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Deep learning models like Long Short Term Memory (LSTM) or Convo-
lutional Neural Network (CNN) have yielded great results in the field of
understanding smartphone context in recent years. In this paper, we pro-
pose using another deep learning model based on Transformer to tackle the
same task with IMU sensors data. We will start by reviewing an overview of
existing approaches for smartphone context detection. A new sensor-based
dataset on smartphone context and step recognition is collected. Extensive
experiments have been conducted to compare the accuracy of the Trans-
former model to other deep learning models like LSTM or CNN. Furthermore,
the Transformer model used for smartphone context understanding also
improves the efficiency of step counting.

Additional Key Words and Phrases: Transformer, Smartphone context detec-
tion, LSTM, CNN, IMU sensors, step detection.

1 INTRODUCTION
Smartphone context detection is the task of understanding the sur-
rounding environment where the phone is placed, i.e, its relative
locations and its postures using built-in sensors. Understanding
smartphone context helps build a more responsive and adaptive sys-
tem to the user’s situation. This task is done by the usage of a wide
range of provided sensors like inertial sensors (accelerometer, gyro-
scopes, and magnetometer), environmental sensors (pressure, tem-
perature, light), cameras, or WiFi/Bluetooth signals. Understanding
device placements can give great insights into real-world navigation
behaviors [6]. A context recognition system can be incorporated
into the software to deliver a better-personalized media recommen-
dation system [11]. Moreover, the importance of this task has also
been shown with a wide range of other applications like health
tracking [22] or fall detection [4].

The Transformer [21] is a deep learning architecture introduced
by the Google Brain team in 2017. Transformer consists of serial
encoder and decoder blocks that are suitable for sequential inputs,
which were intended for natural language processing but also usable
for other kinds of data like image sequences or time-series data.
Inside Transformer architecture, the positional encoding transforms
the input into the vectorwith positional context information, and the
self-attention mechanism helps to explore the relevance or attention
of different parts of the input. These characteristics help the model
understand the dependencies within the input space, which is not
possible when using the CNN approach. At the same time, the
attentionmechanism also allows parallelization and reduces training
time, unlike LSTM, which requires processing one word at a time.
For those reasons, Transformer has been shown to yield great results
in tasks outside natural language processing. With time-series data,
Transformer works well with event forecasting [25, 27], anomaly
detection [23] and classification [15]. Hence, this research proposes
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using Transformer architecture in the task of smartphone context
detection with IMU sensor data.
In this research, we will investigate how efficient it is to use

the Transformer deep learning model in the task of smartphone
context detection. The contribution of this paper is as follows. First,
an overview of existing smartphone context and step detection
approaches will be reviewed as an introduction to fellow beginning
researchers in the pervasive system. Secondly, a newly collected
data set and training process will be introduced to highlight the
accuracy of Transformer models compared to existing approaches
like LSTM and CNN. Finally, the above Transformer model will be
shown to have improved the accuracy of the task of step counting.

The following explains the outline of this paper. In section 2, an
overview of existing approaches in smartphone context detection
will be reviewed. Section 3 explains how the data is collected and
pre-processed. Section 4 details the proposed Transformer model
for smartphone context recognition. Section 5 describes the experi-
ments. Finally, the paper ends with discussions and conclusions of
the experiments in section 6.

