Designing an Intrusion Detection System for a Kubernetes Cluster

Pavel Hristov, University of Twente, The Netherlands

Recently, our lives have become increasingly dependent on digital
platforms. This leads to a growing demand for automation and high-
reliability systems. Consequently, the popularity of cloud-based
architectures using containerization and container orchestration platforms
increased. The result is that more tools are being used, therefore, the
number of security concerns also grows. While Kubernetes offers robust
security to prevent external attacks, it’s internal protection has limitations.
For this reason, this research aims to propose design solutions for
implementing an Intrusion Detection System (IDS) for a Kubernetes
cluster, alongside its tools and the implementation of one of the proposed
designs.

Keywords: Intrusion detection system, Signature-based, Kubernetes,
Containerization, Virtual machine, Network monitoring

1 INTRODUCTION

Going back in time, all organizations ran their applications
directly on physical servers, either rented or bought. A significant
disadvantage is that it was impossible to isolate the applications
and set resource limitations for each of them. In the case of
multiple applications deployed, this could easily lead to resource
exhaustion and make other applications underperform. A partly
solution was to deploy a single application on a single server,
which still results in underutilization of resources and
unscalability. This was expensive for companies due to the high
prices of physical servers and inflexible maintenance processes.[2]

Virtualization came to the rescue. It enabled running multiple
virtual machines (VMs) on a single server and isolate the
applications. Moreover, the resource allocation to VMs on creation
allows better utilization. Scalability is also improved because of
the ease of starting and shutting down virtual machines. Still, this
option has downsides as VMs run an operating system and all its
accompanying components, which are redundant for running an
application and waste additional resources. Overall it still had
better scalability than physical servers deployment.[11][2]

Lastly, the containerization era offered a prerequisite for
continuous integration and delivery (CI/CD) because of its fast
deployments, rollbacks, and easy-to-run nature. The ease and
efficiency of creating container images compared to virtual
machine images contributed to the success of containerization as
well. Another key feature is the portability and environment
consistency, which means containers can run on every machine
with a container runtime, regardless of the underlying operating
system and hardware. Most importantly, they isolate applications
and provide maximized resource utilization. [16]

Kubernetes is a container orchestrator that provides features
such as managing the lifecycle of containers, service discovery,
load balancing, self-healing, autoscaling, rollbacks, rollouts, and
secret management and makes the life of software engineers
easier by automating a large number of the previously manual
tasks. [16]

Kubernetes has many built-in security features for different
use cases and informs upon best practices in its documentation. It
provides role-based access control to manage who can access
services and network policies to isolate pods and limit the traffic
inside the cluster. [10]

Overall, it would scale and perform great to prevent security
issues, but Kubernetes does not have any native solution to assist
if there is already an intruder inside the cluster. A recent example
of such vulnerability is CVE-2019-5736 [17]. The user can access
the containers’ runtime and modify the environment variables.
Using this exploit, an attacker can inject code, causing risk to the
entire cluster. Therefore, the importance of intrusion detection
systems (IDS) that is compatible and easily integrable with
Kubernetes is rising. To fulfill this requirement, the research
paper will propose several design options for implementing an
intrusion detection system inside a Kubernetes cluster.

2 BACKGROUND
2.1 Intrusion detection system (IDS)

An intrusion detection system is a software that constantly
monitors systems and their network communication to report
malicious activity. There are two main types: signature-based and
anomaly-based. The former inspects traffic and classifies the data
by testing for known patterns, while the latter creates a model of
the regular traffic by machine learning and can detect any
abnormal activity. IDS is often confused with firewall, but they
are two completely different tools. The difference is that firewalls
prevent attacks from outside, while the IDS detects attacks from
inside. A simple example of an intrusion attack is an attacker
stealing an employee's credentials and trying to access protected
company files to which they have no authority [7].

2.2 Snort

Snort is an open-source intrusion detection system and
intrusion prevention system using signature-based packet
inspection. It can spot attacks such as Distributed Denial of
Service (DDoS), port scans, buffer overflows, Common Gateway
Interface attacks, etc.

2.2.1 Why Snort?

A tool with similar functionality to Snort is Suricata, being
also a signature-based IDS that is developed much more recently
than Snort. It offers more features than Snort, such as

TScIT 37, July 8, 2022, Enschede, The Netherlands

multithreading [18]. A paper by Syed Ali Raza Shah and Biju Issac
indicates the difference in speed, drop rate, and resources needed
by each tool. Overall, Snort performs better in resource
consumption, while Suricata could process a more significant
amount of network traffic faster with a lower drop rate [12].
Suricata has more to offer, but Snort is chosen for this research
because of its straightforward setup and easily comprehendible
nature.

