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Chapter 1

Introduction

Application Programming Interface (API)s play a critical role in software develop-
ment. They come in various forms and protocols. External APIs, or open APIs, are
available to external users or companies. These can provide services for location
& mapping, payment, search, etc. Examples include the APIs of Google Maps and
Paypal. Internal APIs on the other hand are for use within the company or project.
They are not available to external users and can be used to communicate various
services or resources within the company. With micro-service architectures, an API
gateway can process requests and redirect them to the appropriate internal API [1].

A recent SlashData survey in 2020 has concluded that nearly 90% of software
developers use APIs. These software developers use 2.9 APIs on average of which
69% are external, and the remaining are internal. By using these external services
construction time can be greatly improved.

To facilitate the use of external APIs, they have to be well-designed and easy
to use. If this is not the case, a developer can opt for easier-to-use APIs or even
write the service from scratch [2]. Additionally, in both internal and external APIs,
complexity can cause longer implementation times, and possibly lead to bugs due to
incorrect usage. A study from 2008 reported that API users were able to complete
tasks 2.4 to 11.2 times quicker if the desired method was in the expected class [3].

Thus, due to its importance, usability has become an important factor in Human
Computer Interaction (HCI) research [4]. It was found that flaws in the usability
of APIs will have an impact on development time and correctness of the result-
ing software. Additionally, for companies offering external API services, usability
is an important construct to retain customers. In this paper, we will be utilizing a
dataset of BetterBe, consisting of manual API calls, and calls from their Graphical
User Interface (GUI) directly to their API. BetterBe is a software company offering
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services, including various APIs, to car leasing companies. We will propose an ap-
proach to identify common workflow patterns of the API and use these to improve
the usability of the application at BetterBe. These workflows encompass multiple,
sequential, related requests sent by a user.

1.1 Motivation

Recently, BetterBe exposed a GUI to clients which was previously intended for inter-
nal use. It is currently being used by clients manually and automatically by receiving
automated calls directly to the API. This prompted additional development into the
system to make it better suited for clients, however, it was unclear exactly how the
system was being used by their clients. Additionally, BetterBe is in the process of
making its clients more self-sufficient in using the application.

The need to gain insights into how the system is used and the goal to increase
the self-sufficiency of users motivates the need to identify use cases of their system.
This allows us to determine common usage patterns or common workflow patterns
within the application. These workflows consist of sequential actions by a user to
achieve a certain task. They might perform multiple search requests in order to fi-
nally retrieve a certain item. These sequential, related requests can then be grouped
together into a single workflow.

By identifying the most common workflows, development can be focused on
these areas. Additionally, insights into the data can help customize client training.
In the long term, these developments and insights should aim to reduce the time
spent helping/training clients in using their application. Finally, by locating inefficient
workflows that unnecessarily span multiple pages, we can restructure certain pages
to improve these workflows to improve the usability of the GUI.

1.2 Framework

As BetterBe has multiple services, they use tools such as ElasticSearch [5] to store
and manage their API requests. Furthermore, they use Kibana [6] which serves
as an extension to ElasticSearch to gain insights into stored data through queries,
charts, and anomaly detection.
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This thesis will continue the work of previous research in which an approach
to improving usability of the API was detailed [7]. This research also provides a
background into the data transformation, clustering techniques, and their evalua-
tion in Chapter 2. The research will be conducted on BetterBe’s Lease Service
Management (LSM) application. Further information on the application will be pro-
vided in Chapter 4.

1.3 Research questions

The approach will utilize previous usage data of the API to extract workflow patterns
in the problem domain. These API requests will then be clustered to identify com-
mon workflow patterns between users. Finally, we will improve the usability of the
BetterBe system. This leads to the following research questions.

1. How can we extract workflow patterns from gathered API usage data?

2. How can we identify common workflow patterns between users?

3. How can we improve the usability at BetterBe by analyzing the data and com-
mon workflow patterns?

1.4 Report organization

The remainder of this report is organized as follows. First, we will start by introduc-
ing relevant background that we will use throughout the report. We will then provide
previous work in Chapter 3, and continue by introducing the application of BetterBe
in Chapter 4. The methodology is then discussed in Chapter 5 followed by the im-
plementation details in Chapters 6, 7, 8. Chapter 9 will discuss approaches when
comparing different clients. Chapter 10 investigates the paths users take through
the website. The data from previous Chapters are incorporated into an automated
pipeline resulting in a generated report which will be discussed in Chapter 11. Fi-
nally, usability will be discussed in Chapter 12 followed by the discussion, future
work, and conclusion in the final chapters.
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Chapter 2

Background

In this chapter, we will explain concepts and algorithms that we will use throughout
the report.

2.1 Distance measures

We will use the Cosine and Jaccard similarity measures as a base for determining
the distance between user sessions in the application once they have been con-
verted to vectors. They are defined by the following equations:

cosine similarity =
X · Y

||X|| ∗ ||Y || (2.1)

jaccard similarity =
X · Y

||X||2 + ||Y ||2 −X · Y (2.2)

They are both monotonic functions in the domain of [0, 1] when considering vec-
tors that do not contain negative values. The largest similarity occurs at 1, so we rep-
resent them as cosine = 1− cosine similarity and jaccard = 1− jaccard similarity

to have a distance measure.

The Cosine distance is independent of document length as it considers the angle
between two vectors. Large documents result in higher values in the vector. If we
multiply a vector by k it will simply extend the vector in the same direction. Thus, it
will have a distance of 0 to the previous vector.

However, Jaccard does not have this feature. When multiplying a vector by k it
will have a distance of 1 − k

1+k2−k
to the previous vector. In case of k = 2 this is

already 1
3
.
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Figure 2.1: Elbow method

2.2 Evaluation metrics

We will discuss the Within-Cluster Sum of Squares (WCSS), Silhouette Coefficient,
and Calinski-Harabasz Index evaluation metrics which can be used to determine the
number of clusters used in the clustering.

2.2.1 WCSS

The WCSS utilizes the elbow method and considers the variation within clusters.
The elbow method plots multiple WCSS values for the different numbers of clusters
and determines the optimal number of clusters by the elbow in this plot. This can
be seen in Figure 2.1. We can observe that the WCSS decreases rapidly until it
reaches 4 clusters. At this point, it starts decreasing at a slower rate and we get di-
minishing returns for increasing the number of clusters. Thus, an ’elbow’ is created
at 4 clusters making it the optimal amount.

The WCSS can be calculated using the following equation

WCSS =
∑
c∈C

∑
d∈c

distance(centroid(c), d)2 (2.3)

where C is our set of clusters, centroid(c) provides the centroid for cluster c, and
distance(x, y) provides the distance between two points based on the distance mea-
sure.

2.2.2 Silhouette Coefficient

The Silhouette Coefficient provides a value in the range of [-1, 1] where 1 indicates
the clusters are clearly distinguished, and -1 shows that the clustering is likely wrong.
It calculates the value for each data point and averages this value. Thus, we can
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also look at the Silhouette Coefficient for each cluster.

It uses the following equation to calculate the Silhouette Coefficient

Silhouette Coefficient =


1− x/y x < y

y/x− 1 x > y

0 x = y

where x indicates the average distance of a vector v to it’s own cluster C, and y
indicates the average distance to it’s closest neighbouring cluster. These are given
by the following equations

x =

∑
vector∈C distance(v, vector)

|C|
(2.4)

y = min
cluster

∑
vector∈cluster distance(v, vector)

|cluster|
(2.5)

2.2.3 Calinski-Harabasz Index

The Calinski-Harabasz index calculates the separation and cohesion of data points.
The separation indicates the distance to other clusters, and cohesion distance to its
own cluster. Let us denote N as the number of documents, K as the number of
clusters, Ck as the centroid of cluster k, C as the global centroid, and Sk as the size
of cluster k. This results in the following equations.

separation =

∑K
k=1 Sk ∗ ||Ck − C||2

K − 1
(2.6)

cohesion =

∑K
k=1

∑
d∈Ck
||d− Ck||2

N −K
(2.7)

Calinski−Harabasz = separation/cohesion (2.8)

2.3 Clustering algorithms

Fuzzy C-means

The algorithm takes the number of clusters, k, as input from the user. It then initial-
izes a coefficient ∈ [0, 1] for each (cluster, data point) pair. These k ∗ n coefficients
are initialized at random, where n indicates the total number of data points, and the
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Figure 2.2: Agglomerative clustering [8]

highest coefficient of a data point can be used to determine the cluster. Each of
these k clusters will have a centroid which is the average point out of all data points
belonging to the cluster. This can be used to determine the error of each cluster
by taking the distances of the data points to their centroid. The algorithm will up-
date these coefficients in each iteration resulting in new centroids, and a lower error
rate. This process is repeated until the maximum coefficient change falls beneath a
threshold ϵ.

A downside of Fuzzy C-means is that it will converge on a local minimum which
does not have to be a global minimum. Thus, the solution depends on the initial
coefficients.

Agglomerative clustering

Agglomerative clustering or hierarchical clustering is initialized with a cluster for each
data point. These clusters will subsequently be merged in a bottom-up fashion
based on the lowest mean distance between a pair of clusters. This repeats un-
til we have k clusters, defined by the user. This process can be seen in Figure 2.2,
where we start with 5 data points that ultimately merge into a single cluster. If we
were to specify 2 clusters, the process would terminate before the last merge.

A downside of the agglomerative clustering is the time complexity of O(N3) where
N is the total amount of data points to cluster. This is mainly due to the fact that each
possible merging is considered at each step.
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2.4 Rolling hash

When utilizing a rolling hash [9], an array of numbers can be represented as a poly-
nomial with an associated hash. Integers can be added/removed from both sides in
constant time (O(1)) while simultaneously updating the hash. We will later use these
to represent a list of pages to locate common user journeys through the application
in Chapter 10. We will discuss the representation as a polynomial, preprocessing,
and supported operations in the following sections.

2.4.1 Representation

An integer array C can be represented as

hash = C0 ∗ a0 + C1 ∗ a1 + C2 ∗ a2...Cn ∗ an

where Ci indicates the integer at index i of the array, and a is the prime base. The
hash is taken modulo m. We will take a = 22695477 and m = 232 as this is a common
pair proven to have a low collision rate [10].

