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Abstract 

This aim of this study is to investigate the impact of the eyes and their human likeness 

in relation to the human likeness of the overall face structure on the uncanny valley effect. The 

uncanny valley effect describes the relationship between the human likeness and likeability of 

entities. Generally, entities are seen as more likeable as they resemble humans more closely 

until a certain point of moderate-to-high human likeness, at which the emotional response 

rapidly becomes negative. Entities that cross this point and are seen as extremely human-like 

are again rated favorably. This pattern has been replicated using biological primate faces and 

has been shown to occur universally in all humans, suggesting an evolutionary origin. Previous 

research and informal observations indicate that the sclera color may influence this effect and 

that incongruence between human and non-human features on a face may cause it. 

 Thus, an eye-tracking study about encounters between 30 participants and 8 primate 

face stimuli which vary in human likeness and are manipulated to have either white or dark 

sclerae was conducted. Findings support the hypothesis that incongruence causes an uncanny 

valley response. Further, differential effects for two types of incongruence were identified. 

Specifically, faces with human skulls and dark, ape-like sclerae were rated as uncannier than 

vice versa and had stronger effect on eye movement variables, including reduced restlessness 

in visual exploration and a tendency of participants to look away.  
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Introduction 

Description and Relevance of the Uncanny Valley Effect 

 The uncanny valley effect is a phenomenon that affects many interactions in our 

contemporary world. The effect describes the non-linear relationship of an agent’s human 

likeness and a human’s emotional response to the agent (Mori et al., 2012). Specifically, the 

human typically feels more positively about an agent with greater human likeness up to a certain 

point. Once the agent crosses this point and resembles humans too closely, the human’s 

emotional response quickly changes and turns into an aversion. In this case, the agent is said to 

be in the “uncanny valley” (Mori et al., 2012). Commonly, this effect is discussed in the context 

of technological agents, such as robots. In fact, human-robot interactions can be expected to 

become more frequent in the future. Today, robots are already employed in elderly care (Chu 

et al., 2017) and health care (Oborn et al., 2011) and their numbers may increase to 

accommodate aging populations and staff shortages in these fields (Chu et al., 2017). 

Furthermore, robots are currently implemented and researched in the service industry (Kim et 

al., 2021) and education (Belpaeme et al., 2018), as well as developed for search and rescue of 

persons in need (Priandana et al., 2018). As such, encounters and interactions with robots will 

likely become more common in different areas of life. In these encounters, a robot’s perceived 

uncanniness can have consequences beyond mere disliking. For instance, work by Laakasuo et 

al. (2021) suggests that there is a “moral uncanny valley effect”, in which people judge a robot’s 

moral decisions less favorably when the robot looks uncanny. In addition, Destephe et al. (2015) 

demonstrate that people are less likely to accept uncanny robots as working partners. 

Consequently, the uncanny valley effect significantly influences the success of human-robot 

interactions. 

Moreover, the effect can also influence perceptions of other humans. In particular, 

advancements in prosthetic design and production allow modern facial prosthetics to look 

almost fully human, potentially placing those that wear them in the uncanny valley (Mori et al., 

2012). Indeed, Snykers et al. (2019) show that people with a prosthetic eye may be perceived 

as uncanny. Likely, this effect would cause problems in the lives of people with facial 

disfigurements. In line with this, De Sousa (2010) emphasize the importance of how others 

react to the appearance of people with facial trauma. According to the authors, learning to cope 

with these reactions is “the greatest psychosocial challenge” for patients. In many cases, 

difficulties to cope with this challenge lead people to withdraw from social contact ( De Sousa, 

2010) . As such, the uncanny valley effect can profoundly impact the social life and 

psychological recovery of people with facial prosthetics or disfigurements. Following this, it is 
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important to not only investigate the uncanny valley effect in technological contexts, but also 

biological ones. 

 

Evolutionary Origins of the Uncanny Valley Effect 

 Previous evidence points towards an evolutionary origin of the uncanny valley effect. 

First, Koopman and Schmettow (2019) recently demonstrated that the uncanny valley effect is 

universal, meaning that every person experiences it. Following this, the effect cannot merely be 

caused by cultural factors, as these would vary between people and thus, not everyone would 

display the effect. In like manner, work by Haeske and Schmettow (2016) further weakens fully 

cultural explanations. They showed that the uncanny valley effect occurs even when faces of 

varying human likeness are only displayed very shortly. Therefore, the effect must emerge in 

early processing before cultural factors influence the perception of the faces. Lastly, 

Steckenfinger and Ghazanfar (2009) showed that macaque monkeys also experience the 

uncanny valley effect. Hence, this suggests the effect may have evolved before humans evolved 

as a separate species. In all, research indicates that the uncanny valley effect is at least partially 

caused by an evolved biological mechanism. 

 To investigate the evolution of the uncanny valley response, Geue and Schmettow 

(2021) recently replicated the effect with primate faces. Next to this, she demonstrated that the 

effect occurs not just based on human likeness, but also based on the ancestral closeness of the 

face’s species to homo sapiens (Geue & Schmettow, 2021). These findings suggest that the 

uncanny valley effect may have evolved when homo sapiens coexisted with other human 

species as a mechanism to limit closeness to those species (Geue & Schmettow, 2021). The 

avoidance of other human species may have been a response to specific evolutionary selection 

pressures, such as the prevention of cross-species reproduction or the transmission of disease 

(Geue & Schmettow, 2021). In short, the uncanny valley effect may be an evolved mechanism 

to reduce contact between homo sapiens and other human species. 

 

The Role of Perceptual Mismatch 

 Despite these findings, other research suggests that close human resemblance does not 

fully account for a face’s uncanny appearance. Rather, it appears that further conditions must 

be met to cause the effect (Kätsyri et al., 2015). Specifically, Kätsyri et al. (2015) found that, 

when comparing multiple explanations of the uncanny valley effect, the strongest support was 

found for the perceptual mismatch hypothesis. According to this hypothesis, faces cause a 

negative emotional response when their various features do not resemble humans to the same 
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degree. As an example, Kätsyri et al. (2015) argue that a human face with artificial eyes or the 

reverse, an artificial face with human eyes, would be perceived as uncanny. In summary, a face 

is most likely seen as uncanny when it has both nearly human  and less human features. 

 

Processing of Human and Non-Human Faces 

 In fact, people process human faces differently than other faces. Evidence suggests that 

this difference is both developmentally acquired and facilitated through an inborn preparedness 

for facial stimuli. According to De Haan et al. (2002), new-born infants display a preference 

for visual stimuli with face-like configurations. Likely, this bias originates from subcortical 

brain areas (De Haan et al., 2002) . As such, the attention of human infants is oriented to faces, 

ensuring that the infants will gain experience with facial stimuli (De Haan et al., 2002). This, 

in turn, supports the development of specialized cortical brain areas for face processing and 

expertise in recognition of human faces (De Haan et al., 2002). Concretely, infants begin to 

develop a “face space” at three months old. This means that they start to see faces as a category, 

in which some faces are more typical than others (De Haan et al., 2002). In line with this, infants 

also begin to prefer human over monkey faces at the age of three months (Di Giorgio et al., 

2013), suggesting that they have developed a model for human faces. Hence, an innate bias for 

face-like configurations promotes the development of a face space for conspecifics in human 

infants. 

 Due to the face space, humans employ different processing strategies for conspecific 

and other-species faces. Generally, faces can be assessed analytically or intuitively (Mega & 

Volz, 2017). When using an analytical strategy, people use many short fixations to look at the 

face and mainly focus on the eyes (Mega & Volz, 2017) . In contrast, intuitive processing is 

characterized by fewer, longer fixations that are more focused on the center of the (Mega & 

Volz, 2017). Further, intuitive viewing indicates a larger reliance on expertise with similar faces 

and is a more holistic perceptual strategy, focusing on the center of the face and using configural 

information more than specific facial features (Mega & Volz, 2017). In accordance with this, 

processing of human faces aligns more with intuitive, configural perception, whereas 

processing of monkey faces appears to be more analytic and feature based. Dahl et al. (2014) 

investigated the source of the own-species effect, the phenomenon that people are quicker at 

discriminating faces of their own species than other species, while maintaining accuracy. Their 

results indicate that humans are more sensitive to the facial configuration of same-species faces, 

which allows them to process the faces more quickly (Dahl et al., 2014). When the reliance on 

configural information was inhibited by inverting the faces, participants relied on facial features 
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to discriminate faces of both humans and other species, and the own-species effect disappeared 

(Dahl et al., 2014). Thus, it appears that people are able to use more holistic, intuitive processing 

for conspecific faces, allowing them to recognize human faces more quickly. Interestingly, the 

own-species effect becomes stronger the more evolutionarily distant the other species is (Dahl 

et al., 2014). Therefore, differences in facial processing are tied to a face’s degree of humanness, 

suggesting that they may be involved in the uncanny valley effect. 