2.2.2 Features

e Real-time Traffic Monitor
Snort can run as a daemon and inspect every packet
that goes through a specific network interface in real-
time. If a malicious packet or threat is discovered, it will
generate an alert. This is useful when you are interested
in securing a single device or application.
e Packet logging
Snort can listen to a network interface and collect all
the packets that go through it. It will generate log files
on the host machine. This can be used to capture the
traffic and analyze it at a later point in time.
e Analysis of Protocol
Snort can capture data in different protocol layers of
the packets. This can be useful to analyze malicious
packets in TCP, as it contains most of the needed
information for inspection.
e Content Matching
Snort can inspect packets for content matching by
using the specified rules in its configuration. This can be
used for capturing intrusion attacks.
e OS Fingerprint
Since all operating systems have a unique TCP/IP
stack, Snort uses this to determine the OS of the system
that tries to access the host. Using this feature, a
malicious user, who uses uncommon OS can be caught,
for example, Kali Linux (a Linux distribution containing
many hacking tools).
e Portability
Snort can be installed on every network
environment and every operating system. This makes it
highly portable across many systems and easy to deploy.
e Different modes
Snort has many different modes in which it can run.
Such examples are packer logger, packet sniffer, or only
as an intrusion detection system.

2.2.3 Architecture

Snort architecture consists of four main components. In the
following sections, each of them will be described. A visual
representation can be seen in Fig 1.

Pavel Hristov
Sniffer H Preprocessors H Detection
engine

H Output
determine

packets packets / paclet rules alerts/log
behaviour

f

HTTP plug-in, rulesets user interface
sfPortscan

Fig. 1. Snort architecture [19].

2.2.3.1 Sniffer

The network sniffer allows Snort to eavesdrop on a network
interface and collect data about the traffic. It can be used for
network analysis and the generation of packet capturing files
(PCAP). Snort sniffer captures the traffic and sends it to the
preprocessors. Another possibility is that Snort is being fed with
PCAP files directly, and the step of sniffing packets is omitted.

2.2.3.2 Preprocessors

The preprocessor consists of plugins that determine the packet
behavior and intention. For example, there is a plugin responsible
for detecting packet fragmentation and DoS attacks. This is
important since a particular content matching rule may not match
in the next step due to fragmentation. Other examples of plugins
are decoders, port scan detectors, etc.

2.2.3.3 Detection engine

The detection engine is responsible for taking a packet and
checking it against the Snort rules. In case of a match, it will pass
an alert to the output component or drop the packet otherwise.

2.2.3.4 Output

The output component is responsible for processing the alerts
generated by the detection engine. It is possible to configure it to
generate log files, store logs in a database, pipe them to other
systems, or even send an email.

2.2.4 Rules

Snort does its packet analysis based on rules specified in its
configuration. They define the signature of a packet and the
action that must be taken in response to that signature. All users
can use three default rulesets - community, registered user, and
subscription ruleset. All of them are GPLv2 Talos certified and are
quality assured by Cisco. The difference with the paid
subscription is that the rules in it are developed by Talos Security,
while the community itself maintains the community and
registered ruleset. It is possible to write custom rules, but it would
require knowledge of the attack signature the rule will protect
from. The format of a Snort rule can be seen in Fig 2.

e Action - the action Snort should take in case the packet
matches the signature. It could be alert, log, pass, etc.

Designing an Intrusion Detection System for a Kubernetes cluster

e Protocol - the protocol of the packet. Possible values are
TCP, ICMP, UDP, etc.

e Networks - the IP of the sender/receiver. It can also be a
variable specified in the snort.conf file such as
$HOME_NET representing the IP/subnet of the
protected network.

e Ports - The port of the sender/receiver.

e Direction, Operator — The direction of the packet. In
most cases is “->”".

Action Protocol Metworks Ports Direction Operator Metworks Ports

Fig. 2. Snort rule format.

An example of a valid rule can be seen in Fig 3.

alert tcp 1192.168.1.0/24 any -= 192.168.1.0/24 111 (content: "|00 01 86 a5|"; msg:
"external mountd access'’;)

Fig. 3. Valid Snort rule.

The rule in Fig 3 specifies that any packet sent by TCP
protocol with the sender’s IP is different than the subnet
192.168.1.0/24. The receiver IP is the subnet 192.168.1.0/24 with
port 111 and matches the hexadecimal content “00 01 86 a5” which
will alert “external mountd access”.

2.3 Kubernetes

Kubernetes is an open-source container orchestration
platform developed by Google, which automates the manual
processes of scaling, managing, and deploying applications. Some
of the most common terminology:

e Pods — The smallest deployable units in Kubernetes. A
pod consists of one or more containerized applications.

e Nodes - It is a worker machine, which could be a
physical or virtual machine that allows you to run pods
on it.

e (Cluster — A group of nodes managed from the master
node.

Kubernetes offers security policies at three levels — Pod, Node,
and Kubernetes API. The recommendation at a pod level is to use
role-based access control. This allows the administrator to control
who can access different pods and services in the cluster. In
addition to that, there are network policies. They can be used to
limit the network traffic inside the cluster and isolate components
that are not supposed to communicate, which will increase the
level of security. It is recommended not to run anything with root
privilege at a node level and use security-enhanced operating
systems such as SELinux. Both pods and nodes should run alpine
versions of images as they are minimalistic, therefore less attack
surface. For the Kubernetes API level, an administrator can use
admission controllers that provide a second level of security by
inspecting requests after they are authorized. In the admission
controllers, it is possible to set up rules, which they can use to
validate or mutate requests. Additionally, there are several global
security features such as audit logs, namespaces, and the use of
external security software. [5,10].

