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1 Introduction

Differential equations are used for a wide variety of mathematical models. When
these differential equations have some initial condition that that has to be satis-
fied they become initial value problems. When such a problem cannot be solved
exactly then the solution used be approximated using a numerical method.
Error estimation is an important issue when it comes to numerically solving
initial value problems, since it can be used to make sure that a certain outcome
is accurate enough for its purpose. Also it can be used to better inform the
trade-off between a more accurate solution and the computing power needed.
The aim of this report is to look into two types of error estimation. First we
will see some heuristic error estimates. We look into the explicit Euler method
and general Runge-Kutta methods in sections 2 and 3 respectively, as well as
Richardson extrapolation in section 4.
Second we look into finding a rigorous error estimate for Euler’s method and
the Crank-Nicolson method by using a reconstruction method in section 5.
At the end we will have a guaranteed error bound for the starting initial value
problem.
For sections 2 and 3 the lecture notes by Kanschat [4] and the book by Griffiths
[2] were used. For section 4 the book by Strehmel [5] was used. For section 5
the article by G. Akrivis, et al. [1] and the book by Hairer [3] was used.

2 Euler’s method

Most standard numerical scheme for solving initial value problem

y′(x) = f(x, y), y(x0) = y0 (1)

is the explicit Euler method. This method is of the form

yn+1 = yn + hf(xn, yn), (2)

where h is the step size and xn = x0 + nh.

The Euler scheme is of first order, which means that the global error e is given
by e ≤ Ch2, where C is a constant. We can show this using Taylor expansion.
We start with a general definition of this Taylor polynomial. A kth order Taylor
polynomial of g(x) around a is given by

f(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2f ′′(a) + ...+

1

k!
(x− a)kf (k)(a) +R,

where k ≥ 1 and g is k times differentiable at a. For the remainder term R we
have in general that

R = O((x− a)k+1) = C(x− a)k+1,

where C is a constant. An explicit expression for the remainder is given by

R =
1

(k + 1)!
(x− a)k+1f (k+1)(s),

where s is between x and a.
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We try to find an expression for the error en+1 = y(xn+1)−yn−1. Here y(xn+1)
is the actual solution at xn+1 and yn+1 is the approximation, which is in this
case obtained by using the Euler scheme.
For y(xn+1) we have the Taylor expansion

y(xn+1) = y(xn + h) = y(xn) + hy′(xn) +O(h2).

The original initial value problem (1) gives

y(xn+1) = y(xn + h) = y(xn) + hf(xn, y(xn)) +O(h2)

Now by the Euler method (2), we have local error

y(xn+1)− yn+1 = y(xn) + hf(xn, y(xn)) +O(h2)− (yn + hf(xn, yn))

= (y(xn)− yn) + h(f(xn, y(xn))− f(xn, yn)) +O(h2)

We have en = y(xn) − yn, and for f(xn, y(x,n)) − f(xn, yn) we again use a
Taylor expansion. Namely, the expansion of f(x, y) around (xn, yn) which looks
as follows

f(xn, y(xn)) = f(xn, yn) + (xn − xn)fx(xn, yn) + (y(xn)− yn)fy(xn, yn)

+O((y(xn)− yn)
2).

This gives

f(xn, y(xn))− f(xn, yn) = enfy(xn, yn) +O((e2n)

Using this again in the expression for the local error en+1 = y(xn+1) − yn+1

gives

en+1 = en + h(enfy(xn, yn)) +O(h2)

= (1 + hfy(xn, yn))en +O(h2)

3 Runge-Kutta methods

A Runge-Kutta method of order s looks as follows

yn+1 = yn + h(b1k1 + . . . + bsks), (3)

where for ki, i = 1, ..., s we have

k1 = f(x0, y0)

k2 = f(x0 + c2h, y0 + ha21k1)

k3 = f(x0 + c3h, y0 + h(a31k1 + a32k2))

...

ks = f(x0 + csh, y0 + h(as1k1 + ...+ as−1ks−1)).

A one-step method is called consistent if for every initial value problem we have

that limh→0
e(x+h)

h = 0 for x0 <= x < xn, in words this means that at any
point the local error goes to zero as the step size h goes to zero.
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The Runge-Kutta method is consistent if and only if we have that
∑s

i=1 bi = 1.

