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Abstract—In finger vascular biometric images, captured
with near-infrared (NIR) light, several structures are
visible, from which the exact origin is unknown. These
include the vagueness, width and intensity of the vessel
projection, the brightness of the two joints and the intensity
of the dark area between the joints. These features vary
per subject. To understand the origin of these elements,
the imaging procedure is mimicked using a simplified
mathematical model of the finger. This model creates
images similar to real finger vascular images incorporating
basic anatomy and corresponding optical properties. Using
the model, the origin of several features is examined. The
vessels appear vague, because the projection is actually
a shadow caused by the strong scattering of the bone.
The intensity of the finger (besides the vessels) is directly
dependent on both tissue consistency (amount of absorp-
tion/scattering) and finger anatomy (path length of the
photons). This research gives an insight on the vascular
imaging procedure and this knowledge can be used in
future research on vascular biometric identification, by
incorporating additional features from the images.

Index Terms—Beer-Lambert, Effective Attenuation Co-
efficient, Finger Vein Images, Maximum Curvature, Vas-
cular Biometrics, UTFVP Dataset

I. INTRODUCTION

Vascular biometric identification systems have widely
proven to be very effective in terms of privacy, robust-
ness and identification performance, since this biometric
feature is hidden from the naked eye and changes mini-
mally over the years [1]. Current vascular identification
systems are mainly focused on the vascular pattern in the
sclera, hand palm and the finger. Vessels in the finger can
be captured with near-infrared (NIR) light, where they
appear as dark shadow-like patterns, see figure 1. These
images are captured with 850 nm, which is a wavelength
that the haemoglobin strongly absorbs.

In the two images in figure 1, the visibility of each
vessel is very different, referring to its vagueness, width
and intensity. The joints light up in NIR images, and
both the intensity of the joints and contrast of the
borders is different in the two images. The intensity

(a) (b)

Fig. 1: Example NIR images of the finger from the
UTFVP dataset made with the finger vessel scanner at
the University of Twente [2]. The fingers point to the
right.

of the dark area between the joints is also varying.
These variations are not uncommon, they are different
per subject. Interestingly, there is not much known about
the origin of these variations.

This thesis will focus on understanding the origin of
aforementioned features in the finger vascular images,
in order to better understand the imaging process. For
this reason, the influence of finger anatomy and optical
properties of the tissues needs to be examined. This is
done by creating a system that generates vascular images
including both anatomical and optical information.

The main objective of this research is to provide an
explanation for why the finger vascular NIR images ap-
pear as they do. Several research questions are relevant,
in order to get an understanding of the vessel pattern
inside the finger, and the way that it is captured.

1) Which biological tissues in the finger are crucial
in the imaging procedure?

2) Why are the vessels vague?
3) Why is the area between the joints in some images

much darker than in other images?
4) How can transmission of NIR light through the

finger be modelled?
5) Can the original vessel templates be recovered

from generated images?
Obtaining knowledge on the origin of all features

in the NIR images can make the identification process
even more robust and accurate, and can also be used in
research on spoofing.
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The remainder of this paper is as follows. First, a
brief background is presented on both the anatomical
terminology and relevant optical properties in section II
and III. The function of these sections is to give a basic
understanding of the finger anatomy on which the model
is based, and the optical formulas that form the mathe-
matical base. The related work is discussed in section IV,
followed by the method in section V. An introduction to
the experiments is discussed in section VI, followed by
the corresponding results in section VII. The discussion
in section VIII uses the obtained results to answer the
aforementioned research questions. A final conclusion is
provided in section IX.

II. ANATOMICAL BACKGROUND

Due to the nature of finger vascular biometrics, a large
part of this research concerns the anatomy of the finger.
This section gives an overview of the anatomy of the
finger and the relevant terminology.

A. Skin

The human skin consists of three layers: the epidermis,
dermis and subcutis. The epidermis is the most outer
layer, the dermis is the middle layer, and the subcutis
is the layer surrounding the bone containing fat cells.
Together, the epidermis and dermis have an approxi-
mately constant thickness of less than 1 mm [3], [4].
The vessels visible in NIR illumination mainly lie in the
subcutis skin tissue. The thickness of the subcutis layer is
directly depending on the amount of body fat. Additional
variations for the thickness of each skin layer may
include temperature, humidity, solar exposure, gender,
age and race, as discussed in chapter 4 and 5 of [5].