Kubernetes cluster consists of many components, and
communication between them differs on the component and

TScIT 37, July 8, 2022, Enschede, The Netherlands

cluster networking type used. There are many types of
networking suggested in the Kubernetes documentation. Most of
them operate similarly because Kubernetes has provided a
concrete implementaton specification. For analysis purposes, the
network model of Google Kubernetes Engine (GKE) will be
discussed [20].

The most straightforward communication occurs between
containers inside the same pod. They can access each other
through localhost because they are on the same machine from a
container perspective. This can be seen in Fig 4.[14]

Pod

Network Namespace

Port: 9000
1

Container

localhost: 8080 Port: BO&O

Container

localhest: 9000

Fig. 4. Two containers communicating inside a Pod.[14]

Communication within the same node occurs through cbr0.
This network bridge contains an IP table with IPs and virtual
ethernet interfaces allocated for a specific pod. Each packet gets
forwarded to the pod after a lookup in the bridge’s table.
Visualization can be seen in Fig 5.

Node 1 cbro

[172.17.1.1
3)172.17.1.2

@5 vethl @ veth2

vethl
veth2

Pod 2

|COntainez | |Com:a1nez |

Fig. 5. Two pods communicating inside a node. [14]

Communication within the cluster occurs similarly to inside a
node. A cluster has a routing table with a subnet allocated for
every specific node. Every incoming packet is forwarded to the
correct node after a lookup in the routing table. This can be seen
in Fig 6.

TScIT 37, July 8, 2022, Enschede, The Netherlands

Cluster Routing Table

o

Hode 1 ethld Node 2

O NZBUER KTy

172.17.1.1 | vetn1 |
172.17.1.2 [vetn2 |

172.17.2.2

172.17.2.1

Fig. 6. Two nodes communicating inside a Kubernetes cluster. [14]

3 RELATED WORK

The article by Chirag N. Modi and Kamatchi Acha explains
common security issues in cloud nodes. In many cases, VMs have
a shared clipboard, which can be misused to transmit malicious
programs, or if another VM monitors a VM with shared physical
memory, an intruder can execute an ARP attack and sniff over the
network. The information from this paper can be extracted to
understand the idea of possible attacks on the Kubernetes cluster
[9].

Another article explains the potential design of IDS in third-
party cloud services. One proposed system uses deep learning and
stands between the applications and the firewall. It inspects
packets by almost 30 different attributes with corresponding
attack categories and protocols. Another solution uses signature-
based detection. It must be updated often to classify new attacks,
which require knowledge of the system or regular support from
its maintainer. The limitation is that such solutions, if not
provided with appropriate data, can result in many false positives
and negatives [3].

The survey on IDS article is beneficial to future design
decisions for this research. It has eight different techniques for
IDS implementation with detailed explanations. This article will
assist in choosing the best-performing IDS based on the
characteristics and limitations explained in it [7].

The ‘KubAnomaly’ article provides an in-depth description of
how to implement anomaly detection using neural networks. The
author had made graphs about performance, diagrams of the
architecture, and tables for all the features it uses. The same
applies to the machine learning IDS thesis of a master's student at
the University of Dublin. Both works use machine learning, which
requires much data and precise parameter settings to perform
well. Many organizations cannot provide this, which would result
in worse security [13,14].

A few articles explain unusual designs and implementations
like the FCM-SVM algorithm, using data-mining techniques or
suggestions for blockchain applications. They are not focused on
Kubernetes but cloud-based solutions, making them too generic
[1,4,6,8]. The focus of this research is rule-based IDS in
Kubernetes because there is a lack of papers, describing how it
works and how to implement one.

Pavel Hristov

4 PROBLEM STATEMENT

The main research question that the paper aims to answer is
as follows:

e How to implement an intrusion detection system to
monitor the network traffic and protect against
intrusion attacks inside a Kubernetes cluster?

The question is divided into two sub-questions:

e RQ1 How to effectively capture the network traffic
inside a Kubernetes cluster?

e RQ2 What are the possible designs for an intrusion
detection system to analyze the captured network
traffic inside a Kubernetes cluster?

5 DESIGNS

Before the beginning of the design, it is vital to ensure that the
Kubernetes cluster implements all security-related best practices
mentioned in the documentation. An intrusion detection system
would be useless in a non-protected environment. The proposed
designs must work equally well in both single and multi-node
clusters. In the following sections, possible methods will be
discussed.

5.1 CAPTURING NETWORK TRAFFIC

The first step of developing an IDS is to capture the network
traffic flowing throughout the cluster. Since Kubernetes is a multi-
component system, there are several options where we can extract
the packets. Instantly, we can conclude that doing this at a
container level would be inefficient due to not protecting the
upper components, which are pods and nodes. Therefore, we will
omit to discuss this option. This step aims to produce a PCAP
(packet capture) file containing all the flowing traffic, which will
be passed to the intrusion detection system. The following
sections will discuss the possibilities on a pod and a node level.