 

The Potential Role of Eyes in the Uncanny Valley Effect 

Following this, the question remains which specific facial features or configurations 

cause a face’s placement in the uncanny valley. Two lines of reasoning suggest that the eyes 

are involved in the creation of this effect. 

For one, this is because the eyes are important in facial perception in general. Despite 

an increased reliance on configural information for human faces, (Dahl et al., 2014) observe 

that featural information about the eyes is used to recognize all faces, including human ones. 

This observation is confirmed by eye-tracking studies, which consistently report that when 

seeing a human face, people first fixate on the eyes (Bagepally, 2015; Di Giorgio et al., 2013). 

Thus, people pay special attention to the eyes of a face. As a result, people may be more likely 

to notice a perceptual mismatch between nearly human and less human characteristics when 

this mismatch involves the eyes. 

Secondly, there are concrete observations linking the eyes to the uncanny valley effect. 

For example, Snykers et al. (2019) reported that orbital epithesis are often perceived as uncanny 

from a close distance. Similarly, Geue and Schmettow (2021) observed post-hoc that non-

human primate faces with big, white sclerae may be most likely to fall into the uncanny valley. 

Both observations indicate that the eyes are somehow involved in causing the uncanny valley 

effect. Moreover, Geue and Schmettow’s (2021) finding indicates a specific characteristic of 

the eyes that may relate to the uncanny valley: the sclerae. Given that humans have bigger 

sclerae than other primates (Kobayashi & Koshima, 2008), they may be considered a uniquely 

human feature. This means that Geue and Schmettow’s (2021) observation constitutes a 

perceptual mismatch between human-looking eyes and a non-human face, further substantiating 

the potential role of the sclerae in causing the uncanny valley effect. Further, the sclerae may 

be important to the uncanny valley effect because they are useful in interactions with other 

humans. In fact, according to the cooperative eye hypothesis, humans evolved bigger sclerae 

so others could see where a person directs their gaze or focuses their attention, improving 

cooperation with other humans (Kobayashi & Koshima, 2008; Tomasello et al., 2007). 
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Additionally, human sclerae are an indicator of age, health, and attractiveness (Provine et al., 

2013; Tomasello et al., 2007), hence, they are a useful cue in mate selection. Therefore, it is 

possible that humans pay special attention to eyes with sclerae. As a result, a perceptual 

mismatch involving this feature may be detected more easily and lead to an uncanny valley 

response. In all, it may be hypothesized that the uncanny valley effect occurs for non-human 

faces with eyes that have big, white sclerae. 

 

Potential Eye Movement Patterns Associated with the Uncanny Valley Effect 

 Supposing the uncanny valley effect indeed occurs for such faces, it would likely be 

associated with particular eye movement patterns that relate to how these faces are processed. 

While, to our knowledge, no study has investigated this possibility for non-human faces with 

big, white sclerae specifically, other research can inform a plausible hypothesis. First, consider 

the order in which people might fixate on parts of the face: In general, people first direct their 

gaze to the eyes (Bagepally, 2015; Di Giorgio et al., 2013). Finding human-looking eyes with 

white sclerae, this may set the expectation that the rest of the face is also human-like. Thus, the 

gaze may be directed to the center of the face, so it can be viewed holistically. In this moment, 

the perceptual mismatch is detected, as the expectation of a human facial configuration is not 

met.  

Then, the question remains how facial processing continues after the mismatch is 

detected. A hypothesis can be found by drawing a parallel to the perception of malformed faces. 

Studies on people with a unilateral cleft or palate show that people focus on the malformed area 

for a longer duration (Meyer-Marcotty et al., 2010; Meyer-Marcotty et al., 2011). This might 

be interpreted as the viewer’s attempt to figure out what seems “wrong” or “off” about the face, 

given that the gaze appears to fixate on the element that disrupts the expected facial 

configuration. If the same principle applies to uncanny faces, the gaze should also try to locate 

the source of disruption. Since the entire facial configuration is unexpected, eye fixations should 

encompass the entire face and focus on the center. Indeed, da Fonseca Grebot et al. (2022) 

found that participants spent more time fixating on the nasal area of categorically ambiguous 

faces than of clearly human or clearly artificial faces. Thus, their results align with this 

interpretation.  

However, it is unlikely that the viewer’s eyes will remain fixated on the center of the 

face. For one, as the face is not human, the viewer will likely not be able to rely on a previously 

established face space for an intuitive, holistic perceptual strategy. Rather, an analytic strategy, 

using many short fixations to gain information about individual features, is more probable. 
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Furthermore, short fixations also match findings about perception of ambiguous figures. Van 

Leeuwen et al. (2002) report that when participants switch from one interpretation of an 

ambiguous figure to another, this is associated with short fixation durations. If an uncanny face 

causes uncertainty about whether to interpret it as human or non-human, this may be associated 

with the same quick eye movements found to relate to ambiguous figures. Further, it may be 

speculated that as the viewer attempts to resolve this ambiguity, the main points of fixation will 

be those that cause the ambiguity: the eyes and the center of the face, representing the facial 

configuration. Therefore, viewers of an uncanny face will likely switch between fixating on the 

eyes and the center of the face. 

In summary, this study will investigate the following hypotheses: 

H1: Incongruent faces, in which either the face configuration or eye type is human while the 

other is ape-like, will be perceived as uncannier than congruent faces.  

H2: When perceiving incongruent faces, participants will display more restless visual 

exploration behavior, characterized by more frequent fixations. 

H3: When perceiving incongruent faces, participants will spend more time fixating on the nasal 

and central areas than when perceiving congruent faces.  

 

Methods 

 This is an eye-tracking study about an encounter between participants and primate face 

stimuli. The face stimuli vary in human likeness and are manipulated to have either white or 

dark sclerae, resulting in four categories of stimuli: (a) congruent: ape eyes and ape skull, (b) 

congruent: human eyes and human skull, (c) incongruent: ape eyes and human skull, and (d) 

incongruent: human eyes and ape skull. Participants rated the uncanniness of each face stimulus 

and their visual search behaviour and the time spent on different areas of the face were analysed. 

 

Participants 

 30 people participated in the study. They were acquaintances that the researchers 

recruited by personal requests. Since no demographic differences were not expected to 

influence the results, no demographic data was collected to protect the participants’ privacy.  

 

 

 

 

Stimuli 



11 
 

Selection  

This study used a subset of eight faces from a previous study on the uncanny valley 

effect by Geue and Schmettow (2021). Their stimulus set consisted of 89 primate faces and 11 

robot or android faces, which were compiled to include a broad array of primate species with 

varying levels of human likeness (Geue & Schmettow, 2021). Geue and Schmettow (2021) 

retrieved stimuli from multiple sources, including John Gurche’s catalogue of hominid busts 

(https://gurche.com/), which they had permission to use, and the open access databases Global 

Biodiversity Information Facility (https://www.gbif.org/) and PrimFace 

(https://visiome.neuroinf.jp/primface/). For each face, Geue and Schmettow (2021) determined 

human likeness rating and an eeriness score, which the researchers of the current study used to 

determine each face’s position in the uncanny valley curve. For human likeness, Geue and 

Schmettow (2021) obtained the average of four independent expert ratings for each face, while 

only including stimuli with high inter-rater reliability on these ratings in their study. For 

eeriness, they used the average of responses to a one-item visual analogue scale by Mathur and 

Reichling (2016) and to the “spine-tingling” subscale of the eeriness index by Ho and 

MacDorman (2016) (Geue &Schmettow, 2021). 