2 EXISTING WORKS
The study of smartphone context detection is about classifying dif-
ferent relative positions of the smartphone on the human. Examples
of these contexts are inside the bag, held and used in hand, or inside
the purse. A study [3] in 2007 shows that women in major cities
like Helsinki, New York, or Milan, on average, spend 61.06% of their
carrying time putting their phone in the bag, while its counter-
part has their phone inside their trousers for 60.10% of the time.
The next commonly placed phone positions are in the upper body
or used in hand. In existing research, smartphone context is used
interchangeably with keywords like phone placement, phone posi-
tion, phone location, pose, or user mode. Recognizing smartphone
context is often studied as part of a larger topic of human activity
recognition (HAR) or pedestrian dead reckoning (PDR). An early
paper [13] classifies four different poses: bag, ear, hand, and pocket,
using the Support Vector Machine (SVM) to build a pose-dependent
model for predicting walking speed. A similar study [2] recognizes
pockets, belts, hands, or bags and also uses SVM classifiers and
Hidden Markov Chain (HMM) on hand-crafted features extraction
to improve the accuracy of activity tracking. A study [18] for step
detection algorithm uses a decision tree classifier for four classes
of phone motion mode: static user, hand swinging, quasi-stable
(texting, phoning, bag carrying), and irregular mode. This study
also pre-processes the data by extracting features like signal en-
ergy, signal variances, or frequency. Smartphone carrying pattern
is also used to improve indoor trajectory tracing with three modes
of texting, phoning, or pocket [24]. A common strategy in early
research in smartphone context understanding is to collect iner-
tial measure sensor data like gyroscopes or accelerometers, extract
various hand-crafted features like statistical features (mean, max,
standard deviation) or time-domain features (skewness, magnitude,
energy) and use traditional machine learning techniques to classify
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different phone positions. In recent years, the rise of deep learning
techniques has outperformed existing approaches in this task, even
when used with raw data. A study [9] on phone mode recognition
shows that given the same training inputs, deep learning methods
like CNN, Gated Recurrent Unit (GRU), or LSTM outperform in
accuracy compared to tree-based techniques like the random for-
est, gradient boosting, or CatBoost. The task of classifying phones
that are in the pocket, swinging, texting, or talking has shown high
accuracy of around 92% with CNN or LSTM models even when
training with only an accelerometer sensor [8]. Some studies have
been really creative in combining different deep learning models
to create complicated architecture that has shown excellent results
on this task. Using a combination of the Inception module and bi-
directional GRU model has yielded a high accuracy in studying
human activity recognition, which is performed in different phone
states [20]. A combination of CNN and LSTM outperforms the use of
only LSTM or GRU models when being trained with accelerometer
and gyroscope measurements [8].
The study of step detection using mobile phones or embedded

devices IMU sensor information is a part of the larger study of
Pedestrian Dead Reckoning (PDR). In PDR algorithms, step detec-
tion is the initial step before estimating step length, predicting the
direction, and updating the position. Inertial sensor data like ac-
celerometer or gyroscope [1, 14, 17, 19] are often used as the main
input for detecting steps. Various algorithms like zero-crossing [16],
flat zone detection [7] and most commonly peak detection [1, 14, 19]
are used to solve this task. Melania shows that gyroscope peaks can
be used to detect the swinging motion of the hand while holding the
phone [19], which can be used to detect a step as the hand swinging
motion is in sync with the leg stepping motion [12]. In other cases
where the phone is being used for texting, calling, or being kept in
the bag, the accelerometer’s peak is an alternative for detecting a
new step. Stéphane and Harald extracted time-series features from
accelerometer data to train in a neural network for detecting steps.
Itzik Klein et al. highlight that smartphone mode detection can help
improve detecting steps. Hence it is an opportunity in this study to
verify if the Transformer model can help detect steps.

3 DATASET

3.1 Data collection
The data collection experiments described in this section are con-
ducted at the University of Twente, inside the open space of the
Technohal building. The data collection is done by an Android ap-
plication and Android phones. The decision to write a new Android
application for data collection is to enable easy updates to the data
collection process and help in deploying the trained model later for
demo purposes. The Android is written in Kotlin, providing features
like automatic labeling and a timer. This tooling is open source and
can be found on https://github.com/anhanh11001/imu_transformer.

The data is collected through 5 phones from 3 brands (Samsung,
Google Pixel, and HTC). There are five location context collected
during the process:

• INSIDE THE PANT POCKET
• INSIDE THE BAG
• USING IN HAND (texting, surfing the internet)

• HOLDING IN HAND
• CALLING

At the same time, there are also 2 simple human-related labels:
WALKING and STANDING. During the data collection process, each
participant was asked to perform three 5-minute experiments of
walking, standing, and a combination of walking and standing. The
participant can walk in any direction and can change their walking
speed. Moving around the open floor in the building includes walk-
ing in a straight line, turning left/right/around, avoiding other fellow
students in the university or obstacles like tables, stopping at the
coffee machine, or stopping to read an ad. At the beginning of the
experiment, the participant will select the smartphone context and
place the phone in the predefined context. When the timer starts
counting, the participant will perform the corresponding action.
When the timer finishes counting the experiment length, the appli-
cation will notify by vibrating and playing a sound. The collected
data will be extracted to the local storage of the mobile app in CSV
format. Overall, five collected labels are evenly distributed and their
length is around 75 minutes each.
The collected data come from the phone clock and inertial mea-