5.1.1 TOOLS

For proper network capturing, some fundamental knowledge
of network capturing tools is needed. For this purpose, a short
description of TCP Dump and Ksniff will be given.

5.1.1.1 TCP Dump

TCP Dump is a network capture package based on the libpcap
interface. It is a platform-independent system, which makes it
portable. One of its primary use-cases is to capture traffic. It
provides filtering capabilities such that only a specific part of the
traffic can be extracted. An example could be a network interface,
specific IP, or protocol.

5.1.1.2 Ksniff

Ksniff is a kubectl plugin that uses TCP dump to capture
network traffic for Kubernetes pods. It is helpful as it simplifies
choosing the proper network interface and all other settings
needed by TCP Dump to extract the correct packets. The

Designing an Intrusion Detection System for a Kubernetes cluster

disadvantage of Ksniff is that it only supports pod traffic
capturing.

Node etho @

Pod1 | eth0

Pod2 | eth0 @

Fig. 7. Simplified network architecture inside a Kubernetes node.

5.1.2 POD LEVEL

To extract the packets at a pod level, it would be needed to
intercept the flow at point 3 in Fig 7. This is possible in several
ways, using TCP dump, Ksniff, or Snort. Ksniff reduces the
workload since you need to install it once for kubectl use, while
TCP dump or Snort requires installing it on every single pod in
the cluster. Choosing Snort as a packet capturing tool would also
result in worse start-up time for the pods if it were not included in
the base image of the container inside the pod.

Capturing traffic at pod level is not the safest decision for
detecting intrusion since the traffic with the node’s IP as a
destination will stop at point 1 in Fig 7. In contrast, the network
capturing is situated at point 3. This can become problematic as
the node constantly communicates with the Kubernetes API
server through kubelet. Still, this depends on the networking type
used in the cluster. Capturing packages at a pod level is only
advisable for protecting a small number of pods due to not
covering the whole cluster.

5.1.3 NODE LEVEL

To capture the network traffic at a node level, it must be
intercepted at points 2 and/or 1 in Fig 7. Point 2 is the network
bridge responsible for distributing the traffic to the correct pod,
while point 1 is the entry point of the node’s networking. Both are
required for maximum security since communication between
pods always goes through cbr0, while if a packet's destination is
the node itself, it will stop at ethO (point 1). This would ensure
that nodes and pods are analyzed for intrusion within a cluster.
For this purpose, we can use TCP Dump or Snort on a node by
specifying which network interfaces we are interested in
capturing the traffic from. The disadvantage of capturing at two
points is that this option will generate duplicate traffic in case this
network type is chosen for the cluster. Network types directly
connect vethX to eth0, which will remove this issue. Therefore,
the best option is to forbid communication to node IP addresses in
the cluster and focus the network capturing only to point 2. This
option will result in better security than pod level because it
covers every Kubernetes component. There are two options for
automating the installation of a network capturing tool: develop a
custom controller, which will continuously check the state of the
nodes and update them or run jobs periodically to perform the
installation. A disadvantage of ensuring that a packet capturing

TScIT 37, July 8, 2022, Enschede, The Netherlands

tool is installed on a node is that the IDS becomes dependant on
the node’s state in the cluster.

5.2 INTRUSION DETECTION

After the network traffic has been successfully captured, it
must be passed to the IDS for analysis. There are two options
when it comes up to how to position the IDS inside a Kubernetes
cluster. These options will be discussed in the following two
sections.

5.2.1 CENTRALIZED

The first option is to have a centralized IDS, which means
there will be only a single instance of the IDS service running in
the cluster. It consists of three steps: capture the traffic, send it to
Snort, and analyze it. Capturing traffic options has been discussed
in the previous section. Therefore, we focus on sending the PCAP
file. There are many alternatives to directly pipe the file using
HTTP, FTP server, or a message queue broker such as ActiveMQ.
The first option is easier to implement as it would require one line
of code to pipe the data directly to the IDS, while the rest need
more setup. Still, the advantage of a message queue and FIP
server is that even if Snort is not working, the files will be
persisted in the broker and received later. Before all that, it is
essential to have Snort deployed in the cluster. For this purpose, a
possibility is to install and set up Snort on a container and develop
a web service with an endpoint accepting files. The service will
trigger Snort, run a complete analysis, and generate an alert upon
a malicious packet for every incoming file. The advantages of
using a centralized IDS are that it is more maintainable as it is
packaged inside a single container and has a more organized alert
structure because they are generated from a single source. The
disadvantage of centralized IDS is that it is a single point of
failure, which can partly affect real-time analysis until Kubernetes
spins up a new pod. Still, the omission of traffic can be prevented
by using more than one replica or using a message broker. A
visualization of a centralized IDS can be seen in Fig 8.

Woda 1 T / Mode 2 T
w0

vetho vern weths vetht 3) Analyze the traffic

Cantainer
running Snere

Fig. 8. Centralized design visualization of network capturing and
analysis by snort.