Based on the human likeness ratings and eeriness scores, we selected nine faces that 

covered three points in the uncanny valley curve: the shoulder, the lowest point of the valley, 

and the upwards slope. Further, selected faces had to meet these criteria: the picture (a) showed 

a primate face, (b) showed the entire face from the top of the head to the chin, and (c) showed 

the face in frontal or ¾ view, so that both eyes were visible.  However, due to a mistake in the 

manipulation, one stimulus at the shoulder was excluded from the analysis, resulting in a total 

of 8 faces. 

 

Manipulation 

 The set of stimuli contained two versions of each selected face: one with white sclerae 

and one with dark sclerae (for examples, see Figure 1). For this, the faces were manipulated in 

Clip Studio Paint, a software for image editing and digital painting. First, the new sclera colour 

was drawn on top of the image. Then, the new colour was made somewhat transparent so the 

shadows of the eye could still be seen. Finally, a slight blur was applied to the new sclera colour, 

so its edges would look more natural and match the picture’s resolution. The final set of stimuli 

can be seen in Appendix A. 
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Figure 1 

Example Stimuli with White and Dark Sclerae 

 

 

Area of Interest Coding 

 To prepare the stimuli for data analysis, areas of interest (AOI) were coded for the eyes, 

nose, mouth, and rest of each face. Specifically, rectangles were defined that touched the 

outermost points of each facial feature. The decision to limit the AOIs to the edges of the feature 

was based on recommendations by Orquin et al. (2016), who recommend adjusting the size of 

AOIs to the accuracy of the eye tracking equipment. In the case of this study, the eye tracker 

was considered not very accurate. Therefore, small AOIs were used to avoid false positives, 

such as interpreting a fixation as looking on the eyes when the participant was looking 

somewhere else. 

 

Eye Tracker 

Device and Setup 

 To collect eye movement data, an eye tracker was built according to the instructions by 

Schmettow (n.d.). This way, the researchers had access to a cheap and portable eye tracking 

device to conduct the study outside of the laboratory. The device is depicted in Figure 2. It 

consisted of an endoscopic camera with a resolution of 640x480, which was lit up by white 
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LEDs. The camera pointed at the participant’s eye and was placed into a clip, which was stuck 

to a ruler and held behind the participant’s ear. The ruler was stabilized by a pair of over-ear 

headphones, which the participant wore on top of the ruler. 

 Several additional procedures were used to improve the accuracy of measures. To 

minimize head movements, the participants placed their chin on a roll of paper towels, a foam 

roller, or a bottle and put on arm on the table. In addition, participants were asked to take of 

their glasses if their vision allowed it and a desk lamp shone at the participants face, improving 

the sharpness of the camera recording. 

 

Figure 2 

Eye Tracking Setup 

 

 

Eye Tracking Software 

 The raw eye tracking data was collected using a Python program, which was developed 

by researchers of the University of Twente for the self-built eye tracker. The program was able 

to calibrate the eye tracker, display images and measure the x- and y-coordinates of the 

participant’s gaze at each time of measurement with a 30Hz sampling rate.  

 

One-Item Likeability Scale 

 The one-item likeability scale (Mathur & Reichling, 2016) was used to rate the faces’ 

level of uncanniness. This measure is a visual analogue scale from -100 to 100, in which the 

low end stands for “unfriendly, unpleasant, creepy” and the high end stands for “friendly and 

pleasant, not creepy”. 
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Procedure 

 The researchers met the participants in their homes to conduct the study. First, the 

participant received and read an information sheet (Appendix B) about the study and signed the 

informed consent form (Appendix C), both in paper format. During this time, the researcher set 

up the laptop and software for the study. Once the participant had signed the informed consent 

form, he or she sat down in front of the laptop and the researcher setup the eye tracker and items 

to improve measurements according to the description above. Next, the researcher started the 

eye tracking software. The study began with a calibration of the eye tracker. Then, each face 

stimulus was shown for 5 seconds, followed by a quick calibration before the next face. The 

face stimuli were displayed in the same order for each participant, with no two versions of the 

same face shown immediately after each other. After this, researcher removed the eye tracker 

and the participant proceeded with rating all stimuli on the one-item likeability scale (Mathur 

& Reichling, 2016)  on paper (Appendix D). For this, the researcher instructed the participant 

to go through a slideshow presenting all stimuli one by one and simultaneously marking his or 

her ratings on paper. After the participant had seen and rated all face stimuli, the and the study 

ended. 

 

Data Analysis 

The full R script for the data analysis can be seen in Appendix E.  

 

Deriving Fixations Time and Saccade Distance 

 The raw data was categorized into two distinct events based on the distance between 

observations. First, the distance between consecutive observations was computed and compared 

to a threshold value to determine candidates for fixations. For this, a threshold value of 50 pixels 

was chosen based on an exploratory analysis of data from a small-scale pilot, in which the 

researchers recorded their eye movements while the stimuli were presented to them. This 

approach is in line with Salvucci and Goldberg (2000), who recommend exploratory data 

analysis to determine a threshold value for distinguishing fixations and saccades. Then, the 

Euclidian distance between consecutive observations was computed. If this distance fell below 

the threshold value, the later observation was classified as part of a fixation. Conversely, if the 

distance met or exceeded the threshold value, the later observation was classified as part of a 

fixation. Next, successive observations that shared the same classification were merged into 

groups. Thus, observations were grouped into either a candidate fixation or a saccade at the end 

of this phase. 
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After identifying fixations and saccades, basic measures describing them were 

computed. For fixations, their duration was computed by subtracting the time of the first 

observation from the time of the last observation. In addition, fixations were described in terms 

of their location, which was operationalized as the average coordinates of all observations 

within the fixation. On the other hand, saccades were described in terms of their distance, which 

was computed by applying the Pythagorean theorem to their first and last observation.  

 

Eye Tracking Measures 

 To interpret the eye tracking data, two categories of metrics were computed. For one, 

the researchers wanted to quantify the restlessness in visual exploration. This was assessed 

using two metrics: the total distance that the gaze had travelled and the number of fixations. 

Total distance travelled was calculated by summing the distance of all saccades that occurred 

for one face stimulus and participant. The number of fixations was defined the number of 

fixations per face stimulus and participant. 

Secondly, the researchers wanted to measure the relative interest in each AOI. For this, 

the total dwell time in each AOI was computed by summing the duration of all fixations that 

were located within the AOI.  

 

Design and Statistical Model 

This study employed a 2-factor (congruence) within-subjects design. The congruence 

variable was based on the variables sclera type and skull type, which both had the two levels 

“ape-like” and “human-like”. If both sclera and skull type had the same level, the congruence 

variable had the level “congruent”. If sclera and skull type did not match, congruence had the 

level “incongruent”.  

 Due to the repeated measures design, observations of the same participant were not 

dependent. Therefore, a multi-level factorial model was used to analyse the data in R. This was 

a 2-factor (congruence) model with a participant level slope and intercept. In addition, a 2 

(sclera type) by 2 (skull type) model with participant level slopes and intercept was run to 

distinguish between types of incongruence. 

Using this model, a beta regression was performed on the variable uncanniness rating. 

For total distance travelled and AOI dwell time, a beta regression was not suitable as these 

variables had no upper bound, and a Gamma regression was employed instead. For the number 

of fixations, a binomial regression was used. 
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Results 

H1: Uncanniness Ratings 

 According to the first hypothesis, it was predicted that incongruent faces would be 

perceived as uncannier than congruent faces. Consequently, higher ratings on the one-item 

likeability scale were expected for congruent faces. To test this hypothesis, multi-level beta 

regression with participant level intercepts and slopes were estimated using either congruence 

(Table 1) or sclera and skull type (Table 2) as predictors.  In both cases, the random effects 

ranged from 0.1 to 0.38, showing substantial variation between participants.  

In the first model (Table 1), the coefficient estimate of congruence was positive, 

suggesting that congruent faces were rated as less uncanny than incongruent faces. In line with 

this, a graphical representation showed that the mean rating of congruent faces was higher, i.e., 

less uncanny, than that of incongruent faces (Figure 3). However, the effect’s coefficient was 

small, and its 95% confidence interval included both positive and negative values. Thus, there 

may have been no effect or if there was, it was likely small. 

