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Distributed average consensus is an important problem in the fields of
computer science and mathematics, with various applications in AI and IoT.
Algorithms exist based on linear algebra, but it is still under investigation
how their convergence depends on the graph. Our study analyzed the effects
of different graph factors on the convergence time. An experiment with an
algorithm on 1000 graphs shows that the diameter, the average distance, the
algebraic connectivity, the density, and the max degree are highly correlated
to the computation time while the number of vertices is barely related.
The average computation time of the algorithm can be approximated as
𝑇 = 3.1𝑑2.3 = 7.1𝑎𝑑2.9 = 168.9𝑎𝑐−0.68 where 𝑑 is the diameter, 𝑎𝑑 is the
average distance, and 𝑎𝑐 is the algebraic connectivity.
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networked control, average consensus

1 INTRODUCTION
The distributed consensus problem arises in the context of nodes in a
connected network exchanging information with their direct neigh-
bors on agreement or consensus to achieve their common goals. The
problem has attracted considerable attention from researchers in
recent decades. Among these kinds of problems, average consensus
problems have been extensively studied in the computer science
literature [1, 9, 10, 14]. In this problem, each node holds a real value,
and the nodes’ common goal is to find the average of their values.
The problem has many applications, including computer networks
[8, 11, 12], blockchains [20] and artificial intelligence [13, 17].

An easy way to solve the problem is to let nodes propagate all
available information to their neighbors and compute the average
value from the known values. The running time is proportional to
the longest distance between 2 vertices, making this algorithm’s run-
ning time optimal. However, the computational cost for exchanges
between the nodes is expensive, making it not an ideal choice. Vari-
ous algorithms with different settings have been introduced. Among
them, linear protocols are comprehensively studied due to their low
exchange cost and simple implementations [2, 3, 7, 15, 19]. How-
ever, analyses of the relations between graph characteristics and
the running time of these algorithms are missing or not general. For
instance, Gutiérrez-Gutiérrez et al. [7] provide theoretical results for
the dependence of the convergence speed of the optimal algorithm
on the number of vertices, but only for graphs with very specific
structures. This motivates us to research the relation between graph
metrics and the convergence speed of average consensus algorithms.
In this paper, we use an algorithm proposed by Xiao et al. to [19]
discover the following things:
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• The factors of graphs that affect the convergence speed of
the linear average consensus algorithm.

• Relations between the highly correlated factors and the algo-
rithm’s running time.

We chose the algorithm because of its straightforward implementa-
tion. The answers will be provided by statistical means. We experi-
mented with the algorithm on 1000 graphs with different metrics
to see their relations to the running time. The paper discusses the
preliminaries, related work, how we conducted the study, and the
experiment results in the following sections. We also reflect on the
results and talk about future work in the end.

2 PRELIMINARIES
Consider a connected, undirected graph𝐺 with the vertex set𝑉 and
edge set 𝐸. Each vertex in the graph has a value. Define 𝑥 ∈ R |𝑉 |

as a vector of the vertex values where 𝑥𝑖 is the value of vertex
𝑖 . The vertices want to compute the average of those values by
exchanging information with their neighbors. That can be a resource
reallocation problem where each agent in the network is assigned
a certain amount of work, and they want the work to be evenly
distributed. In each iteration, the nodes exchange information with
their neighbors and update their values. Denote 𝑥 (𝑡) as the values
of 𝑥 after 𝑡 iterations, and 𝑥 (0) is the initial values of the vertices.
During iteration 𝑡 , the vertices use their information from iteration
𝑡 − 1 to calculate and update their value to 𝑥 (𝑡) according to some
predetermined algorithm. The process is converged when 𝑥 (𝑡) = 𝑥

where 𝑥 is the vector with the average of the values, formally,

𝑥 =

(
1
|𝑉 |

∑︁
𝑖∈𝑉

𝑥𝑖

)
· 1

where 1 ∈ R |𝑉 | is the vector of ones. We will study an important
class of protocols, so-called linear protocols, in which each vertex
updates its value based on the weighted sum of its neighbors and
itself,

𝑥𝑖 (𝑡) =
∑︁

𝑗 ∈𝑉 ,(𝑖, 𝑗) ∈𝐸 or 𝑖=𝑗
𝑊𝑖, 𝑗𝑥 𝑗 (𝑡 − 1)

or,
𝑥 (𝑡) =𝑊𝑥 (𝑡 − 1) =𝑊 𝑡𝑥 (0)

where𝑊 ∈ R |𝑉 |× |𝑉 | is the matrix describing the exchanges be-
tween a node and its neighbors. Because vertices only exchange
information with their neighbours, we have

𝑊𝑖, 𝑗 = 0 if (𝑖, 𝑗) ∉ 𝐸 and 𝑖 ≠ 𝑗 .