surements sensors, which are accelerometers (including gravita-
tional information), magnetometers, and gyroscopes. Besides the
phone clock, each sensor provides data within three axes. These
sensors provide information about relative changes in velocity or
orientation of the phone body. The sampling rate is up to 20 mil-
liseconds, depending on the phone state. For example, if the phone
is turned off, the sampling rate will be reduced. However, we try to
keep the phone on all the time to get the most data and remove any
failed cases where the phone turned off accidentally.
During the data collection process, we also collect the informa-

tion whenever a step is taken. This is done by manually recording
whenever a new step is taken with another person using another
Android application.

3.2 Data pre-processing
Even though the collected raw data is already labeled, it is still re-
quired to pre-process those data to use them for training with deep
learning models. The first step of pre-processing is to visualize the
data and find the error in the data to remove them. For example,
there were a few experiments where the sampling rate dropped and
produced a flat curve in the plots, requiring data recollection. For
context detection, the formatted input is a fixed-size window of
sensor data, and the formatted output is the numerical decimal rep-
resenting the label. The raw input is divided into a window length of
2 seconds with 40 small chunks in each window. Each consecutive
window has an overlap of 1 second. Each chunk represents a snap-
shot of IMU sensor information, and two consecutive chunks are 50
milliseconds in difference. The formatted input has the shape (40,
9), with 40 being the number of chunks and 9 being the number of
input data (3 sensors with 3 axes each). After the input is formatted,
a few techniques have been tried to improve the training process.

The first pre-processing technique used is normalization. In this
project, normalization was done using the min-max scaler with the
formula below. For every feature or column in the dataset, each value
is scaled by taking its difference to the smallest value and comparing
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Fig. 1. Top 10 extracted features using SVM.

Table 1. Training accuracy with different number of extracted features using
a simple CNN model.

Number of features Accuracy
All features (60 features) 47.8%

Top 15 features 80.9%
Top 10 features 87.0%

it to the difference between the largest and the smallest values. The
normalization formula is shown below. This scales all values into
the range from 0 to 1. Other normalization methods had also been
tried during the experiment, like L1 and L2, but did not yield good
results compared to min-max normalization. Normalization aims
to equalize the importance of different features while their value
ranges differ.

𝑚𝑖𝑛_𝑚𝑎𝑥_𝑠𝑐𝑎𝑙𝑒 (𝑥) = 𝑥 −𝑚𝑖𝑛(𝑑𝑎𝑡𝑎)
𝑚𝑎𝑥 (𝑑𝑎𝑡𝑎) −𝑚𝑖𝑛(𝑑𝑎𝑡𝑎)

The second technique that has been tried is standardization. This
technique scales each feature’s value into a new data sample with a
mean of 0 and a standard deviation of 1. Similar to normalization,
standardization can be useful to avoid features with a higher range
from dominating the decision during the training process.

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 (𝑥) = 𝑥 −𝑚𝑒𝑎𝑛(𝑑𝑎𝑡𝑎)
𝑠𝑡𝑑 (𝑑𝑎𝑡𝑎)

Besides the two explained feature scaling techniques, the third
pre-processing approach used is feature extraction and selection.
From the existing features, we extracted two more features: the
magnitude and the angle from the unit vector for each sensor (An
IMU sensor data can be seen as a vector with 3 axes in 3D space).
The magnitude is calculated as𝑚𝑎𝑔𝑖𝑡𝑢𝑑𝑒 (𝑥,𝑦, 𝑧) =

√︁
𝑥2 + 𝑦2 + 𝑧2.

The angle is calculated with the formula 𝑎𝑛𝑔𝑙𝑒 (𝑥,𝑦, 𝑧) = 𝑎𝑟𝑐𝑜𝑠 ((𝑥 +
𝑦 + 𝑧)/(

√
1 + 1 + 1 ∗

√︁
𝑥2 + 𝑦2 + 𝑧2)). For each window of 2 seconds,

the minimum, the maximum, mean, and standard deviation of its
chunks’ feature will be extracted. Some of its features can be useful
to remove the noise in the data set. For example, the mean operation
will smooth out the volatility and outlier in the data. The result is a
list of 60 extracted features. The next step after feature extraction
is feature selection using the Support Vector Machine (SVM). SVM

helps to find the corresponding coefficient of each feature when
mapping the dataset into the hyperplane that can classify different
labels, and those coefficients show the importance of the features
relative to the training process. We run a simple experiment of
training a CNNmodel using a different number of extracted features
and a subset of the data and found that using only the top 10 features
shows the highest accuracy of 87% in table 1. Hence, we use those
top 10 features in figure 1 in the next sections to compare with
training on raw features.