B. Bones

Each hand contains 14 bones, named phalanges, three
per finger except for the thumb, which has only 2.
A schematic image is shown in figure 2. From the
fingertip to the hand palm, the phalanges are respectively
called the distal phalanx (DP), middle phalanx (MP) and
proximal phalanx (PP). The two joints that are visible in
the NIR images for vascular biometrics are the proximal
interphalangeal (PIP) joint and the distal interphalangeal
(DIP) joint. Each phalanx has a head, shaft and base. The
shaft is much thinner and has an oval shape compared
to the round head and base. For vascular biometrics,
normally only the index, middle and ring finger are used,
since the thumb has a different bone structure, and the
little finger is too short.

Fig. 2: Bones in a human hand [6].

C. Finger vessels

Arteries are oxygen-rich, meaning that they sup-
ply blood to the organs. They contain oxygenated
haemoglobin (HbO2). Veins are oxygen-low, bringing
the deoxygenated blood (Hb) back to the heart. Each
finger contains two proper palmar digital arteries, one
on each side of the finger, from the hand palm to the
fingertip. The branching of these vessels contribute to
the unique pattern visible in NIR images. The images
shown in figure 3 show three example visibility stages
of the proper palmar digital arteries.

(a) Visible. (b) Ambiguous.

(c) Not visible. (d) Rotated finger.

Fig. 3: Visualisation of the different visibility stages of
the two proper digital arteries in the UTFVP dataset [2]
in (a, b, c). Additionally, a rotated finger is added in (d)
to visualise the artery from the side.

III. OPTICAL BACKGROUND

This section is meant to give a brief background on
optical phenomena, that may change either the direction
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or intensity of a photon, with the focus on biological
tissues. Additionally, the equations to describe these
phenomena are introduced.

The Beer-Lambert law, see equation 1, can be used
to express the amount of absorption and scattering in a
medium. Here, I0 is the intensity of the incoming light,
I is the intensity of the light leaving the medium in the
same direction as I0, d is the thickness of the medium
and the term µ represents the amount of absorption and
scattering.

I = I0e
−µd (1)

Absorption is the phenomenon where a photon col-
lides with a particle inside the medium and loses its
energy. The absorption coefficient µa defines the amount
of absorption of photons in a medium at a wavelength,
expressed in mm−1. Using the Beer-Lambert law from
equation 1, the output intensity can be calculated by
substituting µ = µa, assuming the medium does not
scatter.

Scattering is the phenomenon where a particle collides
with a particle inside the medium and changes direction,
defined by µs (equivalent to µa). The direction of scat-
tering light in biological tissue is often diffuse, meaning
that scattering in any direction is theoretically possible.
However, the average scattering angle θ̄ in biological
tissues is often not zero. Therefore, the reduced scat-
tering coefficient µ′

s is normally used to represent the
scattering. In short, this is a modified version of µs that
includes the average scattering angle, see formula 2. The
reduced scattering coefficient uses the anisotropy factor g
of the tissue, which is the cosine of the average scattering
angle, thus g = cos(θ̄).

µ′
s = µs(1− g) (2)

In an anisotropic diffuse medium such as biological
tissues, both absorption and scattering occur. Scattering
increases the total path length of the photons, giving it
a higher chance to be absorbed. These coefficients are
combined in the effective attenuation coefficient µeff ,
see equation 3, which can be used in the Beer-Lambert
law in equation 1.

µ = µeff =
√

3µa(µa + µ′
s) (3)

IV. RELATED WORK

This section gives an overview of literature related
to obtaining an understanding on the visual effect of
biological tissues in NIR images.

A. Generating synthetic finger vascular images

The research in [7] presents a method to create syn-
thetic finger vessel images. They first generate the vessel
tree structure, then include two bright joints, and finish
with image processing techniques, to resemble real finger
vascular images. An example synthetic image is shown
in figure 4a.

(a) Result from [7]. (b) Result from [8].

Fig. 4: Synthetic vascular finger images from literature.

A few years after this publication, [8] uses a Genera-
tive Adversarial Network (GAN) to generate synthetic
vessel images. A resulting synthetic image is shown
in 4b. In short, a GAN is a neural network architecture
containing a generator and a discriminator network. The
generator learns to generate the synthetic images, and the
discriminator learns to classify real and synthetic images.
Further understanding GANs is outside the scope of
this research, but the interested reader can find more
information in the introduction of [9] and [10].

The two studies previously discussed are solely based
on generating an image that resembles a real image,
but the research presented in [11] goes in a different
direction. They used a simplified mathematical model of
the finger, where the projection is calculated based on
an approximation of the light transmission trough a real
finger. Here, the absorption coefficient µa of subcutis
is used to obtain an expression for the transmission,
neglecting the scattering.

B. Vessel extraction methods

Chapter 1.3.1 of [1] gives an extensive overview
of vessel extraction methods for vascular biometrics.
A visualisation of the resulting templates from tree
common extraction methods is given in figure 5 [12].
Note that the image in figure 5b looks most similar to
the vessel structure in the original image. An overview
of algorithms with their original paper is presented in
table VII of appendix B.

