
TheQuest for the Best Thread-Safe Java List
MARK VAN WIJK, University of Twente, The Netherlands

With most modern processors having more than one core, more resources
become available to programs that can use these extra cores. This research
shows which thread-safe Java List implementations are the best to use in
programs with different ratios of read to write operations, evaluated based
on the performance, energy consumption and memory usage. We found that
two implementations outperform the others on all fronts, unless there are
hundreds of times more read than write operations.

Additional Key Words and Phrases: Java, List, Performance, Energy Con-
sumption, Memory Usage, Concurrency, Thread-Safe.

1 INTRODUCTION
To help developers store grouped data, Java has an extensive suite
of collections: the Java Collections Framework (JCF) [25]. The col-
lections in this framework are implementations of several different
Abstract Data Types (ADTs), of which the list, set, map, queue and
deque are the most prevalent ones [21]. For all these ADTs, there are
both non-thread-safe and thread-safe implementations available.

Each of these implementations has its own unique behaviour. For
example, a list implementation might be faster at removing its first
item, but slower at reading a value in its middle than another im-
plementation. These differences have serious consequences for the
footprint of a program. Just by changing the implementations for
the used ADTs in a program, it is possible to get a 17% reduction in
energy consumption [17]. While this is great, it does require devel-
opers to be aware of the differences between the implementations
with regards to the metrics relevant to their use-case.

To unravel the properties of these implementations, there has
been research on their performance [2, 40, 42], energy consumption
[8, 12, 17, 32, 34, 35] and memory usage [2, 40]. However, these pa-
pers do either not focus on thread-safe implementation, or do so by
considering each method individually. While isolating each method
might seem fine, this is usually not what happens in applications
and is also not necessarily what the implementations are optimized
for. For instance, the documentation on the CopyOnWriteArrayList
contains the sentence "This is ordinarily too costly, but may be
more efficient than alternatives when traversal operations vastly
outnumber mutations" [26]. This raises a few questions: it ’may’ be
more efficient, but is it? And what does ’vastly outnumber’ mean? It
also means that to determine whether the CopyOnWriteArrayList
is the best fit in a use-case, requires more than focusing on the
performance of the individual actions. This research will therefore
focus on ratios between various actions on the implementations, to
understand how these combinations influence the behaviour of the
implementations.

Since the JCF is quite extensive, it is unfortunately not possible to
focus on all ADTs. For this reason, we will focus on the most popular

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ADT: the list [2]. They account for more than half of all occurrences
of Java data structures in GitHub repositories. The implementations
will be evaluated based on the metrics that were most prevalent
during our literature research:

RQ1.Which thread-safe list implementations from the JCF
should be used to maximise performance?
RQ2.Which thread-safe list implementations from the JCF
should be used to minimise power consumption?
RQ3.Which thread-safe list implementations from the JCF
should be used to minimise memory usage?

To answer these questions, this research compares the behaviour
of list implementations under different ratios between read and
write operations for a variety of threads.

2 BACKGROUND

2.1 Implementations
There are several ways in which thread-safety can be achieved in
Java. The first of which is locking, which can be achieved by using
the synchronized keyword or an explicit lock. This ensures that
only one thread at a time can access synchronized/locked code.
More over, all memory gets updated for the thread entering the
synchronized/locked code and it publishes its memory to all other
threads once it leaves [22]. This approach is used in the Vector [31]
and for the Collections.synchronizedList(List) method. This method
can take as a parameter any list and make it thread-safe [21]. When
this is done for the ArrayList [23] and LinkedList [29], we will refer
to as SynchronizedArrayList and SynchronizedLinkedList from now
on.

The next approach used to achieve thread-safety in the JCF is the
copy-on-write pattern [26, 27]. In this case, a thread only acquires
a lock when it wants to modify the state, so read operations do
not require any kind of locking. This allows multiple threads to
read at the same time, which might allow better scalability. Since
the readers still need to be aware of any changes to the state, the
internal state does need to be volatile, since this forces the thread to
not see stale values. This brings a performance penalty, since the
compiler cannot deviate from the program order for optimisations
and it needs to update its cache on each access to the field [7, 24].
Writes to these data structures are typically expensive operations
for two reasons. First, they require locks, meaning that there is no
interleaving allowed. Second, an update requires a copy of the entire
internal state. This internal state is usually an array that has to be
copied in its entirety. This consumes time, memory and energy. An
advantage is that even if a thread is updating the internal state, other
threads can still safely read from it concurrently. An example of this
pattern in the JCF is the CopyOnWriteArrayList [26].
The last approach to achieve thread-safety we will cover, is the

compare-and-swap operation. With this operation, a variable can
be atomically updated if the thread is able to provide the current
value of that variable. This prevents the need for locking, but in
high contention environments, it might take a while before each

1



TScIT 37, July 8, 2022, Enschede, The Netherlands Mark van Wijk

operation is executed, since if a value gets updated by a thread,
other threads which assume the previous value of the variable is
still the most recent value, will fail [5, 16]. To ensure updates are
correctly published to all threads, a field that is accessed through
the compare-and-swap operation, does still need to be volatile. This
means, just like for the reading of copy-on-write data structures,
that the compiler cannot impose certain optimizations and needs
to refresh its caches on each access. While the compare-and-swap
patterns can be a convenient pattern in some cases, there are no list
implementations within the JCF that use this approach.

2.2 Features to Analyze
Most programs are, if optimized, optimized for performance. In a lot
of cases this might be fine, but other factors may be more important.
In a smartphone for example, it is important to keep the energy

consumption low, since a battery has limited power. It might also
be beneficial for a server to have a lower power consumption, since
this might save a lot of money on the power bill or help a company
get a step closer to achieving their goals to be carbon neutral. One
might be tempted to assume that if the program is faster, it will
consume less energy, but this is not necessarily the case [33].
On a Raspberry Pi, it might also be desired to keep the memory

usage low, since some versions have limited memory. One could
argue that in this case using Javamight not be ideal, since its memory
usage is already quite high compared to its performance and power
usage [33], but there can be situations where the developer has
no other option. It might also be the case that the memory is the
limiting factor on a server, so reducing the memory usage of the
program might improve the overall performance by reducing the
need to garbage collections [9].