 

Table 1 

Beta Regression Fixed Effects and Random Factor Variation of Uncanniness Ratings by 

Congruence 

 Fixed 

effect 

estimate 

CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Random 

factor 

variation 

CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Intercept (incongruent) -0.23 -0.39 -0.07 0.23 0.08 0.41 

Congruence 0.15 -0.03 0.33 0.1 0.02 0.25 
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Figure 3 

Uncanniness Ratings by Congruence 

 

 

 In the second model (Table 2), there were negative effects for human sclerae and human 

skulls, suggesting that incongruent faces were rated as uncannier than fully ape-like faces. This 

effect was greater for human skulls, indicating that faces with ape eyes and human skulls are 

perceived as uncannier than faces with human eyes and ape skulls. Hence, it appears that the 

type of incongruence is relevant to evoking uncanniness. For this reason, further analyses were 

only performed using sclera and skull type as predictors, whereas the model with congruence 

was omitted. In addition, fully human faces were rated as uncannier than ape-like faces, but less 

uncanny than incongruent faces. On the one hand, this matches the hypothesis that uncanniness 
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is caused by incongruence. On the other hand, it is not in line with the predicted uncanny valley 

curve, as typically, fully human faces are considered more likeable than non-human faces.  

 

Table 2 

Beta Regression Fixed Effects and Random Factor Variation of Uncanniness Ratings by Sclera 

and Skull Type 

 Fixed 

Effect 

Estimate 

CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Random 

Factor 

Variation 

CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Intercept (fully 

ape-like) 

0.1 -0.04 0.24 0.21 0.07 0.36 

Human Sclerae -0.1 -0.29 0.09 0.19 0.04 0.41 

Human Skull -1.01 -1.33 -0.7 0.38 0.2 0.63 

Human Sclerae 

* Human Skull 

0.26 -0.16 0.66 0.37 0.16 0.64 

 

H2: Visual Exploration 

 The second hypothesis was that when perceiving incongruent faces, participants would 

display more restless visual exploration behavior. Visual exploration was measured using two 

variables, namely the number of visits and total distance travelled, whereby an increase in these 

variables indicated increased restlessness. Thus, an increase in the number of visits and total 

distance travelled was expected for incongruent faces. 

This hypothesis was tested using a binomial regression with the number of visits and a 

gamma regression for total distance travelled. To interpret the outcomes of the binomial 

regression, the exponent mean function was used. Consequently, the regression coefficients can 

be interpreted multiplicatively, meaning that to add an effect to the intercept, the intercept 

should be multiplied by the effect’s coefficient. As such, effects above 1 are positive and effects 

below 1 are negative. For total distance travelled, the intended gamma regression of a multi-

level model with total distance travelled did not run in R. Instead, a gaussian regression was 

used. Its coefficients are additive, meaning that effects above 0 show an increase in total 

distance travelled, whereas effects smaller than 0 represent a decrease.  

Table 3 shows the regression coefficients for the number of visits and total distance 

travelled. The number of visits was lower in faces with human sclerae, skulls, or both than in 

fully ape-like faces. However, the coefficient was lowest for incongruent faces with human 
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skulls, while the confidence intervals included positive effects for human sclerae and the 

combination of human sclerae and skull. From this, it can be drawn that the decrease in number 

of visits is most prominent for faces with human skulls and ape-like eyes. The same pattern was 

found for total distance travelled, which was highest in fully ape-like faces and lowest in faces 

with human skulls and ape-like eyes. Thus, it appears that visual exploration of ape faces is 

most restless. The reduction of restlessness in visual exploration is strongest for faces with 

human skulls while being smaller and less certain for faces with human sclerae or fully human 

faces. 

  

Table 3 

Fixed Effects of Number of Visits and Total Distance Travelled by Sclera and Skull Type 

 Visits CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Distance CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Intercept (fully 

ape-like) 

4.5 4.09 5.04 386.20 296.41 478.32 

Human Sclerae 0.94 0.86 1.04 -27.85 -91.34 32.68 

Human Skull 0.86 0.76 0.98 -50.32 -133.78 32.02 

Human Sclerae 

* Human Skull 

1.1 0.92 1.34 59.26 -60.31 180.56 

 

 In Table 4, the random factor variation for the regressions with number of visits and 

total distance travelled is displayed. For both variables, the variation in intercepts and slopes 

was of similar size as the fixed effects (Table 3), suggesting substantial variation between 

participants. 

 

 

 

 

 

 

 

 

 



20 
 

Table 4 

Random Factor Variation of Number of Visits and Total Distance Travelled by Sclera and Skull 

Type 

 Visits CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Distance CI – 

Lower 

Bound 

CI – 

Upper 

Bound 

Intercept (fully 

ape-like) 

0.2 0.14 0.29 212.52 158.22 284.56 

Human Sclerae 0.06 0.01 0.15 59.30 12.97 119.98 

Human Skull 0.07 0.03 0.15 52.13 18.71 104.58 

Human Sclerae 

* Human Skull 

0.1 0.03 0.22 61.93 19.82 130.78 

 

H3: Total Dwell Time per AOI 

 It was hypothesized that when perceiving incongruent faces, participants would spend 

more time fixating on the nasal and central areas than when perceiving congruent faces. To test 

this hypothesis, a gamma regression with AOI, sclera type and skull type are shown in Table 5.  

The AOI “mouth” and “nose” were merged into the AOI “snout” to simplify the model and 

because the effects for them were similar. The participant level intercept and slopes were 

omitted, as this model would not run in R. Like for the number of visits, the exponent mean 

function was used. Therefore, coefficients larger than one indicate an increase in dwell time, 

while coefficients smaller than one indicate a decrease.  
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Table 5 

Gamma Regression Coefficient Estimates and Confidence Intervals of Dwell Time per AOI by 

Sclera and Skull Type 

 Estimate Confidence Interval 

– Lower Bound 

Confidence Interval 

– Upper Bound 

Intercept (eyes, ape 

sclerae, ape skull) 

16.00 12.86 20.12 

Outside 0.92 0.71 1.20 

Snout 1.54 1.07 2.22 

Human sclerae 0.82 0.61 1.14 

Human skull 0.95 0.66 1.42 

Outside*human sclerae 1.08 0.75 1.50 

Snout*human sclerae 1.47 0.89 2.32 

Outside*human skull 0.63 0.41 0.94 

Snout*human skull 0.92 0.50 1.62 

Human sclerae*human 

skull 

1.57 1.14 2.16 

 

 For easier interpretation, the estimated dwell time per condition was calculated. To 

obtain these estimates, the coefficients of all applicable effects were multiplied. For example, 

the combined effect for the dwell time on the snout in faces with human sclerae and ape skulls 

was calculated as follows: Snout * Human sclerae * (snout*human sclerae) = 1.54 * 0.82 * 1.47 

= 1.86. These combined effects represent the change in dwell time compared to the dwell time 

on the eyes in ape faces. Then, the combined effects were added to the intercept, which is the 

dwell time on the eyes in ape faces, to calculate the absolute dwell time for each condition, 

which are displayed in Figure 4 and 5. 

Regarding the eyes, participant spent most time focusing on this area in fully human 

faces, followed by ape faces, faces with human sclerae and ape skulls, and faces with ape sclerae 

and human skulls, in order. This is in line with the hypothesis, as less time was spent on the 

eyes in incongruent faces, which would allow for more time spent on the nasal and central areas 

of the face. 

 Concerning the areas outside the eyes and snout, a similar pattern was observed as for 

previous variables. Namely, there was a reduction in dwell time on this area in incongruent 

faces compared to ape faces, with a bigger effect for faces with human skulls and ape sclerae. 
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However, this finding is unexpected, as an increase in time spent on the central areas of the face 

was predicted for incongruent faces. 

 Finally, the combined effects on dwell time on the snout mostly do not match the 

hypothesis. Specifically, participants spent less time on the snout of incongruent faces with 

human skulls compared to congruent ape and congruent human faces. Further, less time was 

spent on the snout of incongruent faces with human sclerae than congruent faces. Only the 

comparison of fully ape-like faces and incongruent faces with human sclerae matches the 

hypothesis, as participants fixated on the snout of the latter for more time. 

 

Figure 4 

Dwell Time per AOI in Faces with Human Skulls by Sclera Type 
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Figure 5 

Dwell Time per AOI in Faces with Ape Skulls by Sclera Type 

 

 

Discussion 

Types of Incongruence in the Uncanny Valley Effect 

 The main aim of this study was to study the impact of the eyes and their human likeness 

in relation to the human likeness of the overall face structure on the uncanny valley effect. 

