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Step detection is essential to realizing a well-functioned pedometer-enabled
application. Recent works of IMU-based step detection have shown that
Convolutional Neural Network (CNN or ConvNet) is promising in dealing
with sequential time series data and results in good step detection accuracy.
However, no related works have been done to compare different convolution
types used in the CNN model for step detection. This paper investigated
and compared the performance (e.g., model accuracy and complexity) of
various convolution types (e.g.,1D, 2D, 3D) in a standard shallow CNN model
for step detection. We conducted the experiments using only accelerometer
data under regular walking mode from a public IMU dataset that contains
records of 30 participants under different walking scenarios. Results showed
that the 1D convolution type has relatively higher accuracy than 2D and 3D
convolutions, and under a 2D convolution context, the depthwise separable
convolution type generated the lowest model complexity.

Additional Key Words and Phrases: Convolutional Neural Network (CNN),
step detection, Inertial Measurement Unit (IMU), Time-serial data, Pedometer

1 INTRODUCTION

Modern pedometers (or step counters) can measure distance and
count steps. There are many use cases of pedometers in daily life,
such as health monitoring, fitness, navigation through Pedestrian
Dead Reckoning (PDR) systems, and context awareness [7, 10]. For
example, in indoor navigation, the state-the-art PDR navigation
determines the user’s current position by deriving the characteristics
of human gait locomotion such as the number of steps, step length,
and direction [12, 13].

Pedometers detect steps by measuring motion through the use
of Inertial Measurement Units (IMUs), which are sensors (e.g., ac-
celerometer, gyroscope, and magnetometer) that can capture human
motion data (e.g., moving speed and direction). Accelerometers mea-
sure the specific force across the x, y, and z axes in their local frame
(see Figure 1). Gyroscope’s angular velocity around the x, y, and
z axes in their local frame. Magnetometers measure the Earth’s
magnetic field and provide the heading [22].

Traditional methods for step detection include peak detection,
zero-crossing detection, and stance-phase detection [12]. These
methods aim to detect a single step based on specific features [23, 29]
in the sensor signal. However, previous works mainly focused on
developing device-specific step detection algorithms in controlled
experiment environments, which limits step count suitability across
devices and user scenarios [19, 27]. Moreover, for better user expe-
rience, mobile devices usually require lower energy consumption
and smaller-size algorithms for dealing with sequential sensor data.
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Deep learning approaches have been widely used in prediction
and classification tasks across numerous domains, such as health-
care, visual recognition, audio processing, text analytics, and many
more [28]. Recent works on CNN have shown good accuracy in step
detection [8, 14, 19]. However, no related works are currently com-
paring different types of convolutions used in CNN model-based
step detection through IMU data. This paper aims to compare the
performance of convolution types in a lightweight CNN model that
can be embedded into pedometer applications in mobile devices
such as smartphones, smartwatches, and fitness trackers.
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Fig. 1. Accelerometers measure changes in velocity along the x, y, and z
axes, adopted from [3]

In the rest of this paper, we first discuss related work, introduce a
common basic CNN architecture used in this research, describe the
investigated convolution types, and then illustrate the experiments,
including the dataset, experiment process, and evaluation measures.
The paper ends with a discussion on the experiment results and
future work.

2 RELATED WORK

Many research focused on providing specific high-performance
CNN model implementations on step detection. For example, Lin
[18] explored a machine learning-based approach for step detection
and step counts in non-regular gait mode. The novelty is to ana-
lyze a window of time containing an arbitrary number of steps and
integrate the detected count using a sliding window technique. Gam-
boa [8] proposed a novel unconstrained smartphone step detection
model that utilizes the data from the accelerometer and gyroscope
of the smartphone. This method uses the CNN model that contains
five 1D layers with ReLU activation functions and one 1D layer with
a sigmoid activation function as the output layer. Those research
provide a good foundation for the experiment implementation for
this research.

Other research focused on the comparisons or reviews of neu-
ral network architectures. For example, Ajit et al. [5] provided a
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review of the CNN model layers explanation, how the CNN model
works, and the different architectures of CNN models. Luu et al.
[19], investigated and compared the accuracy of three typical neural
network architectures for step detection in the clinical use case, i.e.,
shallow CNN, LSTM, and WaveNet. The results showed that it is
possible to develop device-agnostic, accelerometer-only algorithms
that provide highly accurate step count. Although this research’s
purpose is not to compare CNN architecture performance, previ-
ous studies of architecture specification and comparison provide
valuable information for the CNN architecture selection for this
research.