2.3 Methods to Analyze
Previously conducted research has primarily focused on the be-
haviour of individual methods. This research however, tries to do
this differently by using both reads and writes in the same bench-
mark, since most applications do not use only one method. The
methods that will be used for the benchmarks can be found in Table
1.

Table 1. Methods that will be benchmarked

Method Description

add(Object) Adds an element to the end of the list
contains(Object) Returns whether an element is in the list

get(int) Returns the element at a given position
iterator() Allows an iteration of the list

3 BENCHMARKS

3.1 Selected Implementations
For the benchmarks, the following implementations will be used:

• CopyOnWriteArrayList (COW)
• SynchronizedArrayList (SAL)
• SynchronizedLinkedList (SLL)
• Vector (Vec)

3.2 System
The Java Virtual Machine (JVM) provides a lot of features, aimed
at making the life of developers easier and ensuring that code is
executed faster. Two of these features are the Just In Time (JIT)
compiler and the Garbage Collector (GC). While usually a developer
should not notice their effects, they can have a big influence on the
benchmarks [15].
The GC ensures that developers do not need to worry about

manual memory management. This does not come for free, they
influence the performance of the benchmarks [9]. To reduce the
effects imposed by the GC during benchmarking, a new GC has
been released for Java 11: Epsilon. This GC does not free memory
like a regular GC, but instead shuts the program down when it runs
out of memory [36]. Unfortunately, the devices used in this research
do not have enough memory to support benchmarking with this
GC.
The JIT compiler on the other hand, attempts to improve the

performance. Code in Java is not compiled directly to machine code,
but to an intermediate representation: Java bytecode. When Java
code runs, it will first interpret this bytecode. If the interpreted code
runs a few times, the JIT can decide to optimize it and compile it to
machine code. This means that in order to have consistent results,
it is important to have a warm-up period [15].

During the optimizations, the JIT compiler can also detect whether
a block of code is redundant. If for example 1 + 1 is calculated, but
the result is never used, the JIT compiler can decide to erase the
code. Usually this is convenient since it improves performance, but
in this case, it also means that it can remove (parts of) the bench-
marks if they are not written with enough care. To prevent this,
the benchmarking software of the OpenJDK team, called JMH, is
used. JMH is a microbenchmarking framework that gives access to
Blackholes. When a value is fed to such a Blackhole, it is guaranteed
to not be removed by the JIT compiler [19].

For the assessment of energy consumption, we will used a modi-
fied version of JoularJX [13]. While JoularJX is able to monitor Linux
machines with Intel processors and any Windows machine, it is
still lacking a way to estimate the energy consumption for other
platforms. We implement this in our version, along with a lot of
refactoring to make the code easier to read and make it possible to
write the results to a CSV file will help during the analysis [14].

To assess the memory usage for the different implementations, an-
other tool from the OpenJDK team is used: JOL. JOL can accurately
determine how much memory is used in total by an object in Java
[20]. This is used instead of the Instrumentation#getObjectSize(Object)
method provided by Java, since according to its specification, it "is
useful for comparison within an implementation but not between
implementations" [28].
To run the benchmarks, the latest version of Java at the time of

writing this will be used, which is Java 18, in the form of OpenJDK
18.0.1. It will run on three different devices:

• A laptop (Lenovo) running Windows 10 Home 21H1, an In-
tel(R) Core(TM) i7-9750H CPU @ 2.60GHz and 16GB of RAM

• A laptop (MSI) running Ubuntu 20.04.4 LTS, an Intel(R) Core
(TM) i5-4210H CPU @ 2.90GHz and 8GB of RAM

2



TheQuest for the Best Thread-Safe Java List TScIT 37, July 8, 2022, Enschede, The Netherlands

• A Raspberry Pi 4 B running Ubuntu 21.04, Broadcom 2711,
Cortex-A-72, 64-bit SoC @ 1.5 GHz and 2GB of RAM

The Raspberry Pi is used since it has an ARM architecture instead
of an x86-based architecture like the laptops. This is more common
in mobile devices and is starting to gain more ground in computers
[3, 6]. On ARM based processors, re-orderings of reads and writes
are more likely to happen. Therefore the effect of the happens-before
relation imposed by for example volatiles might be different [4, 11].

4 PERFORMANCE

4.1 Hypothesis
The hypothesis for the performance is that when functions are
combined, their time will add up.
To express this hypothesis as a formula, we use the following

definitions: 𝑎_
𝑖,𝑡

the time in seconds for an operation where 𝑖 is
the 𝑖th action, 𝑡 threads, _ is the list implementation and 𝑤𝑖 how
many times the 𝑖th action is repeated. With this, we can express the
expected time 𝐴 in Equation 1.

𝐴(𝑡, _,𝑤1,𝑤2) = 𝑤1𝑎
_
1,𝑡 +𝑤2𝑎

_
2,𝑡 (1)

Since this research focuses on the ratio between𝑤1 and𝑤2 and
instead of their absolute values, we will for simplicity take 𝑤2 as
1. This means that 𝐴 is now a linear equation of one variable. This
can be used to find the𝑤1 for which the throughput of a composite
action is equal for the implementations _ and 𝜎 . This is shown in
Equation 2.

𝑤1 =
𝑎𝜎2,𝑡 − 𝑎_2,𝑡
𝑎_1,𝑡 − 𝑎𝜎1,𝑡

(2)

With Equation 2 it is possible to find the domains in which each
list is expected to achieve the highest throughput. To do this, we
will use the property that the equation is linear. First we find the
implementation with the lowest A if 𝑤1 = 0. This equation is the
fastest at a ratio of 0. After that, we can find the closest intersection
with another implementation, which is the fastest starting at that
ratio until its next intersection. We repeat this until no line crosses
the fastest line.

4.2 Results
To test the hypothesis, we will first look at the results of the Add
and Contains performance. Based on this, we can get the measured
performance of the ContainsAdd operation, with 30 Contains op-
erations for each Add operation and compare it to the expected
performance. First we will look at the Contains operation in Figure
1. Note that the SynchronizedArrayList and the Vector are stacked.