For higher order Runge-Kutta methods we also need the condition that
∑i−1

j=1 aij =
ci.

The Runge-Kutta method is usually written out by using a table called the
Butcher tableau.

0
c2 a21
c3 a31 a32
. . . .
cs as1 as2 as,s−1

b1 b2 bs−1 bs

Table 1: General Butcher tableau for a Runge-Kutta method of order s.

Euler’s method (10) is a first order Runge-Kutta method. Namely,

k1 = f(x0, y0) (4)

yn = yn−1 + hk1. (5)

The corresponding Butcher tableau is then given by

0
1

Table 2: Butcher tableau for Euler’s method.

Another example is the Heun method, also called the improved Euler method.
This method is a second order method and looks as follows

k1 = f(x0, y0)

k2 = f(t0 + h, y0 + hk1)

yn = yn−1 + h(
1

2
k1 +

1

2
k2),

or in form of the Butcher tableau,

0
1 1

1/2 1/2

Table 3: Butcher tableau for Heun’s method.

For the error estimation of the Runge-Kutta method, we have that the local
error for Runge-Kutta method of order p is given by eh ≤ Chp+1.
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4 Richardson Extrapolation

By means of Richardson Extrapolation we obtain two things, first an error
estimation for the approximation y2×h and second an approximation for y(xn+
2h).

We use the error expressions of two different approximations using a fixed
Runge-Kutta method of order p. One approximation using two steps of size
h, and one of one larger step of size 2h.

Recall that for a Runge-Kutta method of order p we have that the error e(h) =
y(h)− yh satisfies e(h) ≤ Chp+1.

First, the error of one big step of size 2h is given by

y(x0 + 2h)− y2h = C(x0)(2h)
p+1 +O(hp+2). (6)

Second, the error of two smaller steps of size h is given by

y(x0 + 2h)− y2×h = y(x0 + 2h)− yh + yh − y2×h

= C(x0 + h)(h)p+1 +O(hp+2) + yh − y2×h.

Generally, a one-step method is given by yn+1 = yn + hϕ(xn, yn). The function
ϕ(x, y) is called a ’procedural function’, so some general slope in the one-step
method. Using such a slope ϕ(x, y) for the approximations yh and y2×h we get

y(x0 + 2h)− y2×h = C(x0 + h)(h)p+1 +O(hp+2)

+ y(x0 + h) + hϕ(x0 + h, y(x0 + h))− (yh + hϕ(x0 + h, yh)).

Since we have that

y(x0 + h)− yh = C(x0)(h)
p+1,

and also

C(x0 + h) = C(x0) +O(h).

We obtain that

y(x0 + 2h)− y2×h = 2C(x0)(h)
p+1 +O(hp+2). (7)

(hϕ(x0 + h, y(x0 + h))− hϕ(x0 + h, yh))

Subtract 6 from 7 gives

y2 − y2h = C(x0)(2h)
p+1 +O(hp+2)− (2C(x0)(h)

p+1 +O(hp+2)

= 2C(x0)(2
php+1 − hp+1) +O(hp+2).

From this we get that

2C(x0) =
y2×h − y2h
2p − 1

(h)−(p+1) +O(hp+2). (8)
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Finally, we use the expression (8) in the error y(x0 + 2h) − y2×h (7) to obtain
another error estimation

y(xn + 2h)− y2×h =
y2×h − y2h
2p − 1

+O(hp+2).

From this, we also obtain an approximation for y(xn + 2h) denoted here by wh

wh = y2×h +
y2×h − yh
2p − 1

.

5 Reconstruction method

In this section we will use a reconstruction method to find a rigorous bound for
the error of the numerical solution for a different initial value problem as before.

5.1 Using Explicit Euler method

Consider the initial value problem

y′(x) + cy(x) = f(x), y(x0) = y0, (9)

where c is a scalar. For this problem, the explicit Euler scheme looks as follows

yn − yn−1

h
+ cyn−1 = f(xn−1), (10)

where h = xn − xn−1. As discussed in section 2, the explicit Euler scheme is a
first order method.

Now, we define a linear interpolant Ũ between the points yn−1 and yn as

Ũ(x) = yn−1 + (x− xn−1)
yn − yn−1

h
. (11)

Since we have that

Ũ ′ =
yn − yn−1

h
,

the expression for the Euler scheme (10) is equivalent to

Ũ ′(x) + cyn−1 = f(xn−1).