Previous studies of convolution types comparisons mainly fell on
the research domain of sound and speech recognition. For example,
Huang and Narayanan [11] investigated four types of convolutional
operations by changing filter shape for speech emotion recogni-
tion to comprehensively understand the CNN model’s performance.
Krause et al. [16] compared different deep convolutional layers in
CNN-based feature extraction for sound source localization. The
convolution layers include commonly used 2D convolutions, 3D
convolutions, and depthwise separable convolutions. Similar to [16],
this paper investigates convolution layers on a common CNN archi-
tecture. In addition, we also investigate 1D convolutions and more
convolution types under the 2D-based convolution type.

3 COMMON BASIC CNN ARCHITECTURE

The purpose of this study is not to propose optimized CNN archi-
tecture but instead to compare convolution types’ influence on the
performance of a CNN model in step detection. Thus, it is neces-
sary to select an appropriate CNN architecture and use the same
architecture to facilitate the comparison of different realizations of
convolution.

Based on the study [19], we considered several high-performing
neural network architectures which can be used for capturing time-
series data features. Specifically, CNN [9], WaveNet [4] and LSTM
[6]. We adopted the Shallow (or lightweight) CNN architecture as a
common architecture for the experiments. Among those architec-
tures mentioned above, the Shallow architecture has been proved
to be more computationally effective, which could be useful in situ-
ations where algorithms deployed on the mobile device are limited
by computational resources. [19]. Moreover, a shallow architecture
with a minimal number of parameters (weights) is also able to avoid
possible overfitting when the model is being trained [21]
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Fig. 2. Common shallow CNN model
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The shallow CNN architecture (see Figure 2) in this research is
composed of only four layers: 1 convolutional layer (of different
convolution types), followed by 1 maxpooling layer and 2 fully
connected layers. To be more specific,the model is composed of a
single convolution layer, followed by a max-pooling layer and a 128-
dimensional dense layer, then followed by a final 1-dimensianl dense
(output) layer. Initially, the input data is reshaped according to the
convolution layer. The convolution layer and the first dense layer
had a Rectified Linear Unit activation function: Relu(z) = max(0, z),
where z is the input to a neuron. The final dense layer had a sigmoid
activation function: o(z) = where Z is an element of input
vector z.
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4 CONVOLUTION TYPES TO BE INVESTIGATED

In a CNN model, the first and most important layer is a convolu-
tional layer. It applies a convolution operation to the input, and pass
the result to the next layer. The convolution operation uses multiple
filters to extract input data features, and each filter uses a matrix
called kernel to implement element-wise multiplication (or dot prod-
uct) operations and output a represented matrix of input features
as feature map. For example, in Figure 3, the input is a 2D matrix

1{0f1]Jo|1fo0 1{0]1 11213 31
of1|1]o|1]1 o|1|1]|*|4[5]|6|—p
1j{0|1jo|1|0 1/0]1 718(9
i1jo0|1f1|1|0 Image patch Kernel
ol 11011 (Local receptive field) (filter) Output
1(0|j1{0|1]0O

Input

Fig. 3. Convolutional operation, adopted from [2]

[[1,0,1,0,1,0],[0,1,1,0,1,1],...,[1,0,1,0,1,0]], the filter kernel is also a
2D matrix [[1,2,3],[4,5,6],[7,8,9]], when the filter slides through the
input data along width and height, it operates dot product between
these two vectors, e.g., the output of 31 is calculated from input
elements [[1,0,1],[0,1,1],[1,0,1]] in the top let corner, dot product by
the kernel as:1#14+0#2+1%34+1%4+1%5+1%6+1%7+0%8+1%9 = 31.

Three hyperparameters have to be decided in convolution op-
erations beforehand, including [1]: number of filters, stride, and
padding. The number of filters affects the depth of the output since
a single filter produces one feature map. If multiple filters are used,
then the output matrix’s depth will also grow. The stride is the
distance the kernel escapes when moving along the input matrix.
Padding is the extra data added to the input matrix when being
processed by the kernel. For example, zero-padding adds 0 around
the input matrix to keep the shape of the output the same as the
input.

This section will introduce three commonly used convolution
types, including 1D, 2D, and 3D. Meanwhile, I will further discuss
four particular convolution types in the 2D CNN context, including
depthwise separable, dilated, grouped, and transposed convolutions.
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4.1 1D convolutions

Several research [17, 25] showed 1D-CNN works well with time-
series sequence data. The kernel is a one-dimensional matrix. Each
time step is associated with three featured accelerometer data (x,y,z).
The kernel convolves along with the time series. Since the data
is flattened to 1 channel, it will lack the information on the inter-
channel dependencies.

4.2 2D Convolutions

A typical 2D convolution layer uses a two-dimensional kernel to
process each input channel separately and sum the results over
all the input channels for each filter. Although it might lack inter-
channel relations, for example, the relation between accelerometer
data in axial-x and axial-z, it is an efficient way to model features
along with time-series data. In addition to regular 2D convolution,
we investigated 2D-based depthwise separable, dilated, transposed,
and grouped convolution.

