
Link Vulnerability Aware Task Deployment over Edge and Cloud
MALEK ASSAAD, University of Twente, NL

Most applications of IoT are bounded by constraints such as latency, process-
ing capacity and security. When an IoT device cannot meet the constraints of
an application, the work may be offloaded to more capable systems such as
the cloud or edge nodes. There exist many solutions to this problem, solved
with graph theory, machine learning or artificial intelligence but they lack
depth when it comes to security while deciding the deployment point. This
research aims to provide an algorithm for where to deploy an application, to
the edge or the cloud, while respecting the constraints and taking advantage
of heterogeneous encryption schemes. It also discusses the benefits and costs
of the security aware solution. The paper arrives at a successful solution that
utilizes graph theory that allows nodes to change the encryption scheme
of data to secure it while it passes over vulnerable links. The solution has
compromises, especially in time to compute as networks get larger.

Additional Key Words and Phrases: Internet of Things, encryption, decryp-
tion, algorithm, service deployment, edge computing, cloud computing

1 INTRODUCTION
IoT devices are ubiquitous and are becoming increasingly common
and more integrated in human lives. As such, applications for Inter-
net of Things (IoT) devices are also becoming increasingly complex
and resource demanding [1]. IoT devices are expected to keep up
with application requirements which is not always feasible consid-
ering their limited resources. These devices may, therefore, need to
process their data at a remote location to allow for smarter operation
in the short term or for statistical purposes in the long term. Service
deployment determines the best location to deploy such task with
the goal of successfully completing it considering the constraints of
the application, such as latency. There are many factors that affect
latency of an application and among them are network bandwidth,
deployment point of the application and encryption scheme.

The deployment space of an application is a network of end, edge
and cloud nodes connected by data links [2] and an example of
which is displayed in Figure 1. The network is not randomly linked,
instead, it consists of three main spaces pertaining to the three types
of nodes in it, the i) end space, ii) edge space and iii) cloud space.
Data links can exist between any two nodes in a space, any one
end and edge node, and any one edge and cloud node. Any two
nodes in such a network may have different capabilities, such as
processing or encrypting/decrypting speeds and any two links may
have different values for latency and vulnerability to attacks.
Prior research such as [3][4][5] have investigated the service

deployment problem and provided solutions with performance mea-
sures. However, the solutions lacked consideration for the vulnera-
bility of links, that is, they do not consider that different links may

Author’s address: Malek Assaad, m.h.assaad@student.utwente.nl, University of Twente,
PO Box 217, 7500 AE Enschede, Enschede, NL.

© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fig. 1. Typical Network Topology

have different vulnerabilities nor do they consider what encryp-
tion scheme to use as part of their service deployment algorithm.
As on any real world network, data is susceptible to attacks, such
as eavesdropping, when traversing links. Moreover and relatively
frequently, applications require the transmission of sensitive data,
that is why many of the work done, including papers [4] and [5],
assume the use of one all encompassing encryption scheme whereas
some, like paper [3], consider some nodes unsafe for sensitive data
transmission. Utilizing one encryption scheme limits the number
of paths data can take in a network, which reduces the number of
valid deployment points for an application or dismisses some nodes
for being too vulnerable.
The aim of the research is to provide a contribution that places

particular emphasis on security that also respects all other applica-
tion constraints. The aim is to create a system model that considers
not only the latencies of transmission, encryption, decryption and
processing but also link vulnerability. The model will then be used to
create a service deployment algorithm that deploys and application
on a network such that the latency constraint is respected and the
most secure path is selected for data to traverse. The input of the
algorithm is the latency constraint of the application, and the output
is a path through the network such that the total latency of the links
is less than that of the input latency, the vulnerability of the links is
minimized and it passes through only one node that process the data.
An example of a service deployment is cloud gaming which requires
low latency and will therefore need to be deployed close to the IoT
device. Finally, the research also includes a section that investigates
and compares the proposed solution to the others, highlighting any
strengths and weaknesses in its application and suggests possible
future research and development. The comparisons will be done
by running simulations on a real world scenario application on
networks of different sizes and variable values.
Although there exists many research papers on the problem of

service deployment, few of them consider how to use security as

, Vol. 1, No. 1, Article . Publication date: July 2022.

2 • Malek Assaad

a tool to improve it and how to encrypt the data in such a way to
maintain data integrity during the deployment an application. The
paper will create a model for the problem of service deployment,
provide a security aware solution and discuss its costs and bene-
fits in the face of existing solutions. Moreover, the performance of
the solution will be measured to compare its performance next to
some baseline deployment algorithm. By considering all that has
been discussed so far, the following research questions arise. By
answering them throughout this research, we can come to a valid
and successful solution for service deployment.

(1) How can the problem of service deployment be modeled?
(2) What is a possible solution for service deployment that uti-

lizes different encryption schemes?
(3) How does a security aware algorithm improve upon existing

solutions for service deployment in terms of vulnerability
and path choices?