2 4 6 8
0

0.5

1
·106

Th
ro
ug

hp
ut

(o
ps
/s
) Lenovo

2 4 6 8
0
2
4

·105
MSI

COW SAL SLL Vec

2 4 6 8
0
1
2

·105
Raspberry Pi

2 4 6 8
0.6
0.8
1

1.2
1.4

·105

Threads

Th
ro
ug

hp
ut

(o
ps
/s
)

2 4 6 8
4
6
8

·104

Threads
2 4 6 8

2
3
4

·104

Threads

Fig. 1. Contains Performance (second row without COW)

Figure 1 clearly shows that the CopyOnWriteArrayList outper-
forms the other implementations on the Contains operation by quite
a big margin. The throughput of the SynchronizedArrayList and Vec-
tor are almost equal to each other and the SynchronizedLinkedList is
performing by far the worst. We will now look at how this compares
to the Add performance in Figure 2.

2 4 6 8
0
1
2

·105

Threads

Th
ro
ug

hp
ut

(o
ps
/s
) Lenovo

2 4 6 8
0
1
2

·105

Threads

MSI

COW SAL SLL Vec

2 4 6 8
0
2
4
6

·104

Threads

Raspberry Pi

Fig. 2. Add Performance

From Figure 1 and 2 it is clear that even though the CopyOn-
WriteArrayList’s Contains performance is head and shoulders above
its competition, its Add performance is so bad that the combination
of the two actions is expected to result in the worst throughput. The
SynchronizedArrayList and Vector perform nearly equal in both
operations and by coming in second for the Contains operation and
being the fastest for the Add operation, they are expected to be the
fastest on the combined action. Lastly the SynchronizedLinkedList
does not really impress, with a last place for the Contains operation
and second to last place for the Add operation. However neither
operations are as bad as the Add performance for the CopyOn-
WriteArrayList, it should not come in last on the composite action.
In Figure 3 we show that this indeed the case. The first row is the
measured performance and the second row the predicted perfor-
mance based on Equation 1.

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Mark van Wijk

2 4 6 8
0

2,000

4,000

Th
ro
ug

hp
ut

(o
ps
/s
) Lenovo

2 4 6 8

1,000

2,000

MSI

COW SAL SLL Vec

2 4 6 8

500

1,000

Raspberry Pi

2 4 6 8
0

2,000

4,000

Threads

Th
ro
ug

hp
ut

(o
ps
/s
)

2 4 6 8

1,000
2,000
3,000

Threads
2 4 6 80

500
1,000
1,500

Threads

Fig. 3. ContainsAdd Performance (first row measured, second row predic-
tions, SAL and Vec are stacked)

While the shape of the graphs on the first row (the measured
values) and the second row (the predicted values based on the hy-
pothesis) seem to match, they do still not overlap for all graphs.
This happens for most most actions. This leads to the percentages
of correct predictions on the platforms shown in Table 2.

Table 2. Percentage correctly throughputs estimated based on Equation 2
(Lenovo,MSI,Pi)

COW SAL SLL Vec

GetContains 100,79,71 100,43,93 79,79,86 100,36,86
GetIterate 71,43,100 100,79,86 100,100,93 93,64,86
GetAdd 67,81, 71 100,67,95 29,0,67 95,43,95

ContainsIterate 94,100,7 100,57,100 36,100,93 93,64,100
ContainsAdd 57,52,57 62,33,95 52,76,95 100,38,90
IterateAdd 57,86,100 100,38,62 33,71,86 90,14,71

While for some actions, the hypothesis seems to give reasonable
predictions, in most cases, the results are not too impressive. How-
ever, when we add an error margin of 10%, we get significantly
better results, as shown in Table 3. In this table, the Lenovo is left
out since everything is correctly predicted for it, with the exception
of the GetAdd operation for the SynchronizedLinkedList. These
predictions are incorrect since they are predicted based on the Get
operation with a static size of 100. The Add operation however adds
elements, which means that the size is dynamic. This influences the
results since it starts looping to find the item, either at the start or
the end of the list, depending on which is closer to the target index
[18]. In the statically sized Get environment, this will be the head
half of the time and the tail half of the time, but in the dynamically
sized case, it will only start at the head of the list. The reason for
this is that the Get action is only performed on the first 100 indexes,

making the tail always further away than the head. This slows down
the Get part of the GetAdd operation compared to the expectation
based on the hypothesis. Since the other implementations rely on
random access, this does not influence their results [30].

Table 3. Percentage correctly estimated based on the hypothesis with a 10%
error margin (MSI,Pi)

COW SAL SLL Vec

GetContains 100,100 71,100 100,100 71,100
GetIterate 100,100 100,100 100,100 100,100
GetAdd 100,100 100,100 43,90 81,100

ContainsIterate 100,100 71,100 100,100 100,100
ContainsAdd 67,90 86,95 100,100 95,100
IterateAdd 100,100 100,100 95,86 90,100

These predictions seem to be way more accurate (again, without
taking the GetAdd for the SynchronizedLinkedList into account).
However, it might seem unreasonable to arbitrarily add a 10% error
margin to the predictions and call it a day. However, there is a reason
to do this. The Raspberry Pi does not have any type of cooling and
the other benchmarks run on laptops. Laptops do not have a lot
of space for cooling, so especially when it is a bit hotter outside, it
can be hard for them to get rid of their heat. Especially the MSI has
problems with it, during the summer its keyboard can get scorching
hot and with the benchmarks running over a period of 15 hours
during a hot day [41], the MSI got hot. Moreover, during such a long
run at which the CPU is frequently running at 100%, the CPU heats
up. When a CPU gets too hot, it can start to thermal throttle [10].
This means that to protect the CPU, when it gets too hot, the CPU
power will temporarily be reduced. Even in a twominute benchmark
on a laptop, this can easily lead to a difference in clock speed of
more than 10% [38].

By keeping this in mind, we can now use Equation 2 to estimate
when an implementation is expected to outperform the others. The
values are written down as ranges of the ratio between the first
and second operation. For example a table entry of 0 − 700 for the
GetAdd operation means that the implementation is expected to
be the fastest when there are between 0 and 700 Get operations for
each Add operation. These results are show in Table 4 (Lenovo),
Table 5 (MSI) and Table 6 (Raspberry Pi).

