988, through the PRODES program (INPE, 2019). Together with the DETER 
program, PRODES has proved to be of great importance for informing public policy actions and planning 
on amazon (PRODES, 2021). Recent results, from analyzers carried out with independent experts, indicate 
a level of accuracy of PRODES close to 95%. In PRODES methodology, due to the resolution of the 
images used and to keep the consistency of the temporal series, the minimum mapping unit is 6.25 ha below 
which the deforestation activity is not mapped. As the deforestation image was downloaded in shapefile 
format, it was first converted into raster format using the “Vector to Raster” tool in QGIS (Figure 11). 
Further, the deforestation data which was available at 30m spatial resolution was re-sampled to 10m to 
match it with Sentinel-1 and Sentinel-2 images, before feeding in the DL model. 
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4. METHODOLOGY 

4.1. Overall Workflow 

 

 

                

Figure 8: Overall Workflow 
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The methodology flowchart as can be seen in Figure 8, was divided into three sub-sections namely (i) Data 
Pre-Processing, (ii) DL Architecture, and (iii) Model Evaluation. The pre-processing steps on Sentinel-1 and 
ground truth deforestation image are detailed in chapters 3.2.1 and 3.2.3 respectively. Apart from this, the 
ground truth image was divided into small patches of the size 256 x 256 for using it as an input in the DL 
architecture. Further, the methodology flowchart includes three separate DL models for deforestation 
mapping. One Optical-SAR fusion model using late fusion (Figure 19) was proposed for this research and 
two separate models for standalone SAR and optical data using SegNet Architecture (Figure 14). All the 
three-segmented maps using Optical-SAR fusion and standalone SAR and Optical sensors were evaluated 
using accuracy assessment for comparison. To further validate the results of deforestation mapping, between 
the standalone sensor and late fusion, McNemar’s test was performed using Python. This was performed 
for every scenario including deforestation mapping using standalone sensors, as well as late fusion in both 
cloudy and cloud-free weather conditions. McNemar’s test which is a non-parametric statistical significance 
test is appropriate to compare the performance of classifications based on machine learning as was 
mentioned by Mcnemar et al.,  (1947). The output of this test was used to answer the research questions. 
 

4.2. Data Preparation 
Before feeding Sentinel-1, Sentinel-2, and ground truth deforestation images in the DL architecture, data 
preparation was done to ensure getting the images in a consistent format and spatial resolution. 
 
4.2.1. Ground Truth for Deforestation 
Deforestation reference data was taken from PRODES. Since 1988, PRODES have generated maps 
including yearly deforestation in the region. These maps were then utilized by the Brazilian government to 
create public policies to fight against deforestation (PRODES, 2021). PRODES uses Landsat images with 
a spatial resolution of 20 to 30m. In past, PRODES also used other similar satellite images including Disaster 
Monitoring Constellation (DMC), China-Brazil Earth Resources Satellite program (CBERS), LISS-3 images 

Figure 9: Accumulated Deforestation until 2020 
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from the Indian satellite IRS-1, etc. (PRODES, 2021) to record and quantify deforested areas which are 
greater than 6.25 hectares. The data was available as two different shapefiles. The first shapefile included 
the deforestation from 1988 until 2007 (Figure 9), and the second shapefile included the yearly increase in 
deforestation from 2008 to 2020 for this study (Figure 9). Both the shapefiles were merged to make one 
image of deforestation from 1988 until 2020 (Figure 10). Further, this vector image was converted to raster 
(Figure 12) using the “Rasterize” tool in QGIS (Figure 11) in the “Byte” data type which is acceptable by 
the DL model. As the spatial resolution of the PRODES image is 30m, it was re-sampled to 10m to make 
it similar to Sentinel-1 and Sentinel-2 images for using it as input in the DL model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 10: Merged Accumulated Deforestation until 2020 

Figure 11: Rasterize Tool 
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4.2.2. Dividing Study Area into Tiles  
The raster image for our AOI was of the dimension 11264 x 11264 pixels which were divided into 16 tiles 
of 2816 x 2816 pixels each (Figure 13). This was done to get a visual idea of predictions on the test set of 
size 2816 x 2816 pixels rather than visualizing a small test set of size 256 x 256 pixels. In the study area, 74% 
of the area was used as a training set, followed by 13% each for the validation set and test set approximately. 
The validation set was randomly selected using 18% of the training set making it approximately 13% of the 
entire image. This was to ensure that the proportion of the validation set is somewhere similar to the test 
set. The 16 tiles of the size 2816 x 2816 pixels were further subdivided into 1936 small patches of 256 x 256 
pixels out of which 1439 patches were used for the training set, 255 for the validation set, and 242 (2 tiles) 
for the test sets.  
 

 
Figure 13: Study Area divided into 16 Tiles  

Figure 12: Rasterized Ground Truth 
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4.3. Deep Learning for Deforestation Mapping 

4.3.1. Single Sensor Deforestation Mapping 

The input layer in the SegNet architecture, as shown in Figure 14, is the raster which includes raw pixel 
values of the patches having a dimension of W x H x D. Here, W x H is the patch size and “D” is the depth 
of that specific patch equivalent to the number of bands e.g. 13 bands in case of Sentinel-2 raster (Musyoka 
et al., 2018). In this study, for multi-sensor deforestation mapping using late fusion (Figure 19), there are 
two input layers, one for processing optical data and the other for processing SAR data. For single sensor 
deforestation mapping using standalone Sentinel-1 and Sentinel-2 images, SegNet (Figure 14), which 
constitutes the backbones of the late fusion network, was used. 

 

 
Figure 14: SegNet for Standalone Sensor used in this research 

 

4.3.1.1. Convolutional Layer 
The main unit of a Convolutional Neural Network (CNN) architecture is the convolutional layer 
(Mohammadimanesh et al., 2019). It contains a collection of convolutional filters (Figure 15), where each 
filter is convolved across the feature maps to generate two-dimensional activation maps (Yan, 2019). The 
dimension of the output feature map being generated through convolution can be denoted with the 
following equation: 
 

[ 
 W − K + 2p

s
+ 1 ]  x  [

 W − K + 2p

s
+ 1 ], (Yan, 2019) ------------------  1 

 
Where “W” refers to the size of the input image, “K” refers to the size of the convolutional kernel. and “s” 
and “p” refers to the size of stride and padding respectively. A sliding window was used for applying the 
convolutional. filter.

 
Figure 15: Example of a Convolutional Layer, (Reynolds, 2022) 
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4.3.1.2. Batch Normalization Layer 

During the training process, in case the parameters of prior layers are modified, this results in affecting the 
distribution of the next layer input (Yan, 2019). This may reduce the training efficiency by requiring careful 
parameter initialization and lower learning rates. Hence, to solve this issue, Ioffe et al., (2015) used a 
technique that performs the normalization of each training mini-batch. In both the architectures including 
SegNet and late fusion used in this study, batch normalization was implemented after the convolutional 
layers. 