The general research question is:
• To what extent is it possible to devise an algorithm that uti-
lizes different encryption schemes to improve upon service
deployment?

2 RELATED WORK
Encryption is categorized into symmetric and asymmetric algo-
rithms, most of which differ in how difficult they are to reverse and
how fast encryption and decryption process takes. While some like
ECC-256 are harder to break at the cost of encryption/decryption
time, some, like ECC-128, are faster at encryption at the cost of secu-
rity [6]. The differences in encryption schemes allows this research
to investigate the possibility of using more than one of them when
deploying an application to protect links of different vulnerability
levels.
Security is not just about encryption. Data protection is a vast

field and contains many methods to solve it. Two of the most promi-
nent in IoT are encryption and steganography. Previous research
suggests that the use of steganography can only be done for lim-
ited applications in case data is heterogeneous [7]. Encryption’s
ability to secure different data types makes it of more interest for
this research. The scheme used for encrypting data can be changed
based on circumstances and compensate for high vulnerability, high
latency or both as there exists many encryption schemes that can
fulfil different requirements. Earlier studies such as [8][9][2] explain
the differences through performance measures. The security level
of a scheme is measured by the amount of time needed to reverse it,
i.e. decrypt it, without explicit permission. While many encryption
schemes, like AES and ECC, can compete on that front, some can
achieve it with lower time overhead. When data is sensitive, it is
more often the case that latency is not as important as security
and can thus be encrypted using better schemes and otherwise for
nonsensitive data. Prior work, [10], shows that most encryption
scheme time overheads follow a linear trend as data size increases
and the gradient depends on the processing power of the encrypting
machine.
The research carried out on service deployment lacks particular

emphasis on security. Most papers, such as [4] and [5], assume a
uniform and equal encryption for all applications, and this may limit

the number of situations in which an application can be deployed.
On the other hand, some papers, like [3], give more consideration
to this problem by either encrypting or not based on application
requirements. Our paper aims to improve upon this by opening up
the possibility of multiple encryption schemes, across any number
of nodes.

Existing studies on service deployment have approached the prob-
lem using different mathematical techniques including but not lim-
ited to machine learning, mixed integer programming, graph theory
and artificial intelligence [11]. Most can resourcefully deploy an
application, but many things differentiate them; some excel at de-
ployment speed and others excel at memory efficiency for example.
Most, however, do not consider how encryption schemes can be
utilized to create a better service deployment algorithm. Study [3],
on the other hand, does consider a binary approach to security. They
deploy security sensitive applications to the edge but never to the
cloud and either encrypt or do not encrypt data when transmitting
based on their sensitivity. Paper [10] considers the overhead created
by some security services, like authentication service, integrity ser-
vice, and confidentiality service when calculating incurring costs of
a deployment but do not consider vulnerability of edges nor use a
heterogeneous encryption scheme.

3 SYSTEM MODEL
We consider a network of connected edge, cloud and end nodes
as depicted in Figure 2 which we call the abstracted view of the
network. Nodes may have different processing capabilities and may
also support different subsets of encryption schemes depending on
their type. Some nodesmay be consumers of data, they are interested
in data that is produced by another node, producer, in the network.
Producers and consumers in a network are will be referred to as end
nodes. The producer and consumer need not be different but when
they are, they must be connected by some path in the network.

We define an application as a set of three values,𝐴 = <IoT𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 ,
IoT 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 , 𝐴𝐿>. The producer is an end node which produces
the data to be processed whereas the consumer is an end node
that consumes and acts on the processed data. The producer and
the consumer are not necessarily different or the same. 𝐴𝐿 is the
maximum latency allowed for data to be processed and traverse a
network of nodes from the producer to the consumer. An example
of an application is <IoT 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 = trafficCamera, IoT 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 =
policeStation, 𝐴𝐿 = 2000ms. The producer is a simple camera on a
road and the data is a video stream. The stream must be processed
to measure vehicle speeds and the processed data is to be sent over
a network of nodes to the consumer police station within no more
than 2 seconds. The application to be deployed is the input of the
service deployment algorithm which is used to determine where
to deploy the application and the necessary path data must take,
depending on the producer, consumer, link vulnerabilities and the
latency constraint.

The output of the algorithm is simply a path through the network,
defined as an ordered list of nodes such that data travelling from the
given producer to the given consumer is processed only once and
its transmission latency abides by the constraints of the application.

, Vol. 1, No. 1, Article . Publication date: July 2022.