Depthwise convolution is a spatial convolution performed inde-
pendently over each input channel. It firstly applies a 2D kernel to
each channel separately like a regular 2D convolution, then uses
a 1D kernel to extract inter-channel dependencies and lower the
channel dimension size to one [16].

Dilated convolution works the same as standard 2D convolution
but with a broader kernel created by regularly inserting spaces/gaps
between the kernel elements. For example, a dilution rate of 2 means
the gap size is 1 in the kernel in the experiments.

Grouped convolutions were used in Alexnet so that a deep neural
network can be trained on constrained devices with less powerful
GPUs with smaller RAM [26]. A standard convolution layer con-
volves all of the input channels for each filter. In contrast, a grouped
convolution with two groups only applies half of the filters to con-
volve half of the input channels. Thus for a number of groups x, the
parameter cost is reduced by a factor of x.

Transposed convolution applies the same calculation as standard
2D convolution, except it uses a kernel to up-sample the padded
input data.

4.3 3D Convolutions

Similar to 2D convolution, a 3D convolution uses a three-dimensional
kernel to convolve input data. The filter slides through 3 dimensions
of input data (width, height, channels) and generates a 3D matrix. It
allows the network to learn inter-and intra-channel features simul-
taneously.

5 EXPERIMENTS
5.1 Dataset

5.1.1 Public Dataset. Experiments are performed using the pub-
lic dataset for pedometer application [20]. Thirty participants per-
formed three walking activities wearing Shimmer3 devices at the
hip, ankle, and wrist in different gait modes: walking around a
track with a regular and consistent gait, walking through a building,
and moving around a room with varying amounts of pauses and
gait changes. Meanwhile, the activities are video recorded with an
iPhone to label whether each time step corresponded to the left or
right step as ground truth data.

TSclT 37, July 8, 2022, Enschede, The Netherlands

For this study, we only used regular walking activity and tri-axial
accelerometer signal (see Figure 4) from the wrist that was sampled
at 15 Hz. IMU-based step detection has shown that only the use
of accelerometer data (and not gyroscope data) could significantly
reduce battery consumption, higher integrity of recorded data, and
even higher accuracy in model testing [8, 19].

timestamp X y z label

0 1.466788e+09 0.658020 0.418594 -0.226257 NaN
1 1.466788e+09 0.023987 0.424332 -0.424988 NaN
2 1.466788e+09 -0.309265 1.292130 -0.924255 NaN
3 1.466788e+09 0.096130 1.440933 -0.527405 NaN

4 1.466788e+09 0.216248 1.220963 -0.021301 r

Fig. 4. Accelerometer dataset

In the end, each time step in the raw data which will be used
in the experiment contains four variables: three variables from ac-
celerometer (x,y,z) followed by a ground truth label.

5.1.2  Data Pre-processing. We have to pre-process the input data
before we feed them into a CNN model. Firstly, the data format
has to be compatible with a specific initial convolutional layer of
the model architecture; secondly, the data is recommended to be
normalized and standardized for better model performance; thirdly,
data features are extracted when IMU data is divided into data blocks
(or windows).

Before the model training, we partitioned each raw data series into
windows of 2s seconds of data (or 30 time steps), and then extracted
and labeled each window feature as left/right step and encoded left
as 1 and right as 0 accordingly. Multiple ways have been used for
step detection label.For example, a typical way for step classification
is to use the most frequent occurrence of left/right step type as label
[24]. Another way is to identify whether a data frame is a step or
not without differentiating the left/right step type. Different from
the previous study,Luu et al. [19] used the last time step type within
a window as the label and changed the classification problem into
a left/right step prediction based on past signals. For step counts,
most researchers use ground truth data within a window to identify
the number of steps as the label and use the model to predict an
unknown window [18, 19]. For this research, to train and test the
model accuracy, the last timestamp step type within a window is
used as the label for step classification.

5.2 Model Training, Validation and Testing

The cross-validation of public data is done by splitting it into train-
ing and validation, testing in a ratio of 8:1:1. The main idea for the
experiments is to compare convolution types in a typical CNN archi-
tecture. Thus once replace the convolution type in the architecture,
each model will be trained, validated, and tested in the same way.
For each model with different convolution types, the same ex-
periment process is used (see Figure 5). When the investigated
convolution type is changed in this common architecture, we re-
shaped the window accordingly (see Table 1). Except for the shape
of input data, other parameters are kept the same under the common
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Fig. 5. Experiment process

shallow CNN architecture. The training for each model includes ten
iterations in which 1/9 of the training dataset is shuffled and used as
the validation data and then tested with the same test dataset. The
output of the results from the model is a series of data between 0
and 1, and we used 0.5 as the threshold value to identify the results
as 0 and 1, and compared with the actual steps (left step is label as
1, right step is labeled as 0 ).