4.3.1.3. Activation Function 

The activation function, or non-linear layer, improves the capacity of the network to convey complicated 
non-linear mapping (Mohammadimanesh et al., 2019). Sigmoid (σ) and hyperbolic tangent (tanh) which can 
be seen in Figure 16, are frequent activation functions used mostly in neural networks (Rizaldy, 2018). The 
curve of hyperbolic tangent and sigmoid (Figure 16) are related, but the only difference is that in the case 
of “sigmoid function”, the range is between [0, 1] while in the case of “hyperbolic tangent”, the range is 
between [-1, 1]. This makes the derivative of “hyperbolic tangent” greater making its gradient greater than 
that of the sigmoid. There is an alternative activation function named rectified linear unit (ReLU), introduced 
by Vinod et al., (2017). ReLU activation function was used in this study, g(z) = max(0, z). It performs 
threshold operation on every input element. As suggested by the study performed by Rizaldy et al., (2018), 
replacing the conventional functions including “logistic sigmoid” or “hyperbolic tangent” with ReLU gave 
a relatively superior outcome. ReLU function was used in this research in both late fusion and single sensor 
SegNet architecture. 

 
Figure 16: Different Activation Functions, (Jayawardana, 2021) 

4.3.1.4. Pooling Layer 

Pooling is a strategy for downsampling, usually stacked after the convolutional layer and Activation Function 
to summarise the output feature map (Rizaldy, 2018). It reduces the dimensionality thereby reducing the 
computational cost. Max pooling strategy takes a maximum value (Figure 17) which usually outperforms 
other pooling strategies (Rizaldy, 2018). 

Figure 17: Example of 2x2 Max Pooling  with Stride 2, (ComputerScienceWiki, 2018) 
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4.3.1.5. Softmax Layer 

The softmax layer is included as the finishing layer in the FCN architecture used in this study to perform 
the semantic segmentation (Musyoka et al., 2018). This will help to classify the input dataset into the desired 
number of output classes which is two, namely “Deforestation” and “Non-Deforestation”. It takes a value 
that is equivalent to the classes of interest zp, p = 1, 2, 3,…, p which is two in our case. Further, the value 
of the individual class is assigned with a probability between 0 and 1 (Figure 18). The total sum of these 
values should be equal to one.   

σ(z)j =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑝𝑃
𝑝=1

 𝑓𝑜𝑟 𝑧 = 1, 2, 3, … , 𝑝, (Musyoka et al., 2018) ------------------  2 

where “z” represents a vector of the class input. In this research, we had two classes which were inside “z” 
making the output classes, j = 1, 2. “p” is the probability that a pixel belongs to a given class which is 
“Deforestation” and “Non-Deforestation” in this study.  

 
Figure 18: Example of Softmax Layer, (MIRANDA, 2017) 

4.3.2. Multi-Sensor Deforestation Mapping 

As was also mentioned in section 2.1, one limitation of using the feature level fusion specifically the one 
performed by Audebert et al., (2018), was that both encoders were expected to be consistent or symmetrical. 
This was to perform fusion at every convolution which might not always be the case in reality (Audebert et 
al., 2018). Therefore in this research, we used the fusion method in which we fused the features of the 
convolutional layers in the last decoder (Figure 19) of both the standalone DL models. This is called late 
fusion from now on in this research to avoid any confusion. This late fusion was inspired and adapted from 
Audebert et al., (2018) where instead of concatenating the dense predictions, the convolutions in the last 
decoder were fused. This concatenation was followed by Batch Normalization, ReLU activation function, 
2D convolution, and finally the softmax classifier. 

 
Figure 19: Late Fusion Architecture used in this research 

Sentinel-2 
Deforestation 

Segmentation 
Conv2D + 

BN + ReLU 

Max 

Pooling Dense Layer 

Up Sampling 

Conv2D 

Transpose + 

BN + ReLU 

Conv2D 

Transpose Concatenation 
BN + ReLU  

+ Conv2D (1x1) 
Softmax 

128 
256 

512 
512 

1024 
512 

512 
256 

128 

2 

64 
128 

256 
512 

512 
1024 

512 
512 

256 
128 

64 

64 64 

Sentinel-1 



DEEP LEARNING BASED MULTI-SOURCE DATA FUSION TO MAP DEFORESTED AREAS IN AMAZON RAIN FOREST  

 

24 

 
The late fusion approach used in this research uses the SegNet architecture (Figure 14) as its backbone, with 
two different standalone SegNet Architectures from the encoder to the decoder for both Sentinel-1 as well 
as Sentinel-2 images. The entire structure of SegNet Architecture was explained in section 4.3.2. Between 
the encoder and decoder, two dense layers were used to change the dimension. After the last up-sampling 
followed by a transposed convolution in the last decoder layer of both the standalone Sensors, both the 
convolutional layers of Sentinel-1 and Sentinel-2 images were concatenated using the Keras function namely 
“Conv2D Transpose”. After this, the concatenated layer was passed through batch normalization, ReLU 
activation function, a 1x1 convolution, and finally the Softmax function for performing the semantic 
segmentation. With this, we combine complementary information from both the Sentinel-1 and Sentinel-2 
sensor images. 

4.3.3. Training Parameters 

To obtain an accurate model, a manual optimization strategy was utilized for selecting the optimum 
combination of hyper-parameters (Table 3). The initial values to start the optimization were based on 
previous experience as well as the hit and trial method for getting the best possible results. In the case of 
SegNet implemented using a standalone sensor and late fusion which involved two images including both 
Sentinel-1 and Sentinel-2, a batch size of 10 was selected to successfully run the model. Other hyper-
parameters include the early stopping method from the Keras library to monitor the validation accuracy 
with the patience of 30 epochs. This means that the model will stop training if there is no increase in 
Validation Accuracy for 30 epochs. This avoids the model to overfit, saves a considerable amount of 
computational power, and reduces the time taken to train the model from scratch. 
 

Table 3: Selected Hyper-Parameters 

PARAMETER SegNet Late Fusion 

Batch Size 10 10 

Number of Epochs 150 150 

Learning Rate 0.01 0.01 

Momentum 0.9 0.9 

Loss Function Binary Cross Entropy Binary Cross Entropy 

Activation Function ReLU ReLU 

Early Stopping Patience 30 30 

Evaluation Metrics 
F1 Score, User Accuracy, and 

Producer Accuracy 
F1 Score, User Accuracy, and 

Producer Accuracy 
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4.4. Model Evaluation 

4.4.1. Accuracy Assessment  

Accuracy assessment of the segmented output represents the level of details that are segmented correctly in 
the map (Foody, 2002). The segmented map was compared with reference deforestation data from 
PRODES (INPE, 2019) for the year 2020 which was assumed to be our ground truth. This was performed 
in two stages, described below: 
 
1. Firstly, as part of research question 1, an accurate assessment of the deforestation map was performed 

on two different scenarios. Initially, the segmentation was produced by the fusion of Optical-SAR data 
by using cloudy Sentinel-2 imagery and then by using cloud-free Sentinel-2 imagery. 