Link Vulnerability Aware Task Deployment over Edge and Cloud • 3

Notation Definition
𝑛𝑖 An abstracted edge or cloud node in the network
𝑁𝐴 Set of all nodes in the abstracted network
𝑁𝐸 Set of all nodes in the expanded network
𝑎𝑖 An end node (i.e. IoT device) in the network, 𝑎𝑖 𝜖 𝑁𝐴

𝑃 A processing node, 𝑃 𝜖 𝑁𝐸

𝑋𝑖 An encryption node that encrypts data using scheme 𝑖 ,
𝑋𝑖 𝜖 𝑉

𝑌𝑖 A decryption node that decrypts data using scheme 𝑖 ,
𝑌𝑖 𝜖 𝑉

𝐼𝑖 An input node that accepts a directed edge coming from
an output node 𝑂𝑖 that outputs data encrypted using
scheme 𝑖 , 𝐼𝑖 𝜖 𝑉

𝑂𝑖 An output node that produces a directed edge towards
an input node 𝐼𝑖 that accepts data encrypted using
scheme 𝑖 , 𝑂𝑖 𝜖 𝑉

𝐸 Set of all edges in the network
𝑒𝑖 Edge between two nodes, 𝑣 and 𝑢 | 𝑣,𝑢 𝜖 𝑁𝐸

𝑙𝑒
𝑖

Total latency of an edge 𝑒𝑖
𝑡𝑒
𝑖

Transmission latency of an edge 𝑒𝑖
𝑣𝑒
𝑖

Vulnerability cost of an edge 𝑒𝑖
𝑝𝑛
𝑖

Processing latency of a node 𝑛𝑖
𝑒𝑛
𝑖

Encryption latency of a node 𝑛𝑖
𝑑𝑛
𝑖

Decryption latency of a node 𝑛𝑖
𝐾 Number of encryption schemes available to the network
𝐴 The application to be deployed
𝐴𝐿 The application’s max latency

𝐷 (𝑣0, 𝑣1, , 𝑣𝑛) A deployment/path that starts at 𝑣0 and ends at 𝑣𝑛
𝐸𝐷 The set of edges in the deployment 𝐷
𝑙 (𝐷) Total latency in a deployment
𝑣 (𝐷) Total vulnerability cost of a deployment

Table 1. Variable Definitions

The solution’s goal is to give themost secure path for data to traverse
while respecting applications’ latency constraints.

The latency of any link between two nodes in the abstracted net-
work is determined by the bandwidth of the link multiplied by the
amount of data being sent across it and is always positive. When we
expand the abstracted network in Section 4.2, we will be creating
extra links within each node to symbolize processing, encryption
and decryption, where the latency of such links will be determined
by the process acting on the data. For example, a link going into
an encrypt node will have its latency set to the amount of time
needed to encrypt data at that node while taking into consideration
data size. On the other hand, the vulnerability score is a positive
or negative number. A positive vulnerability is given, by an admin-
istrator, to the links in the abstracted network and it depends on
external factors such as traffic on the link, sensitivity of the data
or packet loss percent. The negative vulnerability cost (protection
against vulnerability) is given to the new links created by the ex-
pansion algorithm and are dependant on the encryption scheme
of each node. For example, an ECC-128 encrypt node may have
a vulnerability score of -25 while ECC-256 may have -50 because

Fig. 2. Abstract view of a network with two end nodes and 4 regular nodes
with transmission and vulnerability costs.

ECC-256 is harder to reverse; The negative score is also determined
by the administrator. We refer to the process of increasing vulnera-
bility as vulnerability gain, whereas the decrease of vulnerability as
vulnerability loss.

What we refer to as maximum security path is just a reference to
some method that extracts the best path to achieve least vulnerabil-
ity. A path of least vulnerability can be calculated in many different
ways and is an optimization problem that is best left for the context
at hand. Some methods for finding the path of least vulnerability
will be discussed later in Section 4.4.

4 PROPOSED SECURITY-AWARE SERVICE
DEPLOYMENT

4.1 The Network
An example of a network is displayed in Figure 2, where the producer,
𝑎0, and consumer, 𝑎1, are different. A successful algorithm must be
able to output a path along the edges of the network such that
data starts at the end node 𝑎0, travels along directed edges through
the network, get processed at one of the nodes 𝑛𝑖 and finally be
forwarded to its final destination 𝑎1.
Figure 2 is only an abstraction, designed to simplify the input

of the algorithm. The algorithm we are exploring must expand the
network to accommodate different encryption schemes and their
associated costs. An expansion is considered successful only if it
allows for 3 different paths through any node. They are:

(1) A node can let data hop through it, without processing or
changing its encryption scheme.

(2) A node can change the encryption scheme applied to data
passing through it.

(3) A node can process and change (or preserve) the encryption
scheme applied to data passing through it.

, Vol. 1, No. 1, Article . Publication date: July 2022.

4 • Malek Assaad

Fig. 3. Expansion processes of an abstracted graph with two connected
nodes.