The performance of a feature extraction method is
often expressed in terms of the equal error rate (EER),
which is the identification error, explained in sec-
tion V-C. The performance may be influenced by the
dataset capturing procedure and pre-processing steps [2].
When algorithms are compared on the same dataset,
with the same pre-processing steps, the most unbiased
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(a) Original. (b) Maximum Curvature.

(c) Repeated Line Tracking. (d) Wide Line Detector.

Fig. 5: Visualisation of three extraction methods [12].

conclusion can be drawn on the resulting performance.
For this reason, the most optimal algorithm is not chosen
based on the original paper, but rather on studies that
compare multiple algorithms. Table VIII in appendix B
contains an overview of the EER scores from comparing
studies. Maximum Curvature (MC) gives the lowest EER
in 4 out of 7 studies.

The steps to obtain a binary vessel template using
MC are accurately described in the original paper [13].
Additionally, Bram Ton made a Matlab implementation
of this algorithm available [14], which he applied in [2].

C. Optical coefficients

Relevant optical variables are the reduced scattering
coefficient µ′

s and absorption coefficient µa. If only µs

is known, the anisotropy factor g is needed as well
to calculate µ′

s. With these coefficients, the effective
attenuation coefficient µeff of the respective tissue can
be obtained.

Values for µ′
s, µa and the resulting µeff are sum-

marised in table I. Tables III, IV and V in appendix A
give an overview of the literature used to calculate these
average values. Table VI in the same appendix gives
anisotropy factors for various tissue types, where 0.9
is a very common value to use. Due to lack of optical
data on human samples, or lack of precise anatomical
information related to the finger, the dermis, epidermis
and articular cartilage are not included in the optical
overview.

To calculate the absorption coefficient of blood, the
molar extinction coefficients presented in the respective
studies are used with a molar concentration of 2.303 and
the haemoglobin gram molecular weight of 66,500. Both
the absorption and scattering of HBO2 are slightly higher
than for Hb. The values for blood in table I represent the
average, since in finger vascular images, there is no clear
distinction between veins and arteries.

Several factors directly influence the amount of ab-
sorption and scattering in subcutis, bone and blood

TABLE I: Overview of the mean µa, µ′
s and resulting

µeff with standard deviation in mm−1.

Tissue µa µ′
s µeff

Subcutis 0.094 1.21 0.61 ± 0.16
Bone 0.023 1.56 0.33 ± 0.18
Blood 0.48 1.70 1.77 ± 0.27

samples. First, for the bone, the amount of demineraliza-
tion [15] and the location of the sample [16] influence
the amount of scattering. Thus, the scattering depends
on whether the bone sample contains for example inner
sponge structure or the solid bone surface structure. For
the subcutis, the sample location also influences the
scattering, due to the different amounts of connective
tissue [17]. Additionally, the increasing ratio of water
over fat cells appears to increase the absorption [18].
For blood, increasing the haemoglobin concentration
increases both absorption and scattering [19].

D. Conclusion

The mentioned studies on generating synthetic finger
vascular images do not include anatomical and optical in-
formation. Since it is desired to obtain an understanding
for the imaging process of finger vascular images, the
simplified mathematical model from [11] will be used
as a starting point. The optical coefficients for subcutis,
bone and the vessels from table I will be used in the
model. The vessel template will be extracted using MC,
since this method proves to be the most effective. The
Matlab implementation [14] will function as a starting
point.

V. METHOD

A. Data pre-processing and vessel extraction

The UTFVP dataset is used to provide the vessel
patterns. Two example images from this set are shown in
figure 1 in the introduction. This set is chosen due to the
fact that these images are made with the sensor at the
University of Twente, and their capturing is very well
documented [2]. Pre-processing the images includes de-
tecting the finger region, aligning the finger horizontally,
removing the background and increasing the visibility of
the vessels using histogram equalisation [1]. This results
in figure 6a.

A binary vessel template is extracted from the pre-
processed images with MC, using the implementation
presented in [14]. Additionally, the thickness of the
binary vessels is enhanced to represent thickness of the
vessels in the original image, see figure 6. This is done
by applying a Gaussian filter over the whole image, and
making all non-zero pixels white.
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(a) Original image. (b) Binary vessel template.

(c) Overlap (a) and (b). (d) Vessels in (b) made bigger.

Fig. 6: Visualisation of the obtained vessel pattern.

B. Simplified mathematical model

The model represents a simplified human finger, con-
sisting of bone, vessels and subcutis tissue, see the
schematic in 7. Referring to research question 1, these
three tissues are expected to be essential, since they take
up the most space in the finger.