Table 4. Expected fastest implementations on the Lenovo

COW SAL SLL Vec

GetContains 0 −∞
GetIterate 0 −∞
GetAdd 700 −∞ 0 − 700 0 − 700

ContainsIterate 0 −∞
ContainsAdd 300 −∞ 0 − 300 0 − 400
IterateAdd 10000 −∞ 0 − 300 300 − 10000 0 − 300

4



TheQuest for the Best Thread-Safe Java List TScIT 37, July 8, 2022, Enschede, The Netherlands

Table 5. Expected fastest implementations on the MSI

COW SAL SLL Vec

GetContains 0 −∞
GetIterate 0 −∞
GetAdd 1500 −∞ 0 − 1500 0 − 1500

ContainsIterate 0 −∞
ContainsAdd 150 −∞ 0 − 150 0 − 150
IterateAdd 11000 −∞ 0 − 300 300 − 11000 0 − 300

Table 6. Expected fastest implementations on the Raspberry Pi

COW SAL SLL Vec

GetContains 0 −∞
GetIterate 0 −∞
GetAdd 500 −∞ 0 − 500 0 − 500

ContainsIterate 0 −∞
ContainsAdd 150 −∞ 0 − 150 0 − 150
IterateAdd 6000 −∞ 0 − 100 100 − 6000 0 − 100

5 ENERGY

5.1 Hypothesis
The hypothesis for the energy consumption is that it will be the
average of the power consumed by each action in the composite
action.

If we use the notation introduced earlier and introduce the nota-
tion 𝑃_

𝑖,𝑡
for the energy consumed by the 𝑖th operation, for 𝑡 threads

on implementation _, we can express the expected energy 𝐸 in
Equation 3.

𝐸 (𝑡, 𝑙) =
𝑤𝑃_1,𝑡 + 𝑃_2,𝑡
𝑤 + 1 (3)

5.2 Results
The hypothesis, again with a 10% error margin, is used to assess
whether it is a good indication of the power consumption, the results
can be found in Table 7. The Lenovo is not in this table since all its
entries are predicted correctly.

Table 7. Percentage correctly estimated energy consumption based on the
hypothesis (MSI,Pi)

COW SAL SLL Vec

GetContains 86,100 100,100 100,100 100,100
GetIterate 100,100 100,100 100,100 100,100
GetAdd 33,5 100,100 100,100 100,100

ContainsIterate 100,100 100,100 100,100 100,100
ContainsAdd 67,10 100,100 100,100 100,100
IterateAdd 33,5 100,100 100,100 71,100

While most actions are predicted correctly, the predictions for the
composite actions where read and write operations are combined for
the CopyOnWriteArrayList, seem to fall short. A straight forward
explanation for this, is that the CopyOnWriteArrayList has such
a slow Add operation, that it spends most of its time doing on the
Add operation, so the Contains operation does not add a lot to the
power consumption. However, the formula gives a higher weight to
the Contains operation since there are more of them.
Based on this observation, it is possible to come up with a new

hypothesis. This new hypothesis also relies on the hypothesis of the
performance data. Instead of multiplying the power for each action
by the ratio of how often the action is executed, it gets multiplied
by the ratio of how long the actions take. This is shown in Equation
4.

𝐸 (𝑡, _,𝑤) = 𝑃_1
𝑤𝑎_1,𝑡

𝑤𝑎_1,𝑡 + 𝑎_2,𝑡
+ 𝑃_2

𝑎_2,𝑡

𝑤𝑎_1,𝑡 + 𝑎_2,𝑡
(4)

After using Equation 4 to predict the energy consumption, it turns
out that it achieves a score of 100% on all three platforms. Therefore
we will continue using this formula.

If one wants to find when the energy consumption at a given
moment of two different implementation _ and 𝜎 are equal to each
other, it is possible to solve for 𝑤 . However, the equation is quite
big, so instead the quadratic equation is given in Equation 5.

(𝑃_1,𝑡𝑎_1,𝑡𝑎𝜎1,𝑡 − 𝑃𝜎1,𝑡𝑎_1,𝑡𝑎𝜎1,𝑡 )𝑤2

+ (𝑃_1,𝑡𝑎_1,𝑡𝑎𝜎2,𝑡 + 𝑃_2,𝑡𝑎_2,𝑡𝑎𝜎1,𝑡 − 𝑃𝜎1,𝑡𝑎_2,𝑡𝑎𝜎1,𝑡 − 𝑃𝜎2,𝑡𝑎_1,𝑡𝑎𝜎2,𝑡 )𝑤
+ 𝑃_2,𝑡𝑎_2,𝑡𝑎𝜎2,𝑡 − 𝑃𝜎2,𝑡𝑎_2,𝑡𝑃𝜎2,𝑡 = 0 (5)

While Equation 5 might be useful in some cases, we will focus
more on how much energy is consumed per operation rather than
calculating which implementation uses the least energy at a given
moment. This can be calculated by dividing the energy consump-
tion by the throughput. If we do this with the hypotheses for the
performance and energy consumption, in the form of Equation 1
and 4, we get Equation 6.

𝑤 =
𝑃𝜎2,𝑡𝑎

𝜎
2,𝑡 − 𝑃_2,𝑡𝑎_2,𝑡

𝑃_1,𝑡𝑎
_
1,𝑡 − 𝑃𝜎1,𝑡𝑎𝜎1,𝑡

(6)

This results in indications at which ratio each implementation is
the most energy efficient on each platform (Lenovo: Table 8, MSI:
Table 9, Raspberry Pi: Table 10). Keep in mind that these values are
not absolutes. They are an indication of how many times the first
operation (for example Get in GetContains) needs to be present for
each second operation (for example Contains in GetContains) in
order to be the expected to be the implementation with the least
energy consumption.