The three different paths are necessary to allow maximum free-
dom for encryption scheme selection. Figure 3 shows an expansion
of an abstracted network. All nodes in an abstracted network are
expanded into what we refer to as the node clusters. The cluster of
a node 𝑛𝑖 is made up of 4𝐾 + 1 separate nodes. For each node clus-
ter, there exists one central processing node 𝑃 , a set of decryption
nodes {𝑌𝑖 }, a set of encryption nodes {𝑋𝑖 }, a set of input nodes {𝐼𝑖 },
and a set of output nodes {𝑂𝑖 }, where 𝑖 is an encryption scheme
{𝑖 |0 < 𝑖 < 𝐾 − 1}. Between a node’s cluster nodes, there exists edges
that fulfil the requirements of a successful expansion. An edge out-
going from a node 𝐼𝑖 to a node 𝑂𝑖 represents a simple hop through
the node without change in encryption or processing (1). An outgo-
ing edge from a decryption node 𝑌𝑖 , going into any encryption node
𝑋 𝑗 , where 𝑖 ≠ 𝑗 , represents only a change in encryption scheme
without processing (2) (note that 𝑋𝑖 for some 𝑖 ≤ 𝐾 − 1 can also
mean no encryption). An outgoing edge from a decryption node 𝑌𝑖 ,
going into a processing node 𝑃 , and then into an encryption node
𝑋 𝑗 , where 𝑖, 𝑗 < 𝐾 − 1, represents data processing and a change or a
preservation of encryption scheme (3). This system of directed edges
fulfils the three requirements of a successful network expansion
and allows data to pass through any case. All different nodes, i.e.
edge, end and cloud, are made up of the same structure.

There are some assumptions made about a node cluster. We first
assume there are no transmission latencies within an edge node
because the data is handled within one storage device. Second, we
assume nodes are trusted, i.e. there is no vulnerability cost for data
entering, but otherwise is true for traversing edges between two
different nodes. We also assume that the vulnerability loss is strictly
equal or less than the vulnerability gain of the next coming edge.
This last assumption is necessary as to prevent negative cycles.

4.2 Network Expansion Algorithm
Networks are provided to the algorithm in abstract form and are
expanded by it to account for multiple encryption schemes and
processing capabilities. The pseudo code in Algorithm 1 allows
different number of encryption schemes per node and achieves the
expansion with worst case complexity of 𝐾2 (|𝑁𝐴 | + |𝐸 |) + |𝑁𝐴 |𝐾
where 𝐾 is the maximum number of encryption schemes in the
network. For any edge, 𝑒𝑖 𝜖 𝐸, there may exist up to 5 different
costs; i) transmission ii) encryption, iii) decryption, iv) processing
latencies and v) vulnerability costs and they depend on the target
node of the edge. For example, an edge incoming to a decrypt node
will have a decryption latency.

Algorithm 1 Network Expander

1: for 𝑛 in 𝑁𝑜𝑑𝑒𝑠 do
2: Create a process node
3: for 𝑒𝑠 in 𝑛.𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛𝑆𝑐ℎ𝑒𝑚𝑒𝑠 () do
4: Create an input, output, decrypt and encrypt node
5: Create an edge between input and decrypt node
6: Create an edge between decrypt and process node
7: Create an edge between process and encrypt node
8: Create an edge between encrypt and output node
9: Create an edge between input and output node
10: for 𝑑𝑛 in 𝑛.𝑔𝑒𝑡𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑁𝑜𝑑𝑒𝑠 () do
11: for 𝑒𝑛 in 𝑛.𝑔𝑒𝑡𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑁𝑜𝑑𝑒𝑠 () do
12: if 𝑑𝑛.𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑐ℎ𝑒𝑚𝑒 ≠ 𝑒𝑛.𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑐ℎ𝑒𝑚𝑒 then
13: Create edge between 𝑑𝑛 and 𝑒𝑛
14: for 𝑠𝑟𝑐, 𝑡𝑎𝑟𝑔𝑒𝑡 in 𝐸𝑑𝑔𝑒𝑠 do
15: for 𝑜 in 𝑠𝑟𝑐.𝑜𝑢𝑡𝑝𝑢𝑡𝑁𝑜𝑑𝑒𝑠 do
16: for 𝑖 in 𝑠𝑟𝑐.𝑖𝑛𝑝𝑢𝑡𝑁𝑜𝑑𝑒𝑠 do
17: if 𝑜.𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑆𝑐ℎ𝑒𝑚𝑒 == 𝑖 .𝑒𝑛𝑐𝑟𝑝𝑡𝑆𝑐ℎ𝑒𝑚𝑒 then
18: Create an edge between 𝑜 and 𝑖

4.3 Valid Deployment
A deployment is simply a path through the network that starts at
the consumer and ends at the producer, while passing through one
processing node. We denote such deployment as 𝐷 (𝑡, 𝑝, 𝑠), where
𝑡 is the producer, 𝑝 is the processor and 𝑠 is the consumer. Such
a deployment must respect the constraints of the application to
be considered valid. Validity of a deployment, 𝐷 (𝑡, 𝑝, 𝑠), can be
summarized with the following validation constraints.

i) One process node It must pass through one and only one
processing, 𝑃 , node; denoted as 𝑝 in 𝐷 (𝑡, 𝑝, 𝑠).

ii) Constrained latency It must have latency less than or equal
to the application’s max latency:

𝑙 (𝐷) =
|𝐸𝐷 |∑︁
𝑛=0

𝑙𝑒𝑛

𝑙 (𝐷) ≤ 𝐴𝐿 (1)
iii) Maximum security The deployment pathmust be the best

secured path under the required application latency con-
straint 𝐴𝐿 .