2. Secondly, as part of research question 2, accuracy assessment was performed on three different scenarios, 
which are the deforestation maps predicted by (i) Optical-SAR fusion, (ii) standalone SAR sensor data, 
and (iii) standalone optical sensor data. 

 
For performing the accuracy assessment, we used several metrics derived from the confusion matrix (Foody, 
2002). It shows the relationship between reference data and the segmented data in a tabular format. We 
used the following measures for performing the accuracy assessment: 
 
Overall Accuracy (OA): OA indicates the total proportion of accurately segmented pixels relative to 
ground truth data, with the result coming out in percentage. Apart from OA, we also calculated the accuracy 
for individual classes by calculating its User Accuracy (UA) and Producer Accuracy (PA) (Figure 20).  
 
User Accuracy:  UA refers to the probability that a value predicted to be in a specific class is actually in 
that class (L3HARRIS, 2022). This is calculated by dividing the number of correctly predicted pixels by the 
total number of pixels that were classified. 
 
Producer Accuracy: PA refers to the probability that a value in a given class was classified correctly as per 
the reference dataset (L3HARRIS, 2022). This is calculated by dividing the number of correctly classified 
pixels by the number of reference pixels in a specific class. 
 
F1 Score: It gives information about the robustness and precision of the segmentation results, (Mayasari, 
2019). It is calculated from User Accuracy (precision) and the Producer Accuracy (recall) using the following 
equation: 

F1 Score = 2 x 
UA x PA

UA+PA
, (Mayasari, 2019) ------------------   3 

 

 
Figure 20: Example of Precision and Recall, (Riggio, 2019) 

  

  
User    

Accuracy 

Producer 

Accuracy 
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4.4.2. McNemar’s Test 

DL models are often computationally expensive and consist of an extremely large number of input images 

(Huber & Müller-Stach, 2017) as also in our study area. Our study area includes a total of 1936 small patches 

of the 256 x 256 pixels out of which 1439 patches were used for the training set and 255 for the validation 

set which is input to the DL model. In the case of a large image, model training can take many hours or 

even days depending on the availability of computational resources. With the advancement in machine 

learning models, there is strong attention to the statistical significance test which can compare and assess 

the predictions based on DL models using just a single test set. McNemar’s test may be a suitable test for 

the assessment of the predictions of DL models with just one test set. This test looks at binary variables 

which show correct (including both true positive and true negative) and incorrect (including both false 

positive and false negative) pixels which are of the dimension of 2×2 (Table 5). If we have two trained 

classifiers, their predictions can be assessed using McNemar’s test, an example of which is elaborated in 

Table 4, by randomly comparing classifications of 10 pixels. 

 

Table 4: Example of a Summary of two Classifications 

PIXELS CLASSIFIER 1 CORRECT CLASSIFIER 2 CORRECT 

1 YES NO 

2 NO NO 

3 NO YES 

4 NO NO 

5 YES YES 

6 YES YES 

7 YES YES 

8 NO NO 

9 YES NO 

10 YES YES 

 
McNemar’s test is performed by preparation of a contingency table based on a comparison of the correct 
and incorrect prediction of pixels of different classifiers as can be seen in Table 5. The contingency table 
depends on the assumption that in the case of both the standalone DL classifiers using Sentinel-1 and 
Sentinel-2 as inputs, the prediction was done on the same test set. The contingency table for Table 4 
comparing the predictions of 2 classifiers using 10 pixels as an example can be seen in Table 6, prepared 
based on Table 5.  

 
Table 5: Example of a Contingency Table 

 CLASSIFIER 2 CORRECT 
CLASSIFIER 2 
INCORRECT 

CLASSIFIER 1 CORRECT Yes/Yes Yes/No 

CLASSIFIER 1 INCORRECT No/Yes No/No 

 
Table 6: Example of Contingency Table for Table 4 

 CLASSIFIER 2 CORRECT CLASSIFIER 2 INCORRECT 

CLASSIFIER 1 CORRECT 4 2 

CLASSIFIER 1 INCORRECT 1 3 

 
McNemar’s test checks for the availability of differences in the predictions from two classifiers. It informs 
if the two models agree or disagree in a similar manner i.e. if the false positives and false negatives of two 
different DL models match or not. By no means this test gives information about the accuracy or availability 
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of error in the predictions of the DL model. McNemar’s test is a non-parametric test based on the confusion 
matrices (Table 6) and the size of the Table is always 2x2. The equation for McNemar’s test is given as 
follows: 
 

z = 
𝑓12  − 𝑓21

√𝑓12 + 𝑓21

  , (Foody, 2004)--------------------  4 

 
where fij signifies the occurrence of sites in the elements i, j of the confusion matrix. In the literature, there 
are some ongoing dialogues about this technique, including its use in remote sensing. This is for the 
comparison based on the assessment of chi-square (X2) distribution, which can be calculated by just 
performing a square on Equation 4 with one degree of freedom. In such scenarios, the updated equation is 
as follows: 

 

X2 Statistics= 
(𝑓12  − 𝑓21)2

𝑓12  − 𝑓21
  , (Foody, 2004)--------------------  5 

 
McNemar’s test has a null hypothesis which states that two classifiers disagree with each other equally. In a 
scenario where the assumed null hypothesis is rejected in the test set, it gives a clear indication that the two 
DL models disagree with each other in different ways. Based on the selection of significance level, which 
was selected as 0.05 in this study, the calculation of the p-value has the following interpretation: 
 
(i) If p > alpha: fail to reject H0, the two models do not disagree (e.g. no difference was observed using 

two different DL models). 
(ii) If p <= alpha: reject H0, the two models do disagree (e.g. difference has been observed using two 

different DL models). 
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5. RESULTS AND DISCUSSION 

5.1. Results 

5.1.1. Deforestation Mapping on Cloud-Free Images 

For the assessment of the model performance, the standalone and late fusion models were evaluated using 
three specific examples from (i) the full image, (ii) test set-1, and (iii) test set-2. The full image contains the 
entire study area of which 74% is used for training. The reason why the full image was also taken along with 
the test set for evaluation is to make a visual assessment of the performance of the models in the entire 
study area. The final binary prediction of “Deforestation” and “Non-Deforestation” was then compared to 
the PRODES map, considered as ground truth in this study, and also evaluated using the metrics mentioned 
in 4.4. The performances of the model with Sentinel-1, Sentinel-2, and late fusion for deforestation mapping 
are outlined in Table 7. In the case of cloud-free images, the overall accuracy of Sentinel-1 images on the 
three examples was 0.94, 0.91, and 0.88 (Table 7), which was lower than Sentinel-2 and late fusion, but still 
reasonably close. Further, a late fusion of Sentinel-1 and Sentinel-2 presented the best results with an overall 
accuracy for the three examples as 0.97, 0.94, and 0.91 (Table 7). Figure 21, 23, and 25 show the satellite 
imagery, and ground truth image along with the predictions in the examples of three evaluations. In terms 
of the trend observed in the model performance relative to each other, the performance was observed as a 
minimum for Sentinel-1, in-middle for Sentinel-2, and the maximum for late fusion. This trend was noticed 
across all three examples. The confusion matrix for the three examples can be seen in Figures 22, 24, and 
26 respectively. Apart from this, Table 8 and 9 showcase the user and producer accuracies respectively, in 
which Sentinel-1 performs lower than Sentinel-2 and late fused.  