Eight light sources shine on the top of the bone, since
the sensor at the University of Twente used to capture
the UTFVP dataset also contains eight sources [2]. The
finger is represented by a 6 cm long cylinder with a 17
mm diameter. Both the diameter and the centre of the
bone are described by polynomials. The diameters of
the PIP and DIP are respectively chosen to be 12 and
11 mm, and the shaft of the MP is 6 mm. The centre
of the bone is lifted to make the top part of the bone
at the same height over the whole finger. The depth of
the vessels is defined linearly with the depth of the bone
centre. The depth at the deepest point (shaft MP) is 1.5
mm deeper than at the most superficial point (PIP joint).

Fig. 7: Schematic model of the principle of the projection
on the skin. Yellow square on top of the bone represents
a light source. Red circles are the vessels and pink
structure is the subcutis.

Referring to research question 4, the transmission can
be modelled using the effective attenuation coefficients
as presented in section IV-C and the Beer-Lambert equa-
tion discussed in section III. The transmission is obtained
by tracing the photons in their journey from the light

source through the bone, subcutis and optionally a vessel,
until they reach the surface of the skin, see figure 7.
The calculations inside the model will be divided into
smaller parts to simplify the total projection. First, a
dimensional reduction is done by dividing the model of
the finger in thin slices, to obtain the vessel projection
per slice, as visualised in the aforementioned figure.
Combining the projections of the slices together forms
the complete vessel projection on the surface of the
skin. A parallel transformation is used to transform the
cylindrical projection to the flat image plane.

The optical properties of the bone, subcutis and ves-
sels, respectively µeffb , µeffs and µeffv , define the out-
put intensity I on the surface of the skin. First, the light
enters the finger at the dorsal side of the bone (neglecting
the skin above the bone), as shown in figure 7. The light
travels to the bottom half of the bone with path length db.
The photons then travel trough the subcutis tissue with
length ds. If a photon intersect with a vessel, the path
trough the subcutis decreases with dv. The transmission
of one photon is expressed by equation 4, using the mean
values as presented in table I.

I = I0e
−µeffb

db−µeffs (ds−dv)−µeffvdv

= I0e
−0.33db−0.61(ds−dv)−1.77dv

(4)

The model is constructed to calculate the transmission
per slice, but in reality, the photons travel in every
direction, thus the photons in the finger-length direction
need to be included for both the bone and the subcutis.
Scattering in the bone is incorporated by tracing the
photons from each source to each location on the bottom
surface of the bone in an arbitrary slice. The euclidean
distance between the sources and the bone is used in the
Beer-Lambert equation, and the intensity of the photons
is attenuated accordingly. Equivalently, scattering in the
subcutis can be obtained by tracing all photons from the
bottom side of the bone to the surface of the finger of
neighbouring slices. However, for the subcutis scattering,
this drastically increases the amount of calculations.
Therefore, an approximation of the scattering behaviour
in this medium is done. One simplification is that in
every slice of the finger, the distance from the bone to
the skin (dold) is the same. If the current slice is x, then
the effects of the photons in the next slice x +∆x can
be calculated with the Beer-Lambert equation.

I

I0
= e−µeffdnew (5)

With Pythagoras, the new distance dnew from the bone
in slice x to the surface in slice x+∆x is obtained.

dnew =
√

∆x2 + d2old
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The complete image can be shifted ∆x and attenuated
by a factor calculated with equation 5. Doing this for a
wide range, and adding all the attenuated shifted images
together, the scattering in the subcutis is approximated.

C. Model evaluation

The model is evaluated manually, based on whether
the generated images visualise the expected behaviour.
The aspects that are evaluated in this stage are further-
more discussed in the experiment section, and mainly
cover the effect of varying the depth of vessels and
optical coefficients of the subcutis and bone.

A mathematical expression for the similarity between
two images can be obtained with normalised cross-
correlation. Here, one image is shifted over a second
image in both x- and y-direction, and the similarity,
which is a value between -1 and 1, is calculated every
instance (x, y). At some point, there is a maximum
similarity, which represents the resulting similarity score.
A distinction is made between genuine and impostor
comparisons.

• Genuine scores: similarity between two images of
the same source (same finger)

• Impostor scores: similarity between two images of
different sources (two different fingers)

Naturally, genuine comparisons should have a large
similarity score, and impostor comparisons a low score.
The classification performance of an identification sys-
tem is defined by the amount of overlap between the
genuine and impostor distributions. The identification
performance is defined by the false match rate (FMR)
and false non-match rate (FNMR), see formula 6. These
calculations use the amount of true positive (TP), true
negative (TN), false positive (FP) and false negative (FN)
classifications at a certain threshold.