, Vol. 1, No. 1, Article . Publication date: July 2022.

Link Vulnerability Aware Task Deployment over Edge and Cloud • 5

4.4 Optimizing security
There are multiple ways to define security when looking for the best
path. Approach 1 could be to simply pick the path with the lowest
vulnerability sum. This definition may not be appropriate in some
cases because it allows a well encrypted, not so vulnerable edge to
make up for a weakly encrypted, very vulnerable edge. Take for
example a simple directed graph where node 1 is connected to node
2, which is connected to 3, and so on until 5 (1->2->3->4->5). Assume
the first 2 edges are relatively vulnerable and the last 2 are relatively
safe. Assuming 𝑣𝑒

𝑖
at the incoming edges of any two 𝑋𝑖 and 𝑋 𝑗

𝑖 = 𝑗 are equal, then minimizing vulnerability cannot differentiate
between where the first two edges are weakly encrypted and the
second two are strongly encrypted and vice versa.

Approach 2 is to find the difference between the vulnerability gain
of transferring the data over a link and the absolute vulnerability
loss of encrypting data. For example, let’s say a packet is encrypted
using ECC, which has a vulnerability score of -25, and travels across
a link with vulnerability of 50, then the security score of going over
said link would be |50 − | − 25| |. This associates the encryption
scheme with the link being traversed which avoids the problem of
summing vulnerability.
Both of these approaches are possible to use depending on the

requirements of the application, it is not necessarily that one will
be better than the other. It is also possible to pick the path with
the lowest max vulnerability, or any path which has vulnerability
no greater than some number X. The method used to optimize
vulnerability cost will highly depend on the nature of the application
as well as the size of the network.

4.5 Service Deployment Algorithm
A network of nodes is governed by two main variables; latency
and vulnerability. We consider latency to be a hard constraint and
security to be elastic, i.e. a deployment must respect the maximum
latency constraint but vulnerability cost can simply be optimized.
This is the approach the paper will take but it just as applicable for
the opposite case.

Assume we are given a set of nodes, among them are 𝑣 and 𝑢. An
edge between any two nodes has two costs, latency and vulnerability.
We are able to find all paths between 𝑣 and 𝑢 with latency less
than 𝐴𝐿 using breadth first search (BFS) or depth first search (DFS).
By keeping track of vulnerability cost as well, we are able to use
optimization to pick a path with best security while ensuring that
the latency constraint is respected. We use this concept but to an
extended capacity to solve our problem of ensuring one processing
node is passed.

We first begin by using an exhaustive-search algorithm to find all
valid paths between the producer and consumer.We also use Branch-
and-Bound to limit our exhaustive search to valid deployments.
The algorithm consists of using DFS at the producer and explores
outgoing edges, repeating the process for discovered nodes. Our
version of DFS does not keep track of visited nodes and that is to
ensure that we can find all paths, including any two that may pass
through the same node. But we do keep track of visited edges to
avoid cycles. Along the way, we limit the search by keeping track
of two variables, i) latency budget and ii) whether data has been

processed. For every edge the algorithm passes on, it deducts the
latency cost from the latency budget and for whenever we pass
through a processing node, we set visitedProcessNode to true. The
budget variables ensure that the final list of paths extracted adheres
to two of our rules of deployment in Section 4.3, i and ii. The pseudo
code is provided in Algorithm 2, which tackles exhaustive search
using recursion and avoids cycles by keep track of visited edges; it
outputs a list of valid unoptimized paths with worst case complexity
of 𝑂 (2𝑛). Finally, we run our paths through the optimizer and that
outputs the most secure valid path in the network.

Algorithm 2 Branch-and-Bound
1: Input expanded graph*, start, end, latencyBudget, boolean vis-

itedProcessNode, List visitedEdges
2: Output List validPaths
3: 𝑝𝑎𝑡ℎ𝑠 = List
4: for 𝑒𝑑𝑔𝑒 in start.outgoingEdges do
5: node = edge.Target
6: newLatencyBudget = latencyBudget - edge.Latency;
7: newVisitedProcessNode = visitedProcessNode;
8: newVisitedEdges = visitedEdges
9: if newLatencyBudget < 0 then
10: continue; // No more latency budget. Prune.
11: if node is a processNode and visitedProcessNode and node

is not 𝑒𝑛𝑑 then
12: continue; // We already processed the data. Prune.
13: if edge is a link then
14: if edge is in visitedEdges then
15: continue; // Prevent cycles. Prune.
16: newVisitedEdges.add(edge);
17: path = new Path();
18: path.addNode(node);
19: if node is the 𝑒𝑛𝑑 node and visitedProcessNode == true

then
20: paths.add(path); // We found a valid path.
21: else
22: if n is not the 𝑒𝑛𝑑 node then
23: newPaths = Branch-and-Bound(graph*, node, end,

newLatencyBudget, newVisitedProcessNode, newVisitedEdges)
// Reoccur

24: for 𝑛𝑒𝑤𝑃𝑎𝑡ℎ in 𝑛𝑒𝑤𝑃𝑎𝑡ℎ𝑠 do
25: newPath = path + newPath;
26: paths.add(newPath);
27: return paths;