2.4.2 Preprocessing

To perform the operations in O(1), we compute the modular inverse of a under m,
and the powers ai. The modular inverse of a under modulo m can easily be found
in O(log(m)) using Euclid, which has been implemented, however, we can simply
provide the value here as 690295837. The initialization of values and precom-
putations can be found in Algorithm 1. The Queue() is a data structure that sup-
ports adding/removing entries in the front and back of a list in O(1). Java has the
LinkedList implementation, while Python has the deque data structure.

2.4.3 Operations

Remove first integer

The first integer c of the array corresponds to the C0 ∗ a0 term in the polynomial.
Thus, we can subtract c from the hash which we can obtain from our queue. We
can then divide the entire polynomial by a to obtain the previous structure of powers
ranging from a0 to an−1. As we are in a modulo field we obtain this by multiplying
the hash by the inverse of a under modulo m which we previously precomputed.
Finally, we perform the modulo operation on the hash. This process is described in
Algorithm 2.
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Algorithm 1: Preprocessing
Input: Maximum string size n
begin

/* Parameters */

hash←− 0 ;
a←− 22695477 ;
m←− 232 ;
queue←− Queue() ;
inversea ←− 690295837 ;
/* Precompute powers */

pow ←− [1] ∗ (n+ 1) ;
index←− 1 ;
while index ≤ n do

pow[index]←− (pow[index− 1] ∗ a) mod m ;
index←− index+ 1

Algorithm 2: Remove First

begin
c←− queue.popLeft() ;
hash←− hash− c ;
hash←− hash ∗ inversea ;
hash←− hash mod m

10



Remove last integer

The last integer c of the array corresponds to the Cn−1 ∗ an−1 term in the polynomial
where n indicates the length of the array. The size of the array can be obtained from
the queue in O(1). Thus, we can subtract c ∗ an−1, and perform the modulo. Note
that these powers have been precomputed. This process is described in Algorithm
3.

Algorithm 3: Remove Last

begin
n←− queue.size()− 1 ;
c←− queue.popRight() ;
hash←− hash− c ∗ pow[n] ;
hash←− hash mod m

Add first integer

To append an integer c to the front of the array we can multiply the entire polynomial
by a to increase the power of each entry. This frees up the C0 ∗ a0 term. Thus, we
can simply add this integer c, and perform the modulo. This process is described in
Algorithm 4.

Algorithm 4: Add First
Input: Integer c
begin

hash←− hash ∗ a ;
hash←− hash+ c ;
hash←− hash mod m ;
queue.addLeft(c)

Add last integer

To append an integer c to the end of the array we have to add the term c ∗ an to the
polynomial. We perform the multiplication using the precomputed values of ai, and
perform the modulo. This process is described in Algorithm 5.
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Algorithm 5: Add Last
Input: Integer c
begin

n←− queue.size() ;
hash←− hash+ c ∗ pow[n] ;
hash←− hash mod m ;
queue.addRight(c)

12



Chapter 3

Related Work

As the web matured and saw more use, usability research started to focus on this
environment. This led to the creation of design principles relating to layout [11],
navigation structure [12], searching [12], etc. As the literature advanced, various
studies have defined usability factors/guidelines including, but not limited to: easy
to learn [13], consistency [14], and easy to interpret client code [13]. These have
subsequently been used to evaluate APIs in surveys, controlled experiments, and
task-based usability tests [13]–[19].

Though these manual approaches can provide valuable insights into usability,
among clients at BetterBe there are large differences in tasks being performed.
Thus, an automated approach is preferred. This can be achieved by utilizing ex-
isting data on each client.

Studies that did not involve users often used existing bug reports, gathered pro-
grammer discussions, or analyzed code changes over time [13], [20]–[22]. As an
example, [13] categorized bug reports into usability factors including missing fea-
tures (43.5%), correctness (31.1%), documentation (27.3%) etc.

Though technology can change significantly over time due to development, these
changes often do not disrupt the basic principles of usability, leaving them mostly
unchanged [23]. [24] is still often cited, and describes this usability as 5 factors [25]:

1. ease of learning how to use the application

2. efficiency of the application design in terms of fast navigation and required
clicks

3. ease to memorize how to use the application.

4. low number of errors made by users.
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5. general satisfaction of the user with the application

In this paper, we will mainly focus on factors (1), (2), and (4). To improve upon
the user interactions with the application, we will first research how the application
is currently being used. We will then discuss how this knowledge can be leveraged
to improve usability.

3.1 Use cases

To detect use cases, or workflows, of users, there are multiple approaches discussed
in the literature.

3.1.1 Integrated analytics

Firstly, analytics can be integrated into the website to track user behavior. [26] dis-
cusses the possibility of integrating Google Analytics into the website. A ’dashboard’
can then be built that tracks users and provides insights into common resources, and
the number of clicks required to reach this resource. Additionally, it provides insights
into where users drop out of the workflow to reach these resources.

After design changes have been made to counterattack the discovered problems,
the results can be easily observed in the dashboard after which the process can be
repeated.

The main drawbacks include the manual encoding of tracking labels as this has to
be done for each link on the website. Otherwise, the complete user journey through
the website cannot be tracked. Additionally, after implementing this, the system has
to be monitored, and thus it can take significant time before gaining results.

3.1.2 Workflow mining

To automate the process of finding workflows, existing usage data can be mined to
find workflows. An algorithm and approach to this problem is proposed in [27]. It
explores the possibility of viewing sessions as lists of services being utilized with
temporal relations between the services. This temporal relation includes an order-
ing and time spent in each of the services. These services can be considered as
pages, or sets of pages and actions. This data can be mined from logged API data
as this often includes time, Uniform Resource Identifier (URI), and originating page.
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Common patterns can then be located between the various sessions.

The approach can be useful in finding common actions between users but faces
some issues when dealing with the similarity between sessions. This is mainly due
to the fact that additional ’noise’, in the form of pages, can be inserted in sessions
making it difficult to find larger actions as services no longer exactly match. Thus, it
is less suitable for similarities between whole sessions, but in Chapter 10 we explore
the approach to locate common patterns within sessions.

3.1.3 Clustering

In [28] the use of clustering to group user sessions with similar usage patterns to-
gether was proposed. This approach would use previous usage data of users to
cluster their sessions within the application to analyze usage patterns on the web-
site to subsequently recommend website restructuring changes. The process can
be automated, and ’noise’ within sessions which could disrupt the approach taken in
Section 3.1.2 has a smaller impact and will likely not affect the classification of such
a session.

3.2 Usability

After we extract workflow patterns from API usage data and identify common work-
flow patterns between users, we can use these to improve usability.

In [20], problems relating to usability factors such as missing features (43.5%),
correctness (31.1%), documentation (27.3%), etc. could be mainly categorized as a
lack of understanding in the upward and downward direction. The upward direction,
focused towards the problem domain, is described as ”mapping desired scenarios in
the problem domain to the content of the API”. The downward direction focuses on
an understanding of the API and behavior of the system. Code snippets for work-
flows are preferred to the documentation of individual methods. Thus, by utilizing
these common workflow patterns, the documentation can be tailored toward these
workflows. Additionally, training can also focus on these areas. This will improve
the understanding in the upward and downward direction of the application to sub-
sequently improve ease of learning (1) and reduce the number of errors (4).

Additionally, we can analyze these common usage patterns to propose design
changes in the application. These can improve the application through navigation
and feature improvements. This will benefit the efficiency of the interface design (2).
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Chapter 4

LSM Application

In this chapter, we will provide background on the LSM application. The LSM appli-
cation facilitates leasing cars by storing data on cars to support operations related
to searches, quotations, and price calculations. First, we will introduce the frontend
application used by customers. Secondly, we will provide relevant details related to
their backend.

4.1 Frontend application

Initially, we start on the page seen in Figure 4.1. Users can search for cars, and
configure settings in the menu on the left. After selecting a certain car they go to
the screen seen in Figure 4.2. It provides an overview of the car with additional
configurations that can be added. The left menu shows required choices such as
exterior/interior color. The items in the right list provide additional features to the car.

Once the required choices have been made, a quotation can be created as seen
in Figure 4.3. After submitting the quotation we get a brief overview, but can request
additional vehicle details. This can be seen in Figures 4.4 and 4.6. Finally, a user
can also download a pdf of the car here which can be seen in Figure 4.5.

To support these various price calculations, BetterBe developed Lease Object
Language (LOL) which is a Domain-Specific Language (DSL). The goal of LOL is
to support various calculations such as utilizing data stored on cars to determine a
lease price and cost for a car. By tailoring their DSL to this end it becomes easier for
a non-programmer to make changes in these scripts. While BetterBe does provide
a template, these LOL scripts are further developed by clients so we will not show
these. However, these scripts to determine lease prices depend on factors such as
price per kilometer, vehicle price, option price, and residual value.
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Figure 4.1: Search overview

Figure 4.2: Car details

18



Figure 4.3: Create quotation

Figure 4.4: Quotation overview
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Figure 4.5: Quotation pdf
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Figure 4.6: Vehicle details

All these factors and more have to be defined. These might include vehicle
prices, option prices, images and many more factors. These factors relating to price
calculations are stored in calculation tables. In Figure 4.7 we can see a small ex-
ample of data related to fuel prices. Data unrelated to price calculations such as
images or reports are stored in the data management tab.

4.2 Backend application

When a request is made by a user, it is logged in ElasticSearch with all the relevant
data. It is subsequently routed to a specific method in the LSM controller. These
methods will return the required data or page to the user. Which methods a user
can invoke depends on their permissions.

4.2.1 Permissions/Tasks

To figure out which permissions a user has, we have to check their roles and tasks.
BetterBe has defined global tasks in its application. These tasks have a set of as-
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Figure 4.7: Fuel price data

sociated permissions. Clients can create roles with a certain set of tasks. Thus,
customer-specific roles are created with a certain set of permissions.