4 TRANSFORMER-BASED MODEL

4.1 Model architecture
An overview of the model architecture is shown in figure 2 below.
The design of the Transformer-based model closely follows the
original design of Transformer [21] but removes the decoder part.
Overall, the architecture consists of a stack of Transformer serial
encoder blocks, followed by a few fully-connected layers and a
softmax layer. The standard input of this architecture is a 1D-array
sequence of numerical sensor values, and the standard output is a (5,)
1D-array of probabilistic results of labels. Inside each Transformer
encoder block, there are an attention part and a feed-forward part,
which is similar to the encoder part of the original Transformer
model. The inputs, attention parts, and feed-forward parts are also
connected by residual connections [5].

Attention Part: The attention part starts with a normalization
layer, followed by a multi-head attention block and a dropout. The
attention block is used to adjust the weights of each chunk inside the
time-series window so that they will have an adjusted impact on the
hidden states of downstream layers. This attention block is critical
for the Transformer model to perform its long-range dependencies
understanding property.

Feed-forward Part: The feed-forward part also starts with a layer
normalization, followed by fully-connected layers and a dropout.
This feed-forward part is used to better represent the output from
the previous attention layer so that it can better fit the next attention
part.

4.2 Training Transformer-based model
To train the proposed Transformer model, there are multiple vari-
ables to consider, like the number of transformer encoder blocks,
the number of heads or head size in the multi-head attention block,
or the number of fully-connected layers. To find an optimal con-
figuration, we train the Transformer models on two small subsets,
where subset 2 has twice the number of data compared to subset 1.
Table 2 shows the detailed training configuration, containing the
train-validation-test split of 70-15-15, batch size of 32, epoch num-
ber of 1000, and sparse categorical entropy for loss function. The
models will be adjusted by changing one of these variables (number
of heads, head size, number of Transformer encoder blocks) while
keeping others the same. In these training trials, we observe that
there is no specific set of (# heads, head size, # Transformer encoder
block) that work best for all data, which is presented in figure 3. The
training process shows that smaller models train faster and are less
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Fig. 2. Transformer-based architecture for context detection.

Table 2. Baseline configuration for training the Transformer-based context
detection model.

Training Config Value
Train/Val/Test Split 70/15/15

Optimizer Adam
Batch size 32
Epoch 100 (subset) or 1000 (full dataset)

Loss function Sparse Categorical-Crossentropy
Model Config Value

Head size 32
# of heads 6

# of Transformer encoder block 2

likely to be over-fitted. Increasing model sizes by changing the num-
ber of Transformer encoder blocks or head sizes can improve the
accuracy when being trained and tested with more data. Therefore,
to find the best models for all collected training data, we decide to
set the default configuration of (# heads, head size, # Transformer
encoder block) to be (4, 64, 2) and keep increasing those variables
to have bigger models in the experiment sections and observe the
accuracy.
In smartphone context detection, selecting correct features can

help speed up the training process by reducing the number of calcula-
tions. The baseline features used are accelerometers, gyroscopes, and
magnetometers. The accelerometer can detect the changes caused
by vibration or movement. The collected accelerometer also includes
incorporated gravitational information, which can help understand
the smartphone’s relative posture compared to the earth. For in-
stance, a phone lying on the desk will have its x-axis and y-axis
values close to 0, while a phone inside the pant pocket might be
perpendicular to the standing surface, hence making the x-axis
value around 0. The gyroscope measures the angular motion and
detects the rate of rotation of the phone around its axes, which can
be helpful when the phone rotates in a certain pattern. For example,
the phone swings in a pendulum-shaped motion when the person
walks while holding the phone in their hand. We also test the accu-
racy of using different sets of features on a small subset of data (5
minutes of each label from one phone) with a simple Transformer
model and a CNN model. The results show that models using all
features from the three sensors significantly outperform those using
one or two features. Moreover, using the top 10 extracted features
from the proposed method in section 3.2 also shows high accuracy

Table 3. Test accuracy when using different sets of features on a small sub-
dataset.