5 PERFORMANCE

5.1 Baseline
Before it is possible carry out performance measures of the proposed
algorithm, it is necessary to define a baseline to which the proposed
algorithm will be compared. Ideally, the baseline must be similar
to existing solutions, which are not easily generalized. We decided
that the baseline will traverse the same expanded network proposed
in Section 4.2 using Dijkstra’s shortest path algorithm on latency to

, Vol. 1, No. 1, Article . Publication date: July 2022.

6 • Malek Assaad

find a set of paths from the producer to the consumer through every
processing node in the network. Using the set of paths generated
by Dijkstra’s Algorithm, we pick one at random as the deployment
path. Baseline time complexity will therefore be 𝑂 (|𝑁𝐴 |𝑉 2). The
network onwhich wewill test both algorithms will also be randomly
generated, first ensuring that it is connected and second, we generate
random additional links between nodes while still respecting the
topology explained in Section 1.

5.2 Simulation Variables
The networks that will be simulated to measure the performance
of the proposed algorithm have many variables. It is not feasible,
neither of significant interest, to simulate every variable against
another. There are also an infinite number of applications that can be
simulated which is not feasible to do. Therefore, the variables were
set to certain values, unless otherwise stated, and are highlighted in
Table 2. Encryption latencies values are chosen as per paper [10]’s
performance tables. Vulnerability losses are chosen such that the
better encryption scheme can just mitigate the full vulnerability
cost of a minimally vulnerable link (to avoid negative cycles). Link
bandwidth is chosen to be in the range of lower average consumer
WiFi speeds or average of cellular 4G connection while the number
of encryption schemes (ES) was chosen to be 2. The chosen numbers
can easily be anything else, as they are highly dependant on many
other factors such as country of operation, application, time and
budget.

Table 2. Simulation Variable Values

Variable Value(s)
𝐴𝐿 15 s
|𝑁𝐴 | 21

Link bandwidth 4-20 MB/s
Link vulnerability 50-100

Number of encryption schemes 2
ES 1 vulnerability loss -25
ES 2 vulnerability loss -50

ES 1 latency at end,edge,cloud 375-475,275-325,40-60 ms/MB
ES 2 latency at end,edge,cloud 700-900,575-625,90-110 ms/MB

Application data size 5MB

5.3 Time Feasibility
An important metric for any algorithm is its time complexity and
that is why our algorithm will be compared to the baseline with an
increasing network size. Time feasibility of the algorithm depends
on many factors. Although its worst case complexity is exponential,
variable values can greatly reduce its run time. The variables that
affect the run time most are the application’s latency constraint,
𝐴𝐿 , and the magnitude of link latencies because the algorithm trims
the branching process as soon as the latency budget is depleted.
We naturally expect that the time needed to find the best path will
also increase exponentially as the number of nodes increases. By
plotting time taken, we will have a better insight on how feasible
the algorithm is.

Fig. 4. Average time taken to find the best path for different network sizes.
Our (blue) vs baseline algorithms (orange). 100 samples for each |𝑁𝐴 |.
Logarithmic scale.

Figure 4 shows the results of the simulations with a sample size
of 100 for each network size. It shows the median time needed to
find the best path using our algorithm (blue) against a baseline
algorithm (orange). Indeed, the time complexity of our algorithm is
exponential. As the number of nodes increases, so does the number
of paths that algorithm has to search and naturally, so does the
time it takes. During data collection, we observed relatively large
standard deviations in the samples which can be explained by the
great variation in path latencies that are caused by the random
generation. Although time increases exponentially on average, there
may be cases where the algorithm runs relatively faster or slower.
On the other hand, the baseline algorithm runs much faster, as
expected, due to its relatively more manageable complexity and lack
of exhaustive search. The results show that our algorithm is less
feasible than the baseline as the network size increases. However, if
service deployment is done offline and the deployment algorithm
runs on a high-compute node, our proposal can be used.

5.4 Vulnerability
Given the goal of our research, we expect to see an improvement in
the vulnerability score of the deployments generated by our algo-
rithm compared to the baseline. Given that the baseline picks paths
at random, without consideration for vulnerability, we expect that
the greater the difference in vulnerability across the network, the
greater the difference is between our algorithm and the baseline.
We also expect that as the number of nodes increases, so does the
vulnerability difference between our algorithm and the baseline and
that is because the longer the paths are, the more our algorithm can
select more secure routes and increase the security over the random-
ness of the baseline. For this section, we consider the vulnerability
sum as the vulnerability score which must be minimized.
We first look at the average vulnerability generated by the time

feasibility samples in Figure 5 which plots the score against the
number of nodes. There is in fact an average difference of 85 that

, Vol. 1, No. 1, Article . Publication date: July 2022.