FMR =
FP

FP + TN

FNMR = 1− TP

TP + FN

(6)

The FMR and FNMR are calculated for the whole
range of similarity scores. At some score, the FMR and
FNMR are equal. This similarity score represents the
decision threshold, which is the optimal similarity score
to determine whether the inputs are a match. The equal
error rate (EER) is the value of the FMR and FNMR
at this decision threshold, which is a general measure
that defines the performance of an identification system.
The mathematical expression for the EER is given by
equation 7.

EER = argmin |FMR− FNMR| (7)

VI. EXPERIMENTS

There are four experiments, which are introduced in
the next list.

1) Evaluation of the possible vessel depths. This
experiment is meant to answer research question 2,
to find whether there is a possible relation between
the vagueness and depth. The exact depth inside
the finger is unknown, but placing a template in
the model at various depths, the projection can be
compared with the vessels in the original image.
Note that this depth differs per subject, thus this
experiment only gives an indication for the used
subject. For this experiment, the depth of the
vessels at the PIP joint will vary between 0.25 and
1.25 mm, with steps of 0.25 mm. At the deepest
point, which is around the shaft of the MP, the
depth of the vessels will be increased an additional
1.5 mm.

2) The effect of varying µeff . Various values within
the SD range for both bone and subtucis are tested.
Both tissue structure and thickness (path length)
is different per person, thus this experiment only
gives an indication for the values representative for
this model. This experiment is meant to answer
research question 3, whether the different optical
coefficients per subjects may be the source for the
intensity differences at the MP.

3) Evaluation of the chosen µeff . When one light
source is used to illuminate the finger, the resulting
bright area gives information on the scattering
angle. This effect can be mimicked in the model by
using only one light source. Using these results, the
chosen approach to approximate light transmission
through the finger can be evaluated, referring to
research question 4.

4) Identification system based on generated im-
ages. The genuine and impostor distributions from
both real and generated images give insights on
the basic similarity between the two, which can
be compared on their mean value, standard devi-
ation, decision threshold and EER as described in
section V-C. This experiment is meant to answer
research question 5. The cross-correlation score
is a direct representation of how similar template
from the generated image is to the original tem-
plate from the real image.

VII. RESULTS

Several features are added step-by-step in figure 8,
visualising the effect of the biological tissues on the
generated images.
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(a) (b) (c) (d) (e) (f)

Fig. 8: Visualisation of the steps taken to obtain the
final image. (a): Input template. (b): Bone with constant
diameter, constant vessel depth. (c): Scattering of the
subcutis. (d): Varying bone depth and diameter. (e):
Vessel depth increases linearly with the centre of the
bone. (f): Original image.

The results of experiment 1 are presented in figure 9,
where the template is placed at varying depths in the
model. Here the mentioned depth is the depth at the
PIP joint, and increases an additional 1.5 mm at the
shaft of the MP. Appendix C shows some additional
images including the resulting template extracted with
MC. The original image contains vessels at various sizes,
where the generated images only contains vessels with a
constant width. The vessels at the PIP joint and smaller
vessels at the DIP joint appear to be most similar with a
depth of 0.25 mm. The biggest vessel, at the right side
of the image, has a width similar to the vessels in the
image at a depth of 1.25 mm. Nevertheless, deep vessel
appear to show strange behaviour, further elaborated in
section VIII-B.

(a) (b) 0.25 (c) 0.50 (d) 0.75 (e) 1.00 (f) 1.25

Fig. 9: Results of experiment 1. Varying vessel depths
in mm. Original image in (a).

The resulting images for varying µeff of subcutis and
bone are given in figures 10 and 11, corresponding to
experiment 2. For both tissues, values close to the mean

µeff appear to represent the original images best. Thus,
for the subcutis 0.6 mm−1, and for the bone 0.3 mm−1.
Values too far from these coefficients either result in
overall too dark images, or are too bright at the MP
compared to the joints. The image sets show opposite
behaviour, where increasing µeff of the subcutis corre-
sponds to decreasing µeff for the bone.

(a) (b) 0.4 (c) 0.5 (d) 0.6 (e) 0.7 (f) 0.8

Fig. 10: Resulting images of experiment 2. Here, µeff

of subcutis is increased, expressed in mm−1. Original
image in (a).

(a) (b) 0.1 (c) 0.2 (d) 0.3 (e) 0.4 (f) 0.5

Fig. 11: Resulting images of experiment 2. Here, µeff

in the bone is increased, expressed in mm−1. Original
image in (a).