Features Test accuracy
Acc only (raw) with CNN 98,9%
Acc + Mag (raw) with CNN 99,3%
All features (raw) with CNN 100%

Acc only (raw) with Transformer 32,3%
Acc + Mag (raw) with Transformer 75%
All features (raw) with Transformer 92.7%

Top 10 features (extracted) with Transformer 90.6%

but is slightly worse than using all raw data. In table 3, CNN and
Transformer models yield the highest accuracy results of 100% and
92.7% when being trained with all raw data. Hence, we decide to
use all raw data as the main direction in the experiments section.
All training processes are performed with a Macbook Pro 2019,

including a 2.4 GHz 8-Core Intel i9 and a graphic card of AMD
Radeon Pro 5300M 4GB.

5 EXPERIMENTS
The experiments are set up to answer whether the Transformer-
based model is feasible to be used in the task of smartphone context
detection. To answer this, we set up simple CNN and LSTM models
to compare with the proposed Transformer model. The CNN model
contains a stack of three CNN modules, in which a module has a
1D-convolutional layer followed by batch normalization and ReLU
activation. The LSTM model includes a simple LSTM layer with 60
units. Both models’ architecture end with a fully-connected layer,
dropout, and softmax to return probabilistic values of each label.
We keep all three models to a similar size.

The experiments are set up with the collected data set to compare
and gather the test accuracy. All experiments’ detailed information,
including the code for the training process, training logs, plots, and
savedmodels, can be found on https://github.com/anhanh11001/context_-
transformer.

5.1 Context detection while walking only
The first test conducted is done on the subset of context data col-
lected when the participants only walk during the experiment. This
data subset contains a total of 6120 2-second windows for training
and 1076 windows for testing. These windows contain raw data
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Fig. 3. Changing different configuration on the Transformer model

from all three sensors. All models perform processes with the same
configuration.
In table 4, the result shows that CNN and Transformer mod-

els have outperformed the accuracy of the LSTM model with the
results of 94.33% and 95.72% respectively. HOLDING IN HAND
and CALLING are the two most easily detected positions, with all
tested models showing accuracy above 97%, as shown in the figure 4.
Among the five labels, INSIDE THE BAG is the label with the lowest
accuracy rate of around 62%-81%. A possible explanation for why

Table 4. Test accuracy for context detection (walking only).

Model Size (params) Accuracy F1 score
CNN 27,589 94,33% 94%
LSTM 23,405 86,62% 87%

Transformer (small) 9,767 91,17% 91%
Transformer (large) 21,129 95,72% 96%

Fig. 4. Confusion matrices for context detection (walking only)

INSIDE THE BAG is the most mispredicted label is due to the large
amount of variances the phone position can have when being put
inside the bag: the phone has more space to move around; different
objects like paper, notebooks and pens can mix up the positions
of the phone; the participant can wear the bag in different styles
(using one or both straps).

5.2 Context detection while standing only
Similar to the subsection above, the second test is done on the subset
of context data collected when the participants only stand during the
experiments. This data subset contains 6377 windows for training
and 1122 windows for testing. All models perform processes with
the same configuration.
In table 5, the accuracy of detecting smartphone when standing

ranges between 45,02% to 82,92%, which are lower than the scenario
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Table 5. Test accuracy for context detection (standing only, 5 labels).

Model Size (params) Accuracy F1 score
CNN 27,589 82,92% 83%
LSTM 23,405 67,7% 67%

Transformer (small) 9,767 57,92% 51%
Transformer (large) 21,129 45,02% 41%

Table 6. Test accuracy for context detection (standing only, 3 labels).

Model Size (params) Accuracy
CNN 27,459 99,85%
LSTM 23,203 96,02%

Transformer 9,509 94,01%

when the participants are walking. In figure 5, the Transformer
and LSTM models performed high accuracy (around 80-90%) for
labels INSIDE THE BAG, CALLING, and PANT POCKET while
mispredicting the other two labels. Similarly, the CNN model shows
a low error rate with INSIDE THE BAG and PANT POCKET. We
observe that three pairs of labels tend to be mispredicted:

• Pair 1: HOLDING IN HAND and INSIDE THE BAG
• Pair 2: CALLING and INSIDE THE BAG
• Pair 3: USING IN HAND and PANT POCKET