Link Vulnerability Aware Task Deployment over Edge and Cloud • 7

Fig. 5. Average vulnerability of the path outputted against different network
sizes. 100 samples for each |𝑁𝐴 |. Our algorithm vs baseline.

follows a constant trend as the number of nodes increases. This
makes the greatest difference at |𝑁𝐴 | = 1 in which our algorithm
shows a 45% improvement against the baseline. There could be
many reasons to why we see a constant difference but one that
stands out could be our small𝐴𝐿 selection. A low latency constraint
limits the number of paths our algorithm can find and thus the
more likely it is that the path of least vulnerability is in fact not
that different than a randomly selected path. However, another
variable that could play part is the difference between vulnerability
loss of the encryption schemes, that is why we devised another
simulation scenario where we test the change in vulnerability over
the vulnerability loss difference between encryption schemes.
Figure 6 shows the results of the simulation. The graph shows

the difference in the average vulnerability of the paths between the
baseline and our algorithm. As expected, the difference in vulner-
ability increases with greater difference in encrypt schemes. This
trend appears because our baseline is a lowest cost path finding
algorithm that operates on latency and will naturally prefer routes
with lower costs, i.e. faster encryption/decryption times and will
therefore always take the faster and less safe encryption scheme
path. From this data, we can extrapolate that the greater the dif-
ference between encryption schemes, the better our algorithm will
perform against the baseline. Including more encryption schemes
that extend the difference in vulnerability loss, although makes the
algorithm slower, increases the potential of our algorithm.

5.5 Resilience
An advantage of our solution’s utilization of graph theory alongside
heterogeneous encryption schemes is that it produces a greater
count of valid paths between a producer and consumer. Assume
some other algorithm that only considers homogeneous encryption.
In cases where such algorithm can only find one path in a network
that respects the latency constraint, our algorithm can find more
through change of encryption schemes. Moreover, our algorithm
can transfer data between two end points that do not support the
same encryption by means of scheme change along the data path.
This allows the proposed algorithm to work on a greater variety

Fig. 6. Average vulnerability difference against the vulnerability loss dif-
ference of our two encryption schemes for network of size |𝑁𝐴 | = 16. 100
samples per x value.

of networks and be less susceptible to nodes/links dropping in a
network.

6 DISCUSSION

6.1 Measure Limitations
The performance measures were carried out on a consumer grade
desktop. Ordinarily, such algorithms are run on data centers and
dedicated hardware that allows for greater processing power. In our
simulations, the sample size was limited to 100 and the maximum
network size to 51 edge nodes, making it difficult to see trends for a
greater range of network sizes. In Figure 4, it could be the case that
if we were to increase the number of nodes as well as the latency
constraint, we could see a different trend in the difference in vul-
nerability, which was not feasible within the scope of this research.
Moreover, the proposed algorithm’s code was single threaded and
could have allowed for better testing if it utilized multi threaded
processing especially given the recursive nature of the algorithm.
In Figures 4 and 6, the error bars were too wide to deduce trend

lines through the data, making it hard to conclude with certainty
that they follow specific growth patterns. The main contributing
factor to this behaviour is the randomization of the network links.
We test on randomly generated networks that have variations in
variables and number of links, making the standard deviation of the
samples too great to draw conclusive best fit lines.

6.2 Algorithm Limitations
During our testing, relatively large networks were able to be simu-
lated when the costs and links were generated in such a way such
that𝐴𝐿 was quickly depleted and otherwise took too long to become
feasible on a consumer grade desktop. This makes the algorithm un-
suitable for large networks with large latency constraints. Moreover,
the time it takes for the algorithm to complete is also dependant on
the number of nodes (as per Figure 4 in the network, meaning that
additional encryption schemes can greatly increase the run time.
This means that for our algorithm to improve vulnerability, it needs

, Vol. 1, No. 1, Article . Publication date: July 2022.

8 • Malek Assaad

to take longer to run, given that our algorithm excels more with a
greater difference in encryption schemes.

Our algorithm is not latency optimizing. It does not differentiate
between two paths based on their latency score. It only ensures that
the latency constraint is respected and security is maximized. This
is the major limiting factor of this approach and the baseline out
performs it in every case. If latency is to be considered there will
need to be a compromise between it and vulnerability and can be
investigated in future work.