The results of experiment 3 are shown in figure 12.
The widths of the resulting areas are given in the image
caption. The estimated length of the real finger in the
image frame is 5 cm, where the finger in the model has
a length of 6 cm. The width at the MP is approximately
the same, and at the DIP, the generated area is slightly
smaller.

Experiment 4 concerns the genuine and impostor
distributions for real and generated images, shown in
figure 13. An overview of the results obtained from the
distributions is given in table II, based on the additional
graphs in appendix D. The genuine distributions are
very similar. The high error for the generated images is
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(a) (b) (c) (d)

Fig. 12: Results of experiment 3. Real (a, c) and gener-
ated (b, d) images visualising the effects of 1 light source
above the MP (a, b) and DIP joint (c, d). Sizes of the
illuminated areas from (a) to (d) are approximately 3.0
cm, 2.9 cm, 2.5 cm and 2.0 cm.

introduced by the average impostor scores being higher
and the distribution is less steep compared to the real
images.

Fig. 13: Resulting distributions of experiment 4. Genuine
and impostor similarity score distributions of the real and
the generated images.

TABLE II: Results of experiment 4. Summary of the
values obtained from the plots in figure 13.

Genuine Impostor Decision EER

Dataset Mean SD Mean SD threshold [%]

Real 0.392 0.090 0.167 0.014 0.210 0.74
Generated 0.406 0.097 0.220 0.023 0.256 6.60

Difference 0.014 0.007 0.053 0.009 0.046 5.86

VIII. DISCUSSION

In this study on vascular biometrics, the origin of
several aspects in the images is examined. The following
sections will use the results from the previous section to
answer the research questions presented in the introduc-
tion. The last section presents a brief introduction on
how to apply this work in future research.

A. Which tissues are crucial in the imaging procedure?

In the method, see section V, the assumption is made
that the largest structures in the finger, thus the bones,
subcutis and vessel pattern, are the main contributors to
the imaging process. For a simplified model of the finger,
this appears accurate since the generated images roughly
represent the original images. Since the neglected tissues
are much smaller, it is expected that they would only
add details to the image. These additional tissues are
the articular cartilage, tendons, ligaments that keep the
tendons in place and synovial fluid between the joints.
The joints are complex structures that are simplified in
the model to the point that it is solid bone tissue with a
large diameter. It is expected that especially including the
tendons and the ligaments will improve the appearance
of the generated images. The tendons take up a relatively
large amount of space that is now assumed to be subcutis.
The ligaments would be a good addition because it is
expected that these bands around the joints are the cause
for the rectangular joint shapes.

B. Why are the vessels vague?

A vague projection is only produced for vessels with
a full-shadow (see the middle vessel in figure 7), which
are at depths 0.25 and 0.5 in figure 9. From this, it can
be concluded that there is a relation between the vessel
depth and vagueness, and that in real images, vaguer
vessels are likely deeper. Thus, to answer the research
question, the vessels are vague because they are a shadow
projection on the skin, where the bone acts as a light
source.

Nevertheless, it is expected that the vessels would still
show this behaviour when the depth is further increased.
At stages where the vessels only produce half-shadows
(see the right vessel in figure 7), the vessels appear to
have a constant gray value with abrupt borders. This is
something that is not visible in real images, and may be
the result of the chosen µeff for the subcutis being too
low. When the absorption is too low, photons coming
from a larger distance (sides of the bone) are not atten-
uated enough. Increasing µeff to an unreasonably high
value (higher than tested in figure 10) shows Gaussian
vessels, but the overall image becomes too dark.

C. Why is the MP area in some images much darker
than in other images?

From the results in both figure 10 and 11 it can be
seen that the used µeff for both subcutis and bone
strongly influences the intensity of the tissue around
the MP. All presented values are inside the SD range
as found in literature, see appendix A. The origin of
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varying µeff values are mainly tissue consistency (e.g.
in subcutis: amount of fat cells, water, and connective
tissue). Additionally, due to the geometrical differences
between real fingers, the tissue depth d is varying as
well. This gives that both the finger dimensions and the
tissue consistency influence the intensity in the resulting
image. This is a natural conclusion, since µeff and d are
the two variables in the Beer-Lambert equation.

D. How can transmission of NIR light through the finger
be modelled?

The procedure that is followed to mimic the light
transmission is discussed in section V. Since the gener-
ated images roughly appear similar to the real images, it
can be concluded that the realised approach is effective.
The procedure can further be verified using the illumi-
nated areas from figure 12. The resulting illuminated
areas in the generated images are approximately the same
as in the real images. The generated DIP area is slightly
smaller. Assuming the anatomy is roughly the same in
the model and real finger, the conclusion can be drawn
that the model accurately mimics light transmission. The
differences between the resulting areas may be the result
of varying anatomy and different µeff values (see the
previous research question in section VIII-C).