Since the data is collected when the participants stand still, the
changes in the values of the sensor are relatively small compared to
the situation when the participant walks. As the participant does not
move the smartphone much, there are not many significant changes
in sensor values. The main distinguishing factor in recognizing the
phone context is the angle created by the phone compared to the
ground surface using accelerometer information (incorporated with
gravitational information). All three pairs above are quite similar
in how the phone is positioned. For instance, in pair 1, the phone’s
screen facing directions in HOLDING IN HAND and INSIDE THE
BAG is parallel to the ground surface, making it difficult to predict
the actual phone context. However, when the participant walks, the
phone held in hand will swing a lot and create large variances in
the gyroscope compared to being inside the bag, making it easy to
distinguish. To confirm this, we run another test by comparing the
accuracy of different models but only using data from three labels:
HOLDING IN HAND (pair 1), CALLING (pair 2), PANT POCKET
(pair 3). The result of this experiment is shown in table 6, which
indicates that all three models yield high test accuracy above 94%,
with CNN being the most performant model with 99,85% in accu-
racy. A possible explanation for why CNN is the best model is that
because the data’s changes over time are relatively small due to
the stationary position of the participant, the advantage of under-
standing global dependencies and time translation invariance of
LSTM and Transformer are not utilized. Moreoever, due to the local-
ity inductive bias property, CNN is more suitable for finding local
patterns among the sensors data.

Fig. 5. Confusion matrices for context detection (standing only)

5.3 Context detection with the combination of walking
and standing

The third experiment is to compare the accuracy of the Transformer
model with others when participants are allowed to walk and stop at
their will. The data set contains 6457 2-second windows for training
and 1048 windows for testing. These windows also have raw data
from all three sensors.

In table 7, the CNN model is the most performant model with the
highest accuracy of 99,85%, compared to the LSTM and Transformer
models of around 93%. Training with a larger Transformer model
slightly reduces the error rate of 0,28%. As explained in section
5.2, LSTM and Transformer models perform worse than the CNN
model when the participant is stationary as the models’ global
dependencies and time translation invariance properties are not
being utilized. Hence as part of the data having participant standing,
the CNN model predicts better and yields a higher overall result.

5.4 Using multi-task learning to improve the accuracy of
Transformer model

In the fourth experiment, we investigate whether using multi-task
learning can improve the accuracy of the Transformer model. By
sharing similar hidden layers while keeping some output layers for
specific tasks and training the model together with the same data,
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Table 7. Test accuracy for context detection (standing and walking).

Model Size (params) Accuracy F1 score
CNN 27,589 99,33% 99%
LSTM 23,405 93,00% 94%

Trans (small) 9,767 92,56% 92%
Trans(large) 21,129 92,84% 93%

Fig. 6. Confusion matrices for context detection (walking and standing)

this technique can improve the training accuracy as similar tasks
can help avoid over-fitting and give better generalization [26]. In
the dataset containing mixed data of both walking and standing, we
manually label these two activity modes and train them together for
activity mode recognition and context detection. The Transformer
encoder blocks in the model are shared between these two tasks,
while the final fully-connected layers are separated for each task.
The loss function used for training is the weighted average of the
two loss functions from those two tasks. In this experiment, we keep
the Transformer models to have similar sizes and only adjust the
loss weight ratio to observe the differences. For example, the weight
5-1 in the result table means the loss would be calculated as follows:

𝑙𝑜𝑠𝑠 (𝑡𝑜𝑡𝑎𝑙) = 𝑙𝑜𝑠𝑠 (𝑐𝑜𝑛𝑡𝑒𝑥𝑡) ∗ 5 + 𝑙𝑜𝑠𝑠 (𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) ∗ 1
.

Table 8. Test accuracy of Transformer models trained with multi-task learn-
ing.

Model Test accuracy
Multitask (weight: 5-1) 91,44%
Multitask (weight: 3-1) 89,90%
Multitask (weight: 3-2) 86,40%
Multitask (weight: 1-1) 86,75%
Without multitask 84,77%

In table 8, the Transformer models trained with multi-task learn-
ing have shown better results of 86,40%-91,44% in accuracy, com-
pared to 84,77% of the model trained without multi-task learning.
These results indicate that activity recognition task can be incor-
porated with training context recognition to generalize better. An-
other observation from the result is that increasing the loss weight
of activity recognition too high can also decrease the accuracy of
understanding smartphone context. For example, the most accurate
multi-task learning model with the weight 5-1 is approximately 5%
higher in accuracy compared to the weight 3-2 or 2-2.