Methods in the backend application require certain permissions to execute. For
example, a quotation permission is required to generate quotations or download
them in pdf format. If the user does not have this permission, this action will dis-
appear from the frontend application. We will later use these permissions and their
associated tasks to describe user behavior.
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Chapter 5

Methodology

In Section 3.1.2, we discussed the possibility of using algorithms to detect common
user actions through pattern analysis. However, there were limitations in dealing with
similarities between whole sessions. To overcome these challenges we propose an
approach that translates these sessions into a format that allows us to cluster ses-
sions to determine similarities.

The clustering is split into 3 steps which we will discuss in this chapter: data
processing, clustering setup, and clustering. In Chapter 10 we will then explore
the approach of [27] in which common user actions are located within sessions. In
Chapter 11, it will be discussed how these findings are summarized in an automated
report. Chapter 12 will discuss the implications for usability.

5.1 Data Processing

5.1.1 Kibana

In Chapter 4 we introduced the application developed by BetterBe. User actions in
this application generate API calls. BetterBe primarily uses Kibana, an extension
of Elasticsearch, to log these API requests. As seen in Figure 5.1, we can filter
these requests as seen at the top. We filter for requests made when logged in by a
specific customer ”directlease nl”. Furthermore, we ensure that relevant fields exist
to remove spurious requests.

5.1.2 Data extraction

Extracting data by querying Kibana is limited to a total of 10.000 hits or results. Di-
rect extraction from Kibana is possible in the form of a CSV file, but this is limited
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Figure 5.1: Filtered requests to the application in Kibana.

to 10MB. Increasing this limit is experimental and untested as it might put too much
stress on the cluster. This makes these approaches unsuitable for large data sets.

Libraries can be utilized to simplify data retrieval, but due to security reasons, this
could not be set up for the original server. Thus, a second server was set up with
the relevant data. This allowed automatic data retrieval through library interfaces
that connect to the Kibana server.

5.1.3 Data format

The data from the Kibana response is provided in JSON. It contains the following
relevant parameters for each call:

1. Timestamp (iso-format): When the request was sent by the user.

2. Session hash (string): Session hash of the user.

3. Username (string): User sending the request.

4. User role ([string]): Array of roles associated to the user.

5. Dataset (string): Name of the dataset being queried. In the form of <customer> <country>
or <customer> <location>.

6. Endpoint (string): Class and method that will process the API call.

7. API endpoint (string): Path of the user request along with parameters.

8. Call type (string): GET, POST, PUT or DELETE.

9. HTTP referer (string): URI where the request originated from.

5.1.4 Data preprocessing

When processing the data we will first cluster the calls into the sessions. A session
will contain all the calls after a user logs in until the user logs out. We can then filter
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for complete sessions from human users. Finally, we will remove irrelevant calls.
These processes are described in the following sections.

Sessions and workflows

In the data related to a call, a session hash is tracked. Thus, we can group the calls
by username and session hash to obtain a session. A session should consist of a
single workflow, which consists of a process by a user utilizing an arbitrary amount
of related, sequential API calls with a certain goal. This might entail the process of
searching for a car, and creating a quotation.

We will have to account for the fact that a user might perform multiple workflows
within a single session. This will limit the correctness of the clustering as a single
cluster should not contain multiple workflows. This can be inferred from analyzing
the average number of unique requests per session length. To determine this we
do not have to search through the requests URIs as this would be tedious due to
varying/optional parameters. Rather, we can look at the method (endpoint) handling
the request as there is a one-to-one mapping of requests to backend methods. This
plot of unique calls for each session length should not increase drastically as the
session length increases. If there is no significant increase in unique activity for
longer sessions these do not have to be removed. This will be investigated in Section
6.1.1, but can differ when investigating data from other sources.

Filter incomplete sessions

We want to avoid cutting off a session before it has been completed as this might
create outliers within clusters or even new clusters. Thus, we want to remove these
incomplete sessions. To achieve this, additional data outside the timeframe of the
dataset can be gathered. If a session’s hash occurs outside the timeframe of the
dataset it can be removed. Alternatively, as requests are made by human users, we
can have downtime in the requests during nighttime. This can be seen in Figure 5.2
where request activity is shown over a period of 3 days. This allows us to perform a
split on the downtime.

Human users

Certain clients may run automated calls. These might originate from test scripts or
automated pieces of client code. As we are clustering workflows from users, we will
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Figure 5.2: Downtime in the requests over 3 days of request data

remove these outliers. This will be done by plotting the average number of requests
per minute of sessions and determining a cutoff point.

Irrelevant calls

From each of the sessions, we can remove irrelevant calls. These have to be man-
ually determined for each dataset. In the BetterBe environment, each page has
several images. These can correspond to cars that were retrieved by a search or
simply a car being displayed. A separate ’resource’ call is made for each of these
images. This can result in 20 consecutive resource calls if a large search was per-
formed. These resource calls were removed.

5.2 Data processing

After we have a set of workflows W , we translate these into Term Frequency - In-
verse Document Frequency (TF-IDF) vectors. This requires us to convert our work-
flows to a set of words/strings, also known as tokens. We can then create our
vectors.

5.2.1 Tokenization of a workflow

Determining relevant fields

Timestamp, session hash, and username were used for determining the workflow
and are not required in the representation of a workflow, and will not be taken into
account as tokens. The dataset parameter simply indicates which data the request
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originates from. This will be the same for each workflow so it does not have to be
taken into account. This leaves us with user roles, endpoint, API endpoint, and call
type.

Workflow representation

Finally, for each of our workflows w, we will generate a single document d containing
all tokens generated by the calls made within the workflow. The union of all unique
tokens will be our dictionary of terms T . We can now translate these documents to
a numerical vector representation.

5.2.2 Vectorization of documents

As discussed, we currently have a set of documents D corresponding to our work-
flows. We can now translate these to numerical format. In areas of document clus-
tering, document querying, and text mining, documents are translated into a nu-
merical format. TF-IDF vectors have often been used, and many extensions exists
in specific areas [29]–[31]. A TF-IDF vector assigns a value to each term in every
document based on how much information they contain. Low-frequency words will
contain more information than a word that occurs in every document. By doing this
for every (term, document) pair, we will have a vector representing each document.

Terms are valued proportionally to the number of times they appear in the docu-
ment, offset by the number of times it is found in the entire document set. First, we
calculate the Term Frequency (TF), tf(t, d), for a term t within a document d. This is
done by

tf (t , d) =
freqt,d∑

t′ ∈ Dfreqt′,d
(5.1)

where freqt,d indicates the amount of times term t occurs in the document d. Sec-
ondly, we calculate the Inverse Document Frequency (IDF), which measures the
amount of information a word contains. It will provide higher values to rare terms in
the total dataset as opposed to a common term. It is given by the following formula

idf (t , d ,D) = log(
N

doc freq(t) + 1
) (5.2)

where N is the number of documents and doc freq is the number of documents that
term t occurs in. To avoid division by zero errors, we add one to the denominator.
These metrics allow us to now calculate the TF-IDF values for each term in the
document using

tf − idf (t , d ,D) = tf (t , d) ∗ idf (t ,D) (5.3)
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This results in a structured vector X where each index, Xi ∈ R+, corresponds to a
term from the complete dataset.

5.2.3 Vectorization of tasks

In the previous vectorization, parameters specific to clients are utilized. To allow
comparison between clients or combining data from various clients, we will provide
an alternative vector based on tasks being performed in a session. The clustering
can then be performed similarly to the approach taken with the TF-IDF vectors.

Determining tasks

As there are many methods handling API requests, we can create scripts to search
for the required permissions of each method through all the relevant files. As men-
tioned in Section 4.2.1, we discussed that these permissions can be linked to tasks.
These tasks and permissions can be viewed in Appendix A. This results in the fol-
lowing mappings:

1. Method→ Permission∗: maps a method to a set of associated permissions.

2. Permission→ Task∗: maps a permission to a set of parent tasks.

A permission often only has one task that is it part of with a few exceptions. In
these cases, we cannot clearly determine which task was being performed. We will
then take all tasks which is 2-3 in our case.

Determining the vector

At this point, we have determined the total set of tasks T . For each session, we will
then count the number of times each of these tasks t were performed. This can then
translates into a vector containing these counts

vector = [count(t)|t ∈ T ] (5.4)

where count(t) indicates the number of calls in the session that are related to task t.

Finally, we will normalize this vector have all indices of the vector within a range
of [0, 1]. For this we will use the following equation:

normalized = (value−min value)/(max value−min value) (5.5)

28



where the min value and max value are the minimum and maximum values. We will
do this at each index separately. If we were to divide by the total sum, indexes cor-
responding to rare tasks would all tend to zero. This approach will work for a Cosine
distance measure due to it’s independence of document length, but when consider-
ing a Jaccard distance measure, we should normalize the length of the document.

5.3 Clustering setup

Before performing clustering on the data we have to determine which clustering al-
gorithm to use, and which distance measure. This can be achieved by clustering
with various setups and evaluating the results.

Before attempting to cluster each possible setup we have to determine whether
each distance measure is suitable for the data. The Jaccard distance measure is
not suitable for clustering sessions in which multiple similar workflows occur. This
is due to the fact that it is not independent of document length. This will have to be
determined manually by analyzing some sessions.

To determine the number of clusters to use we plot the WCSS, Silhouette Score,
and Calinski-Harabasz Index for 2 to 20 clusters. Each of these three clusters will
have an optimal number of clusters. For the Silhouette Score and Calinski-Harabasz
Index, this will be the maximum value, while for the WCSS this will be the ’elbow’.
We will take a majority vote for the optimal number of clusters. If we have three
distinct values we will choose one of the values that maximizes the three values
as much as possible. As an example, the Silhouette Score can have multiple high
values. If the second-highest value happens to co-exist with the highest value of
another plot this can be seen as a good value.

These cluster scores will allow us to determine the optimal clustering setup to
use.

5.4 Clustering

From the clustering setup, we can determine the optimal clustering algorithm and
distance measure. However, the number of clusters could slightly increase. This
requires us to create the plots for WCSS, Silhouette Score, and Calinski-Harabasz
Index again, however, we can reduce run-time by restricting the range of possible
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clusters.