Which, by adding cŨ(x) on both sides, can be written as

Ũ ′(x) + cŨ(x) = f(xn−1) + c(Ũ(x)− yn−1). (12)

This expression is in the same form as the original problem. We subtract ex-
pression (12) from the original initial value problem 9 to get the error equation

ẽ′(x) + cẽ(x) = R1(x), (13)

where ẽ(x) = y(x)− Ũ(x) and R1(x) = f(x)− (f(xn−1) + c(Ũ(x)− yn−1).
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Next, we extract an error bound from this error equation using the energy
method.
First we multiply by ẽ to get

ẽ′ẽ+ cẽ2 = R1ẽ.

We then integrate the error from x0 to xn, which gives∫ xn

x0

ẽ′ẽ dx+ c

∫ xn

x0

ẽ2 dx =

∫ xn

x0

R1ẽ dx.

(x0 = 0).

Now, by product rule we have (ee)′ = 2e′e and therefore e′e = 1
2 (e

2)′. Using
this and e(x0) = 0 gives

1

2
ẽ2(xn) + c

∫ xn

0

ẽ2 dx =

∫ xn

0

R1ẽ dx.

Using ab ≤ a2

2c + cb2

2 where a = R and b = ẽ gives∫ xn

0

R1ẽdx ≤
∫ xn

0

R2
1

2c
+
cẽ2

2
dx.

From this we obtain

1

2
ẽ2(xn) + c

∫ xn

0

ẽ2dx ≤
∫ xn

0

R2
1

2c
+
cẽ2

2
dx.

And finally,

ẽ2(xn) + c

∫ xn

0

ẽ2dx ≤ 1

c

∫ xn

0

R2
1dx. (14)

Notice that we have an error bound that depends on the residual R1(x) that
can be evaluated. Therefore an error bound can be computed.

Next we can again show the Euler method to be a first order method. For
this we first simplify the error bound to

ẽ2(xn) ≤
∫ xn

0

R2
1(x) dx,

which we then write as

ẽ2(xn) ≤
n∑

k=1

∫ xk

xk−1

R2
1(x) dx. (15)

We consider the residual given by R1 = f(x)− f(xn−1)− c(Ũ(x)− yn−1) in two
parts.

First consider the term f(x) − f(xn−1). The Taylor expansion of f(x) around
xn−1 is given by

f(x) = f(xn−1) + f ′(xn−1)(x− xn−1) +O((x− xn−1)
2).
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Using this we get

f(x)− f(xn−1) = f ′(xn−1)(x− xn−1) +O((x− xn−1)
2). (16)

Second, for the term c(U(x)− yn−1/2) we have that

c(U(x)− yn−1) = c

(
yn−1 +

yn − yn−1

h
(x− xn−1)− yn−1

)
= (x− xn−1)

(
c
yn − yn−1

h

)
.

Then, using Euler’s method (10) we can write

c(U(x)− yn−1) = (x− xn−1) (c (f(xn−1)− cyn−1)) . (17)

Finally we combine expressions (16) and (17) and the residual term R1 becomes

R1 = (x− xn−1) (f
′(xn−1)− (c (f(xn−1)− cyn−1)) .

We denote ak = (f ′(xk−1)− (c (f(xk−1)− cyk−1)) and consider the integral in
expression (15). We get∫ xk

xk−1

R2
1(x) dx =

∫ xk

xk−1

(x− xk−1)
2(ak)

2 dx

= (ak)
2

∫ hk

0

x̃2 dx̃

=
(ak)

2

3
h3k.

Now using this in the expression (15) again gives the error bound

ẽ2(xn) ≤
n∑

k=1

a2k
3
h3k.

Let hk = h for all k to obtain

ẽ2(xn) ≤
n∑

k=1

a2k
3
h3 = h3

n∑
k=1

a2k
3

≤ h3nmax
k

a2k
3

= h2xn max
k

a2k
3
.

Finally, we obtain the error bound

ẽ(xn) ≤ h
√
xn max

k

ak√
3
.