7 CONCLUSION AND FUTURE WORK
The system model provides an intuitive and complete formalization
of the problem of service deployment. It considers all processing,
encryption, decryption and transmission latencies, vulnerability
costs and the processing capabilities of nodes in a network. It also
supports the use of heterogeneous encryption along any network
size and shape, allows for heterogeneous producer/consumer and
provides an expansion algorithm that allows an administrator to
create an abstracted network that is automatically expanded for the
service deployment algorithm.
The expansion algorithm takes an abstracted network and ex-

pands it to support multiple encryption schemes. The service de-
ployment algorithm uses the expanded network to find a list of all
valid paths from a producer to a consumer that adhere to the rules
set out in Section 4.3. The algorithm then uses the sum of vulner-
ability of each paths to find the most secure one in the list. The
algorithm opens up the possibility to use any optimization method
if the sum vulnerability is not appropriate.
The proposed algorithm provides a measurable increase in the

security of a deployment when compared to a baseline algorithm.
Although there is no conclusive evidence whether the improvement
scales with the number of nodes, there is evidence that it does scale
with the vulnerability loss difference across encryption schemes.
The algorithm is also more resilient to node failures due to the
exhaustively searched list of paths it outputs and its ability to utilize
heterogeneous encryption when data traverses a network.
There are limitations within this research, mostly generated by

the exponential time complexity associated with the exhaustive
search approach. Large network sizes were not tested to a full extent
due to exponential increase in paths to search, lack of dedicated
hardware and no use of multi threaded programming.
There is still significant amount of work that could be done to

follow up this research. To better measure the capabilities of this
algorithm, it could be tested and optimized further using hardware
and multi threaded programming. On the other hand, it can also be
tested on less capable systems to better understand the feasibility
of such an exhaustive search algorithm. Along the same lines, the
algorithm can be compared to more well researched solutions to un-
derstand under what circumstances it is feasible to use the proposed
algorithm.
An interesting but important aspect to investigate is how can

the algorithm can be further expanded to account for a constantly
changing network and also how to account for a shared network
among multiple producers and consumers. Finally, formalizing the

optimization problem introduced in Section 4.4 and finding a general
solution can go a long way to completing this research.

REFERENCES
[1] O. Tsymbal, “Iot trends to drive innovation for business in 2022,” Apr 2022.

[Online]. Available: https://mobidev.biz/blog/iot-technology-trends
[2] V. Gezer, J. Um, and M. Ruskowski, “An introduction to edge computing and a

real-time capable server architecture,” International Journal of Intelligent Systems,
vol. 11, p. 105, 07 2018.

[3] Z. A. Mann, A. Metzger, J. Prade, R. Seidl, and K. Pohl, “Cost-optimized, data-
protection-aware offloading between an edge data center and the cloud,” IEEE
Transactions on Services Computing, pp. 1–1, 2022.

[4] K. C. Antharaju, T. R. Reddy, and N. Ramakrishnaiah, “A survey on mobile
edge computing: Joint offloading and resource allocation perspective,” EasyChair
Preprint no. 7002, EasyChair, 2021.

[5] M. Cui, Y. Fei, and Y. Liu, “A survey on secure deployment of mobile services in
edge computing,” Security and Communication Networks, vol. 2021, pp. 1–8, 01
2021.

[6] H. Almajed and A. Almogren, “A secure and efficient ecc-based scheme for edge
computing and internet of things,” Sensors, vol. 20, p. 6158, 10 2020.

[7] M. Amjath and V. Senthooran, “Secure communication using steganography in
iot environment,” 12 2020, pp. 114–119.

[8] H. Tewari, “A lightweight encryption scheme for iot devices in the fog (to appear
in future technologies conference 2022, vancouver, canada),” 11 2021.

[9] A. A. Hasib and A. A. M. M. Haque, “A comparative study of the performance and
security issues of aes and rsa cryptography,” in 2008 Third International Conference
on Convergence and Hybrid Information Technology, vol. 2, 2008, pp. 505–510.

[10] B. Huang, Z. Li, P. Tang, S. Wang, J. Zhao, H. Hu, W. Li, and V. Chang,
“Security modeling and efficient computation offloading for service workflow
in mobile edge computing,” Future Generation Computer Systems, vol. 97,
pp. 755–774, 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0167739X18326773

[11] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis, J. Violos,
A. Leivadeas, N. Athanasopoulos, N. Mitton, and S. Papavassiliou, “Task offloading
in edge and cloud computing: A survey on mathematical, artificial intelligence and
control theory solutions,” Computer Networks, vol. 195, p. 108177, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1389128621002322

8 APPENDIX
Source code (Maven Java Project, JGraphT), including all tests per-
formed: https://github.com/MalekMHA/ServiceDeployer

, Vol. 1, No. 1, Article . Publication date: July 2022.

https://mobidev.biz/blog/iot-technology-trends
https://www.sciencedirect.com/science/article/pii/S0167739X18326773
https://www.sciencedirect.com/science/article/pii/S0167739X18326773
https://www.sciencedirect.com/science/article/pii/S1389128621002322
https://github.com/MalekMHA/ServiceDeployer

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Proposed Security-aware Service Deployment
	4.1 The Network
	4.2 Network Expansion Algorithm
	4.3 Valid Deployment
	4.4 Optimizing security
	4.5 Service Deployment Algorithm

	5 Performance
	5.1 Baseline
	5.2 Simulation Variables
	5.3 Time Feasibility
	5.4 Vulnerability
	5.5 Resilience

	6 Discussion
	6.1 Measure Limitations
	6.2 Algorithm Limitations

	7 Conclusion and Future Work
	References
	8 Appendix