First, we will perform clustering utilizing the vectorization of documents men-
tioned previously. This allows us to perform clustering on a single client.

Secondly, we will investigate the possibilities of clustering with data from different
clients in order to compare them or account for additional workflows. There will be
two approaches to consider. The first will remove client-specific data during the
vectorization of documents. The second will cluster using the task-based vectors.

5.5 Analysis

After clusters have been determined, we will analyze these results.

5.5.1 Centroids

To determine an initial meaning for the clusters we set out to analyze the centroid
of each cluster. These will be the sessions with the least average distance to other
sessions within the cluster. This session will then be manually analyzed.

5.5.2 Task division

To provide further insights and automate the analysis of clusters we will determine
the tasks being performed in the cluster. Tasks across all sessions in the cluster will
be counted. These counts will be sorted, and normalized to a range of [0, 1] to get
results as seen in Table 5.1.

Relevance Task
1.00 search.configurator
0.38 search.search
0.25 search.vehicle.details
0.24 quotation.quotation.create

Table 5.1: Example task distribution of a cluster

In this example cluster, we can see that these users focus on searching and con-
figuring cars. After viewing the vehicle details a quotation is created. By extracting
the most relevant tasks we can get a clearer picture of what is going on in the cluster.
An overview of tasks is provided in Appendix A.

30



5.5.3 Role distribution

To further understand what people are performing these tasks for, we will plot the
distribution of roles for each of the clusters. This provides further insights into the
specific tasks associated with client roles.

5.5.4 Page journeys

To investigate the specific order in which requests are made, we will investigate
the page journey a user takes through the application during a session. This will
be the ordered list of pages visited by the user. Though BetterBe does not track
specific attributes to this end, the ’http referrer’ attribute specifies the URI that the
call originates from. Changes in this attribute correspond to a change of page.

Conversion from session to journey

First, we consider the set of unique values for the ’http referrer’ given by X. As
these URIs contain many identifiers, user parameters, and data parameters we
create a Regular Expression (REGEX) for each page. This creates a mapping
of REGEX → page name in which each ’http referrer’ ∈ X has a corresponding
REGEX.

We can now create a list of page names for a certain session. We will reduce
this list by eliminating calls having the same page as the previous call. In example
[a, b, b, c, b, a, a] will be reduced to [a, b, c, b, a]. These repeated entries for a page
are due to the fact that a page can make multiple API calls to load all the data, or
perform another API call due to user activity on the page.

Common repetitions

Further analysis into these page journeys can provide insight into common sets
of pages visited in a certain order. Such a set of pages [a, b, c] might be repeated
several times throughout the session. Locating these repetitions will be done utilizing
a rolling hash, discussed in Section 2.4. The minimum number of repetitions within
a session and the size of a repetition will be determined. These common repetitions
will then provide insights into common actions performed in sessions.
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5.5.5 Report generation

Finally, to summarize all the results, and automate the process a report will be gen-
erated. This report will collect data on a specific client during a specified time frame.
The report will summarize the data, and provide insights into the resulting clusters
through a task distribution, role distribution, and a page journey of the centroid. It
will also provide common repetitions throughout the sessions.

5.6 Usability

The effort of improving the usability of the application will focus on various aspects.
First, an interview will be conducted to have an overview of the current state of af-
fairs. We will then focus on improving the usability through documentation, tailoring
pieces of training, and guiding design/ development efforts.

5.6.1 Interview

The interview will focus on the current efforts being put into improving the usability
of the application. It should also provide insights into the technical knowledge of
people involved with the results of the project to tailor the generated report.

5.6.2 Common workflows

By gaining insights into the common workflows of users, the documentation can be
updated to provide concrete examples of how users can perform these workflows.
This will improve their understanding of the application, and lower the learning curve
by straying away from a trial-and-error approach.

Additionally, by analyzing the workflows of specific clients, their training can be
tailored toward these workflows. This improves the ease of learning, and subse-
quently reduces the required training time for a client.

Finally, these workflows will provide insights into the most-used components of
the application. Allocating development efforts according to the importance of tasks
can improve usability over time.
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5.6.3 Common repetitions

By analyzing the common repetitions, we can identify common actions that are re-
peated by users often. If we find that there is no efficient way to perform a task, a
page can be redesigned, or a new page can be created to support such a task. This
will reduce the required time to perform these tasks.
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Chapter 6

Data Processing

This chapter details how the data gathered from BetterBe was preprocessed to per-
form clustering.

6.1 Data preprocessing

Sessions have been determined by grouping calls by username and session hash.
We will now further process this data.

6.1.1 Sessions and workflows

First, we have to account for the fact that a user might perform multiple workflows
within a single session. This will be inferred from analyzing the average number
of unique requests by session length. These results can be seen in Figure 6.1.
Though there is variation in the total number of unique requests this does not seem
to significantly change over time. The number of unique requests does not double
even though we increase the length of the session several times. Thus, we do not
have to further split these determined sessions.

6.1.2 Whole sessions

From Figure 6.2 we can observe that there is downtime in the request activity. This
makes it easier to split the data in these gaps. This process is automated by search-
ing for this large gap on the last day of data, but manual analysis of new datasets is
still required as this gap might not exist for every dataset. Thus, we can split off the
4’th day of data to avoid incomplete sessions as seen in Figure 6.3.
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Figure 6.1: Number of unique requests for each session length

Figure 6.2: Request activity over 4 days

Figure 6.3: Filtered request activity to remove incomplete session of the final day
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Figure 6.4: Activity within sessions

Figure 6.5: Filtered activity within session to remove outliers

6.1.3 Human users

On average users make 24 requests per minute, but from Figure 6.4 we can observe
that this is heavily skewed due to a few very active sessions. As we are clustering
workflows from users, we will remove these outliers. Once removing outliers above
100 actions per minute, we get a session activity seen in Figure 6.5 where the aver-
age becomes 6 requests per minute.

6.1.4 Irrelevant calls

As previously discussed in Section 5.1.4, resource calls are removed from the ses-
sions. These resource calls account for 60% of total API calls.
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6.2 Tokenization of a workflow

After taking the relevant parameters and tokens from the API calls we can further
analyze these for the specific domain we are working in. URIs at BetterBe contain
specific parameters and identifiers that we will analyze to filter and create additional
tokens.

6.2.1 URIs

Call type and endpoint can directly be taken as a token. Similarly, user roles is a
list of tokens. The API endpoint URI will be tokenized based on delimiters such as
”?”, ”/” and ”,”. This will split the URI into its layers and parameters. The URIs can
contain 6 different parameters.

• l (string): Layout identifier. Specific to a dataset.

• cl (integer): Calculation layout. Specific to a dataset.

• ls (integer): Layout set. Specific to a dataset.

• r (integer): Relation identifier (company).

• p (integer): Person identifier (from relation).

• pr (integer): Profile. Outdated and without significance.

The l, cl, and ls parameters correspond to the layout state of the website. This is
specific for each customer, but can provide information on the current actions of the
user.

The r and p parameters correspond to specific companies and their people. Their
values are not considered important as they do not provide information to distinguish
between different user actions.

The pr parameter can be filtered as it is outdated, and has no impact. It is still
sometimes passed by clients that have not updated their calls. Thus, the parameters
will the translated into the following tokens: [”l:value”, ”cl:value”, ”ls:value”].

A request to ”/directlease/nl/management/nl NL/l:default,ls:1,cl:57/quotation” will
then be split into [”directlease”, ”nl”, ”management”, ”nl NL”, ”l:default”, ”ls:1”, ”cl:57”,
”quotation”].
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6.2.2 Identifiers

The URIs can contain multiple identifiers as integers, dates, or Universally Unique
Identifier (UUID)s. These will be filtered out as they hold no significant information to
distinguish between user actions. This can be done using REGEX. As an example,
\w{8}-\w{4}-\w{4}-\w{4}-\w{12}
provides the REGEX to filter out UUIDs. These identifier tokens will be removed.

Additionally, by using domain knowledge of the URIs we can filter words such as
”nl” which might occur in every request, or words that occur only once.

6.3 Vectorization

After we have a set of workflows W , we translate these into TF-IDF vectors. This
requires us to convert our workflows to a set of words/strings, also known as tokens.
This process has been described in Section 5.2. Finally, TF-IDF vectors are cre-
ated according to the provided formulae. This results in non-negative values in the
vectors allowing us to utilize the distance measures.
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Chapter 7

Determining Optimal Clustering
Setup

We first have to investigate the optimal setup for clustering the data. For this, we
will use 10.000 calls as a subset of the data. This will allow us to investigate the
preferred distance measure and clustering algorithm.

7.1 Distance measure

We will start by comparing a Cosine and Jaccard distance measure.

In Figure 7.1, we can observe the distribution of session lengths. By manually
evaluating the 3 longest sessions we find that a single workflow of searching and
retrieving cars is repeated. This causes the TF-IDF vector of these sessions to
be a multiple of similar sessions containing this workflow only once. This makes
Jaccard unsuitable due to the large distance between these similar workflows. For
this reason, we will work with a Cosine distance measure.

7.2 Clustering algorithms

We will now apply both clustering algorithms to determine which one is most suit-
able.

7.2.1 Fuzzy C Means

First, we will cluster using the Fuzzy C Means algorithm combined with a Cosine
distance metric.
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Figure 7.1: Session lengths

Figure 7.2: WCSS values for each number of clusters

Determining the number of clusters

First we determine the number of clusters. In Figures 7.2, 7.3, 7.4 we can see the
plots corresponding to WCSS, Silhouette and Calinski Harabasz.

In the WCSS plot we can observe that the elbow occurs at 5 clusters. The
Calinski Harabasz provides the maximum score at 5 clusters, while the Silhouette
has one of the highest scores at 5 clusters. Thus, we will cluster using 5 clusters.