 
Table 7: Evaluation Metrics on Cloudy and Cloud Free Image 

WEATHER 
CONDITION 

SENSOR / TEST SET 
OVERALL 

ACCURACY 
F1 SCORE 

Cloud Free 

Sentinel-1 Full 0.94 0.95 

Sentinel-1 Test 1 0.91 0.9 

Sentinel-1 Test 2 0.88 0.78 

Sentinel-2 Full 0.95 0.96 

Sentinel-2 Test 1 0.94 0.93 

Sentinel-2 Test 2 0.9 0.81 

Late Fusion Full 0.97 0.97 

Late Fusion Test 1 0.94 0.94 

Late Fusion Test 2 0.91 0.81 

Cloudy 

Sentinel-1 Full 0.94 0.95 

Sentinel-1 Test 1 0.89 0.88 

Sentinel-1 Test 2 0.87 0.75 

Sentinel-2 Full 0.85 0.88 

Sentinel-2 Test 1 0.89 0.89 

Sentinel-2 Test 2 0.78 0.68 

Late Fusion Full 0.95 0.95 

Late Fusion Test 1 0.91 0.9 

Late Fusion Test 2 0.88 0.79 
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Table 8: User Accuracy on Cloudy and Cloud Free Image 

WEATHER 
CONDITION 

SENSOR / TEST SET 
USER ACCURACY 

DEFORESTATION 
NON-

DEFORESTATION 

Cloud Free 

Sentinel1 Full 0.94 0.95 

Sentinel1 Test 1 0.92 0.91 

Sentinel1 Test 2 0.9 0.85 

Sentinel2 Full 0.95 0.96 

Sentinel2 Test 1 0.95 0.93 

Sentinel2 Test 2 0.91 0.9 

Late Fusion Full 0.95 0.98 

Late Fusion Test 1 0.94 0.95 

Late Fusion Test 2 0.91 0.92 

Cloudy 

Sentinel1 Full 0.92 0.95 

Sentinel1 Test 1 0.89 0.9 

Sentinel1 Test 2 0.88 0.85 

Sentinel2 Full 0.73 0.93 

Sentinel2 Test 1 0.91 0.88 

Sentinel2 Test 2 0.88 0.62 

Late Fusion Full 0.94 0.95 

Late Fusion Test 1 0.92 0.89 

Late Fusion Test 2 0.9 0.84 

Table 9: Producer Accuracy on Cloudy and Cloud Free Image.  

WEATHER 
CONDITION 

SENSOR / TEST SET 
PRODUCER ACCURACY 

DEFORESTATION 
NON-

DEFORESTATION 

Cloud Free 

Sentinel1 Full 0.94 0.95 

Sentinel1 Test 1 0.92 0.91 

Sentinel1 Test 2 0.9 0.85 

Sentinel2 Full 0.95 0.96 

Sentinel2 Test 1 0.95 0.93 

Sentinel2 Test 2 0.91 0.9 

Late Fusion Full 0.95 0.98 

Late Fusion Test 1 0.94 0.95 

Late Fusion Test 2 0.91 0.92 

Cloudy 

Sentinel1 Full 0.92 0.95 

Sentinel1 Test 1 0.89 0.9 

Sentinel1 Test 2 0.88 0.85 

Sentinel2 Full 0.87 0.85 

Sentinel2 Test 1 0.89 0.9 

Sentinel2 Test 2 0.88 0.62 

Late Fusion Full 0.94 0.95 

Late Fusion Test 1 0.92 0.89 

Late Fusion Test 2 0.9 0.84 
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Further, though Sentinel-1 performs lower than Sentinel-2 and late fusion, still the difference in overall 
accuracy, user accuracy, and producer accuracy was not more than 4% in any case. As demonstrated in Table 
8, the user accuracy of test set-2 using Sentinel-1 image was 0.9 compared to 0.91 for Sentinel-2 and late 
fusion. Similarly, as demonstrated in Table 9, the producer accuracy on test set-2 was 0.9 for Sentinel-1 
compared to 0.91 for both Sentinel-2 and late fusion. In the overall accuracy and f1 score, late fusion 
performed relatively better than Sentinel-1 and Sentinel-2 images, but that is not the case for the user and 
producer accuracy. In Table 8, we can observe that the user accuracy of deforestation of the full image and 
test set-2 was the same for both Sentinel-2 and late fusion which was 0.95 and 0.91 respectively. Apart from 
this, in the case of test set-1, the user accuracy of Sentinel-2 (0.95) was higher than late fusion which was 
0.94. Though the user accuracy on “deforestation” for full image and test set-1 was the same for Sentinel-2 
and late fusion. But, in the case of user accuracy of “non-deforestation”, late fusion performs better than 
Sentinel-2. Sentinel-2 outperformed late fusion in test set-1, but the difference was minimal. This difference 
can also be observed in the rate of false positives (Table 10), i.e. Sentinel-2 on test set-1 has a false positive 
rate of 0.06, which is better than late fusion, which is 0.07. However, the false negatives of test set-1 of late 
fusion were 0.05, which was relatively better than Sentinel-2, with 0.06. considering all the evaluation 
metrics, the overall performance of late fusion was the best for a cloud-free image in comparison to the use 
of standalone sensors.  
 
Though late fusion performed relatively better in terms of overall accuracy, f1 score, user accuracy, and 
producer accuracy, the false positive rate (Table 10) for test set-2 were quite high (0.21). Late fusion not 
only improves the model performance in terms of overall accuracy. It also reduces the false positives and 
false negatives relative to Sentinel-1 and Sentinel-2 standalone classifiers in cloud-free conditions. Sentinel-
1 image again performs the lowest, in terms of estimation of the false positive and false negative which can 
be seen in Table 10. The confusion matrix can be seen visually in Figures 22, 24, and 26 below, and the 
metrics derived from it can be seen in Table 10. 