5.2 Using the Crank-Nicolson method

Now we use the same method as in the section above, only instead of the explicit
Euler method we use the Crank-Nicolson method.
The Crank-Nicolson method is a combination of the implicit and the explicit
Euler method. For the initial value problem (1) it would look as follows

yn = yn−1 +
1

2
h(f(xn−1, yn−1) + f(xn, yn)).
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The Taylor expansion of y(xn+1) is given by

y(xn+1) = y(xn) + hy′(xn) +
1

2
h2y′′(xn) +O(h3). (18)

The expansion of y′(xn + h) gives

y′(xn+1) = y′(xn) + hy′′(xn) +O(h2),

therefore we have that

hy′′(xn) = y′(xn + h)− y′(xn) +O(h2). (19)

Using expression (19) in the expansion for yn+1 (18), we get

y(xn+1) = y(xn) + hy′(xn) +
1

2
h(y′(xn + h)− y′(xn) +O(h2)) +O(h3)

= y(xn) +
1

2
h(y′(xn) + y′(xn + h)) +O(h3)

= y(xn) +
1

2
h(f(xn, y(xn)) + f(xn + h, y(xn + h))) +O(h3).

For the local error en+1 = y(xn+1)− yn+1 we then have,

en+1 = y(xn+1)− yn+1

= y(xn) +
1

2
h(f(xn, y(xn)) + f(xn + h, y(xn + h))) +O(h3)

− (yn +
1

2
h(f(xn, yn) + f(xn+1, yn+1))

= en +
1

2
h(f(xn, y(xn))− f(xn, yn) + f(xn+1, y(xn+1))

− f(xn+1, yn+1)) +O(h3).

By Taylor expansion of f(x, y) around (xn, yn), we get

f(xn, y(xn))− f(xn, yn) = enfy(xn, yn) +O(e2n).

Finally, this gives

en+1 =
1 + h

2 fy(xn, yn)

1− h
2 fy(xn+1, yn+1)

en +O(h3).

Now for the problem of the form y′+cy = f(x) , y(x0) = x0, the Crank-Nicolson
method can be written as

yn − yn−1

h
+ cyn−1/2 =

f(xn) + f(xn−1)

2
, (20)

where yn−1/2 = yn+yn−1

2 .

We define a linear interpolant ϕ(x) for the function f(x) at points xn−1 and xn
as follows

ϕ(x) = f(xn−1) + (x− xn−1)
f(xn)− f(xn−1)

h
. (21)
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Observe that ϕ(xn−1) = f(xn−1) and ϕ(xn) = f(xn). Also, ϕ(xn−1/2) =
f(xn)+f(xn−1)

2 .
Therefore the Crank-Nicolson method (20) is equivalent to

yn − yn−1

h
+ cyn−1/2 = ϕ(xn−1/2). (22)

Now we define a linear interpolant U(x) between points yn and yn−1 as follows

U(x) = yn−1/2 + (x− xn−1/2)
yn − yn−1

h
.

See that U(xn−1/2) = yn−1/2 and

U(xn) = yn−1/2 +

(
h

2

)
yn − yn−1

h

=
yn + yn−1

2
+
yn − yn−1

2
= yn

Similarly, U(xn−1) = yn−1.

Since we have that

U ′(x) =
yn − yn−1

h
,

we have that the expression for the Crank-Nicolson method (22) can be written
as

U ′(x) + cyn−1/2 = ϕ(xn−1/2).

And by adding cU(x) on both sides we can write this as

U ′(x) + cU(x) = ϕ(xn−1/2)− c(yn−1/2 − U(x)). (23)

This is in the same form as the original equation. So we subtract the equation
(23) from the original initial value problem (9) to get the error equation

e(x)′ + ce(x) = R2(x), (24)

where e(x) = y(x)− U(x) and R2(x) = f(x)− ϕ(xn−1/2)− c(yn−1/2 − U(x)).
As before in section (), we can obtain from this error equation the simplified
error bound

e2(xn) ≤
n∑

k=1

∫ xk

xk−1

R2
2(x) dx. (25)

Notice that R2(x) can be evaluated, so an error bound can be computed.
Now for a closer look at the residual R2 to obtain the order of the method.
We first consider the term f(x) − ϕ(xn−1/2). Using the Taylor expansion for
f(x) around xn−1/2, we get

f(x)− f(xn−1/2) = f(xn−1/2) + f ′(xn−1/2)(x− xn−1/2) + ...− f(xn−1/2)

= f ′(xn−1/2)(x− xn−1/2) + ...