Following the first hypothesis, we expected that incongruent faces, which exhibit one human 

and one non-human characteristic, would be rated as uncannier than congruent faces. While 

this hypothesis was confirmed, we found an unexpected difference between the two types of 

incongruence in this study. Specifically, faces with human skulls and ape sclerae were rated as 
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uncannier than faces with ape skulls and human sclerae. This pattern, in which the general effect 

of incongruence was amplified for incongruent faces with human skulls, was mirrored in the 

findings related to restlessness in visual exploration and dwell time in different areas of the 

face. From this, it can be drawn that the type of incongruence meaningfully mediates the 

uncanny valley effect and the manner of perception of the face. In short, we found that the 

uncanny effect and its effect on eye tracking measures was stronger for faces with human skulls 

and ape eyes than vice versa.  

 To our knowledge, the effect of this combination of facial features has not previously 

been observed in the scientific literature. However, it has been used in popular entertainment 

media to create scary-looking creatures. For instance, in the TV series “Supernatural” (Kripke 

et al., 2005-2020), the eyes of people possessed by demons appear fully black. The use of this 

design principle in media to create scary characters supports the idea of a psychological 

mechanism that activates fear when faced with a human face with dark eyes. In contrast, non-

human faces with human eyes are routinely used to animate friendly creatures, including for 

example the main characters in the animated movies “Monsters, Inc.” (Docter, 2001) or 

“Madagascar” (Darnell, E., & McGrath, T., 2005). Based on this, it appears that the difference 

between types of incongruence found in this study is reflected in the entertainment industry, 

despite not having been assessed scientifically before. 

 

Practical Implications of the Two Types of Incongruence 

 The types of incongruence have implications for practical contexts in which the uncanny 

valley effect may occur. For instance, they may inform the design of robots to avoid giving 

them an uncanny appearance. In detail, robots with human facial configurations may be 

especially susceptible to be uncanny, if their eyes do not match their facial configuration. 

Therefore, designers may need to be careful about creating robots with humanlike faces and 

may reduce the risk of uncanniness by using a non-human facial configuration. In this way, the 

current findings may help to improve interactions with robots, as previous researchers found 

that people are less likely to accept uncanny robots as working partners (Destephe et al., 2015) 

or judge their moral decisions favorably (Laakasuo et al., 2021). To summarize, the finding of 

two types of incongruence suggests that robot faces should be designed with non-human facial 

configurations to avoid the uncanny valley effect and thus, improve attitudes of humans towards 

the robots. 

In addition, the types of incongruence may relate to people with facial trauma of the 

eyes. Snykers et al. (2019) report that people with a prosthetic eye can be perceived as uncanny. 
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This may be a result of the persons intact human face being paired with an eye which deviates 

from typical human eyes. Thus, they have a typical human facial configuration with, to a degree, 

non-human eyes, possibly leading to the same type of incongruence associated with greater 

uncanniness in this study. In this case, avoiding the uncanny valley effect may be difficult, as 

simply switching to a non-human facial configuration is not possible. Instead, the development 

and increased availability of highly realistic, humanlike prosthetics may be necessary. This may 

be an important step in helping people with prosthetic eyes, as the reactions of others to facial 

trauma present a psychological and social challenge to people with facial disfigurement (De 

Sousa, 2010). To conclude, the development and availability of realistic prosthetic eyes may 

resolve an incongruence between a typical human face and atypical eyes, helping people with 

eye trauma to avoid being perceived as uncanny. 

 

Implications for the Origins of the Uncanny Valley Effect 

 Given the differential effect of types of incongruence, explanations for the uncanny 

valley effect must consider why dark sclerae on a human face cause more discomfort than white 

sclerae on an ape face. One explanation may be that the latter type of face may not be perceived 

as incongruent. In fact, some of the ape faces used in this study originally had white sclerae 

which were manipulated to be more ape-like. While human sclerae are generally larger than 

those of other animals with white sclerae (Kobayashi & Koshima, 2008), this difference may 

not be enough for white sclerae to be perceived as human on animal faces. Put differently, white 

sclerae may be a feature that is necessary for humans but not unique to them. In this case, stimuli 

in this study that were intended to be incongruent due to white sclerae may have been perceived 

as congruent, non-human primate faces. To assess whether this interpretation is in line with 

participants’ actual experiences, future research should extend this study by collecting separate 

human likeness ratings for the eyes and skulls and analyzing whether ape faces with white 

sclerae are seen as incongruent or not. If such faces are indeed perceived as fully ape-like, this 

would mean that the perceptual mismatch hypothesis might suffice to explain the uncanny 

valley effect based on this study’s findings. However, if such faces are seen as incongruent, the 

perceptual mismatch hypothesis is not sufficient to explain why the uncanny valley effect 

occurs. To summarize, the differential effect of types of incongruence may occur because one 

type may not actually be incongruent but additional research is needed to test this interpretation. 

 Regardless of whether white sclerae are considered incongruent with ape faces or not, 

the increased strength of the uncanny valley effect for human faces with dark sclera may also 

be caused by other explanations. For one, it may relate to the role of sclerae in human 
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interaction. According to the cooperative eye hypothesis, humans have evolved large, white 

sclerae so the direction of their gaze would be easier to detect, which allows other humans to 

understand their intentions and cooperate with them more easily (Kobayashi & Koshima, 2008). 

Consequently, the intentions of humans without this feature would be less clear to others, which 

might entice others to avoid them. Moreover, Schein and Gray (2015) found that people are 

less likely to attribute a soul or the capacity for emotions to faces without eyes than those with 

eyes. Possibly, a similar effect may have occurred when participants saw faces with dark 

sclerae, leading participants to expect a lack of emotional experience for the incongruent faces 

with dark eyes. This might result in reduced trust in the faces, as emotional expression 

influences the perceived trustworthiness of agents. For example, Paradeda et al. (2016) 

observed increased trust in robots when the robots displayed facial expressions which matched 

the emotion that participants expected of the robot. Likewise, Tang et al. (2018) report that 

children are more likely to trust adults who express more positive emotion, even when they 

have knowledge of the adult’s previous behaviour. Thus, dark sclerae on human faces may 

cause discomfort because the face’s intentions are less transparent and because people may 

question its capacity for emotion. As a result, trust in the face may be reduced, which might 

create the observed dislike. To test this hypothesis, future research may ask participants to rate 

the trustworthiness, capacity for emotion, and speculate on the intentions of human faces with 

white or dark sclerae. In addition, these faces should display different facial expressions to 

consider the effect of emotional expression on the findings. 

 A second explanation for the higher uncanniness of human faces with dark sclerae is 

based on holistic processing of faces. Holistic processing describes a manner of viewing a 

stimulus, such as a face, as a whole, rather than attending to its individual parts (Maurer et al., 

2002). Based on their literature review, Mauer et al. (2002) conclude that this manner of face 

processing occurs before analyzing individual facial features. Further, holistic viewing is used 

more when viewing human rather than other-species faces (Mega & Volz, 2017), possibly as a 

result of the expertise and specialized knowledge humans have developed for conspecific faces 

(De Haan et al., 2002; Mega & Volz, 2017). Following this, a differential order effect may 

occur for human and ape faces, explaining the difference in uncanniness between the two types 

of incongruence. Specifically, when seeing a face with a human skull, participants may have 

first perceived the face holistically, recognizing it as human. As a result, they may have 

expected the individual facial features to be human as well, leading to a perceptual mismatch 

when attending to the non-human eyes. In contrast, a lesser reliance on holistic processing for 

ape faces may have resulted in weaker expectations for specific facial features. Consequently, 
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eyes that are incongruent with ape faces may not have violated participants’ expectations as 

much, leading to reduced uncanniness. To evaluate this interpretation, future research may 

analyze the scan paths of ape and human faces with differently colored sclerae, which may 

confirm whether the order of processing differs between human and ape facial configurations. 

Alternatively, researchers may ask participants to match different types of eyes to ape or human 

faces without eyes to test which expectations participants hold for the eyes based on facial 

configurations. In brief, early holistic processing for human, but not ape skulls, may have led 

participant to expect human sclerae, leading to a stronger uncanny valley response for 

incongruent faces with human rather than ape skulls. 