 
Table 10: False Positives and False Negatives on Cloudy and Cloud Free Image 

WEATHER 

CONDITION 

SENSOR/TEST 

SET 

FALSE 

POSITIVE 

FALSE 

NEGATIVE 

Cloud Free 

Sentinel1 Full 0.04 0.09 

Sentinel1 Test 1 0.1 0.08 

Sentinel1 Test 2 0.22 0.06 

Sentinel2 Full 0.03 0.07 

Sentinel2 Test 1 0.06 0.06 

Sentinel2 Test 2 0.21 0.04 

Late Fusion Full 0.03 0.03 

Late Fusion Test 1 0.07 0.05 

Late Fusion Test 2 0.21 0.02 

Cloudy 

Sentinel1 Full 0.05 0.08 

Sentinel1 Test 1 0.13 0.09 

Sentinel1 Test 2 0.27 0.06 

Sentinel2 Full 0.07 0.27 

Sentinel2 Test 1 0.12 0.09 

Sentinel2 Test 2 0.22 0.23 

Late Fusion Full 0.04 0.08 

Late Fusion Test 1 0.08 0.1 

Late Fusion Test 2 0.21 0.07 
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Figure 21: Cloud Free Prediction on Full Image 

 

Figure 22: Confusion Matrix of Cloud Free Dataset on Full Image  
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Figure 23: Cloud Free Prediction on Test Set - 1 

Figure 24: Confusion Matrix of Cloud Free Dataset on Test Set - 1 
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Figure 25: Cloud Free Prediction on Test Set - 2 

Figure 26: Confusion Matrix of Cloud Free Image on Test Set -2 
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5.1.2. Deforestation Mapping on Cloudy Images 

In the previous section, the performance of the models was assessed on cloud-free Sentinel-2 images. In 
this section, similar assessments will be done on cloudy Sentinel-2 images acquired on 25th October 2020 
and Sentinel-1 images acquired on 26th October 2020. As the Sentinel-2 dataset includes 22-48% clouds, so 
it is expected that the model will not be able to predict accurately between “deforestation” and “non-
deforestation” in the areas obstructed by clouds. The performances of Sentinel-1, cloudy Sentinel-2, and the 
late fusion model for deforestation detection are outlined in Table 7. The model predictions for Sentinel-1, 
cloudy Sentinel-2, and late fusion models can be seen in Figures 27, 29, and 31 respectively and their 
confusion matrix can be found in Figures 28, 30, and 32 respectively for the three examples. As expected, 
the overall accuracy of the Sentinel-2 image was lower than Sentinel-1 and late fusion. Looking at the overall 
accuracy of 0.89 in the case of test set-1, Sentinel-2 is performing equivalent to Sentinel-1. However, when 
observed, it was found that though the overall accuracy of the Sentinel-2 test set-1 image is equivalent to 
Sentinel-1, visually (Figure 29) the predictions look less accurate than both Sentinel-1 and late fusion. 
Though the overall accuracy in the case of late fusion for the three examples was 0.95, 0.91, and 0.88, this 
was slightly lower than the cloud-free image which was 0.97, 0.94, and 0.91. Nevertheless, even in the case 
of cloudy images, late fusion was performing the best in the overall classification accuracy as well as F1 
Score relative to the use of standalone Sentinel-1 and Sentinel-2 images.  
 
 A similar trend was observed in the user accuracy of deforestation. However, in the case of the user accuracy 
of “non-deforestation”, Sentinel-1 was performing slightly better than late fusion for test set-1 and test set-
2 which is 0.9 and 0.85 respectively against 0.89 and 0.84 late fusion. Despite Sentinel-1 performing relatively 
better than late fusion in user accuracy, Sentinel-1 presented a higher rate of false positives for the 
“deforestation” class. This was 0.13 and 0.27 for test set-1 and test set-2 respectively, against 0.08 and 0.21 
for late fusion, confirming the improvement in the performance using late fusion. Sentinel-1 performed 
slightly better than late fusion in terms of False Negatives, which were 0.09 and 0.06 for test set-1 and test 
set-2 against 0.1 and 0.07 for late fusion. The difference was relatively small and, considering deforestation 
being the main class of interest, late fusion still performs better than standalone images. 

 

5.1.3. Analysis of Best Performing Model 

It was observed in the previous section that late fusion performs relatively better than both standalone 
models for Sentinel-1 and Sentinel-2 for deforestation mapping in both cases of cloudy and cloud-free 
images. Comparing the results of late fusion, cloud-free images perform better than cloudy images in terms 
of overall accuracy which was expected due to the availability of 22-48% clouds. The overall accuracy in 
cloud-free images was 0.97, 0.94, and 0.91 against cloudy imagery which was 0.95, 0.91, and 0.88 respectively. 
Considering 22-48% cloudy Sentinel-2 image, the performance of the late fusion-based cloudy image was 
very close to the cloud-free image. Late fusion on cloud-free data performed relatively better than cloudy 
data also in terms of the user accuracy (Table 8), and producer accuracy (Table 9). Further, as expected, in 
terms of false negatives, again the cloud-free image performs better than the cloudy image. Though the 
cloudy image contains 22-48% clouds in the Sentinel-2 image, still the false-positive detected in test set-2 is 
similar, which is 0.21. This shows how Sentinel-1 can benefit and supplement cloudy Sentinel-2 data for 
deforestation mapping. Though the value of false positives is considerably high but was observed similarly 
in both the cloudy and cloud-free images.  
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Figure 27: Cloudy Prediction on Full Image 

Figure 28: Cloudy Prediction on Full Image 
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Figure 29: Cloudy Prediction on Test Set - 1 

Figure 30: Confusion Matrix of Cloudy Dataset on Test Set-1 
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Figure 31: Cloudy Prediction on Test Set - 2 

 
Figure 32: Confusion Matrix of Cloudy Dataset on Test Set - 2 
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5.1.4. Test of Homogeneity between Classification Distribution 

For the assessment of the results of the segmentation using standalone models and late fusion, we performed 
McNemar’s test between Sentinel-1, Sentinel-2, and late fusion-based DL models for the three test scenarios. 
The results of the McNemar’s test (Table 11) showcased that all the predictions differ significantly from 
each other at one degree of freedom and a significance level of 0.05. The only exceptions were Sentinel-2 
and late fusion as given in Table 11. In the case of cloud-free images, classification using late fusion for the 
full image was exhibiting the greatest differences in the X2 Statistics (Table 11), relative to the other two 
sensors. However, in the case of test set-1 and test set-2 things were a little different. In test set-1, Sentinel-
2 and late fusion were not significant which was also observed in the overall accuracy (Table 7) which was 
0.94 (same for both). Although slight improvement was observed in the F1 score (Table 7) i.e. 0.94 for late 
fusion-based test set-1 against 0.93 for Sentinel-2 test set-1. The difference between Sentinel-2 and late 
fusion in test set-1 was statistically insignificant at the 5 percent level of significance with an X2 Statistical 
difference of 1271.22. In the case of test set-2, the difference between Sentinel-2 and late fusion is statistically 
significant. The difference is quite low with an X2 Statistical difference of only 3374.03 against 55362.51 
between Sentinel-1 and late fusion.  
 