E. Can the original vessel templates be extracted from
the generated images?

From the results in figure 13, it can be observed
that the general shape of the especially the genuine
distributions are similar. The high generated impostor
scores cause the large EER. This may be explained by
small elements in the original vascular template that are
lost at the output of the model. This is visualised in
appendix C by the binary templates of the original image
and generated template at 0.25 mm depth (figures 14c
and 14f). The latter appears a filtered version of the for-
mer. Excluding these elements results in higher impostor
scores compared to when they are included. Thus, to
answer the research question, the original template can
be extracted to a certain extent. Small groups of pixels in
the original template are not reproduced in the templates
extracted from generated images.

F. Future work

The knowledge obtained by this thesis can be further
applied in research on vascular biometrics. Identification
based on finger vascular biometrics is currently solely
based on the extracted vessel pattern (that sometimes
includes the joint borders [20]). Nevertheless, including

information such as the intensity of the bone and the
vagueness of the vessels provides additional personal
information. Incorporating this in the identification pro-
cedure may increase the performance.

Additionally, as briefly stated in the introduction,
obtaining knowledge on the imaging procedure will
contribute to the research on spoofing. Knowing how
the image is exactly formed will help detecting synthetic
images, or images from a fake finger.

This work can also be used to create a dataset contain-
ing synthetic images. Current finger vascular datasets are
often limited by being small, their capturing procedure
is insufficiently documented or they are not publicly
available due to privacy concerns. A next step for this
research would be to create custom vessel patterns.
Ideally, more anatomical features are incorporated in the
model as well, to make the created images appear more
real. This synthetic dataset can be used to train machine
learning architectures. The variables in the dataset can
be manually adjusted, for example the addition of finger
rotation. A classifier can be used to evaluate the effect
that this variation has on the identification performance,
since the parameters of the synthetic images are precisely
known. Additionally, a synthetic set can be used to train
a classifier to detect fake images, which is useful in
research on spoofing.

IX. CONCLUSION

This research focuses on obtaining a better under-
standing of the imaging procedure for finger vascular
biometric images. Many aspects in these images were
unknown, including the width and vagueness of the
vessel projection, the bright area of the joints and the
dark area between the joints. In order to understand
the imaging process, a simplified mathematical model
is introduced to mimic the behaviour of near-infrared
(NIR) light in the finger, including the bone, subcutis
skin tissue and the vessel tree, to create finger vascular
images based on real images.

The presented model is accurately able to mimic the
vessel projection based on simplifying assumptions on
the anatomy and optical parameters of the tissues. Fea-
tures such as the bright joints and dark vessel projections
are reproduced. It appears that the intensity of the areas
of the joints and the area between the joints is directly
related to the effective attenuation coefficient of both
bone and subcutis. This coefficient depends on the tissue
consistency of the subject. The appearance of the vessel
projection is related to the vessel depth in the finger.
In the situation where the vessel projection contains a
full-shadow, the Gaussian shape of the vessel becomes
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clearly visible. In this situation, there is relation between
the width of the vessel projection and its depth in the
model.

The model at this stage is a basic representation of a
finger, limited by the simplifying assumptions made on
the anatomy and optical variables. In order to improve
the model further, the anatomy can be improved by
including the shape of a real finger and by including
additional tissues in the model.
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APPENDIX A
OPTICAL COEFFICIENTS FOR BIOLOGICAL TISSUES

TABLE III: Values for µa and µ′
s of human subcutis skin tissue at 850 nm in mm−1. The bold value is an outlier.

Paper µa µ′
s Amount Sample

Salomatina 2006 [17] 0.1 ± 0.03 2 ± 0.2 10 Face, scalp, neck, back
Simpson 1998 [21] 0.0085 ± 0.004 1.12 ± 0.4 4 Abdominal, breast

Bashkatov 2005 [22] 0.103 ± 0.03 1.05 ± 0.35 Unknown Abdominal
Peters 1990 [23] 0.08 ± 0.03 0.66 ± 0.34 7 Breast

Average including outlier 0.073 ± 0.044 1.21 ± 0.57
Average excluding outlier 0.094 ± 0.013

TABLE IV: Values for µa and µ′
s of bone samples at 850 nm in mm−1.