 

Relation between Uncanniness and Eye Movements 

 We predicted that participants would display more restless visual exploration behavior 

when perceiving incongruent faces than congruent faces. Against expectations, the present 

findings indicate that incongruent faces are associated with lower restlessness in visual 

exploration, as both the number of fixations and the total distance travelled was reduced in these 

faces. Again, this effect was greater for incongruent faces with human skulls rather than human 

sclerae, supporting the notion to one type of incongruence. An explanation for these findings is 

that these faces have a human facial configuration, as only the color of the eyes was 

manipulated, while the proportions and shapes of all features remained the same. When 

perceiving human faces, humans tend to employ an intuitive face processing strategy, which is 

associated with fewer, longer fixations (Mega & Volz, 2017), matching the lower numbers of 

fixations and total distance travelled found in this study. Alternatively, uncanniness itself could 

be related to lower restlessness in visual exploration. In short, it is unclear whether the reduction 

of visual exploration behavior is related to the human facial configuration or the uncanniness 

of the stimuli. 

 Finally, we expected that participants would spend more time fixating on the nasal and 

central areas when seeing incongruent faces than when seeing congruent faces. This hypothesis 

was not confirmed, as participants generally spent less time on the snout and outside in 

incongruent faces than congruent faces, with this effect being bigger for incongruent faces with 

human skulls. Interestingly, participants also spent less time fixating on the eyes of incongruent 

faces, suggesting that they may have simply looked away from uncanny faces. This matches 

findings by Xu et al. (2021), who found that people spend less time looking at a fearful stimulus 

when they intend to avoid looking at it. Supposing the uncanny valley effect indeed evolved to 

avoid uncanny entities, this would explain the behaviour of the participants in this study. 
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Limitations 

 An important limitation of this study was the low accuracy of the eye tracker. 

Consequently, the current findings should be used to identify patterns and directions of effects, 

but better equipment is needed to estimate accurate effect sizes and variations. Further, only a 

small number of stimuli was used, which limits the ability to discern small differences between 

types of faces. In addition, all participants saw the stimuli in the same order. For this reason, 

order effects may have affected the results, such as the mere exposure effect, in which stimuli 

are rated more favorably when they are seen repeatedly (Yagi & Inoue, 2018). 

 

Directions for Future Research 

 Future research may focus primarily on further investigating the potential origins of 

uncanny valley effect. Specifically, future research should extend this study by collecting 

separate human likeness ratings for skulls and sclerae and analyzing whether ape faces with 

white sclera are seen as incongruent to clarify the role of the perceptual mismatch hypothesis. 

To assess the role of perceived intentions, emotions, and trustworthiness, future research may 

ask participants to rate human faces with white or dark sclerae and different facial expressions 

on these variables. Third, the role of holistic processing may be clarified by future research. For 

this, one approach would be to analyze the scan paths of ape and human faces with differently 

colored sclerae, revealing whether the order of processing differs between faces with human 

and ape skulls. Alternatively, researchers may ask participants to match pairs of eyes to eyeless 

ape or human faces to investigate which expectations participants develop about eyes based on 

facial configurations of different species.  

 

Conclusion 

 This study identified two types of incongruence with differential effects on uncanniness 

and eye movements. While both types were associated with increases in uncanniness and 

decreased restlessness in visual exploration, these effects were larger for faces with human 

skulls and ape eyes than vice versa. Thus, it appears that dark sclerae on human faces induce a 

stronger uncanny valley response. These findings may suggest that the perceptual mismatch 

hypothesis is insufficient to explaining the uncanny valley effect. Possibly, they may be 

explained by the threat avoidance theory and the effect of dark sclerae on perceived intentions, 

emotions, and trustworthiness of uncanny agents. However, future research is needed to verify 

or falsify these explanations. 
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Appendix A 

Final Set of Images in Order of Presentation 

 

Dummy Pictures 
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Face Stimuli 
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Appendix B 

Study Information Sheet 
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Appendix C 

Informed Consent Form 
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Appendix D 

Rating Sheet for One-Item Likeability Scale (Mathur & Reichling, 2016) 

 

Picture 1 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 2 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 3 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 4 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 
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Picture 5 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 6 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 7 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 8 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 9 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 
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Picture 10 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 11 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 12 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 13 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 14 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 
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Picture 15 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 16 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 17 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 

 

Picture 18 

-100            100 

 

“unfriendly,unpleasant,creepy”    “friendly,pleasant,not creepy” 
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Appendix E 

R Script for Data Analysis 

 

--- 

title: "YET with R basic workflow" 

author: "M Schmettow" 

date: "09/05/2022" 

output: html_document 

--- 

 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

knitr::opts_chunk$set(fig.width = 8) 

knitr::opts_chunk$set(fig.height = 8) 

data_path = "CSV" 

``` 

 

```{r} 

library(tidyverse) 

library(printr) 

 

require(readxl) 

require(jpeg) 

require(ggimg) 

``` 

 

# Preparation 

 

```{r} 

WIDTH = 450 

HEIGHT = 450 

IMG_DIR = "Images/" 

``` 
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## Reading csv 

 

```{r} 

csv_files <- dir(path = data_path, 

                 pattern = "*.csv", 

                 recursive = T, 

                 full.names = T) 

 

UV22_0 <-  

  csv_files %>%  

  map_df(~read_csv(.x,  

                   col_types = cols(Part = col_double(), # <-- we change this later 

#                                    Obs = col_double(), 

                                    time = col_double(), 

                                    x = col_double(), 

                                    y = col_double(), 

                                    Picture = col_character() 

                   )) %>% 

           mutate(File = .x)) %>%  

  mutate(is_duplicate = lag(x) == x & lag(y) == y) %>% ## Yeta1 seems to duplicate measures. 

This is a bugfix 

  filter(!is_duplicate) %>%  

  filter(!str_detect(Picture, "dummy")) %>%  

  mutate(Obs  = row_number()) %>%  

  mutate(Part = as.factor(as.integer(Part - min(Part)) + 1)) %>% ## reducing the Part identifier 

  group_by(Part) %>%  

  mutate(time = time - min(time)) %>% # time since start experiment 

  ungroup() %>%  

  mutate(y = HEIGHT - y, ### reversing the y-axis 

         manipulated = stringr::str_detect(Picture, "manipulated"), 

         Face = stringr::str_extract(Picture, "[0-9]+"), 

         humlike = as.numeric(Face)) %>%  

  select(Obs, Part, Picture, Face, humlike, manipulated, time, x, y) 
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sample_n(UV22_0, 10) 

 

summary(UV22_0, 10) 

``` 

 

 

## Reading PictureInfo and AOI 

 

```{r} 

Pinfo <-  

  read_csv(str_c(IMG_DIR, "PictureInfo.csv"), 

           col_types = cols(File = col_character(), 

                            width = col_double(), 

                            height = col_double(), 

                            humLike = col_double(), 

                            humskull = col_logical(), 

                            whitesclera = col_logical(), 

                            congruency = col_double() 

           )) %>%  

  rename(Picture = File) %>%  

  mutate(Skull = if_else( humskull, "human", "ape"), 

         Sclera = if_else( whitesclera, "human", "ape"), 

         congruent = (Sclera == Skull)) 

 

UV22_1 <- left_join(UV22_0, Pinfo,  

                    by = "Picture") %>%  

  select(Obs, Part, Picture, Face, humlike, Sclera, Skull, congruent, time, x, y) 

``` 

 

```{r} 

AOI <-  

  readxl::read_xlsx("AOI.xlsx") %>%  

  #right_join(Pinfo, by = "Picture") %>%  

  mutate(Face = str_extract(Picture, "[0-9]+"), 
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         Path = str_c(IMG_DIR, Picture, sep = ""), 

         #Image = map(Path, ~jpeg::readJPEG(.x)), 

         xmin = x,  

         xmax = x + w, 

         ymax = HEIGHT - y, ## reversing the y coordinates 

         ymin = HEIGHT - (y + h)) %>%  

  arrange(Face, AOI) %>%  

  select(Face, AOI, xmin, xmax, ymin, ymax, Path) 

 

head(AOI) 

``` 

 

## Data preparation 

 

-   measuring distance and duration 

-   vertical mirroring off coordinates 

-   extracting variables from file names 

-   shortening some variables 

 