5.5 Using Transformer model to improve step counting
In this experiment, we investigate whether understanding the smart-
phone context helps improve the accuracy of counting steps. We
take a subset of input data from three following contexts: INSIDE
THE PANT POCKET, INSIDE THE BAG, and HOLDING IN HAND.
Similar to the context detection experiment, these input data will
be divided into windows of 2 seconds, where each window contains
40 smaller 50ms chunks of sensor data. We determine whether each
chunk is a step with the available labeled data. Two consecutive
windows have an overlap of 250ms. The end output would be the
number of steps counted in the 2-second-long window. With the
provided input and output, we will train different models to com-
pare the accuracy of counting steps, defined as the number and
percentage of windows that have steps counted correctly. Finally,
there are 9167 windows for training and 1626 windows for testing.

The baseline architecture used for comparing the task of counting
steps is Shallow CNN architecture, inspired by the work of Long
Luu et al. [10]. This architecture has one convolutional layer with
12 filters, a kernel of size 3, and a stride of 1. This layer is followed
by a few drop out, max pooling 1D, and dense layers. The overview
architecture is shown in figure 7. We train four models of this ar-
chitecture with 4 sets of data: Pant Pocket (Model 1), Inside the Bag
(Model 2), Holding in Hand (Model 3), and Combination of all those
three data types (Model 4). Regarding the context detection, we use
the same input data and follow a similar training process proposed
in section 4.2 with the Transformer model. The overview of the
nested model is shown in figure 8.

The first experiment we did was to compare the accuracy of step
counting when the model is trained in one context and tested in
another context. The second experiment we did was to compare
the accuracy of step counting between a model trained with all
data (Model 4) to a model using Transformer to detect the context
and predict with the model trained with the corresponding context
(Transformer + Model 1,2,3).

7
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Fig. 7. Shallow CNN architecture for counting steps.

Fig. 8. Nested architecture of step counting using context detection with
Transformer.

Table 9. Test accuracy for step counting when being trained on a different
context.

Model BAG test HAND test PANT test
Trained on BAG data 75.24% 61.65% 58.6%
Trained on HAND data 19.19% 76.33% 25.53%
Trained on PANT data 31.53% 23.12% 75.63%

Table 10. Test accuracy for step counting with/without context detection.

Model Test accuracy
Without context detection 72.75% (1183/1626)
With context detection 75.95% (1235/1626)

In table 9, all three models perform with an accuracy of around
75% on the test set. However, when the models trained in one con-
text are tested in a different context, they yield much higher errors.
For example, a model trained with BEING HOLD IN HAND only
predicts correctly once for every five windows of INSIDE THE BAG
context. Similarly, the model trained with INSIDE PANT POCKET
is only correct a quarter of all its prediction with the test dataset
from BEING HOLD IN HAND context. Hence, this shows that step
counting does not generalize greatly to different contexts and re-
quires context understanding. In table 10, the accuracy of detecting
steps by incorporating context detection is 75.95%, which is a slight
improvement of 3% compared to the baseline model that does not
use context detection. The trained Transformer model yields 96,8%
accuracy in detecting context, where the most error comes from
mis-detecting the HOLDING IN HAND to INSIDE THE BAG. Of
the three contexts, counting steps while the phone is put inside
the bag is the most difficult, with a success rate of 74.45%. From

this experiment, it has been shown that using the Transformer con-
text detection model can help improve the accuracy task of step
counting.

6 CONCLUSIONS
In conclusion, we have collected a new dataset for the smartphone
context and proposed a simple Transformer-basedmodel that achieves
high accuracy compared to existing approaches like LSTM and
CNN. Even though the Transformer model takes a long time to
train and fine-tune, it achieves high accuracy on the task of context
detection in the scenario of the person walking, with the high-
est accuracy of 95.72%. The proposed Transformer model has also
been shown to improve the accuracy of step counting. We con-
clude this study by publishing all the code and experiments log
in https://github.com/anhanh11001/context_transformer. Further
work can be done to improve the existing model by testing different
variations of Transformer architecture to improve the accuracy and
efficiency of using an embedded device.
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