9



f(x)− f(xn−1/2) = f ′(xn−1/2)(x− xn−1/2) + ... (26)

Second, for the term c(U(x)− yn−1/2) we have that

c(U(x)− yn−1/2) = c

(
yn−1/2 +

yn − yn−1

h
(x− xn−1/2)− yn−1/2

)
= (x− xn−1/2)

(
c
yn − yn−1

h

)
.

Then, using the Crank-Nicolson scheme we can write

c(U(x)− yn−1/2) = (x− xn−1/2)
(
c (ϕ(xn−1/2)− cyn−1/2)

)
. (27)

Combining expressions (26) and (27) the residual term R2 becomes

R2 = (x− xn−1/2)
(
f ′(xn−1/2)− c(f(xn−1/2)− cyn−1/2)

)
.

Denote ak = f ′(xn−1/2) − c(f(xn−1/2) − cyn−1/2 and consider the integral in
the error bound (25). We obtain that∫ xk

xk−1

R2
2(x) dx =

∫ xk

xk−1

(x− xk−1/2)
2(ak)

2 dx

= (ak)
2

∫ hk/2

−hk/2

x̃2 dx̃

=
a2k
3
((
hk
2
)3 + (

hk
2
)3)

=
a2k
12
h3k.

Now we use this again in expression (25) and assume hk = h for all k, and we
obtain the error bound

e2(xn) ≤
n∑

k=1

a2k
12
h3k

≤ h2xn max
k

a2k
12
.

And finally,

e(xn) ≤ h
√
xn max

k

ak√
12
. (28)

We see that the error bound is of first order. However the Crank-Nicolson
method is of second order. Therefore, in the next section, we will again use the
same methodology, but this time using a quadratic reconstruction instead of a
linear one.

5.3 Quadratic reconstruction

Start with the observation that the original initial value problem 9 is equivalent
to the problem

y(x) = y0 +

∫ x

x0

f(s)− cy(s) ds.
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Now by replacing f(s) and y(s) by their linear interpolants ϕ(s) (21) and U(s)
(23) respectively and starting from yn−1, we define the reconstruction Û as

Û(x) = yn−1 +

∫ x

xn−1

ϕ(s)− cU(s) ds.

We see that Û(xn−1) = yn−1 and for Û(xn), since U(x) and ψ(x) are both
linear, we have by the trapezoidal rule that

Û(xn) = yn−1 +

∫ xn

xn−1

ϕ(s)− cU(s) ds

= yn−1 +
1

2
(xn − xn−1)(ϕ(xn)− cU(xn) + ϕ(xn−1)− cU(xn−1)

= yn−1 +
1

2
(h)(f(xn)− cyn + f(xn−1)− cyn−1)

= yn−1 + h(ϕ(xn−1/2)− cyn−1/2)

= yn−1 + h(
yn − yn−1

h
) = yn

Since

Û ′(x) = ϕ(x)− cU(x),

we have that
Û ′(x) + cÛ(x) = ϕ(x) + c(Û(x)− U(x)). (29)

Now we see that this equation in the same form as the original inital value
problem. Therefore, we subtract equation (29) from the original problem (9) to
get the error equation

ê(x)′ + cê(x) = R3(x), (30)

where ê(x) = y(x)− Û(x) and R3(x) = f(x)− ϕ(x)− c(Û(x)− U(x)).

As done before in both section () and (), we can obtain from this error equation
the simplified error bound

e2(xn) ≤
n∑

k=1

∫ xk

xk−1

R2
3(x) dx. (31)

Like before, we have that since R3 can be evaluated, we can compute an explicit
error bound.

Next we can also find the order of the method. For this, we consider the residual
R3. First consider the term f(x)− ϕ(x). Using the expansion for f(x) around
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(x− xn−1) and expression for ϕ(x) (21) we get

f(x)− ϕ(x) = f(xn−1) + f ′(xn−1)(x− xn−1) +O(x− xn−1)
2

− (f(xn−1) + (x− xn−1)
f(xn)− f(xn−1

h
)

= (x− xn−1)(f
′(xn−1)−

f(xn)− f(xn−1)

h
) +O(x− xn−1)

2

= (x− xn−1)(f
′(xn−1)−

f(xn)− f(xn−1)

h
) + (x− xn−1)

2 1

2
f ′′(s),

where s is between x and xn−1. Use the Taylor expansion of f(x) around
f(xn−1) to write

f(xn) = f(xn−1) + hf ′(xn−1) +
1

2
h2f ′′(xn−1) +O(h3).