Results

We have 5 clusters of which the distribution can be seen in Figure 7.6. While over-
lapping clusters are allowed during clustering, we will contribute each session to the
closest cluster in the results. To further evaluate the clustering, we can observe the
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Figure 7.3: Silhouette score for each number of clusters

Figure 7.4: Calinski Harabasz score for each number of clusters
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Figure 7.5: Distribution of Silhouette values for each session in the clustering

Figure 7.6: Cluster sizes

Silhouette values for each session in Figure 7.5. As we have no negative values,
we can conclude that their clusters have no significant outliers. Additionally, in Table
7.1 we can see the average Silhouette scores for each cluster. The overall average
Silhouette score is 0.76.

The majority of sessions fit well into their clusters with most having a value over
0.6. None of the sessions have a negative value. Clusters 1 and 3 contain nearly
75% of requests with average Silhouette scores of 0.96 and 0.70.

We should note that the Fuzzy C Means algorithm is not deterministic. Thus, we
ran the algorithm 5 times. In each of these runs, 5 clusters was the optimal value
with similar results.
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Cluster Size Average Silhouette Value
0 21 0.62
1 63 0.96
2 13 0.93
3 81 0.70
4 30 0.55

Table 7.1: Silhouette values for each cluster

Figure 7.7: WCSS values for each number of clusters

7.2.2 Agglomerative

Secondly, we will cluster using the Agglomerative clustering algorithm combined with
a Cosine distance measure.

Determining the number of clusters

First, we determine the number of clusters. In Figures 7.7, 7.8, 7.9 we can see the
plots corresponding to WCSS, Silhouette and Calinski Harabasz. In the WCSS
plots, we can observe that the elbow occurs at 6 clusters. The Silhouette and
Calinski-Harabasz plots both have peaks at 6 clusters as well. Thus, we choose
to plot 6 clusters.

Results

We have 6 clusters of which the distribution can be seen in Figure 7.11. To further
evaluate the clustering, we can observe the Silhouette score for each session. This
can be seen in Figure 7.10. Thus, it seems that the majority of sessions fits well into
it’s cluster.
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Figure 7.8: Silhouette score for each number of clusters

Figure 7.9: Calinski Harabasz score for each number of clusters
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Figure 7.10: Silhouette values for each session in the clustering

Figure 7.11: Cluster sizes

To further evaluate each specific cluster, we can provide the average silhouette
values for each cluster. This can be seen in Table 7.2. We can observe two large
clusters with a value of 0.77 and 0.96. The average Silhouette score is 0.78.

7.3 Optimal setup

First, we determined that the Cosine distance was optimal for the dataset. Sec-
ondly, we analyzed the different clustering algorithms. Both were clustering in a
similar manner which becomes apparent from their identical clusters. Clusters 1 &
0, 2 & 5 and 4 & 3 both have the same size and Silhouette value. However, Ag-
glomerative was able to reduce the number of outliers by creating an additional 6’th
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Cluster Size Average Silhouette Value
0 77 0.77
1 21 0.62
2 63 0.96
3 30 0.55
4 4 0.74
5 13 0.93

Table 7.2: Silhouette values for each cluster

cluster to slightly raise the Silhouette score.

Though there doesn’t seem to be a large difference, we will opt to use the Ag-
glomerative clustering. It performed slightly better by finding a 6’th cluster, but also
provides a deterministic approach compared to Fuzzy C Means clustering.
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Chapter 8

Clustering

In the previous chapter, we investigated the optimal clustering setup using a subset
of the data. We will now perform the clustering on 1271 sessions spanning 2 months
of data to further analyze the sessions in depth. We will use the Agglomerative clus-
tering algorithm utilizing a cosine distance as previously discussed. The number of
clusters will be used as an indication and can serve to limit the search range. This
can be especially useful when considering even more sessions as the Silhouette
Score has a complexity of O(N3), where N is the number of sessions.

8.1 Clustering

As we are taking a longer span of data, we will again determine the number of clus-
ters as less frequent clusters can arise in the larger data.

In Figures 8.1, 8.2, 8.3 we can observe that 7 clusters are needed to optimally
cluster the data.

8.2 Evaluation

We can observe a similar distribution in clusters to the subset of data, however, a
smaller 7’th cluster has been created. With an average Silhouette value of 0.72, we
have a few more outliers. We will start by investigating the meaning of each cluster
to provide a human understanding. We will do this by analyzing the centroids, tasks,
and role distribution.
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Figure 8.1: WCSS values for each number of clusters

Figure 8.2: Silhouette score for each number of clusters

Figure 8.3: Calinski Harabasz score for each number of clusters

50



Figure 8.4: Silhouette values for each session in the clustering

Figure 8.5: Cluster sizes
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8.3 Cluster meanings

8.3.1 Centroids

Initially to determine the meaning of clusters we set out to analyze the centroids of
each cluster. These will be the sessions with the least distance to the other sessions
within the cluster. This can be used as a representative of the cluster and will be
manually analyzed.

• Cluster 0: Sales person searching/configuring cars and working with quota-
tions.

• Cluster 1: Administrator/dladmin person mainly working on the LOL-code and
table data.

• Cluster 2: Data/sales/voertuig data person performing searches and subse-
quently working in the table data.

• Cluster 3: Data view/sales person searching and viewing a table to download
the contents.

• Cluster 4: Sales support person searching/configuring cars and working with
quotations.

• Cluster 5: Admin person looking into policies/requests/transactions before cre-
ating a report.

• Cluster 6: Sales person searching/configuring cars and working with quota-
tions.

By looking at these centroids we can certainly get an initial impression of the
clusters, but for clusters in similar areas such as clusters 0, 4, and 6 it requires
more manual work to find what differentiates these clusters. To gain deeper insights
into the clusters we attempt to identify what tasks are being performed within these
clusters.

8.3.2 Task division

In Section 4.2.1, we already discussed roles, tasks, and permissions. In Section
5.2.3 it was discussed how these tasks could be determined. We will now discuss
the meaning of the clusters using the tasks. The task distributions per cluster can
be found in Appendix B which we manually analyzed.
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• Cluster 0: Searching and working with quotations. More focus on listing quo-
tations than creating them.

• Cluster 1: Viewing calculation data and performing searches. Also performing
calculation edits.

• Cluster 2: Searching and viewing data in the calculations.

• Cluster 3: Performing searches, viewing developer request info/API calls, and
managing quotations relations/people.

• Cluster 4: Searching and working with quotations. Not creating new quotations
but rather viewing quotations and looking into calculations data.

• Cluster 5: Viewing calculation tables, performing searches, and managing
quotations relations/people.

• Cluster 6: Searching and working with quotations. More focus on creating
quotations.

Thus, we see that we can further differentiate between the clusters. As an ex-
ample, cluster 4 works with searches and quotations but doesn’t create quotations.
Rather it seems to verify them by looking into calculation data and vehicle details.

8.3.3 Role distribution

In Figure 8.6, we can observe the role distribution between the clusters. Clusters
0, 4 and 6 are mainly dominated by the Sales and Sales support roles. Taking into
account the previous results we can conclude that these roles are mainly concerned
with quotations and that Sales support indeed has a supporting role in that they
don’t create quotations, but rather check them.

Clusters 1 and 3 contain 3 different types of admin. Dladmin and Administra-
tor are custom roles from the company while Admin is a global role from BetterBe.
Administrator roles are more concerned with managing data, calculations, and re-
quests. These management tasks include deleting objects.

Finally, clusters 2 and 5 are concerned with viewing data and calculation tables.
These also contain the Data view, Data and Voertuigdata roles. However, it might
seem strange to also find Sales here. However, this is explained by the fact that any
user with a Data role also has a Sales role. Furthermore, a portion also has the
Voertuigdata role.
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Figure 8.6: Role distribution
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Chapter 9

Client comparison obstacles

Previously in Chapters 7 and 8 we have seen how we can gain insights into how LSM
is being used. However, this was limited to a single client. To gain a better overall
understanding it is vital to not only focus on a single client as they have a wide
range of goals which causes them to use the application differently. As an example,
Directlease focuses on using the application as a sales tool, while Arval uses it to
display car data. Other clients such as Atlon focus more on the calculations. While
they all use the system to manage their car data, their goals differ significantly. Cur-
rently, gathering this data requires the generation of multiple reports.

9.1 Limitations

Currently, multiple attributes are being utilized in the clustering that are client-specific.
These include roles and layout parameters. Different clients have various amounts
of roles with different sets of tasks making it impossible to create a nice mapping
between them. Layout parameters are integers, however, these can have different
meanings for different clients.

We will provide two approaches for dealing with these limitations. The first ap-
proach is to simply remove these parameters. The second approach will translate
sessions into task vectors as seen in Section 5.2.3, and attempt to cluster on this.
In both cases, we can compare the results with the previous findings in Chapter 8.

9.2 Removal of parameters

First, we will look into clustering without the client-specific parameters, and compare
this to the original clustering. The results can be found in Table 9.1
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#vectors Outlier removal #clusters Silhouette score
1311 YES 20 0.53
1311 NO 21 0.38
155 YES 9 0.70
155 NO 22 0.50

Table 9.1: Clustering results from removing parameters

When clustering 155 sessions, the number of clusters increases from 6 to 22
when compared to the original approach including client-specific data. However, 7
of these clusters have a size of 1 with a total of 12 clusters having a size of 5 or
smaller. 4 of these clusters of size 1 correspond to admin roles while there are only
13 data points associated with admin roles. To explain this we can look at the dis-
tances between data points within the admin role.

To calculate the spread within the admin role we calculate the average distance
to other admin data points for each data point. In Figure 9.1, we can observe the
spread of these average distances before removing client specific data. If we remove
the role and layout parameters, we get the spread seen in Figure 9.2. From this we
can conclude that there is a high degree of spread in activity within the admin role
which makes sense as the can perform a wide range of activities.

Figure 9.1: Distance spread within admin role including client specific data

In an attempt to reduce the number of clusters created we can filter the outliers
from the data. As an example, we can remove sessions with a minimum distance of
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Figure 9.2: Distance spread within admin role excluding client specific data

0.2 to the nearest other session. This is where a significant drop-off occurs in the
number of sessions having a higher value. For the other roles, almost no sessions
belong in this range.