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Mark van Wijk

Table 8. Expected greenest implementations on the Lenovo

COW SAL SLL Vec

GetContains 0 −∞
GetIterate 0 −∞
GetAdd 700 −∞ 0 − 700 0 − 700

ContainsIterate 0 −∞
ContainsAdd 400 −∞ 0 − 400 0 − 400
IterateAdd 11000 −∞ 0 − 500 500 − 11000 0 − 500

Table 9. Expected greenest implementations on the MSI

COW SAL SLL Vec

GetContains 0 −∞
GetIterate 0 −∞
GetAdd 600 −∞ 0 − 600 0 − 600

ContainsIterate 0 −∞
ContainsAdd 200 −∞ 0 − 200 0 − 200
IterateAdd 8000 −∞ 0 − 400 400 − 8000 0 − 400

Table 10. Expected greenest implementations on the Raspberry Pi

COW SAL SLL Vec

GetContains 0 −∞
GetIterate 0 −∞
GetAdd 400 −∞ 0 − 400 0 − 400

ContainsIterate 0 −∞
ContainsAdd 150 −∞ 0 − 150 0 − 150
IterateAdd 5000 −∞ 0 − 200 200 − 5000 0 − 200

6 MEMORY
In this research, two types of memory consumption are assessed,
which we will refer to as instant and running memory. Instant
memory is the memory a list requires to hold a given amount of
objects. For the instant memory, the list already knows its target
size in advance, so it is not the same as repeatedly adding items to
a list. Running memory on the other hand, is the total amount of
memory used by a collection if items get continuously added. This
means that running memory includes memory that is no longer in
use, while the instant memory is all in use.

6.1 Hypothesis
For the instant memory, the hypothesis is that the memory usage
will be nearly equal. For the running memory, it is expected that
the CopyOnWriteArrayList will be worse than the others, since it
has to allocate a new array on each modification. Moreover, since
the SynchronizedLinkedList does not create any wasted memory
when objects are added, it is expected that it has the lowest running
memory.

6.2 Instant
The instant memory is the total amount of bytes that are used for
the list to store the given amount of items. In this case, Integers are
used since they take 16 bytes of storage, which is the minimal size
of a Java object [39]. The results are plotted in Figure 4.

0 200 400 600 800 1,000

0

1

2

3

4

·104

Items

M
em

or
y
(b
yt
es
)

Instant Memory

COW
SAL
SLL
Vec

Fig. 4. Instant Memory Consumption (COW, SAL and Vec are stacked)

From Figure 4, it is clear that the SynchronizedLinkedList takes
significantly more bytes (almost 2 times) to store the same data as
the other implementations. It is not immediately clear how the other
implementations compare, but they seem quite similar.
To understand the differences between the instant memory of

the CopyOnWriteArrayList, SynchronizedArrayList and Vector, we
will express their memory consumption as functions. The function
𝑚(𝑛, 𝑠) calculates the amount of bytes needed to store a list with 𝑛
elements, in which each element has a size of 𝑠 bytes. This means
that 𝑛, 𝑠 ∈ N ∪ {0}.
To understand these formulae, it is important to know that the

JVM always requires an object to have a size that is a multiple of 8
bytes. This is in particular interesting for arrays, since a reference
only requires 4 bytes [37]. This means that if there are an odd
number of elements, the array still allocates memory for one more
element. This is not the case with an even number of elements, then
the required amount of memory is allocated.
To handle this padding, we need some notation to use in the

formulae. This will be the notation ⌈𝑓 ⌉2. It means that the result
will be ceiled to an even number. The mathematical definition is
given in Equation 7.

⌈𝑓 ⌉2 =
{
⌈𝑓 ⌉, if⌈𝑓 ⌉ ∈ 2Z
⌈𝑓 ⌉ + 1, if⌈𝑓 ⌉ ∉ 2Z

(7)

This behaviour can be achieved with regular operators by using
⌈𝑓 ⌉2 = 2

⌈
𝑓
2

⌉
. If ⌈𝑓 ⌉ ∈ Z, it is also possible to use ⌈𝑓 ⌉2 = 𝑓 + 1

2 −

6



TheQuest for the Best Thread-Safe Java List TScIT 37, July 8, 2022, Enschede, The Netherlands

1
2 (−1) 𝑓 which might have nicer mathematical properties depending
on the use case.
With these symbols and notations it is now possible to express

the instant memory for each implementation as a function of the
number of elements and the size of each object. In this listing, we
address the constant term for the CopyOnWriteArrayList in detail,
but we will not go into that depth for the others.

CopyOnWriteArrayList

𝑚(𝑛, 𝑠) = 56 + 𝑠𝑛 + 4⌈𝑛⌉2 (8)

• 56: 16 bytes for the lock, 16 bytes for the header of the array,
12 bytes of object header, 4 bytes to store the reference to
the lock, 4 bytes to store the reference to the array, 4 bytes
padding

• 𝑠𝑛: the memory of the stored elements
• 4⌈𝑛⌉2: the memory used for the data part of the array. 4 bytes
per element, but must always be a multiple of 8 so it might
have 4 bytes of padding

SynchronizedArrayList

𝑚(𝑛, 𝑠) = 64 + 𝑠𝑛 + 4⌈𝑛⌉2 (9)

• 64: the memory for an empty SynchronizedArrayList
• 𝑠𝑛: the memory of the stored elements
• 4⌈𝑛⌉2: the memory used for the data part of the array. 4 bytes
per element, but must always be a multiple of 8 so it might
have 4 bytes of padding

SynchronizedLinkedList

𝑚(𝑛, 𝑠) = 56 + 24𝑛 + 𝑠𝑛 (10)

• 56: the memory for an empty SynchronizedLinkedList
• 24𝑛: 12 bytes for the header of each Node, 4 bytes for the
reference to the item, 4 bytes for the reference to the previous
Node, 4 bytes for the reference to the next Node

• 𝑠𝑛: the memory of the stored elements
Vector

𝑚(𝑛, 𝑠) = 48 + 𝑠𝑛 + 4⌈𝑛⌉2 (11)

• 48: the memory for an empty Vector
• 𝑠𝑛: the memory of the stored elements
• 4⌈𝑛⌉2: the memory used for the data part of the array. 4 bytes
per element, but must always be a multiple of 8 so it might
have 4 bytes of padding

Equation 8, 9 and 11 show that the memory for the CopyOn-
WriteArrayList, SynchronizedArrayList and Vector, only differ by
a constant factor. Moreover, this difference is not bigger than 16
bytes, which is the minimum size of an object. This means that in
almost all practical use cases, this difference is negligible.