```{r} 

UV22_2 <-  

  UV22_1 %>%  

  mutate(Sequence = as.factor(str_c(Part, Picture, sep = "_"))) %>%  

  group_by(Sequence) %>%  

  mutate(distance = sqrt((x - lag(x))^2 + ## Euclidian distance 

                           (y - lag(y))^2), 

         duration = lead(time) - time) %>% ## duration 

  ungroup() %>%  

  select(Obs, Part, Picture, Face, Sequence, humlike, Sclera, Skull, congruent, time, x, y, 

distance, duration) %>%  

  filter(Face != "dummy") 

 

sample_n(UV22_2, 10) 
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summary(UV22_2) 

``` 

 

# Visualization 

 

## Grid of pictures 

 

We create a re-usable ggplot object G_0 containing a grid of pictures 

 

```{r, fig.height = 8, fig.width = 8} 

G_0 <- 

  AOI %>%  

  ggplot(aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax)) + 

  facet_wrap(~Face) + 

  ggimg::geom_rect_img(aes(img = Path, xmin = 0, xmax = WIDTH, ymin = 0, ymax = 

HEIGHT)) + 

  xlim(0, WIDTH) + 

  ylim(0, HEIGHT) 

 

G_0 

``` 

 

## Raw measures visualization 

 

```{r} 

G_0 + 

  geom_point(aes(x = x, y = y, col = Part), 

             size = .5, 

             alpha = .5, 

             inherit.aes  = F, 

             data = UV22_2) 

``` 

 

## AOI visualization 
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```{r fig.height = 8, fig.width = 8} 

G_1 <-  

  G_0 + 

  geom_rect(aes(xmin = xmin, ymin = ymin,  

                xmax = xmax, ymax = ymax, 

                fill = AOI), 

            alpha = .2,  

            inherit.aes  = F) 

 

G_1 

``` 

 

## AOI Classification 

 

```{r} 

UV22_3 <-  

  UV22_2 %>%  

  left_join(AOI, by = "Face") %>%  

  mutate(is_in = x > xmin & x < xmax & y > ymin & y < ymax) %>%  

  filter(is_in) %>%  

  select(Obs, AOI) %>%  

  right_join(UV22_2, by = "Obs") %>%  

  mutate(AOI = if_else(is.na(AOI), "Outside", AOI)) %>%  

  arrange(Part, time) 

 

summary(UV22_3) 

``` 

 

```{r} 

UV22_3 %>%  

  group_by(AOI) %>%  

  summarize(n()) 
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``` 

 

```{r} 

G_0 + 

  geom_point(aes(x = x, y = y,  

                 col = AOI), 

             size = .5, 

             alpha = .5, 

             inherit.aes  = F, 

             data = UV22_3) 

``` 

 

```{r} 

G_0 + 

  geom_count(aes(x = x, y = y,  

                 col = AOI), 

             alpha = .5, 

             inherit.aes  = F, 

             data = UV22_3) 

``` 

 

## Measuring visits 

 

A *visit* is a closed sequence of eye positions in the same region. The following code uses a 

combined criterion for setting a new visits: 

 

-   the position falls into a different AOI 

-   OR: the distance traveled from the previous position exceeds a certain threshold 

 

```{r} 

distance_threshold <- 50 

 

UV22_4 <-  

  UV22_3 %>% 
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  group_by(Part, Picture) %>%  

  filter(AOI != lag(AOI) | distance > distance_threshold) %>% ## logical OR 

  mutate(visit = row_number(), 

         duration = lead(time) - time) %>%  

  ungroup() 

 

sample_n(UV22_4, 10) 

``` 

 

## Plotting visit paths and duration 

 

```{r fig.width=8, fig.height = 8} 

G_3 <-  

  G_0 + 

  geom_point(aes(x = x, y = y,  

                 shape = Part, 

                 size = duration), # <-- 

             alpha = .5, 

             inherit.aes  = F, 

             data = UV22_4) 

 

G_3 

``` 

 

```{r} 

G_4 <-  

  G_0 + 

  geom_path(aes(x = x, y = y,  

                col = Part),  

            inherit.aes  = F, 

            data = UV22_4) # <-- 

G_4 

``` 
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## Population-level AOI frequencies 

 

```{r} 

UV22_5 <-  

  UV22_4 %>% 

  group_by(AOI, congruent, Face, Part) %>%  

  summarize(n_visits = n(), 

            total_dur = sum(duration, na.rm = TRUE)) %>%  

  ungroup() 

 

UV22_5 

``` 

 

```{r} 

G_5 <- 

  UV22_5 %>%  

  ggplot(aes(x = AOI, y = n_visits, fill = congruent)) + 

  geom_col() 

 

G_5 

``` 

 

## Frequencies per participant 

 

```{r} 

UV22_6 <-  

  UV22_4 %>% 

  group_by(Part, Face, AOI, congruent, Sclera, Skull) %>%  # <-- 

  summarize(n_visits = n(), 

            total_dur = sum(duration, na.rm = TRUE)) %>%  

  ungroup() 

 

sample_n(UV22_6, 10) 

``` 
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```{r} 

G_6 <- 

  UV22_6 %>%  

  ggplot(aes(x = congruent, y = n_visits, fill = AOI)) + 

  facet_wrap(~Part) + 

  geom_col() 

 

G_6 

``` 

 

## Durations per participant 

 

```{r} 

G_7 <- 

  UV22_6 %>%  

  ggplot(aes(x = AOI, y = total_dur, fill = manipulated)) + 

  facet_wrap(~Part) + 

  geom_col() 

 

G_6 

``` 

 

```{r} 

save(AOI, UV22_1, UV22_2, UV22_3, UV22_4, UV22_5, UV22_6, file = "UV22.Rda") 

``` 

 

# Your analysis 

 

Reading the ratings 

 

```{r} 

UV22_7 <-  

  read_xlsx("Ratings of Uncanniness .xlsx") %>%  
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  pivot_longer(-Part,  

               names_to = "Picture",  

               values_to = "rating") %>%  

  left_join(Pinfo) %>%  

  select(Part, Picture, humLike, congruency, Skull, Sclera, rating) 

``` 

 

```{r} 

load(file = "UV22.Rda") 

``` 

 

```{r} 

library(rstanarm) 

options(mc.cores = 4) 

library(bayr) 

``` 

 

Preparing data sets 

Filtering out incorrectly manipulated picture 

```{r} 

sample_n(UV22_4, 3) 

 

UV22_4 <- UV22_4 %>%  

  filter(Face != "27") 

 

UV22_4$pos_curve <- cut(UV22_4$humlike, 

                        breaks=c(0, 50, 80, 100), 

                        labels=c('shoulder', 'valley', 'upwards slope')) 

 

sample_n(UV22_4, 3) 

``` 

 

```{r} 

UV22_5 <- UV22_5 %>%  



60 
 

  filter(Face != "27") 

sample_n(UV22_5, 10) 

 

UV22_6 <- UV22_6 %>%  

  filter(Face != "27") 

sample_n(UV22_6, 10) 

``` 

Computing outcome variables 

```{r} 

UV22_8 <-  

  UV22_4 %>% 

  filter(congruent != "NA") %>%  

  group_by(Part, Picture, Face, AOI, congruent, Skull, Sclera, pos_curve) %>%  

  summarize(n_visits = n(), 

            total_dur = sum(duration, na.rm = TRUE), 

            total_dist = sum(distance, na.rm = TRUE)) %>%  

  ungroup() 

 

sample_n(UV22_8, 6) 

``` 

## Exploration 

 

### H1: Ratings 

```{r} 

sample_n(UV22_7, 3) #for reference 

``` 

#### transforming the ratings to between 0 and 1 

```{r} 

UV22_7 <- mutate(UV22_7, rating_trans = rating + 101) 

``` 

 

```{r} 

UV22_7 <- mutate(UV22_7, rating_final = rating_trans / 202) 

``` 
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```{r} 

sample_n(UV22_7, 5) #for checking the transformation 

UV22_7 %>% summary(rating_final) #for checking the transformation 

``` 

 

#### by congruence, population level 

```{r} 

M_rating1 <- stan_glm(rating_final ~ 1 + congruency, 

                          data = UV22_7,  

                          family=mgcv::betar(link = "logit")) 

``` 

 

```{r} 

fixef(M_rating1) 

``` 

 

#### by sclera and skull, population level 

```{r} 

M_rating2 <- stan_glm(rating_final ~ 1 + Sclera*Skull, 

                          data = UV22_7,  

                          family=mgcv::betar(link = "logit")) 

``` 

 

```{r} 

fixef(M_rating2) 

``` 

 

#### graph by congruence 

```{r} 

G_rating <- 

  UV22_7 %>%  

  ggplot(aes(x = congruency, y = rating_final)) + 

  geom_col() 
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G_rating 

``` 

 

#### by congruence, multi-level 