For 155 sessions this reduces the number of clusters to 9 and increases the
Silhouette score from 0.50 to 0.70. However, as we increase the data size, and with
it the number of data points, the chance that an outlier has a distance larger than
0.2 to the nearest neighbor decreases. This results in clusters of size 2 and larger.
This becomes clear when we perform clustering on 1311 vectors. After removing
the outliers the number of clusters only decreases by 1 from 21 to 20. Furthermore,
such filtering can filter large portions of admin data due to its small portion of data
and high distances. Thus, a better method of filtering outliers would be required.

9.3 Task based approach

In Section 5.2.3 we have already seen how to determine which tasks are being per-
formed within a session, and how we can translate these into a vector. This allows
us to take a similar clustering approach by replacing the TF-IDF vector with the task-
based vector.

The results of the clustering using these vectors can be seen in Table 9.2. We
now have an increase from 6 to 14 clusters when considering 155 vectors. However,
as we can see from Figures 9.3 and 9.4 this is again due to a large amount of small
clusters. If we filter the outliers we are reduced to 7 clusters as seen in Figure 9.5.
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#vectors Outlier removal #clusters Silhouette score
1311 YES 12 0.57
1311 NO 16 0.37
155 YES 7 0.62
155 NO 14 0.56

Table 9.2: Clustering results from task based approach

Removing the outliers with larger data again becomes troublesome in this manner
with 1311 vectors resulting in 12 clusters. This becomes clear from 1311 vectors as
seen in Figure 9.6 where over half of the clusters belong to admin roles.

Figure 9.3: Cluster sizes task based approach

9.4 Outlier removal

As a possible solution, we can ignore clusters under a certain threshold size rather
than finding outlier data points. As these small clusters only consist of a small portion
of data this should not be a problem when analyzing common use cases of the
application.

9.5 Summary

We investigated two different approaches to clustering sessions without client-specific
data.

58



Figure 9.4: Role distribution within clusters

By removing the parameters the number of clusters increases significantly. We
observed that this is due to the large variation in tasks performed by certain roles.
This creates many outliers in the data resulting in small clusters. As the data size
increases these become difficult to filter out.

Secondly, we looked into clustering based on tasks. This can slightly outperform
the first approach in terms of the Silhouette score, however, it still suffers from the
same issue of small clusters.

A possible solution to this problem is to filter out data corresponding to the clus-
ters under a certain threshold size. These will be groups of outlier data points that
can be filtered out.
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Figure 9.5: Cluster sizes task based approach filtering outliers

Figure 9.6: Role distribution within clusters 1311 vectors
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Chapter 10

Page Journeys

In previous chapters, we always abstracted from the order in which calls were made,
and thus did not take the temporal relation between calls into account. By abstract-
ing from these temporal relations we could not investigate the ’journey’ a user took
through the application in their session. In this chapter, we will investigate the order
in which calls are made to determine the path that was taken throughout the appli-
cation. We can then locate repetitions in user behavior in sessions as discussed
in [27].

10.1 Determining page journeys

In order to convert the sessions to page journeys, we first gathered all possible
’http referrer’ entries, which are URIs, over 10.000 calls from different clients in a set
X. We then manually created REGEXs until we covered the entire set X. This was
needed as the URIs contained various parameters, optional fields, and identifiers.
This created a list of 51 pages. We should note that 7 pages already account for
95% of data, and 13 pages account for more than 99% of the data. This highlights
the fact that pages relating to accounts, labels, request viewing, preferences, etc.
are rarely used. This is to be expected as data related to accounts, labels, and pref-
erences rarely require editing, and pages such as request viewing are only required
for debugging purposes. The most used pages relate to searching, configuring,
quotations, tables, and LOL-code.
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Figure 10.1: Rolling hash sliding window approach

10.2 Rolling hash

10.2.1 Representation

We can now convert our sessions to a list of pages, which we will reduce, and
convert to an integer array by creating an identifier for each page in the range of
[0, 50]. This integer array can then be represented as a polynomial as discussed
in Section 2.4.1. This representation is preferred as it allows us to shift the sliding
window in O(1) compared to O(n) if we were to represent it as an array.

10.2.2 Repetitions

To locate repetitions of a fragment K representing a list of pages, we iterate over
possible sizes of our fragment K. These fragments will have a minimum size of s,
and have to occur at least d times.

For each size s we create an initial rolling hash corresponding to the first s entries
in the array. This corresponds to the top array in Figure 10.1. In order to continue
with the next set of s pages, we remove the left-most page in the hash and add the
next page according to the operations discussed in Section 2.4.3. This is detailed at
the bottom of Figure 10.1 and can be executed in O(1).

We store each hash that we encounter and track the first occurrence as (indexstart,

indexend). Once we reach the end of the array we can determine whether a hash
occurred more than d times. We can then use the (indexstart, indexend) to retrieve
the pages. This results in a complexity of O(n) for a single size s, where n is the
number of pages visited in a session. The maximum number of pages visited in a
session is 121.

We search for a minimum of 2 pages as only a single page would provide no
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insights. We found that for s > 10, no repetitions could be found. Thus, we focus on
2 <= s <= 10 and perform the rolling hash 9 times.

10.2.3 Filtering results

By analyzing the results we found that larger repetitions were often composed of
a smaller repetition repeated several times. As an example, [03, 01, 02, 03, 01,
02, 03] consists of [01, 02, 03] repeated twice with a fragment at the start. If a
repetition matches the pattern of [al...an, (a1, a2, ...an)+, a1...ak], where [a1...an] is an-
other repetition, and + indicates one or more repetitions, we filter it out of the results.

Additionally, a repetition might be a rotation of another. As an example [01, 02,
03] and [02, 03, 01] are rotations. In this case, we remove one of the rotations.
While this might remove some relevant data, it proved useful when providing results
to BetterBe as it gave a better overview of key repetitions.

10.3 Results

After filtering the results, we manually reviewed the repetitions with BetterBe. There
were repetitions that they expected to see as they follow the general use cases of the
application. However, there were also inefficient workflows and uncommon features.
We will provide a summary of these relevant findings that were discussed below.

10.3.1 Configure, Search, Quotation

There are multiple repetitions involving Configure, Search, and Quotation which was
expected to occur. The inclusion of Quotation is somewhat specific to Directlease as
not all companies use the application to create quotations. These pages are often
used together as a configure and search is used to find a car after which a quotation
can be created.

10.3.2 Person, Quotation

This is another set specific to Directlease. Most companies do not store people in
the system. It makes sense to see this occur as Directlease does in fact make use
of this fact by checking quotations created by specific people.
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10.3.3 Lol, Table

This indicates that a developer is working on LOL-code, and switches over the Table
page. This is seen multiple times and is often used to check the contents of tables
that the user is working with.

10.3.4 Vehicle, Table

This was interesting as it wasn’t directly clear how a user could make this leap. It
turned out that a feature had once been built to check vehicle data in the tables
directly, but this was somewhat of a hidden feature. Determining how this was done
wasn’t something a user could easily figure out.
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Chapter 11

Report Generation

In previous chapters, we have gathered and investigated various data relating to
user clustering, role distributions, task distributions, and page journeys. Initially, this
was performed on offline data corresponding to a single company to reproduce data,
and create consistent figures for the report.

In the future, it can be expected that BetterBe would like to generate this data for
other companies with different, newer time frames. To reduce the amount of effort
required for this, the process will be automated to easily provide such an analysis in
a matter of minutes. The final result will be a generated report. The target audience
of this report will be employees of BetterBe.

11.1 Generation

11.1.1 Steps

The report generation consists of the following steps:

1. Input: Prompt user for start date, end date and company.

2. Data: Automatically query and retrieve data from ElasticSearch.

3. Preprocessing: Preprocess the data for clustering.

4. Initial clustering: Perform clustering with a different number of clusters.

5. Input: Prompt user for number of clusters using WCSS, Silhouette, and Calinski-
Harabasz figures. An explanation is provided to ensure non-technical users
can also complete the generation.
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6. Clustering: Cluster the data.

7. Analysis - General: Perform general data analysis relating to the role distri-
bution, user requests, request activity, session lengths, and session activity.

8. Analysis - Clusters: Perform analysis on each cluster relating to the role
distribution, task division, and page journey.

9. Generate report: Generate and download the report for the user.

11.1.2 Invocation

The generation can be executed from the command line using the following syntax:
main.py [start_date] [end_date] [company_name] [flags]

The dates are in ElasticSearch syntax where we can use ”now-365d” and ”now”
to include an entire year. The number of requests are capped at 30.000 by default
unless overwritten in the flags to avoid long runtimes. We provide the following flags
to customize the generations:

• -al: Algorithm. The clustering algorithm to use. ”fuzzy c means” or ”agglomer-
ative”. Defaults to ”agglomerative”.

• -ap: Appendix. Boolean to include WCSS, Silhouette, and Calinski-Harabasz
plots in the appendix that were used to determine the number of clusters. De-
faults to False, and will not be provided if plots are skipped due to setting the
number of clusters directly using the ’cl’ flag.

• -ca: Caching. If set to True the data retrieved from ElasticSearch is cached.
Defaults to false.

• -cl: Clustering. Directly specify the number of clusters to use in order to skip
the process of generating WCSS, Silhouette, and Calinski-Harabasz plots to
determine the number of clusters.

• -cs: Cluster size. Can specify a minimum cluster size in the resulting clusters.
Defaults to 1.

• -dm: Distance measure. Specifies the distance measure to use in the cluster-
ing algorithm. ”cosine” or ”jaccard”. Defaults to ”cosine”.

• -mca: Max calls. Species the maximum number of calls to request. Defaults
to 30.000.
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• -mcl: Max clusters. Specifies the maximum clusters for which we determine
values in the WCSS, Silhouette, and Calinski Harabasz plots. Defaults to 20.

• -na: Name. Name of the report. Defaults to ”report”.

• -sa: Session activity. Specifies a maximum activity allowed within a session.
This activity is given by (#nr requests / #minutes) for each session. Plots to
determine a value can be found in the generated report.

• -sl: Session length. Specifies a maximum session length allowed. A distribu-
tion of session lengths can be found in the generated report.