5.2.2 NON-CENTRALIZED

The second option regarding IDS placement is non-
centralized. This will involve installing Snort at every node in the
cluster to enable capturing of all the traffic in the cluster.
Installing it on a pod would not provide an optimized security
level. Therefore, node must be the preferred choice. Since Snort
provides network capture, it is not necessary to use TCP Dump.
The advantages are that it has a straightforward setup, requiring
only basic knowledge of Snort configuration. The non-centralized
alternative will secure only the components that have Snort

TScIT 37, July 8, 2022, Enschede, The Netherlands

installed. Therefore, it is advisable to use it only for a single-node
cluster or if there are only specific components that the IDS must
protect, which would be a rare occasion. Otherwise, the
maintenance of numerous Snort instances would be a challenging
task to perform.

5.3 ATTACK MATRIX

Snort manages to perform well and actively protect against
intrusion attacks again, but after all, it is not explicitly designed
for Kubernetes. Therefore, a few common problems will be
discussed in this section with potential rules that can protect
against them.

5.3.1 MALICIOUS CONTAINERS

To create a Docker image of an application, a base image must
be used to be built upon. If the base image is compromised or has
security issues, the whole cluster is in danger. This will allow an
attacker to request full permissions and take over the entire
cluster. This can be prevented by using network policies and
requiring multi-factor authentication, but these are not always
applicable in every situation. This is why Snort rules can be added
that identify containers accessing the Kubernetes’s control-plane
and tampering with the host node's permissions.[15]

5.3.2 COMPROMISED USERS

A Kubernetes user’s credentials can always get stolen. This
can result in a malicious attacker using the account’s permission
and tampering with the cluster. Therefore Role-based access
control must be enforced in Kubernetes, but this is insufficient.
For this reason, a Snort rule that alerts upon attempted access
from outside the organization’s subnet to the kube-api must
always be added.

5.3.3 ABNORMAL COMMUNICATION

In Kubernetes, it is a best practice to expose deployments
through services because they can distribute the load equally to all
pods. Consequently, there are cases of illogical communication,
which may represent a potential intrusion. An example of such
would be communication directly between two pods. They are
expected to communicate through their respective services, not
directly. A Snort rule must protect against such cases if they apply
to the cluster.

6 IMPLEMENTATION

The following implementation will use a centralized design
with node-level packet capture. This choice is because this design
offers the best security level inside the Kubernetes cluster and
analyzing it further would give more insights into its behavior and
performance.

6.1 CLUSTER STRUCTURE

For the creation of a Kubernetes cluster locally, the tool ‘kind’
is used. It is mainly designed for locally testing clusters, allowing
many configuration options, and choosing the number of nodes
you want. Kubernetes support different container runtimes such
as containerd, CRI-O, and Docker. Kind’s default container
runtime is containerd, which will be used for this implementation.

Pavel Hristov

The visualization of the cluster architecture can be seen in Fig 9
and will be explained in the following two paragraphs.

The cluster is made of two applications - echo-service and
snort-wa. Echo-service is a simple Spring Boot application
containing a single endpoint that returns the path variable
extracted from the URL. It is going to be used as a traffic endpoint
for testing purposes. Snort-wa is a Python web application
containing an endpoint that accepts PCAP files. After receiving a
file, it triggers Snort, runs analysis on it, and logs in case of
malicious packets.

The cluster contains two deployments, responsible for
ensuring that there is always at least one instance of the
application running. They are exposed using ClusterIP services,
which assign an internal IP and are only accessible from the
cluster itself. The echo-service application is exposed to the
outside world using an ingress controller, which provides external
access to the cluster.

Ingress controller

v
Service Service
snort-wa

echo-service

Node 1 Node 2

v
Fod | Pod 2

echo- SNare-wa
service

Responsible for,

Deployment

Fig. 9. Kubernetes testing cluster structure

6.2 SNORT

Snort is installed and set up during the build of the Docker
image of the snort-wa service, making it immediately available
after deploying the pod in Kubernetes. This also allows for quickly
replacing or auto-scaling pods because Snort is preinstalled on the
container, and it will not increase the time for starting it up. In the
installation, all libraries and packages required by Snort are
installed. Also, a separate group is created not to run Snort as a
root user. Afterward, a custom configuration and rules are copied
to the /etc/snort subdirectory, which contains all the information
needed for Snort to run. The following configuration options must
be adapted, which are dependent on the cluster parameters:

e $HOME_NET - variable containing the IP/subnet of the
cluster, used by Snort to discard packets that are not
pointing to or from it.

e Rule paths — the path to the rule files used by Snort to
locate them.

e Other - It is possible to customize the preprocessors,
include or discard rules by name, change the log format,
etc.

Designing an Intrusion Detection System for a Kubernetes cluster

In the current implementation, the registered user ruleset will
be used [21]. It is possible to test whether Snort is set up correctly
by attaching to the pod/node and running “snort -T -c
/etc/snort/snort.conf”. A disadvantage of this decision is that all
the setup happens during the build of the Docker image. This
would require a new build for changing configuration options.