6.3 Running
At first, the running memory might not seem very interesting since
not all of the memory is ’in use’ at the same time. However, if
memory is unused, it is not automatically available again. First the
garbage collector needs to free the memory, which can be expensive
[9]. The running memory is shown in Figure 5.

0 500 1,000
0

1

2
·106

Items

M
em

or
y
(b
yt
es
)

Running

COW SAL SLL Vec

0 500 1,000
0

2

4
·104

Items

Running Without COW

Fig. 5. Running Memory Consumption (with and without COW)

The first plot shows that the CopyOnWriteArrayList gathers sig-
nificantly more running memory than the other implementations.
This makes sense since it has to create a new array after every single
modification. This renders the CopyOnWriteArrayList inappropri-
ate when running memory is a concern for the developer.
The SynchronizedLinkedList’s running memory is growing lin-

early, in fact, it is equal to the instant memory, since it does not
need to discard anything when more elements are added. The Syn-
chronizedArrayList and the Vector on the other hand, grow in steps,
since they grow the capacity of their underlying array is full. The
size of the new underlying array, given the previous capacity 𝑛
are

⌊ 3
2𝑛

⌋
and 2𝑛 respectively. This means that the SynchronizedAr-

rayList has less redundant capacity in its array after a resize, but
the Vector has a lower running memory footprint.

To be able to understand the differences between the implemen-
tations, we shall express the running memory in the Equations 12,
13, 14 and 15. We will not cover the size of the empty collections in
depth.

CopyOnWriteArrayList

𝑚(𝑛) = 57 + 𝑠𝑛 + 20𝑛 + 2𝑛2 − (−1)𝑛 (12)

• 56: the memory for an empty CopyOnWriteArrayList
• 𝑠𝑛: the memory of the stored elements
• 16𝑛: 16 bytes for each header of an allocation of an array
• 1 + 4𝑛 + 2𝑛2 − (−1)𝑛 : the sum of the memory used for the
data part of the array, with 4 bytes for each element with
compensation for the padding to 8 bytes (1 − (−1)𝑛)

SynchronizedArrayList

𝑚(𝑛) = 64 + 𝑠𝑛 + 16
(⌈
log 3

2

𝑛 − 1
𝐾

⌉
+ 1

)
+ 4

⌈
log 3

2
𝑛−1
𝐾

⌉∑︁
𝑖=0

⌈
𝐾

(
3
2

)𝑖 ⌉
2
(13)

Where 𝐾 ≈ 1.08151366859, it is 2
3𝐾 (3) where 𝐾 (3) is a constant

related to the Josephus problem [1].
• 64: the memory for an empty SynchronizedArrayList
• 𝑠𝑛: the memory of the stored elements

7



TScIT 37, July 8, 2022, Enschede, The Netherlands Mark van Wijk

• 16
(⌈
log 3

2
𝑛−1
𝐾

⌉
+ 1

)
: 16 bytes for each header of an allocation

of an array, the first 16 are added because the first allocation
does not get covered by the rest of the formula

• 4
∑⌈

log 3
2
𝑛−1
𝐾

⌉
𝑖=0

⌈
𝐾
(
3
2

)𝑖 ⌉
2
: goes over each allocation and uses 4

bytes for each element in an array, but pads to a multiple of
8 bytes if required

SynchronizedLinkedList

𝑚(𝑛, 𝑠) = 56 + 24𝑛 + 𝑠𝑛 (14)
• 56: the memory for an empty SynchronizedLinkedList
• 24𝑛: 12 bytes for the header of each Node, 4 bytes for the
reference to the item, 4 bytes for the reference to the previous
Node, 4 bytes for the reference to the next Node

• 𝑠𝑛: the memory of the stored elements
Vector

𝑚(𝑛) = 48 + 𝑠𝑛 + 16
(⌈
log2 𝑛

⌉ + 1
) + 8 · 2⌈log2 𝑛⌉ (15)

• 48: the memory for an empty Vector
• 𝑠𝑛: the memory of the stored elements
• 16

(⌈
log2 𝑛

⌉ + 1
)
: 16 bytes for each header of an allocation of

an array, the first 16 are added because the first allocation
does not get covered by the rest of the formula

• 8 · 2⌈log2 𝑛⌉ : the sum of the memory used for the data part of
the array, with 4 bytes for each element with compensation
for the padding to 8 bytes

From Equation 14 it is clear that the SynchronizedLinkedList
is still linear, and in fact equal to the instant memory. The Copy-
OnWriteArrayList however, does change quite a lot. According to
Equation 12 it is quadratic, which means that it will always consume
more memory than the SynchronizedLinkedList.

For the Vector (Equation 15), it might be a bit harder to spot how
it scales. However, even though the term 2⌈log2 𝑛⌉ might look like
it is exponential at first glance, the log in the exponent makes the
term effectively linear. This means that this equation is essentially
linear with an additional

⌈
log2 𝑛

⌉
term. Logarithms grow slower

than linear terms, so the Vector should always stay lower than the
SynchronizedLinkedList.
Lastly, there is Equation 13, that describes the growth of the

SynchronizedArrayList. This one is the most complicated looking
formula and therefore perhaps the hardest to compare to the others.
To understand it, we need to understand where the formula comes
from. When a factor resizes, it multiplies its capacity by 3

2 , whereas
the Vector multiplies its capacity by 2. This means that it has the
same growth properties as the Vector, which means that it will
always consume less running memory than the CopyOnWriteAr-
rayList and the SynchronizedLinkedList, but a slightly more than
the Vector.

7 DISCUSSION
For both the performance and the energy consumption, the read-
only operations are dominated by the CopyOnWriteArrayList. The
operations which also contain the Add action, are dominated by the
Vector and SynchronizedArrayList, until there are a few hundred
times more read operations than write operations, at which time the

CopyOnWriteArrayList is the most optimal implementation (Tables
4-6, 8-10).