11.2 Report

Reports were generated for the 10 largest clients of BetterBe with respect to the
number of calls they made. A sample report for ”directlease nl” can be found in Ap-
pendix D.

The data summary describes the number of days, users, calls, and sessions that
are being analyzed. This is followed 4 figures:

• User requests: Histogram describing how many calls users make.

• Request activity: Plot describing how many requests are made over time.

• Session lengths: Distribution of session lengths.

• Session activity: Histogram describing the activity within a session described
by requests

minutes
.

This is followed by the Workflow section containing the clustering. First, it de-
scribes the size distribution of each cluster, and the role distribution for each cluster.
For each cluster, it then provides a summary, a role distribution, a task distribution,
and a page journey for the session with the least distance to the others in the cluster.

The task distribution might be less understandable for people not involved with
the application, but BetterBe employees can interpret these fairly well to understand
what is happening in the session. The page journey of a session highlights the order
of pages visited in the session. This is done for the centroid of each cluster.

Finally, there is a Repetition section containing information relating to common
page journey repetitions found in the sessions.
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Chapter 12

Usability

We had an interview with BetterBe to evaluate the current state of affairs related to
what is being done to improve usability. This can be found in Appendix C. We will
detail how usability can be further increased through documentation, training, and
design in the future. These will benefit ease of learning, reduction of errors, and
efficiency of the interface design discussed in Chapter 3.

12.1 Documentation

In the current state, documentation is only provided in a limited quantity. This makes
it difficult for programmers to automate tasks and interact with the application. This
usually results in a trial-and-error approach. This difficulty of mapping desired sce-
narios to actions in the application was described as a lack of understanding in the
upward direction [20], and decreases the usability of the application.

Solutions to these issues are providing code snippets for common workflows to
describe how certain actions are performed. The generated reports for clients can
provide insights into these common workflows of users, and can thus be used to
write documentation tailored towards these actions as new users are likely to fall
within a cluster of previous users.

It should be noted that many of these actions are currently being performed by
users, but this does not mean that they are performed in the best way. There are
many ’hidden’ features within the application that can help speed up the process.
Thus, this documentation is not only for new users but also for existing users. By
providing an overview of available features with examples efficiency can increase,
and errors will reduce.
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12.2 Training

Training at companies is currently a way in which BetterBe details global possibilities
within the system. This can guide their design process when adopting the software.
Thus, their current goal with the training is to provide a high-level explanation of their
possibilities within the application before using the application.

However, we know that the majority of new clients will be branches in different
countries from existing clients. As an example, companies might start with a single
country adopting the software, and slowly roll this out to additional countries. These
clients can be expected to perform similarly to their other branches. This allows us to
tailor the process by generating a report on their other branch. By tailoring training
towards a specific client, and adding emphasis on likely-to-use features within the
software the ease of learning will improve.

12.3 Design

By analyzing common workflows, and page repetitions, we were able to gain greater
insights into how users browse through the application. Two of these repetitions
stood out, and we will go into further detail on how we can use these to improve the
usability of the application through design changes in the following sections.

12.3.1 Vehicle, Table

There are employees at companies that view cars to verify data, and subsequently,
make changes in the tables. Finding the data in various tables related to a vehicle
can be a long process of viewing multiple tables and editing data. A few years ago a
feature was built to simplify this process, but when trying to locate how this worked
we could not figure this out within 30 minutes.

As a simpler but less efficient way exists of navigating to these tables manually
and making the changes, it cannot be expected that users can find this feature.
By including these features in the pieces of training/documentation, and improving
visibility, this potentially long manual navigation task can be greatly sped up for a
user improving the efficiency of the application.
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12.3.2 Lol, Table

It often arises that a developer might have to view a table when editing in LOL-code.
Currently, this requires a user to click on the ’calculation tables’ tab followed by
selecting the correct table. This can be further complicated by tables having version
names/numbers. An improvement we discussed was including links within the editor
to directly go to the relevant table. This would simplify the process of viewing a table
while editing code by shortening the navigation, and eliminating the possibility of
navigating to the wrong table.
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Chapter 13

Discussion

By investigating user journeys through the application we were able to determine
design changes to improve usability. However, these page journeys were not com-
plete. Pages in the application often have ’tabs’ as seen in Figure 13.1. These ’tabs’
often lead to a new page, but can also change the information displayed on the page
without a page change. These changes are not included in the navigation as there
is currently no way to track ’tab’ changes.

Lastly, we have made multiple recommendations to improve the usability of the
application. However, these will take time to implement. Documentation/training will
have to be created, and design changes have to be implemented. Thus, evaluating
the impact of these changes is currently out of scope for this research.

Figure 13.1: Tabs on the quotation page
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Chapter 14

Future Work

Equipped with the gathered knowledge, BetterBe is able to make design changes,
and monitor how user behavior changes over time. However, the data on page jour-
neys used for design changes can be further refined. There is currently no data to
track whether a user is currently in tab ’A’ or tab ’B’ on a page which can cause dif-
ferent pages to be seen as a single page. They can opt to better track user activity
by sending additional requests, or embedding requests with an additional parameter
to accurately detail where a user currently is. This can provide more accurate user
journeys in the future to help further improve usability.

Additionally, BetterBe has expressed an interest in possibly sharing generated
reports with clients in the future. A possible use case might be to help them opti-
mize user roles within the application.

Finally, the approach can be simulated at other companies to improve usability.
The clustering approach can be replicated, and page journeys can be determined.
However, other companies might not have clearly defined tasks for users. Thus, the
research can serve to improve usability at other companies with minor adjustments.
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Chapter 15

Conclusion

This research aimed to improve the usability of BetterBe’s application by analyzing
previous usage data of the API. This was split into three research questions.

How can we extract workflow patterns from gathered API usage data
By determining user sessions in the data we were able to extract related user calls.
To provide additional insights into these workflow patterns we computed the page
journey of a user throughout the application, and which tasks were performed.

How can we identify common workflow patterns between users?
User workflows were converted into vectors to provide a numerical representation
of a workflow. In Chapter 8, we have seen that we could cluster the data efficiently
after determining that the Cosine distance measure and Agglomerative clustering
algorithm yielded the best results in Chapter 7. This allowed us to cluster workflow
patterns to identify common workflow patterns between users.

How can we improve the usability at BetterBe by analyzing the data and
common workflow patterns? In Chapter 11, we generated a report to summa-
rize common workflows and provide insights into popular page journeys of users.
Through investigating these common usage patterns of clients, and reviewing com-
mon repetitions we were able to propose changes relating to documentation, train-
ing, and design. These lead to improved ease of learning, efficiency of the design,
and a reduction in errors. By targeting these usability factors we have established a
clear plan of changes to improve the usability of the application.
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Appendix A

Tasks

Below we have a list of relevant tasks. It is not a complete list, but rather tasks that
we utilized within the sessions gathered from the data.

• Accessory

• Account

– Account.edit

• Apicall

• Bulkedit

• CalculationChecker

– CalculationChecker.vehicleids

• CalculationParameterSet

– CalculationParameterSet.edit

– CalculationParameterSet.view

• CalculationTable

– CalculationTable.edit

– CalculationTable.historic

• Configurator

– Configurator.vehicleids

• Details

• Label
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• List

• Lol

– Lol.delete

– Lol.save

• Myaccount

• Optiongraph

– Optiongraph.view

• Pagelayout

• Pagelayoutset

• Person

– Person.create

– Person.delete

– Person.edit

• Policy

– Policy.create

• Quotation

– Quotation.create

– Quotation.delete

– Quotation.index

– Quotation.pdf

– Quotation.view

• QuotationTemplate

– QuotationTemplate.edit

– QuotationTemplate.pdf

• Refdate

– Refdate.create

– Refdate.createfull
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– Refdate.delete

• Relation

– Relation.delete

• Report

– Report.download

– Report.edit

– Report.view

• RequestInfo

– RequestInfo.details

• Resource

• Role

– Role.edit

• Search

• Selection

• Synclog

– Synclog.details

• Tracecar

– Tracecar.vehicleids

• Transaction

• Vehicle

– Vehicle.copy

– Vehicle.create

– Vehicle.delete

– Vehicle.derive

– Vehicle.edit
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Appendix B

Cluster Tasks

Cluster Relevance Task

0 1.00 search.configurator
0.48 quotation.quotation.list
0.38 search.search
0.25 search.vehicle.details
0.24 search.search.tracecar
0.24 calculations.lol.view
0.24 quotation.quotation.create

1 1.00 calculations.lol.view
0.82 search.search
0.80 search.vehicle.details
0.64 search.search.tracecar
0.53 search.configurator
0.28 calculations.calculationTable.view
0.15 calculations.calculationTable.content
0.14 quotation.person.manage
0.11 calculations.lol.edit

2 1.00 search.search
0.69 search.configurator
0.42 search.vehicle.details
0.39 search.search.tracecar
0.39 calculations.lol.view
0.36 calculations.calculationTable.view
0.24 calculations.calculationTable.content

Table B.1: Task distributions Clusters 0 - 2

87



Cluster Relevance Task

3 1.00 search.search
0.43 developer.requestInfo
0.39 search.vehicle.details
0.39 search.search.tracecar
0.39 developer.requestInfo.details
0.39 calculation.lol.view
0.34 quotation.relation.manage
0.30 quotation.person.manage
0.17 search.configurator
0.17 datamanagement.report.view
0.13 developer.apicall

4 1.00 search.search
0.92 search.configurator
0.58 quotation.quotation.list
0.54 search.vehicle.details
0.53 search.search.tracecar
0.53 calculations.lol.view

5 1.00 calculations.calculationTable.view
0.56 search.search
0.22 search.vehicle.details
0.22 search.search.tracecar
0.22 quotation.relation.manage
0.22 quotation.person.manage
0.22 calculations.lol.view

6 1.00 search.configurator
0.32 quotation.quotation.create
0.21 search.vehicle.details
0.20 search.search.tracecar
0.20 calculations.lol.view
0.18 search.search
0.12 quotation.quotation.list
0.11 quotation.quotation.manage

Table B.2: Task Distributions Clusters 3 - 6
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Appendix C

Interview

An interview was conducted with regards to the current state of affairs surrounding
usability improvements at BetterBe. We detail the most relevant questions of which
the content was used to motivate choices in the report.