We then get that

f(xn)− f(xn−1)

h
= f ′(xn−1) +

1

2
hf ′′(xn−1) +O(h2).

And finally,

f ′(xn−1)−
f(xn)− f(xn−1)

h
= −(

1

2
hf ′′(xn−1) +O(h)2).

So for the term f(x)− ϕ(x) we have

f(x)−ϕ(x) = (x−xn−1)
2
(1
2
f ′′(s)

)
+(x−xn−1)

(
− 1

2
hf ′′(xn−1)+O(h)2

)
. (32)

Now for the term c(Û − U). First, since ϕ(x) and U(x) are linear, by the
trapezoidal rule we write Û(x) as

Û(x) = yn−1 +
1

2
(x− xn−1)(ϕ(x)− cU(x) + f(xn−1)− cyn−1).

Using then the expressions for ϕ(x) and U(x) we have

Û(x) = yn−1 +
1

2
(x− xn−1)

(
f(xn−1) + (x− xn−1)

f(xn)− f(xn−1)

h

− c(yn−1 + (x− xn−1)
yn − yn−1

h
) + f(xn−1)− cyn−1

)

By rearranging terms by powers of (x− xn−1) we get

Û(x) = (x− xn−1)
2
( 1

2h
(f(xn)− f(xn−1)− c(yn − yn−1))

)
+ (x− xn−1)

(
f(xn−1)− cyn−1

)
+ yn−1

12



We use this expression for Û(x) to write

c(Û − U) = c((x− xn−1)
2
( 1

2h
(f(xn)− f(xn−1)− c(yn − yn−1))

)
+ (x− xn−1)

(
f(xn−1)− cyn−1

)
+ yn−1

− (yn−1 + (x− xn−1)
yn − yn−1

h
)).

By rearranging terms again we obtain

c(Û − U) = (x− xn−1)
2
( 1

2h
(f(xn)− f(xn−1)− c(yn − yn−1))

)
+ (x− xn−1)

(
cf(xn−1)− c2yn−1 − c

yn − yn−1

h

)
.

For residual R3 we then have, after again rearranging by powers of (x− xn−1),

R3 = (x− xn−1)
2

(
1

2
f ′′(s)− 1

2h
(f(xn)− f(xn−1)− c(yn − yn−1))

)

+ (x− xn−1)

(
f ′(xn−1)−

f(xn)− f(xn−1)

h
− cf(xn−1) + c2yn−1 + c

yn − yn−1

h

)
.

We denote

ak =
1

2
f ′′(s)− 1

2h
(f(xn)− f(xn−1)) +

1

2h
(c(yn − yn−1))

and

bk = f ′(xn−1)−
f(xn)− f(xn−1)

h
− cf(xn−1) + c2yn−1 + c

yn − yn−1

h
.

First consider the expression for ak. By Taylor expansion of f(x) around (xn−1)
we have that

f(xn)− f(xn−1) = hf ′(ŝ),

where ŝ is between xn−1 and xn. Now by the Crank-Nicolson method (22) we
have

ak =
1

2
f ′′(s)− 1

2
f ′(ŝ)− c

2
(ϕ(xn−1/2)− cyn−1/2). (33)

Second we take a closer look at the expression for bk. We see first that for

f ′(xn−1)− f(xn)−f(xn−1)
h we have by Taylor expansion that

f ′(xn−1)−
f(xn)− f(xn−1)

h
= −1

2
hf ′′(xn−1) +O(h2)).

Second, for −cf(xn−1) + c2yn−1 + cyn−yn−1

h we have by the Crank-Nicolson
method (22) that

−cf(xn−1) + c2yn−1 + c
yn − yn−1

h
= −cf(xn−1) + c2yn−1 + c(ϕ(xn−1/2)− cyn−1/2)

= c(ϕ(xn−1/2)− f(xn−1)) + c2(yn−1 − yn−1/2).