Different𝑊 have different convergence speeds on different graphs.
However, for a process to converge, it needs that

𝑊𝑥 = 𝑥 or𝑊 1 =𝑊 1.

This condition guarantees that the convergence point is stable. It is
also required that

1𝑇𝑊 =𝑊,
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which means the sum of vertices’ values is preserved in each itera-
tion. In this research, we use the optimized W from Xiao et al. [20]
that

𝑊 =


𝛼, if 𝑖, 𝑗 ∈ 𝐸

1 − 𝑑𝑖𝛼, 𝑖 = 𝑗,

0, otherwise
(1)

in which, 𝛼 is described as

𝛼 =
2

𝜆1 (𝐿) + 𝜆𝑛−1 (𝐿)
where 𝜆𝑖 (𝐿) is the 𝑖𝑡ℎ smallest eigenvalue of the Laplacianmatrix [4]
of the graph. The algorithm requires graphs to be non-bipartite to
guarantee the termination. Additionally, the process may converge
asymptotically. Hence, we introduce the termination condition after
𝑡 iterations as

|𝑥 (𝑡) − 𝑥) |
|𝑥 (0) | < 𝜀 (2)

where 𝜀 is the error tolerance. The division by the magnitude of
the initial vector makes the convergence time independent of the
magnitude of the initial values of the vertices, which is defined as

𝑇 = min
𝑡

|𝑥 (𝑡) − 𝑥) |
|𝑥 (0) | < 𝜀 (3)

In this paper, the terms "convergence time", "number of iterations",
and "running time" are used interchangeably.

3 RELATED WORK
In 2004, Xiao et al. proposed optimized𝑊 for general graphs as well
as an analysis of the problem of finding optimal𝑊 [19]. One of the
optimized𝑊 from the study is used in this research. Another useful
study for our research is the recent paper by Gutiérrez-Gutiérrez et
al. which provides an optimal𝑊 and analysis with formal proofs
on the convergence speed for graphs in the form of grid and cycle
[7]. On the broader problem of average consensus, Leonidas (2011)
proposed a finite average consensus algorithm [5]. The algorithm
converges at some point with no error tolerance; however, the con-
vergence rate is slower. A non-linear protocol approach has been
seen in the research done by Leonidas and Hasler in 2009, which
converges faster in some graphs [6]. In 2019, Xie et al. proposed an
algorithm using linear protocols that runs on acyclic graphs with
linear complexity [21].

4 METHODOLOGY
The experiment includes 3 stages: creating a graph generator, exper-
imentation, and modeling. The first step of the process is creating a
graph generator, which involves choosing the number of vertices
and edges, ensuring connectedness and non-bipartiteness. It will
then be discussed how we set up the experiment, from choosing
possibly related factors to setting the error tolerance 𝜀. Finally, the
modeling process is mentioned in the last part of the section, which

is about the conditions for a metric to be correlated to the conver-
gence time 𝑇 and how we express the convergence time 𝑇 in those
factor metrics.

4.1 Graph generator
We need a generator to create graphs and record the characteristics
of these graphs. Our graph generator generates graphs with 3 to
200 vertices which are the minimal number of edges to create a con-
nected, non-bipartite graph, and the limit that allows the algorithm
to run within a second. To ensure connectedness, we first generate
a tree. We create a random Prüfer sequence, from which we build a
random tree [16]. The method guarantees that each unique labeled
tree with 𝑛 vertices has an equal probability of being generated. The
number of edges𝑚 is chosen such that

𝑚 = 𝑛𝑎

where

𝑎 ∼ U(𝑙𝑜𝑔𝑛 (𝑛 − 1) , 𝑙𝑜𝑔𝑛
𝑛 ∗ (𝑛 − 1)

2 ).

The selection of𝑚 makes factors, such as diameters, large enough
and more evenly distributed. We then add an edge to𝑚 − (𝑛 − 1)
(the number of edges we need to add to the initial tree) random
pairs that are not adjacent in the created tree.

After generating a graph, we need to ensure the non-bipartiteness
of the graph. We run a simple depth-first search (DFS). Upon the
traversal, if a visited node is not already assigned a group, we as-
sign the node a group that is different from the node we previously
visited (the first visited vertex is assigned 0). If the current value of
the node is different from the one we previously visited, we go on;
otherwise, the graph is not bipartite. If the assignment is possible,
the graph is bipartite, and the group of each node is either zero or
one. In that case, we select 3 random nodes, 2 of which must have
the same group. We then add an edge between them to break the
graph bipartiteness.