C.1 Interview

C.1.1 How many clients are currently using the software?

We have around 10 large clients. There is usually a team of 5 people per client
dealing with the software.

C.1.2 How will this scale over time?

The number of clients will likely remain the same, but as most clients are interna-
tionally based, the number of countries will increase. It is expected that this could
increase the number of teams to 20-30.

C.1.3 What is the technical knowledge of users interacting with
the software?

There are three types of users interacting with the software. The first is developers
which are mainly involved with coding in LOL and have good technical knowledge.
The second is the technical pricers that have less technical knowledge and are in-
volved with prices of policies, tires, etc. These users only interact with a small part
of the software. Lastly, there are vehicle releasers that determine which cars are
ready for release by checking cars in the system. These have the least technical
knowledge.
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C.1.4 What is currently being done to improve usability for these
users?

Not a lot. We’ve had a few talks with clients.

C.1.5 How often do you have this client interaction, and what is
the main topic?

We’ve only had a single talk with a client with the goal to improve the application,
but it was rather limited. Other interactions were based on missing features which
occurred only a few times.

C.1.6 How do clients learn to initially use the software?

We provide them with a few training courses. These are a one-time occurrence at
the start of the process of setting up the software for a client.

C.1.7 What is the primary focus of these pieces of training?

They attempt to show what is possible with the application. This can show them
which structures can be supported within their application design. It is still rather
global as the application has not been set up for the client at this point.

C.1.8 Do you provide some form of documentation for the clients
after they start using the application?

No, this is fairly limited. The main documents are release notes that contain infor-
mation on new features.

C.1.9 What would you say are the main limitations of the current
approach?

Users often use features that they manage to find. Once they find a way to tackle
a certain problem it might not be the optimal solution. They are not aware of these
optimal solutions, and BetterBe is not aware of these inefficient processes. Finding
these inefficient processes is not that simple.
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C.1.10 How far can the generated reports provide useful insights
into current application interactions?

It will show us how people use the application. These points can be taken into
consideration for the application as feedback. It can be useful in the development of
the application to focus efforts.

C.1.11 How well can people at BetterBe translate cluster tasks
to workflows in the application?

Rather well. We can how sessions are distinguished for similar roles. This pro-
vides good insights. Additionally, we could find clusters in the Directlease that were
expected which verifies the results.

C.1.12 What are your thoughts on the current design and layout
of the application?

We are making fewer GUI changes than we would hope. These changes cost a lot
of time, but we don’t know which are important. Various changes are possible, but it
is difficult to estimate whether these changes are worth pursuing.

C.1.13 Are you aware of problems that could arise from this de-
sign?

We are aware of some issues that we found ourselves. As an example, it is hard to
gather related items. Cars have many attributes, but there are no direct links to the
related tables. However, we don’t know whether users would want this feature so it
is difficult to estimate whether this is worth our time to support.
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Appendix D

Report generation

In the following pages we can view a sample generated report.
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Directlease_Nl

LeaseServices Management Analysis



Introduction

Data Summary
In this report we will provide an analysis of how directlease_nl utilizes the LSM application.
First, we will explore general insights into the data to gain a clear picture of the what is
being analyzed. Secondly, we will dive deeper into specific use cases within the
application. For these use cases we will provide involved roles, tasks being performed,
and a sample workflow through the application for one of these users. Thirdly, we will
provide common patterns or repetitions that occur in the sessions. These consist of a set
of pages that are often repeated. Finally, the Appendix contains the plots that were used
to determine the number of clusters.
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User requests
The plot below details how many requests users make on average. On the x-axis we have
bucketed numbers of requests while the y-axis details how many users in the dataset
make this number of requests through the entire time frame.

Request activty
The plot below details the activity of requests throughout the timeframe. On the x-axis we
have the days while the y-axis details the number of requests made.



Session lengths
The plot below details the spread of session lengths in minutes. The x-axis represents the
duration of the sessions in minutes, while the y-axis details how many times sessions of
this length occur. The command line flag '-sl [value]' can be used to filter out session
lengths >= value.

Session activity
The plot below details the activity of various sessions. The activity is given by
(#nr_requests/#mins) for each session. The y-axis shows have many sessions correspond
to each session activity value. The command line flag '-sa [value] can be used to filter out
session activity >= value.



Workflows

Introduction
Below we can observe the distribution of sessions across the clusters. Filtered 1 cluster(s)
due to small size. '-cs [value]' can be used to set the minimum cluster size.

In the following pages we dive deeper into the clusters. We provide the distribution of
roles, and the tasks being performed by the users. For each of these tasks, the number of
calls associated to this task were counted. These counts were then divided by the
maximum count to obtain the frequency in the left column of the table.

Additionally, we provide the route that the representative session took in terms of pages.
This session is known as the centroid of the cluster and has the least average distance to
other sessions in the cluster.



Cluster 0

Overview
This is an overview of cluster 0. It has a total of 154 sessions.

Frequency Tasks

1.0 calculations.lol.view

0.9227539882451721 search.search

0.7766582703610412 search.configurator

0.7682619647355163 search.vehicle.details

0.7061293031066331 search.search.tracecar

0.49706129303106633 quotation.quotation.list

0.35768261964735515 calculations.calculationTable.view

0.1452560873215785 quotation.quotationTemplate.view

0.14273719563392107 calculations.calculationTable.content

0.12762384550797648 quotation.person.manage

... ...

Page Journey
search -> quotation



Cluster 1

Overview
This is an overview of cluster 1. It has a total of 107 sessions.

Frequency Tasks

1.0 search.search

0.848 search.configurator

0.5056 calculations.calculationTable.view

0.4744 search.vehicle.details

0.4536 search.search.tracecar

0.4536 calculations.lol.view

0.3064 calculations.calculationTable.content

0.0256 search.list

0.0232 datamanagement.report.download

Page Journey
search -> table -> search -> table -> search -> configure



Cluster 2

Overview
This is an overview of cluster 2. It has a total of 899 sessions.

Frequency Tasks

1.0 search.configurator

0.49461254612546124 quotation.quotation.list

0.4188929889298893 search.search

0.2908487084870849 search.vehicle.details

0.28974169741697414 search.search.tracecar

0.28974169741697414 calculations.lol.view

0.22 quotation.quotation.create

0.07225092250922509 quotation.quotation.manage

0.026125461254612545 quotation.person.view

Page Journey
quotation_pdf -> configure -> search -> configure -> quotation -> search -> configure ->
quotation -> configure -> search -> configure -> search -> quotation -> configure -> search
-> quotation -> configure -> quotation -> configure -> quotation -> search -> configure ->
search -> quotation -> configure -> quotation -> configure -> quotation -> search ->
quotation -> configure -> quotation -> configure -> quotation -> search -> configure ->
quotation -> search -> quotation -> search -> configure -> quotation -> configure



Cluster 3

Overview
This is an overview of cluster 3. It has a total of 443 sessions.

Frequency Tasks

1.0 search.configurator

0.35039102346140766 quotation.quotation.create

0.18344100646038763 search.vehicle.details

0.18310098605916356 search.search.tracecar

0.18310098605916356 calculations.lol.view

0.13447806868412104 quotation.quotation.list

0.1171370282216933 quotation.quotation.manage

0.08942536552193131 search.search

Page Journey
configure_vehicle -> configure -> quotation -> search -> configure -> quotation ->
configure -> quotation -> configure -> quotation



Cluster 4

Overview
This is an overview of cluster 4. It has a total of 17 sessions.

Frequency Tasks

1.0 search.search

0.9056603773584906 calculations.lol.view

0.8490566037735849 quotation.quotation.list

0.6037735849056604 search.vehicle.details

0.6037735849056604 search.search.tracecar

0.32075471698113206 quotation.quotationTemplate.view

0.16981132075471697 calculations.label.view

0.1509433962264151 quotation.quotation.create

0.1320754716981132 search.list

0.11320754716981132 search.selection

... ...

Page Journey
search -> label -> quotation



Cluster 6

Overview
This is an overview of cluster 6. It has a total of 22 sessions.

Frequency Tasks

1.0 search.search

0.934010152284264 search.configurator

0.5076142131979695 calculations.lol.view

0.4949238578680203 search.vehicle.details

0.4949238578680203 search.search.tracecar

0.4593908629441624 quotation.quotation.list

0.30710659898477155 quotation.quotation.create

0.09644670050761421 quotation.quotation.manage

0.04568527918781726 quotation.person.view

0.015228426395939087 quotation.relation.manage

... ...

Page Journey
quotation -> configure -> search -> configure -> search -> quotation -> configure -> search
-> configure -> quotation



Page Repetitions

Explanation
Within sessions certain set of pages are often visited in the same order. The repetitions of
pages were analyzed for each session. A repetition consists of a set of at least 2 pages
that occur at least 3 times within a session. Larger repetitions, consisting of a smaller
repetition repeated, were filtered together with repetitions that were a rotation of another
repetition. Below we observe the repetitions and in how many sessions they occurred.

Frequency Repetition

503 configure, search

467 quotation, configure

114 search, quotation

113 quotation, configure, search

109 quotation, search, configure

81 configure, quotation, configure, search

59 quotation, person

50 configure, vehicle

40 quotation, search, configure, quotation, configure

34 lol, table

33 search, quotation, configure, quotation

32 table, search, configure

26 quotation, search, configure, search

26 search, table

24 configure, search, configure, quotation, search

23 search, configure, quotation, configure, quotation, configure, quotation

21 vehicle, search

21 quotation, configure, quotation, configure, quotation, search

21 configure, quotation, configure, quotation, configure, search

18 search, quotation, configure, quotation, configure

... ...



Appendix

WCSS
The optimal number of clusters for the WCSS lies in the 'elbow'. This is the point where
rapid decreases cease.

Silhouette
The optimal number of clusters for Silhouette lies in the highest point to maximize the
score.



Calinski-Harabasz
The optimal number of clusters for Calinski-Harabasz lies in the highest point to maximize
the score.
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