6.3 NETWORK CAPTURE

To handle the network traffic, a script that pipes the PCAP file
using the HTTP protocol is used. The script will run TCP dump in
rotation mode to capture traffic for a specific time and pipe the
generated PCAP file to snort-wa. Since an intruder can get into
the network capturing component and try to disable it purposely,
the script will use signal trapping. For a process to be killed, a
signal must be sent. These signals responsible for terminating a
process are SIGINT and SIGTERM. In case of receiving such a
signal, the script will ping the Snort endpoint to trigger an alert
and then kill itself. This enables an additional layer of security.

7 RESULTS
7.1 TESTING

After all the components of the IDS are set, it must be assured
that the interoperation between them is problem-free. Firstly, a
rule will be created that alerts every TCP packet containing the
content ‘test’ to test whether the network capture and Snort work.
The rule can be seen in Fig 10. Afterward, we access the node
hosting echo-service and execute the network capture script. In
the meantime, we access the echo-service using ‘test’ as a path
variable, and the output from snort-wa returns several test alerts.
This can be seen in Fig 11.

alert tcp any any -> any any (msg:"Test Alert"; content:"test"; sid:1000001; rev:l;)
Fig. 10. Snort rule that alerts on every TCP packet containing ‘test’.

PS C:\Users\Pavel Hristov> kubectl attach default_snort-wa-5469966bd5-7sjxf - snort-wa
error: Unable to use a TTY - container snort-wa did not allocate one
' command prompt, try pressing enter.

166 [++#] [1:1060001:1] Test Alert [#+] [Priority:

[##] [1:1068001:1] Test Alert [#%] [Priority:

[##] [1:1060@01:1] Test Alert [#+] [Priority:

[*+] [1:1080801:1] Test Alert [+*] [Priority:

896 [##] [1:1000801:1] Test Alert [#+] [Priority:

[*+] [1:1000001:1] Test Alert [++] [Priority:

[#%] [1:1000801:1] Test Alert [#%] [Priority:

[*+] [1:1000001:1] Test Alert [++] [Priority:

{TcP} 10.244.8 -» 10,
1 -> 1

371332 [##] [1:1860801:1] Test Alert [#+] [Priority:
[@4/Jun/2622 16:35:21] "POST / HTTP/1.1" 206 -

Fig. 11. Test alerts, using a snort rule that checks for the keyword
‘test’.

The next step is ensuring that snort-wa will generate an alert
if we cancel the network capturing. For this purpose, we will start
the network capturing and kill the process using CTRL+C. This
must send a SIGINT signal to the process and terminate it. The
output of the snort service can be seen in Fig 12.

The network traffic capture of node with machine id 2e302cd720994da980609aeb999148d7 has been exited!

172.18.0.2 - - [04/Jun/2022 16:55:28] "POST / HTTP/1.1" 200 -

Fig. 12. Alert upon killing the network capturing process.

Now, we will try a real attack attempt by running a port scan
on the network capturing node. The attacker can use this to find
out which ports are open and whether anonymous logins are
possible. For this purpose, we must enable the preprocessor called
sfportscan, responsible for capturing such behavior in packets.
After running nmap from the other worker node, Snort generates

TScIT 37, July 8, 2022, Enschede, The Netherlands

a log file that can be seen in Fig 13. The file gives the time of
occurrence, the IPs involved, and other helpful information for the
performed attack.

root@snort-wa-9c556T975-mekeq: fvar/log/snort# cat alert
Time: 86/84-18:29:18.184841

event_ref: @

172.18.8.3 -» 172.18.8.2 (portscan) TCP Portscan
Priority Count: 9

Connection Count:
IP Count: 1

Scanner IP Range:
Port/Proto Count:
Port/Proto Range:

Time: 86/84-18:32:
event_ref: @
172.18.8.3 -> 172.

18
172.18.8.3:172.18.8.3
18

22 :5988

86.813739

18.8.2 (portscan) TCP Portscan

Priority Count: 9

Connection Count: 18

IP Count: 1

Scanner IP Range: 172.18.8.3:172.18.8.3
Port/Proto Count: 18

Port/Proto Range: 22:8888

Fig. 13. Port scan log file.

7.2 PERFORMANCE

The IDS would be wasteful if it overutilizes resources and
forces applications to underperform. Therefore, an analysis of its
CPU and memory footprint will be conducted. Considering the
implementation, the components included in the analysis are the
worker node executing the network capturing script and the pod
running Snort.

The initial metric statistics for the node show that it uses
approximately 0.16 CPU, having a maximum of 12 CPUs
allocatable and 4 GB of memory, having a maximum of 24 GB
allocatable. After running the network script, it averaged at 1.5
CPU and 4.7 GB memory and spiked once at 2.8 CPUs and 6.4 GB
memory.

The pod which runs Snort has initial metrics that display 0
CPU usage and 0.049 GB memory. This is presumably, as it does
not execute any tasks. When it started receiving traffic, it
averaged at 2.5 CPU and 2.4 GB of memory, spiking to 3.1 CPU
and 3.3 GB of memory.

Considering the number of packets that must be analyzed,
resource utilization is reasonable. It can be significantly reduced if
snort-wa is set up to scale horizontally, splitting the work across
several pods.