4.2 Experiment
We first create 1000 graphs using the generator and run the algo-
rithm with each graph. For each run time, we choose the random
initial vector 𝑥 by assigning each vertex in the graph a random value
uniformly distributed from 0 to 100. Formally, 𝑥𝑖 (0) ∼ U(0, 100).
The program runs until it reaches the condition in (2). The 𝜀 we
chose is 1

100 which is sufficiently low while keeping the algorithm’s
running time reasonable. We compute and keep track of the follow-
ing factors of the graphs:

• Number of vertices.
• Density of the graph, number of edges over the number of
vertices

• Algebraic connectivity, the second largest eigenvalue of the
Laplacian matrix of the graph.

• Diameter, the length longest shortest path between 2 vertices.
• Average distance, the mean length of the shortest path be-
tween 2 vertices.

• Max degree, the maximum size of the incidence set among
vertices.
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Factors Correlation
Number of vertices 0.11
Diameter 0.99
Average distance 0.99
Density -0.84
Algebraic connectivity -0.98
Max degree -0.80

Table 1. Correlation values between the metric factors and the number of
iterations run in the algorithm.

The density and maximum degree indicate how many channels
information can use to travel from one node to another. The con-
vergence rate is anticipated to be slower when these metrics are
greater. The greater the number of vertices, the greater the number
of vertices that require averaging, which is expected to lengthen
the convergence time. The average distance and diameter indicate
how long it takes for information to travel between two nodes. With
increasing distance, the algorithm’s execution time increases. We
also examine the graph’s connectivity using algebraic connectivity.
When the metric is greater, it is anticipated that the running time
will be shorter.

4.3 Modeling
In this paper, the correlation between the convergence time 𝑇 and
the metric factors 𝑥 is referred to as how close we can express 𝑇 as

𝑇 ≈ 𝑐𝑥𝑎 . (4)

In other words, we want to see the linear correlation between loga-
rithm values of the factors of a graph and the number of iterations
it takes before terminating as

log2𝑇 ≈ 𝑎 · 𝑙𝑜𝑔2𝑥 + 𝑙𝑜𝑔2𝑐. (5)

We then compute the correlation values between the logarithm of
the number of iterations and the metrics. If the correlation value
𝑝 is high (|𝑝 | ≥ 0.8) we plot the regular and log-log graphs for the
factor and apply the simple linear regression model to find 𝑎 and
𝑙𝑜𝑔2𝑐 in the equation (5) where possible.

5 RESULTS
The generated graphs contain between 3 and 300 vertices, with an
average of 152. The number of edges ranges from 3 to 41273, with
an average of 2362. The linear correlation between the logarithms
of the metrics and the execution time is displayed in the table (1). It
can be seen that the diameter, the average distance, the algebraic
connectivity, the density, and the max degree are highly related to
the number of iterations. Hence, these factors will be looked more
into.

5.1 Diameter
Based on the log-log plot in figure (2) and the high correlation value
(0.99) in table (1), it appears that logarithms of convergence time and
average distance have a strong linear relation. Therefore, we use
linear regression to determine 𝑎 and 𝑙𝑜𝑔2𝑐 in equation (5), yielding

Fig. 1. Relation between the number of iterations and the diameter

Fig. 2. Relation between the number of iterations and the diameter (loga-
rithms)

𝑎 = 2.3, 𝑙𝑜𝑔2𝑐 = 1.61, or 𝑐 = 3.1. From that, we get

𝑇 ≈ 3.1𝑑2.3

where 𝑑 is the diameter of the graph. The computed function corre-
sponds to the shape of points displayed in figure (1). However, the
number of iterations demonstrated in the figure varies significantly
when the diameter is large.

5.2 Average distance
From log-log plot in the figure (4), and the high correlation value
(0.99) in table (1), it suggests a very strong linear correlation between
logarithms of the convergence time and the average distance. Hence,
we apply the linear regression to find 𝑎 and 𝑙𝑜𝑔2𝑐 in equation (5),
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Fig. 3. Relation between the number of iterations and the average distance

Fig. 4. Relation between the number of iterations and the average distance
(logarithms)

which yields, 𝑎 = 2.9, 𝑙𝑜𝑔2𝑐 = 2.8, or 𝑐 = 7.1. Thus,

𝑇 ≈ 7.1𝑎𝑑2.9

where 𝑎𝑑 is the average distance of the graph. However, the figure
(3) shows that the variance of the number of iterations when the
diameter is large is significant.