It is important to mention that especially due to the thermal throt-
tling, these estimations should not be treated as absolute numbers.
They can only be used to get a feeling for the order of magnitude for
when which implementation is faster. Moreover, the device used to
run a program that uses this information might not have the same
results as the devices used in this research. The Lenovo, MSI and
Raspberry Pi already get results differing quite a lot, but the order
of magnitude stays the same.
Another thing to keep in mind, is that the results are based on

lists that start of with a size of 100. Moreover, the Get, Contains and
Iterate actions are limited to only the first 100 elements of the Lists.
This means that the numbers might differ for larger lists.

For the Iterate, we have also not tested different types of bodies.
Since contradictory to the other implementations, the CopyOn-
WriteArrayList does not require locking, it could be that especially
with a heavier calculation in the body, the numbers start to shift in
favour of the CopyOnWriteArrayList.
The instant memory at each moment in time is almost equal

for the CopyOnWriteArrayList, SynchronizedArrayList and Vector.
The SynchronizedLinkedList is the only implementation with a
different, but worse, memory profile. The running memory is a
different story. Since the CopyOnWriteArrayList has to make a copy
on each write, it has a way worse running memory usage. The
SynchronizedArrayList and the Vector both grow in steps when the
capacity is reached. The Vector doubles in capacity at each grow,
while the SynchronizedArrayList multiplies its capacity by a factor
of 1.5. This means that the Vector typically has more unused space
than the SynchronizedArrayList, but in return has a better running
memory footprint.
For the instant memory it is also important to mention that the

lists are not grown by adding each items individually, but in one
operation. This means that the lists have the possibility to get a
capacity that exactly matches the final size. This means that for the
Vector and SynchronizedArrayList the redundant capacity is not
presented in this research.

8 CONCLUSIONS AND FUTURE WORK
Our results show that in most practical scenarios, which use the
methods we tested (Add, Contains, Get, Iterate), the SynchronizedAr-
rayList and the Vector are the best choices for thread-safe list im-
plementations. Only when there are hundreds of times more read
operations than write operations, the CopyOnWriteArrayList be-
comes more feasible to use, but only if running memory is not a
concern to the developer.
As future work, we recommend that the experiments run in a

temperature controlled environment to attempt to achieve more
accurate results. Moreover, to get a better picture of the behaviour
of servers and desktops, it would help to run the benchmarks on
these types of machines. It would also be useful to see the Remove
operation being investigated. Lastly, the impact of the body of the
Iterate functionality on the performance could still be investigated.

8



TheQuest for the Best Thread-Safe Java List TScIT 37, July 8, 2022, Enschede, The Netherlands

REFERENCES
[1] Henry Bottomley. 2001. Entry A061418 in The On-Line Encyclopedia of Integer Se-

quences. OEIS Foundation Inc. https://oeis.org/A061418 Last accessed: 26/06/2022.
[2] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. 2017. Empirical Study

of Usage and Performance of Java Collections. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering. ACM, New York, United
States, 389–400. https://doi.org/10.1145/3030207.3030221

[3] Patrick Cronin, Xing Gao, HainingWang, and Chase Cotton. 2021. An Exploration
of ARM System-Level Cache and GPU Side Channels. In 37th Annual Computer
Security Applications Conference. ACM, New York, United States, 784–795. https:
//doi.org/10.1145/3485832.3485902

[4] ARM Developer. 2011. Memory Ordering. ARM Developer. https://developer.arm.
com/documentation/den0042/a/Memory-Ordering Last accessed: 26/06/2022.

[5] Dave Dice and Danny Hendlerand Ilya Mirsky. 2014. Software-based contention
management for efficient compare-and-swap operations. Combined Special issues
on Euro-Par 2013 and Java Technologies for Real-Time and Embedded Systems 26,
14 (2014), 2386–2404. https://doi.org/10.1002/cpe.3304

[6] Blake Ford, Apan Qasem, Jelena Tesic, and Ziliang Zong. 2021. Migrating Software
from x86 to ARM Architecture: An Instruction Prediction Approach. In 15th IEEE
International Conference on Networking, Architecture and Storage. IEEE, New York,
United States, 1–6. https://doi.org/10.1109/NAS51552.2021.9605443

[7] Brian Goetz. 2006. Java Concurrency in Pratice. Addison-Wesley, Glenview, United
States.

[8] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh, Bram Adams,
and Abram Hindle. 2016. Energy profiles of Java collections classes. In Proceedings
of the 38th International Conference on Software Engineering. ACM, New York,
United States, 225–236. https://doi.org/10.1145/2884781.2884869

[9] IBM. 2022. Garbage collection impacts to Java performance. IBM.
https://www.ibm.com/docs/en/aix/7.2?topic=monitoring-garbage-collection-
impacts-java-performance Last accessed: 26/06/2022.

[10] Intel. 2021. Why does Intel® Core™ Processors Enable the Throttling While Gaming?
Intel. https://www.intel.com/content/www/us/en/support/articles/000029868/
processors/intel-core-processors.html Last accessed: 26/06/2022.

[11] Lun Liu, Todd Millstein, Madanlal, and Musuvathi. 2017. A volatile-by-default
JVM for server applications. Proceedings of the ACM on Programming Languages
1, OOPSLA (2017), 1–24. https://doi.org/10.1145/3133873

[12] Irene Manotas, Lori Pollock, and James Clause. 2014. SEEDS: a software engi-
neer’s energy-optimization decision support framework. In Proceedings of the 36th
International Conference on Software Engineering. ACM, New York, United States,
503–514. https://doi.org/10.1145/2568225.2568297

[13] Adel Noureddine. 2022. JoularJX. JoularJX. https://www.noureddine.org/
research/joular/joularjx Last accessed: 26/06/2022.

[14] Adel Noureddine and Mark van Wijk. 2022. JoularJX. JoularJX. https://github.
com/Chickenpowerrr/joularjx Last accessed: 26/06/2022.

[15] Scott Oaks. 2014. Java Performance: The Definitive Guide. O’Reilly, Sebastopol,
United States.