7.3 OUTCOME

The paper discussed two options for capturing the network
traffic inside the Kubernetes cluster — at pod level and node level.
Both offer different security levels based on the analysis of how
Kubernetes networking functions. The tools that can help with
this task are Ksniff, TCP Dump, or Snort. Each of them simplifies
capturing traffic and is suitable for different component level.
Therefore, one must be chosen according to the situation and
needs of the administrator.

The intrusion detection system can be either centralized or
decentralized. The former represents a Kubernetes service, which
will receive the traffic from all pods or nodes and run an analysis
on it. The transfer of the network traffic can happen using HTTP,
message queue, or FTP server. The latter option will require the

TScIT 37, July 8, 2022, Enschede, The Netherlands

installation of the IDS on every component, which must be
secured. The network capturing and packet analysis will happen
on the same machine. Consequently, the need for communication
is omitted.

The most optimal and efficient option is to use node-level
network capturing as it offers the best level of security and
centralized IDS placement because it will provide the opportunity
to scale it horizontally. Moreover, it will use fewer resources than
a non-centralized since there will be several pods running the IDS
service instead of running it on every node in the cluster.

8 DISCUSSION

The results concluded from this paper give insight into what
possibilities for IDS in Kubernetes exist and will add value to the
existing research. The main findings include what alternatives
exist to capture network traffic in Kubernetes, which may be
helpful for other purposes, such as analytics or performance
metrics. Moreover, the intrusion detection system design is not
applicable only for Snort since most of them work in a similar
matter or offer the option to feed them network packets directly.
Since both the network capturing and the IDS are considered as a
separate components, there is the freedom to choose better tools
for doing the respective tasks. The implementation gave the idea
of how performant the proposed solution is and how it behaves,
which offers a base for improvement. Overall, some Kubernetes
principles are violated by the proposed designs. A new topic to be
investigated is how to avoid this and properly automate the
network capturing and tool installation on nodes.

9 CONCLUSION AND FUTURE WORK

The need for robust security is increasing with the emerging
world of technology. The outcome of this research gives initial
insights into what possibilities exist in embedding an intrusion
detection system inside Kubernetes.

The paper provided three different ways of capturing network
traffic - TCP Dump, Ksniff, or Snort itself. The advantages and
disadvantages of every choice were precisely discussed for
optimal security during the implementation phase. Furthermore,
an example of a potential implementation was given, which
delivers a better sense of what would be more suitable in different
situations.

The same applies to the usage and placement of intrusion
detection systems inside a Kubernetes cluster. Centralized and
non-centralized options were researched, supplying guidelines in
which one would be more flexible and maintainable. In the end,
running and successfully testing the signature-based IDS Snort in
a multi-node cluster shows that the research has fulfilled its
purpose.

Although this research gives a good impression of what is
achievable in Kubernetes, it has some limitations. For a start, there
are no design proposals for logging management in the case of
centralized IDS with several instances of the IDS running. The
current solution will result in a chaotic log structure spread across
several pods and even lost logs in case of terminated pods. Next, it
can be investigated how suitable it would be to include more
security measures for intruders, such as honeypots and fake pods
that trigger alerts when accessed.

Pavel Hristov

10 ACKNOWLEDGEMENTS

I want to express my most profound appreciation to my
supervisors Leon de Vries and Chakshu Gupta for helping me to
choose the right topic, guiding me throughout the project and
providing valuable feedback to extract the best of my work.

11 REFERENCES

[1] Osama Alkadi, Nour Moustafa, and Benjamin Turnbull.
2020. A Review of Intrusion Detection and Blockchain
Applications in the Cloud: Approaches, Challenges and
Solutions. IEEE Access 8, (2020), 104893-104917.
DOLhttps://doi.org/10.1109/ACCESS.2020.2999715

[2] Abhineet Anand, Amit Chaudhary, and M. Arvindhan.
2021. The Need for Virtualization: When and Why
Virtualization Took Over Physical Servers. Lect. Notes
Electr. Eng. 668, (2021), 1351-1359.
DOLhttps://doi.org/10.1007/978-981-15-5341-
7_102/FIGURES/4

[3] Wisam Elmasry, Akhan Akbulut, and Abdul Halim Zaim.
2021. A Design of an Integrated Cloud-based Intrusion
Detection System with Third Party Cloud Service. Open
Comput. Sci. 11, 1 (January 2021), 365-379.
DOL:https://doi.org/10.1515/COMP-2020-0214/PDF

[4] Mohamed Idhammad, Karim Afdel, and Mustapha
Belouch. 2018. Distributed intrusion detection system for
cloud environments based on data mining techniques.
Procedia Comput. Sci. 127, (2018), 35-41.
DOLhttps://doi.org/10.1016/J.PROCS.2018.01.095/DISTRIB
UTED_INTRUSION_DETECTION_SYSTEM_FOR_CLOU
D_ENVIRONMENTS_BASED_ON_DATA_MINING_TEC
HNIQUES.PDF