```{r} 

M_rating3 <- stan_glmer(rating_final ~ 1 + congruency + (1 + congruency | Part), 

                data = UV22_7, 

                family=mgcv::betar(link = "logit")) 

``` 

 

```{r} 

fixef(M_rating3) #fixed effects 

grpef(M_rating3) #random effects 

``` 

 

#### by sclera and skull, multi level 

```{r} 

M_rating4 <- stan_glmer(rating_final ~ 1 + Sclera * Skull + (1 + Sclera * Skull | Part), 

                data = UV22_7, 

                family=mgcv::betar(link = "logit")) 

``` 

 

```{r} 

fixef(M_rating4) #fixed effects 

grpef(M_rating4) #random effects 

``` 

 

### H2: N_visits 

 

#### by congruence, population level 

```{r} 

M_3 <- stan_glm(n_visits ~ 1 + congruent,  

                data = UV22_5, 
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                family = neg_binomial_2()) 

``` 

 

```{r} 

fixef(M_3, mean.func = exp) 

``` 

 

#### by sclera and skull, population level 

```{r} 

M_4 <- stan_glm(n_visits ~ 1 + Sclera * Skull,  

                data = UV22_6, 

                family = neg_binomial_2()) 

``` 

 

```{r} 

fixef(M_4, mean.func = exp) 

``` 

 

#### could be used for graph by sclera and skull 

```{r} 

M_5 <- stan_glm(n_visits ~ 0 + Sclera : Skull,  

                data = UV22_6, 

                family = neg_binomial_2()) 

``` 

 

```{r} 

fixef(M_5, mean.func = exp) 

``` 

 

#### graph by congruence 

```{r} 

G_visits <- 

  UV22_5 %>%  

  ggplot(aes(x = congruent, y = n_visits)) + 
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  geom_col() 

 

G_visits 

``` 

 

#### by congruence, multi-level 

```{r} 

M_visits1 <- stan_glmer(n_visits ~ 1 + congruent + (1 + congruent | Part), #(1 + congruent | 

Part) ist der random effect - die 1 macht den random intercept, das "congruent" macht den 

random slope 

                data = UV22_5, 

                family = neg_binomial_2()) 

``` 

 

```{r} 

fixef(M_visits1, mean.func = exp) #fixed effects 

grpef(M_visits1, mean.func = exp) #random effects 

``` 

 

#### by sclera and skull, multi level 

```{r} 

M_visits2 <- stan_glmer(n_visits ~ 1 + Sclera * Skull + (1 + Sclera * Skull | Part),  

                data = UV22_6, 

                family = neg_binomial_2()) 

``` 

 

```{r} 

fixef(M_visits2, mean.func = exp) #fixed effects 

grpef(M_visits2, mean.func = exp) #random effects 

``` 

 

### H2: Total distance travelled 

#### by congruence, population level 

```{r} 
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M_dist1 <- stan_glm(total_dist ~ 1 + congruent,  

                data = UV22_8, 

                family = Gamma()) 

``` 

 

```{r} 

fixef(M_dist1, mean.func = exp) 

``` 

 

 

#### by sclera and skull, population level 

```{r} 

M_dist2 <- stan_glm(total_dist ~ 1 + Sclera * Skull,  

                data = UV22_8, 

                family = Gamma()) 

``` 

 

```{r} 

fixef(M_dist2, mean.func = exp) 

``` 

 

#### graph by congruence 

```{r} 

G_dist <- 

  UV22_8 %>%  

  ggplot(aes(x = congruent, y = total_dist)) + 

  geom_col() 

 

G_dist 

``` 

 

####by sclera and skull, multi level 

```{r} 

MLM_dist2 <- stan_glmer(total_dist ~ 1 + Sclera * Skull + (1 + Sclera * Skull | Part), 
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data = UV22_8, 

family = gaussian) 

``` 

 

```{r} 

fixef(MLM_dist2) #fixed effects 

grpef(MLM_dist2) #random effects 

``` 

 

### H3: AOI 

 

```{r} 

UV22_4 %>%  

  group_by(AOI, congruent) %>%  

  summarize(mean_dur = mean(duration, na.rm = TRUE), 

            sd_dur = sd(duration, na.rm = TRUE)) 

``` 

 

#### by congruence, population level 

```{r} 

M_1 <-  

  UV22_4 %>%  

  stan_glm(duration ~ 1 + AOI + congruent + AOI:congruent, # AOI*congruence 

           data = ., 

           family = Gamma()) 

 

``` 

 

```{r} 

fixef(M_1) 

``` 

 

#### by congruence, population level, for graph 

```{r} 
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M_2 <-  

  UV22_4 %>%  

  stan_glm(duration ~ 0 + AOI:congruent, 

           data = .) 

 

``` 

 

```{r} 

fixef(M_2) 

``` 

 

```{r} 

T_2 <- 

  fixef(M_2) %>%  

  mutate(fixef = str_remove_all(fixef, "AOI|congruent")) %>%  

  separate(fixef, into = c("AOI", "congruence")) %>%  

  select(AOI, congruence, center, lower, upper) 

 

T_2 

``` 

 

```{r} 

T_2 %>%  

  ggplot(aes(x = AOI, col = congruence,  

             y = center, ymin = lower, ymax = upper)) + 

  geom_point() + 

  geom_line(aes(group = congruence)) 

``` 

 

#### by sclera and skull, population level 

```{r} 

M_AOI_1 <- UV22_4 %>%  

  stan_glm(duration ~ 1 + AOI + Sclera + Skull + AOI:Sclera + AOI:Skull + Sclera:Skull, 

           data = ., 
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           family = Gamma()) 

``` 

 

```{r} 

fixef(M_AOI_1, mean.func = exp) 

``` 

 

#### by congruence, multi-level 

```{r} 

MLM_AOI1 <- stan_glmer(duration ~ 1 + AOI + congruent + AOI:congruent (1 + AOI + 

congruent + AOI:congruent | Part), 

data = UV22_4, 

family = Gamma()) 

``` 

 

```{r} 

fixef(MLM_AOI1, mean.func = exp) #fixed effects 

grpef(MLM_AOI1, mean.func = exp) #random effects 

``` 

 

#### by sclera and skull, multi level 

```{r} 

MLM_AOI2 <- stan_glmer(duration ~ 1 + AOI + Sclera + Skull + AOI:Sclera + AOI:Skull + 

Sclera :Skull + (1 + AOI + Sclera + Skull + AOI:Sclera + AOI:Skull + Sclera:Skull | Part), 

data = UV22_4, 

family = Gamma()) 

``` 

 

```{r} 

fixef(MLM_AOI2, mean.func = exp) #fixed effects 

grpef(MLM_AOI2, mean.func = exp) #random effects 

``` 

 

####Graph 
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```{r} 

AOI <- c("eyes", "eyes", "eyes", "eyes", 

         "outside", "outside", "outside", "outside", 

         "snout", "snout", "snout", "snout") 

Sclera <- c("ape", "human", "ape", "human",  

            "ape", "human", "ape", "human", 

            "ape", "human", "ape", "human") 

Skull <- c("ape", "ape", "human", "human", 

           "ape", "ape", "human", "human", 

           "ape", "ape", "human", "human") 

Effect <- c(16, 16.82, 16.95, 17.22, 

            16.92, 16.81, 16.55, 16.77, 

            17.54, 17.86, 17.38, 18.55) 

T_graph <- data.frame(AOI, Sclera, Skull, Effect) 

 

T_graph 

``` 

 

```{r} 

T_graph %>% 

  filter(Skull == "human") %>%  

  ggplot(aes(x = AOI, col = Sclera, y = Effect)) + 

  geom_point() + 

  geom_line(aes(group = Sclera)) 

 

T_graph %>%  

  filter(Skull == "ape") %>%  

  ggplot(aes(x = AOI, col = Sclera, y = Effect)) + 

  geom_point() + 

  geom_line(aes(group = Sclera)) 

``` 