Table 1. Input data shape

CNN | Input shape
1D | (30,3)
2D | (10,3.3)
3D | (53,2,3)

We implemented the shallow model using Python Keras [15]
libraries with TensorFlow in Jupyter Notebook. All the models are
compiled and fit with the same setting, and the batch size was 250.
The optimizer was Adam with default values (learning rate=0.001,
beta 1=0.9, beta 2=0.999, epsilon=1e-07, amsgrad=False), the loss
function was binary-entropy, the number of epochs was 100. Early
stopping with a patience of 10, and the validation loss was used as
the monitor.

5.3 Evaluation Measures

This research used two main evaluation measures, including ac-
curacy and model complexity. A typical step detection problem
includes a step counts task, i.e., counting the total number of steps
within an arbitrary time window; and a step classification task, i.e.,
given a window of time-serial IMU datasets and identifying whether
a step happened or not, or classify left or right step. This research
mainly focuses on the accuracy of the step classification task by
identifying the left and right steps. Since step classification can be
a foundation for other applications such as step counts [19] and
PDR-based navigation [23]. The accuracy for step classification is
calculated as follows:

n_correct

N _total
Where n_correct is the number of correctly classified steps and
N_total is the total number of steps.

The computational complexity is defined as the number of train-
able network parameters which can be generated by the Keras model
summary function. Pragmatically, a model with higher complexity
indicates higher computation cost, resulting in longer training and
testing time.

Accuracy =

6 RESULTS

An average accuracy of 60% [24] and 76% [19] of step classification
were achieved respectively in previous works. The shallow CNN
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model in this research has achieved a result close to [24]. Since step
classification is harder to achieve in contrast to step counts accuracy,
which most research can achieve about 90% or higher [8, 18, 19].
We achieved relatively low accuracy in this research because we
tried to classify the left and right steps when the signal features of
the left and right steps are highly similar.

Table 2. Comparison of different dimensions of convolution types

CNN | Complexity | Accuracy
1D 69,737 66.9%
2D 24,305 63.7%
3D 12,425 65.0%

In the results of dimensional convolutions comparison (see Table
2), the 1D convolution shows an accuracy of 66.9% with the highest
complexity among different dimensional convolutions, while 3D
convolution results in the lowest complexity (about 1/5 of 1D con-
volution) and accuracy. The accuracy difference among different
dimensional convolutions is about 2%. Contrary to typical CNN
classification research [16, 30], the 3D convolution usually has the
highest complexity among dimensional convolutions. This research
achieved the lowest complexity concerning 3D convolutions. Be-
cause in this research, we kept the same input time steps in each
window and channel depth as three and then reshaped each win-
dow, leading to a smaller dimensional size of input data for 3D
convolution (see Table 1).

In the context of the 2D shallow model (see Table 3), the accuracy
difference (around 1%) among convolution types is slight. However,
depthwise separable convolution shows the smallest complexity,
almost 1/10 of other convolution types. This result is similar to
[16] which stated that depthwise separable convolution achieved
the lowest complexity in the application of CNN for sound source
localization. This could be explained by the final step of depth-

Table 3. Comparison of 2D-based convolution types

CNN Complexity [ Accuracy
2D-Depthwise 2,207 59.8%
2D-Dilated 24,305 61.7%
2D-Transposed 24,305 62.3%
2D-Grouped 23,657 58.7%

wise separable convolution. It stacks each channel and reduces the
channel dimension size to one. As a result, it reduces the parameter
numbers and extracts inter- and intra-channel features by filtering
each channel separately first, then combining them.

7 CONCLUSIONS

This research is a comparative study of different convolutional lay-
ers in a shallow CNN model for step detection. We evaluated the
accuracy and model complexity in model performance using only
regular walking accelerometer data from a public dataset. 1D convo-
lutions showed a relatively higher accuracy at a high computational
cost. Although 3D convolution gets a smaller complexity result com-
pared with 1D and 2D in this experiment, the memory requirement
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might be higher than other convolution types. In the 2D convolu-
tions context, the depthwise separable convolutions achieved good
accuracy with the lowest complexity among all convolution types.
It brings two benefits: fewer parameters are less prone to overfitting
and less computation time, which means a faster and cheaper model.

In order to provide a more thorough comparison of convolution
types, future work should consider more evaluation measures to
provide better supporting work for its performance in mobile de-
vices, such as memory usage, inference time, and energy consump-
tion. In addition to testing the model’s performance in a regular
walking scenario, also test irregular walking with different devices
(e.g., smartphone and smartwatch) in different body locations (e.g.,
front/back pocket, in the bag, and hand). Lastly, besides the public
dataset, a self-collected independent dataset should be added to test
the robustness and generalizability of models.
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