[5] Md Shazibul Islam Shamim, Farzana Ahamed Bhuiyan,
and Akond Rahman. 2020. XI Commandments of
kubernetes security: A systematization of knowledge
related to kubernetes security practices. Proc. - 2020 IEEE
Secur. Dev. SecDev 2020 (September 2020), 58-64.
DOLhttps://doi.org/10.1109/SECDEV45635.2020.00025

[6] Aws Naser Jaber and Shafiq Ul Rehman. 2020. FCM-SVM
based intrusion detection system for cloud computing
environment. Cluster Comput. 23, 4 (December 2020),
3221-3231. DOLhttps://doi.org/10.1007/S10586-020-03082-
6

[7] Uttam Kumar and Bhavesh N. Gohil. 2015. A Survey on
Intrusion Detection Systems for Cloud Computing
Environment. Int. . Comput. Appl. 109, 1 (January 2015),
6-15. DOLhttps://doi.org/10.5120/19150-0573

[8] Zhi Li, Haitao Xu, and Yanzhu Liu. 2017. A differential
game model of intrusion detection system in cloud
computing. Int. J. Distrib. Sens. Networks 13, 1 (January
2017). DOLhttps://doi.org/10.1177/1550147716687995

[9] Chirag N. Modi and Kamatchi Acha. 2017. Virtualization
layer security challenges and intrusion
detection/prevention systems in cloud computing: a
comprehensive review. J. Supercomput. 73, 3 (March
2017), 1192-1234. DOLhttps://doi.org/10.1007/s11227-016-
1805-9

[10] Aneta Poniszewska-Maranda and Ewa Czechowska. 2021.
Kubernetes cluster for automating software production
environment. Sensors 21, 5 (March 2021), 1-24.
DOLhttps://doi.org/10.3390/521051910

[11] Rosehosting. 2016. Physical vs Virtual server. Blogs (2016).

Designing an Intrusion Detection System for a Kubernetes cluster TScIT 37, July 8, 2022, Enschede, The Netherlands

[12] Syed Ali Raza Shah and Biju Issac. 2018. Performance
comparison of intrusion detection systems and
application of machine learning to Snort system. Futur.
Gener. Comput. Syst. 80, (March 2018), 157-170.
DOL:https://doi.org/10.1016/J. FUTURE.2017.10.016

[13] Chin-Wei Tien, Tse-Yung Huang, Chia-Wei Tien, Ting-
Chun Huang, and Sy-Yen Kuo. 2019. KubAnomaly:
Anomaly detection for the Docker orchestration platform
with neural network approaches. Eng. Reports 1, 5
(December 2019), €12080.
DOL:https://doi.org/10.1002/ENG2.12080

[14] Irene Ann Tony. 2021. Application of Machine Learning
with Traffic Monitoring to Intrusion Detection in
Kubernetes Deployments. (2021).

[15] Xinchen Xu, Aidong Xu, Yixin Jiang, al -, Falk Herwig,
Robert Andrassy, Nic Annau, Gengsheng Zheng, Yao Fu,
Tingting Wu -, Vipin Jain, Baldev Singh, Medha Khenwar,
and Milind Sharma. Static Vulnerability Analysis of
Docker Images You may also like Research on Security
Issues of Docker and Container Monitoring System in
Edge Computing System Cyberhubs: Virtual Research
Environments for Astronomy Research on Docker
Cluster Scheduling Based on Self-define Kubernetes
Scheduler Static Vulnerability Analysis of Docker Images.
DOL:https://doi.org/10.1088/1757-899X/1131/1/012018

[16] What is Kubernetes? | Kubernetes. Retrieved June 19,

2022 from
https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/

[17] CVE-2019-5736- Red Hat Customer Portal. Retrieved May
3, 2022 from https://access.redhat.com/security/cve/cve-

2019-5736
[18] 9.1. Runmodes — Suricata 6.0.0 documentation. Retrieved
June 2, 2022 from

https://suricata.readthedocs.io/en/suricata-
6.0.0/performance/runmodes.html

[19] Understanding the Snort architecture. Retrieved June 25,
2022 from https://truica-victor.com/snort-architecture/

[20] Network overview | Kubernetes Engine
Documentation | Google Cloud. Retrieved June 19, 2022
from https://cloud.google.com/kubernetes-
engine/docs/concepts/network-overview

[21] Snort - Network Intrusion Detection & Prevention

System. Retrieved May 28, 2022 from
https://snort.org/rules_explanation

TScIT 37, July 8, 2022, Enschede, The Netherlands Pavel Hristov

APPENDIX

NETWORK CAPTURING SCRIPTS

Script executing TCP dump with PCAP generation every two seconds.

#!/bin/fsh

Script to pipe the PCAP file to the Snort service

#! fbinfsh

Designing an Intrusion Detection System for a Kubernetes cluster TScIT 37, July 8, 2022, Enschede, The Netherlands

B. PERFORMANCE METRICS OF NETWORK CAPRUTING AND IDS ANALYSIS

Snort pod executing network traffic analysis CPU (top) and memory (bottom) statistics.

TScIT 37, July 8, 2022, Enschede, The Netherlands Pavel Hristov

Worker node executing network traffic capturing CPU (top) and memory (bottom) statistics.

BOw /8 X

BOs/ 8 X