In the case of cloudy images, the results were a little different. The results showcased that all the distributions 
differ significantly from each other. Taking the same degree of freedom and the same significance level, 
even test set-1 was statistically significant which was found insignificant for cloud-free images. In the case 
of the full image, a clear X2 Statistical difference of 14226133.13 and 16041183.54 for Sentinel-1/Sentinel-
2 and Sentinel-2/late fusion respectively has been observed. Similar X2 statistical difference was also 
observed in test set-2 with a difference of 424994.39 and 528035.21 for Sentinel-1/Sentinel-2 and Sentinel-
2/late fusion respectively. Test set-1 gave somewhat different results in which the statistical difference was 
higher between Sentinel-1/late fusion which was different from the differences observed in test set-2 and 
full image. 

 
Table 11: McNemar's Test Results 

WEATHER 
CONDITION 

TEST SET PRODUCT X2 p-Value 

Cloud Free 

Full Image 

Sentinel-1 vs Sentinel-2 190604.81 <0.05 

Sentinel-1 vs Late Fusion 1684811.99 <0.05 

Sentinel-2 vs Late Fusion 985819.78 <0.05 

Test Set - 1 

Sentinel-1 vs Sentinel-2 79262.11 <0.05 

Sentinel-1 vs Late Fusion 94182.46 <0.05 

Sentinel-2 vs Late Fusion 1271.22 2.02 

Test Set - 2 

Sentinel-1 vs Sentinel-2 34548.12 <0.05 

Sentinel-1 vs Late Fusion 55362.51 <0.05 

Sentinel-2 vs Late Fusion 3374.03 <0.05 

Cloudy 

Full Image 

Sentinel-1 vs Sentinel-2 14226133.13 <0.05 

Sentinel-1 vs Late Fusion 279315 <0.05 

Sentinel-2 vs Late Fusion 16041183.54 <0.05 

Test Set - 1 

Sentinel-1 vs Sentinel-2 3307.06 <0.05 

Sentinel-1 vs Late Fusion 35610.46 <0.05 

Sentinel-2 vs Late Fusion 9262.51 <0.05 

Test Set - 2 

Sentinel-1 vs Sentinel-2 424994.39 <0.05 

Sentinel-1 vs Late Fusion 12441.35 <0.05 

Sentinel-2 vs Late Fusion 528035.21 <0.05 
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5.2. Discussion 

Instead of considerable drop in the deforestation rate in the amazon, forests are still being cleared (R. V. 
Maretto et al., 2020). Despite the forest clear-cuts at such a large scale, such events are hard to track in time 
(Isaienkov et al., 2021) and lead to the loss of huge areas of forests that are slowly and steadily being cut 
down. This gives a clear idea about the need for consistent and efficient monitoring of deforestation 
activities on our planet, and generating precise deforestation maps for updating and facilitating public 
policies aimed at combating deforestation (R. V. Maretto et al., 2020). In this study, deforestation mapping 
was explored using Sentinel-1, Sentinel-2, and late fusion models in both cloudy and cloud-free weather 
conditions. This study showcased a new methodology for deforestation mapping by using a late fusion 
technique by performing a fusion of features in the last decoder. The model was used for both Sentinel-1 
and Sentinel-2 images as input, to perform a multi-modal data fusion. Standalone SegNet models were 
separately prepared for mapping deforestation using Sentinel-1 and Sentinel-2 images separately. Based on 
the results in section 5.1.3, as expected late fusion using a cloud-free image performed relatively better than 
a cloudy image in terms of overall accuracy. In cloud-free weather conditions, Sentinel-2 had a higher user 
and producer accuracy and performed relatively better than Sentinel-1, as C-Band SAR is usually less 
sensitive to the forest structures, which are mostly in the “Non-Deforestation” class in our study as also 
mentioned by Sirro et al., (2018) and Sinha et al., (2015). This can also be quantified by the fact that the user 
and producer accuracy for “Non-Deforestation” detected using Sentinel-1 for all the test sets was lower 
than Sentinel-2 image (Table 8 and 9) in a much higher proportion than the “Deforestation” class. The 
results in the case of the cloudy dataset were quite as were expected which was lower than the cloud-free 
dataset.  
 

 
Figure 33: Predictions on Cloudy and Cloud Free Sentinel-1 Image 

As Sentinel-1 can capture information in all-weather conditions, so not much difference was observed in the overall 
accuracy in cloud-free and cloudy Sentinel-1 images which can also be seen visually in Figure 33. But, in the case of 
the Sentinel-2 image, a clear difference was observed in the overall accuracy between the cloudy and cloud-free images. 
The difference can also be observed visually in Figure 34. Though there was a huge decrease in the overall accuracy of 
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cloudy Sentinel-2 images, fusing it with Sentinel-1 using late fusion improved the performance of the model for all 
three examples. This directly shows the benefit of fusing images from different modalities in the case of cloudy images.  

In the case of cloud-free images, Sentinel-2 performed the best in standalone sensors which is also a reason why the 
late fusion in cloudy-free images performed relatively better than the cloudy image in terms of overall accuracy. The 
trends observed in overall accuracy were in-line with the trends observed in the F1 Score (Table 7).  

In this study, late fusion was explored for improving the deforestation mapping for both cloudy and cloud-free datasets. 
As expected, the fusion improved the classification accuracy for deforestation mapping for both cloudy and cloud-free 
datasets. Looking at Figure 35 classified by cloudy Sentinel-2 test set-2, the lower left part (highlighted in a red dotted 
circle) was misclassified as “Non-Deforestation” since, with the obstruction by clouds, it ends up confusing the DL 
architecture using cloudy Sentinel-2 image for predicting between the “Deforestation” and “Non-Deforestation” class. 
However, late fusion manages to correctly classify Deforestation on the lower left side (Figure 35) in the lower-left 
part of the image due to the presence of Sentinel-1 Image. This was similar to the predictions on a full image which 
can be seen in Figure 36, on the upper right side of the Sentinel-2 predicted image and a few other locations (highlighted 
in a red dotted circle), where small patches of deforestation were predicted as “Non-Deforestation” in green colour. 
Late fusion recovered the small patches of “Deforestation” which can be seen in the upper right side and other parts 
(highlighted in a red dotted circle) of Figure 36. Thanks to the availability of the Sentinel-1 sensor which was not 
affected by clouds. Further, looking at past studies done for deforestation mapping based on optical images by Ortega 
et al., (2019), Isaienkov et al., (2021), Andrade et al., (2020), Bem et al., (2020), Adarme et al., (2020) specific dates of 
the image were selected where cloud cover was minimum. Also, in the study done by Maretto et al., (2020), clouds 
were masked out during deforestation mapping. This is because of the availability of clouds, the DL-based model was 
not able to perform accurate predictions. This research tried to fix this issue of clouds in the Sentinel-2 dataset 
specifically by using late fusion and mapping deforestation in cloudy Sentinel-2 image along with Sentinel-1 image. 