13



For the first term we have by definition (21) that

ϕ(xn−1/2)− f(xn−1) =
1

2
(f(xn−1) + f(xn))− f(xn−1)

=
1

2
(f(xn)− f(xn−1)),

and by Taylor expansion of f(x) around xn−1 we have

f(xn)− f(xn−1) = O(h).

Therefore we can write

ϕ(xn−1/2)− f(xn−1) =
1

2
(O(h)) = O(h).

For the second term we have by the Crank-Nicolson method (22)

yn−1 − yn−1/2 = yn−1 −
1

2
(yn + yn−1)

=
1

2
(yn−1 − yn)

=
1

2
(h(ϕ(xn−1/2)− cyn−1/2)).

Finally, this gives

bk = −1

2
hf ′′(xn−1) +O(h) +

1

2
(h(ϕ(xn−1/2)− cyn−1/2)). (34)

Now we consider the integral in the error bound (31), we get that∫ xk

xk−1

R2
3(x) dx =

∫ xk

xk−1

((x− xn−1)
2ak + (x− xn−1)bk)

2 dx

≤
∫ xk

xk−1

(x− xn−1)
4a2k dx+

∫ xk

xk−1

(x− xn−1)
2b2k dx

≤
∫ hk

0

(x̃)4a2k dx̃+

∫ hk

0

(x̃)2b2k dx̃

= a2k
1

5
h5k + b2k

1

3
h3k.

Putting this expression back into the error bound (31) and hk = h for all k gives

e2(xn) ≤
n∑

k=1

a2k
1

5
h5k + b2k

1

3
h3k

≤ nh5 max
k

a2k
5

+ nh3 max
k

b2k
3

= h4xn max
k

a2k
5

+ h2xn max
k

b2k
3

And finally,

e(xn) ≤ h2xn max
k

ak
5

+ hxn max
k

bk
3
. (35)
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Observe that to retrieve the second order of the Crank-Nicolson method, we
need that ak and bk have the correct h powers. Recall expressions (33) and (34)
for ak and bk respectively and observe that that is indeed the case.
We conclude that the error bound is of second order, like the Crank-Nicolson
method is.

5.4 Numerical example

The goal of this section is to find an expression for the error bound (15) that is
the result of using the Euler method for the reconstruction method, as well as
check it.
In this example, we pick the values c = 1, f(x) = 0 and y0 = 1 in the original
initial value problem (9). For these values we know that the exact solution of
the initial value problem is given by y(x) = e−x.
Since in the picked example the solution is known, the error can be computed
exactly by calculating the difference between the known solution y(xn) and the
corresponding approximation yn using Euler’s method. In the figure below, this
real error corresponds to the blue line.
The error bound that is calculated using expression (15) is the orange line in
the figure below.

Figure 1: 1. The Euler method is used with starting point x0 = 0, end point
xend = 10 and step size h = 0.05. The test problem is c = 1, f(x) = 0 and
y0 = 1.

As expected, we see that the error bound is always above the real error. At the
start the error bound gets quite high like the real error is as well. Later the
real error gets smaller, and with that, the error bound also does not increase as
much anymore.
In this example the simplified error bound (15) was used. Error bound (14),
which the bound (15) is derived from, is sharper. Another way to retrieve an
error bound that is arguably better, since it is exact is by solving the error
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equation (13).

6 Conclusion

First we have seen some heuristic error estimations for the Euler method and
Runge-Kutta methods in general. We have also seen an alternative error esti-
mation in the form of Richardson extrapolation.
Second we have, by use of the reconstruction method, found a rigorous error
bound for the Euler method as well as the Crank-Nicolson method.
Unlike the heuristic error estimations, which are not exact, the found rigorous
error bound guarantees an upper bound for the error.

7 Discussion

A rigorous error bound as found could be used at end of simulation to check
a certain tolerance to check if step size h was appropriately chosen. However,
while in the sections above the step size h has been kept fixed, the step size may
also be adapted through out a simulation based on an error estimation.
In this report the heuristic estimations and the rigorous bounds have been
treated separately. That raises the question of how the two compare.
In the article by G. Akrivis, et al. [1] a method similar to the one described
in this report was developed in order to find an error bound for a non-linear
parabolic equation.
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