5.3 Algebraic connectivity
The log-log plot in figure (6) shows a line-like shape. Together with
the high correlation in table (1), it suggests that the equation (5) is
applicable. Thus, we use the linear regression to find 𝑎 and 𝑙𝑜𝑔2𝑐
in the equation, in which we get 𝑎 = −0.68, 𝑙𝑜𝑔2𝑐 = 7.1 implies
𝑐 = 168.9. Hence, we have,

Fig. 5. Relation between the number of iterations and the algebraic connec-
tivity

Fig. 6. Relation between the number of iterations and the algebraic connec-
tivity (logarithms)

𝑇 ≈ 168.9𝑎𝑐−0.68

where 𝑎𝑐 is the algebraic connectivity of the graph. The regular
plot (5) also shows the decaying function similar to the computed
one. Due to the high decaying rate, only 500 graphs with the lowest
algebraic connectivity are considered in the regular graph (5) to
visualize better.

5.4 Density
Although table (1) shows the high correlation value, the plot of
logarithm values in figure (8) does not look like a line but more like
a decreasing curve. Figure (7) also displays the shape of exponential
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Fig. 7. Relation between the number of iterations and the density

Fig. 8. Relation between the number of iterations and the density (loga-
rithms)

decay functions, which does not correspond to equation (4). Hence,
linear regression cannot be applied to the factor. Due to the high de-
caying rate, only 500 graphs with the lowest density are considered
in the regular graph (7) for visualization purposes.

5.5 Max degree
Similar to the density, the correlation between max degree and the
convergence speed is high, as indicated in the table (1). However,
the plot of logarithm values in figure (9) does not demonstrate a
linear function. Thus, linear regression cannot be applied in this
case. However, it is interesting to research more into the cloud of
points in the log-log plot (10), which increases before decreasing,
and the decaying function in figure (9).

Fig. 9. Relation between the number of iterations and the max degree

Fig. 10. Relation between the number of iterations and the max degree
(logarithms)

6 CONCLUSION
Our research has analyzed the relations between the number of iter-
ations of the algorithm and the factors of graphs, such as the number
of vertices, diameter, average distance, density, algebraic connectiv-
ity, and max degree. For sub-research question 1, the related factors
are the average distance, the diameter, the algebraic connectivity,
the density, and the max degree while the number of vertices is
barely related, as described in table (1). For sub-research question
2, we provide approximating functions 𝑇 ≈ 3.1𝑑2.3, 𝑇 ≈ 7.1𝑎𝑑2.9,
and 𝑇 ≈ 168.9𝑎𝑐−0.68 based on diameter 𝑑 , average distance 𝑎𝑑 , and
algebraic connectivity 𝑎𝑐 . Although the algorithm’s running time
is proportional to the average distance cube, the average distance,
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in general, is not large with respect to the size of the graph, par-
ticularly in the small-world networks, where the average distance
is proportional to 𝑙𝑛(𝑛) is the number of vertices [18], making the
algorithm running time relatively fast.

Our research results indicate that the algorithm’s expected run-
ning time is 𝑇 ≈ 3.03𝑑2.3 where 𝑑 is the diameter. Compared with
the algorithm that runs optimally on grids, lines, and circles, which
has the computational complexity 𝑂 (𝑑2), there is a small difference
between the optimal and the algorithm used in the research. Note
that the time complexity from Gutiérrez-Gutiérrez [7] is used for
the worst-case running time while ours is the average.

We can see that the effects of diameter and the average distance are
similar. Moreover, the correlation value between them is also very
high (0.99). That can be either that they are correlated in general
or that there are some control factors that create the correlation. In
the latter case, our research study has biases.

7 FUTURE WORK
In the data generation part, we did not manage to create a uniformly
distributed data set for each factor. That is due to the difficulty of
creating unbiased graphs with predefined metrics. Hence, in future
research, the distribution of metrics can be made more even.

The study only analyzes the effect of every single factor on the
convergence time of the algorithm. However, it can be done with
the combinations of 2 or more factors, especially ones with low cor-
relation values with respect to the number of iterations, such as the
density and the number of vertices. In addition, future research can
work on the non-linear correlation between logarithms of factors
such as density and max degree and average consensus algorithms’
running times.

Our research did not compute some factors that are possibly related
to the algorithm’s running time due to difficulty in implementation
(e.g., tree-width) or limited computational resources (e.g., NP-hard
factors such as the length of the longest cycle or the length of the
longest path). That can be an interest for future research.
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