Figure 34: Predictions on Cloudy and Cloud Free Sentinel-2 Image 
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Figure 35: Predictions on Cloudy Image on Test Set-2 

 

 
Figure 36: Predictions on Cloudy Image on Full Image 

Combining both the images using late fusion improved the accuracy of deforestation mapping, relative to 
using standalone Sentinel-1 or Sentinel-2 images. Sentinel-2 produced superior results than that Sentinel-1 
in the case of a cloud-free situation. While in the case of a cloudy scenario, as expected, Sentinel-1 produces 
relatively better results than that Sentinel-2. Although only little improvement in deforestation mapping was 
observed using late fusion, this improvement was observed in terms of all the evaluation metrics including 
overall accuracy (Table 7), f1 score (Table 7), user accuracy (Table 8), producer accuracy (Table 9), false 
positives and false negatives (Table 10). This improvement was also observed in both cloudy and cloud-free 
weather conditions in comparison to the DL model using standalone Sentinel-1 and Sentinel-2 images. The 
performance of deforestation mapping was relatively better in cloud-free conditions using late fusion than 
in the cloudy Sentinel-2 image. Based on the results, in the case of deforestation mapping, if the availability 
of images was not an issue, cloud-free imagery should be considered over cloudy imagery. As standalone 
images, both Sentinel-1 and Sentinel-2 provided sufficient accuracies, and fusing both optical and SAR data 
does improve the overall classification accuracy for deforestation detection as was also discussed in 5.1. Our 
research has shown the advantage of Optical-SAR data fusion in both cloudy and cloud-free conditions.  
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Figure 37: Ground Truth Image of Test Set - 2 

In the case of test set-2, late fusion performed relatively better than standalone sensors. But, it was observed 
that the rate of false positives was considerably higher for deforestation i.e. 0.22, 0.21, and 0.21 using 
Sentinel-1, Sentinel-2, and late fusion respectively for a cloud-free scenario. For the cloudy dataset, the false 
positives were 0.27, 0.22, and 0.21 using Sentinel-1, Sentinel-2, and late fusion (Figure 38) respectively. 
Further, the quantification of False Positives (Table 10) for test set-2 was relatively higher than for test set-
1. This can be an issue in a scenario where a DL algorithm was used for decision-making by the government 
officials, wrong fines can be imposed on a location where no deforestation ever happened on the ground. 
One of the reasons for a high rate of false positives in test set-2, was that a high number of small patches 
of “Non-Deforestation” relative to test set-1 were observed, with a size less than 0.1 hectares. This is not 
quantified but can be seen visually in Figure 38. The DL model usually smoothes the edges in case of 
extremely small patches as can be seen visually in predictions in cloudy and cloud-free datasets (Figure 21, 
23, 25, 27, 29, and 31) thereby leading to the wrong classification. Another reason for the high rate of false 
positives in test set-2 is the time lag between the PRODES dataset and the acquisition of cloud-free satellite 
imagery used in this research. As can be seen in Figure 37 in test set-2, due to this lag extremely small areas 
are wrongly trained to lead to the wrong classification. Another possible reason for the high false positives 
is the difference in the spatial resolution of PRODES (30m) and the Sentinel-1 and Sentinel-2 images which 
is 10m. 
 
Further, the performance of the semantic segmentation using DL architecture was also affected by the 
quality of ground truth images. This is because PRODES is also not 100% accurate, but indicates a level of 
accuracy close to 95% (PRODES, 2021). In future work, using reference images with a higher spatial 
resolution like MapBiomas with 10m spatial resolution can be explored for deforestation mapping using DL 
Architecture prepared in this research. The overall classification accuracy for the cloudy image was close 
enough to that of the cloud-free image. Improvements can be explored in the fusion model which has been 
suggested in section 6.3 of this research. Although Sentinel-2 alone did perform the best in terms of 
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deforestation mapping in cloud-free conditions, and also Sentinel-1 in cloudy conditions, the combination 
of both improved the accuracy of deforestation mapping in both cloudy and cloud-free conditions.  
 

 
Figure 38: Predictions on Cloudy Image using Late Fusion 

 
Figure 39: Sentinel-2 Cloudy Test Set-1 and Test Set-2 

 
As per McNemar’s test for cloud-free images, all the examples were statistically significant apart from 
Sentinel-2 and late fusion which was statistically insignificant for test set-1 at a 5% level of significance 
(Table 11). As per the interpretation of McNemar’s test, the level of difference between Sentinel-2 and late 
fusion is very minimal. But, though being statistically insignificant, still, a minimal level of X2 Statistical 
difference was observed though only 1271.22 (Table 11).  
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In the case of cloudy images, in the full image and test set-2, the statistical difference was observed lower 
between Sentinel-1/late fusion than between Sentinel-2/late fusion. As also mentioned in 4.4.2 that 
McNemar’s test informs if the two models agree (true positive) or disagree (true negative) in a similar 
manner. It does not give information about the accuracy of the model. A high rate of difference was 
observed in X2 statistics of Sentinel-2/late fusion relative to Sentinel-1/late fusion. This statistical 
significance test was in line with the overall accuracy, where the accuracy of Sentinel-1 was close to late 
fusion. But, there was a relatively high difference in the overall accuracy between Sentinel-2 and late fusion. 
As expected, this high statistical difference was also observed in Sentinel-1/Sentinel-2 in both full image 
and test set-2. This is because the predictions of Sentinel-2 were quite different (with a high level of 
differences) than Sentinel-1 and late fusion. It was because of wrong predictions of the DL model in the 
Sentinel-2 image in the areas obscured by clouds. Although the difference between Sentinel-1 and late fusion 
was low for the full image and test set-2, relative to the difference from the Sentinel-2 image. But, the 
difference was statistically significant showing a level of difference between the predictions though small. 
This verifies that the results of late fusion/Sentinel-1 and late fusion/Sentinel-2 were statistically significant 
and different, which is in line with the results in the overall classification accuracy. 
 
The observations for test set-1 for the cloudy image were a little surprising and contradicted the full image 
and test set-2. This is because though results were statistically significant for Sentinel-1, Sentinel-2, and late 
fusion with each other, the differences observed in Sentinel-2/late fusion were smaller than the difference 
observed between Sentinel-1/late fusion. Similar trends were also observed in the overall accuracy as though 
the Sentinel-2 imagery was cloudy, but the overall accuracy on test set-1 was the same (0.89) for both 
Sentinel-1 and Sentinel-2. In the case of Sentinel-1 test set-1, the wrong classification of small patches of 
“Deforestation” (Figure 40 highlighted with red dotted line) over the “Non-Deforestation” (green color) 
areas, makes more false positives in the case of Sentinel-1 predictions relative to Sentinel-2 predictions which 
were 0.13 and 0.12 respectively. The false positives are reduced to 0.08 using late fusion. Hence, the 
availability of more false positives by the small Deforestation patches in Sentinel-1 (Figure 40), is one of the 
reasons for the statistical difference in the case of test set-1 higher between Sentinel-1/late fusion relative 
to the difference between Sentinel-2/late fusion. The results of McNemar’s statistical significance test are 
in-line with the overall classification accuracy, proving our hypothesis correct.  
 