Paper µa µ′
s Sample

Bashkatov 2006 [24] 0.011 ± 0.002 1.873 ± 0.137 Cranial bone
Firbank 1993 [25] 0.025 ± 0.002 1.7 ± 0.1 Skull

Ugryumova 2004 [15] 0.02 2.1 Pig skull
Pifferi 2004 [26] 0.008 1.21 Calcaneus (heel)

Bevilacqua 1999 [27] 0.05 ± 0.02 0.9 ± 0.1 Skull

Average 0.023 ± 0.017 1.56 ± 0.49

TABLE V: Values for µa and µ′
s of blood (HbO2 and Hb) at 850 nm in mm−1. The haemoglobin concentration is

expressed in gram Hb/L.

Paper µa µ′
s Sample Concentration

Prahl 1988 [28] 0.57, 0.35 - HbO2, Hb 150
Moaveni 1970 [29] 0.56, 0.42 - HbO2, Hb 150
Takatani 1979 [30] 0.55, 0.43 - HbO2, Hb 150

Faber 2004 [19] 0.5, 0.4 1.93, 1.46 HbO2, Hb 93
Enejder 2003 [31] 0.5 1.7 Whole blood Average ≈ 127

Average 0.48 ± 0.079 1.70 ± 0.24

TABLE VI: Values for the anisotropy factor g of various biological tissues.

Tissue Anisotropy factor range Literature

Subcutis 0.75 - 0.95 [32], [17], [21], [33], [3], [34], [35]
Phalanges 0.8 - 0.9 [36], [3]

Skull (for reference) 0.9 - 0.93 [15], [37], [38], [39]
Articular cartilage 0.9 - 0.97 [40], [3]



REFERENCES 14

APPENDIX B
VESSEL EXTRACTION

TABLE VII: Overview of commonly used vessel extraction methods.

Literature Method Abbreviation

Miura 2007 [41] Maximum Curvature MC
Miura 2004 [13] Repeated Line Tracking RLT
Song 2011 [42] Mean Curvature Mean Curv.
Choi 2009 [43] Principal Curvature PC
Qin 2013 [44] Difference Curvature DC

Huang 2010 [45] Wide Line Detector WLD
Kumar 2011 [46] Gabor Filter GF
Kumar 2015 [47] Local Binary Pattern LBP

TABLE VIII: Overview of the EER percentage as presented in literature comparing multiple methods. The bold
numbers are the best performing methods from that research.

Literature MC Mean Curv. PC DC WLD GF RLT LBP

Ton 2012 [2] 0.49 - 0.37 - 0.89 - 0.99 -
Prommegger 2019 [48] 0.37 - 0.77 - 0.92 1.02 - -

Kauba 2014 [49] 0.42 - - - 2.87 - 1.64 5.03
Maljurivc 2020 [12] 7.26 - - - 14.99 - 18.17 -

Qin 2017 [50] 8.30 4.20 - 7.90 7.62 5.08 12.85 -
Qin 2013 [44] 10.9 7.44 - 3.32 - 5.79 - -

Meng 2018 [51] 2.65 10.64 - - - - 8.25 6.90

Their own results 0.0009 0.25 0.36 3.32 0.87 0.65 0.145 0.081
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APPENDIX C
VESSEL DEPTH VARIATION

(a) Original image (cut). (b) Normalised (hist. eq.). (c) Original vessel pattern.

(d) Initial depth at PIP ≈ 0.25 mm.
(e) Overlap. (f) Resulting vessel pattern.

(g) Initial depth at PIP ≈ 0.5 mm.
(h) Overlap. (i) Resulting vessel pattern.

(j) Initial depth at PIP ≈ 0.75 mm.
(k) Overlap (l) Resulting vessel pattern.

(m) Initial depth at PIP ≈ 1 mm.
(n) Overlap. (o) Resulting vessel pattern.

(p) Initial depth at PIP ≈ 1.25 mm.
(q) Overlap (r) Resulting vessel pattern.

(s) Initial depth at PIP ≈ 1.5 mm.
(t) Overlap (u) Resulting vessel pattern.

Fig. 14: Visualisation of varying vessel depths and the resulting binary templates. The mentioned depth is the depth
at the PIP joint, and increases 1.5 mm in the deepest point (shaft of the MP).
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APPENDIX D
IDENTIFICATION RESULTS

(a) (b)

(c) (d)

(e) (f)

Fig. 15: Genuine and impostor similarity score distributions of the real dataset (a) and the generated image set (b).
The respective plots of the FMR and FNMR over the classification error are given in (c) and (d). The corresponding
DET-curves are given in (e) and (f).

(a) Same source image. (b) Different source images.

Fig. 16: Similarity scores between real and generated images. For (a), each generated image is compared with the
corresponding original image. For (b), each generated image is compared with the real images of that same finger,
skipping the ones corresponding to the exact same image (which are covered for (a)). The mean for (a) is 0.520 ±
0.023, and for (b) 0.352 ± 0.065.
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