  

Figure 40: Predictions on Test Set-1 on Cloudy Image 
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusions   

This study describes a novel approach for the late fusion of Sentinel-1 and Sentinel-2 images for 
deforestation mapping for the year 2020. Our study confirms that the combination of optical and SAR data 
significantly improves the accuracies for deforestation mapping, which was also validated using McNemar’s 
statistical significance test. In the case of a cloud-free image, the overall accuracy using Sentinel-1/Sentinel-
2 input used in late fusion increased by +3%, +3%, and +3% for full image, test set-1, and test set-2 
respectively relative to Sentinel-1 image and increased by +2% and +1% for full image and test set-2 
respectively relative to Sentinel-2 image. In case of cloudy weather condition, the overall accuracy of 
Sentinel-1/Sentinel-2 inputs used in late fusion increased by +1%, +2% and +1% for full image, test set-1 
and test set-2 respectively relative to Sentinel-1 image and increased by +10%, +2% and +10% relative to 
Sentinel-2 cloudy image. With this research, we have confirmed that DL shows potential for multi-sensor 
data fusion for mapping deforestation specifically using freely available Sentinel-1 and Sentinel-2 imagery. 
We also have been able to show that data fusion is beneficial for deforestation mapping in case of both 
cloudy and cloud-free scenarios. In future studies, data fusion can be explored with fusion using more than 
the two modalities used in this research for improving deforestation mapping in both cloudy and cloudy-
free weather conditions. 

6.2. Answer to Research Questions 

1. To what degree can SAR data support deforestation mapping when atmospheric conditions 
affect the optical image? 

 
Sentinel-1 together with Sentinel-2 using late fusion supports deforestation detection when atmospheric 
conditions affect optical image by +10%, +2% and +10% for full image, test set-1 and test set-2 respectively. 

 

2. To what extent can the fusion of Optical-SAR data improve deforestation mapping relative to 
using standalone sensor images? 

 

• In the case of cloud-free data, using late fusion improved the overall accuracy by +3%, +3%, and +3% 
for full image, test set-1, and test set-2 respectively relative to Sentinel-1 Image. The overall accuracy 
increased by +2% and +1% for full image and test set-2 respectively relative to Sentinel-2 Image.  
 

• In the case of cloudy weather conditions, using late fusion improved the overall accuracy by +1%, +2%, 
and +1% for full image, test set-1, and test set-2 respectively relative to the Sentinel-1 image. The overall 
accuracy improved by +10%, +2% and +10% relative to Sentinel-2 cloudy image. 
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6.3. Recommendations for further studies 

Even though the approach presented in this research produced encouraging results, it still has numerous 
limitations which can be overcome in future works, as a continuation of this research which is as follows: 
 
(i) This research mapped the accumulated deforestation from the year 1988 until 2020 using a single 

temporal image of the year 2020. In future works, the use of time-series images should be explored 
instead of a single temporal image used in this research for mapping deforestation.  

 
(ii) Other future directions which can be taken are, fusing Sentinel-1 and Sentinel-2 images for change 

detection which could not be undertaken in this research due to time constraints.  
 

(iii) In this research only one fusion approach i.e. late fusion was utilized for fusing Sentinel-1 and 
Sentinel-2 images. Future works can observe the results of deforestation detection using other levels 
of fusion which can be more of a comparative study for understanding the performance of different 
fusion methods in both cloudy and cloud-free atmospheric conditions. 

 

(iv) In this research, we only used the highest-resolution (10m) bands including Red, Green, Blue, and 
NIR as more bands take more computational resources. In future works, more bands of Sentinel-2 
images can be explored for deforestation detection. 

 

(v) In the future transferability of the existing trained model in a different area in the amazon or even in 
a different part of the planet can be explored. 

 

(vi) In this study, Sentinel-1 images were highly beneficial for mapping deforestation in cloudy conditions. 
Future satellite missions including NISAR which is a joint project between NASA and ISRO will 
include “S” and “L” Bands which can be explored for data fusion with Sentinel-2 and also for 
deforestation mapping using standalone “S” and “L” Bands. 

 

(vii) We used late fusion by using the same backbone architectures for both Sentinel-1 and Sentinel-2 
images which were SegNet architectures. Future research can explore late fusion by using different 
backbone architectures before fusion, which could utilize the full potential of both Sentinel-1 and 
Sentinel-2 images for mapping deforestation in both cloudy and cloud-free weather conditions. 

 

(viii) Due to time constraints, this study was only limited to using standalone sensors and late fusion for 
mapping deforested areas and evaluating the model using accuracy assessment and McNemar’s test. 
In future studies, specific features can be identified which were correctly detected on Sentinel-1 and 
wrong on Sentinel-2 and vice-versa. This can help in the identification of the exact complementary 
features for deforestation mapping using fusion relative to using a standalone image.  
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APPENDIX 
 

Annex 1: Cloud Free Sentinel-1 Training and Validation Loss 

 

 Annex 2: Cloud Free Sentinel-1 Training and Validation Accuracy  

Figure 41: Cloud Free Sentinel-1 Training and Validation Loss 

Figure 42: Cloud Free Sentinel-1 Training and Validation Accuracy 
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Annex 3: Cloud Free Sentinel-2 Training and Validation Loss 

 
Figure 43: Cloud Free Sentinel-2 Training and Validation Loss 

Annex 4: Cloud Free Sentinel-2 Training and Validation Accuracy 

 
Figure 44: Cloud Free Sentinel-2 Training and Validation Accuracy 
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Annex 5: Cloud Free Late Fusion Training and Validation Loss 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Annex 6: Cloud Free Late Fusion Training and Validation Accuracy 
  

Figure 45: Cloud Free Late Fusion Training and Validation Loss 

Figure 46: Cloud Free Late Fusion Training and Validation Accuracy 
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Annex 7: Cloudy Sentinel-1 Training and Validation Loss 

 

Annex 8: Cloudy Sentinel-1 Training and Validation Accuracy 
  

Figure 47: Cloudy Sentinel-1 Training and Validation Loss 

Figure 48: Cloudy Sentinel-1 Training and Validation Accuracy 



 

55 

Annex 9: Cloudy Sentinel-2 Training and Validation Loss 

 

Annex 10: Cloudy Sentinel-2 Training and Validation Accuracy 

  

Figure 49: Cloudy Sentinel-2 Training and Validation Loss 

Figure 50: Cloudy Sentinel-2 Training and Validation Accuracy 
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Annex 11: Cloudy Late Fusion Training and Validation Loss 

 

Annex 11: Cloudy Late Fusion Training and Validation Accuracy 

 

Figure 51: Cloudy Late Fusion Training and Validation Loss 

Figure 52: Cloudy Late Fusion Training and Validation Loss 