[16] Scott Oaks and Henry Wong. 2004. Java Threads: Understanding and Mastering
Concurrent Programming. O’Reilly, Sebastopol, United States.

[17] Wellington Oliveira, Renato Oliveira, Fernando Castor, Benito Fernandes, and Gus-
tavo Pinto. 2019. Recommending Energy-Efficient Java Collections. In IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). IEEE, New
York, United States, 160–170. https://doi.org/10.1109/MSR.2019.00033

[18] OpenJDK. 2011. view src/share/classes/java/util/LinkedList.java. Open-
JDK. https://hg.openjdk.java.net/jdk7/jdk7/jdk/file/9b8c96f96a0f/src/share/
classes/java/util/LinkedList.java#l567 Last accessed: 26/06/2022.

[19] OpenJDK. 2022. Java Microbenchmark Harness (JMH). OpenJDK. https://github.
com/openjdk/jmh Last accessed: 26/06/2022.

[20] OpenJDK. 2022. Java Object Layout (JOL). OpenJDK. https://github.com/openjdk/
jol Last accessed: 26/06/2022.

[21] Oracle. 2014. Summary of Implementations (The Java Tutorials > Collections >
Implementations). Oracle. https://docs.oracle.com/javase/tutorial/collections/
implementations/summary.html Last accessed: 26/06/2022.

[22] Oracle. 2014. Synchronized Methods (The Java™ Tutorials > Essential Java
Classes > Concurrency). Oracle. https://docs.oracle.com/javase/tutorial/essential/
concurrency/syncmeth.html Last accessed: 26/06/2022.

[23] Oracle. 2022. ArrayList (Java SE 18 & JDK 18). Oracle. https://docs.oracle.
com/en/java/javase/18/docs/api/java.base/java/util/ArrayList.html Last accessed:
26/06/2022.

[24] Oracle. 2022. Chapter 17. Threads and Locks. Oracle. https://docs.oracle.com/
javase/specs/jls/se18/html/jls-17.html Last accessed: 26/06/2022.

[25] Oracle. 2022. Collection (Java SE 18 & JDK 18). Oracle. https://docs.oracle.
com/en/java/javase/18/docs/api/java.base/java/util/Collection.html Last accessed:
26/06/2022.

[26] Oracle. 2022. CopyOnWriteArrayList (Java SE 18 & JDK 18). Ora-
cle. https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/
concurrent/CopyOnWriteArrayList.html Last accessed: 26/06/2022.

[27] Oracle. 2022. CopyOnWriteArraySet (Java SE 18 & JDK 18). Ora-
cle. https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/
concurrent/CopyOnWriteArraySet.html Last accessed: 26/06/2022.

[28] Oracle. 2022. Instrumentation (Java SE 18 & JDK 18). Oracle.
https://docs.oracle.com/en/java/javase/18/docs/api/java.instrument/java/
lang/instrument/Instrumentation.html#getObjectSize(java.lang.Object) Last
accessed: 26/06/2022.

[29] Oracle. 2022. LinkedList (Java SE 18 & JDK 18). Oracle. https://docs.oracle.
com/en/java/javase/18/docs/api/java.base/java/util/LinkedList.html Last accessed:
26/06/2022.

[30] Oracle. 2022. RandomAccess (Java SE 18 & JDK 18). Oracle. https://docs.oracle.
com/en/java/javase/18/docs/api/java.base/java/util/RandomAccess.html Last ac-
cessed: 26/06/2022.

[31] Oracle. 2022. Vector (Java SE 18 & JDK 18). Oracle. https://docs.oracle.com/en/
java/javase/18/docs/api/java.base/java/util/Vector.html Last accessed: 26/06/2022.

[32] Rui Pereira, Marco Couto, João Cunha, and João Paulo Fernandes. 2016. The
influence of the Java collection framework on overall energy consumption. In
Proceedings of the 5th International Workshop on Green and Sustainable Software.
ACM, New York, United States, 15–21. https://doi.org/10.1145/2896967.2896968

[33] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo
Fernandes, and João Saraiva. 2017. Energy efficiency across programming lan-
guages: how do energy, time, and memory relate?. In Proceedings of the 36th
International Conference on Software Engineering. ACM, New York, United States,
256–267. https://doi.org/10.1145/2568225.2568297

[34] Rui Pereira, Pedro Simão, Jácome Cunha, and João Saraiva. 2018. jStanley: Placing
a Green Thumb on Java Collections. In Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering. IEEE, New York, United
States, 856–859. https://doi.org/10.1145/3238147.3240473

[35] Gustavo Pinto, Kenan Liu, Fernando Castor, and Yu David Liu. 2016. A Compre-
hensive Study on the Energy Efficiency of Java’s Thread-Safe Collections. In 32nd
IEEE International Conference on Software Maintenance and Evolution. IEEE, New
York, United States, 20–31. https://doi.org/10.1109/ICSME.2016.34

[36] Aleksey Shipilev. 2017. JEP 318: Epsilon: A No-Op Garbage Collector (Experimental).
OpenJDK. https://openjdk.java.net/jeps/318 Last accessed: 26/06/2022.

[37] Aleksey Shipilev. 2020. Java Objects Inside Out. Aleksey Shipilev. https://shipilev.
net/jvm/objects-inside-out/#_observation_array_base_is_aligned Last accessed:
26/06/2022.

[38] Jelle Stuip. 2018. Throttling van laptops. Tweakers. https://tweakers.net/reviews/
5909/all/throttling-van-laptops-vandaar-die-variatie-in-prestatie.html Last ac-
cessed: 26/06/2022.

[39] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. 2007. Java Object
Header Elimination for ReducedMemory Consumption in 64-bit Virtual Machines.
ACM Transactions on Architecture and Code Optimization 4, 3 (2007), 17. https:
//doi.org/10.1145/1275937.1275941

[40] Maarten Voorberg. 2021. A performance analysis of membership datastructures in
Java. Bachelor’s Thesis. University of Twente. http://essay.utwente.nl/87064/

[41] Weer1. 2022. Hengelo historisch weer per uur | Weer1.cm. Weer1.
https://www.weer1.com/europe/netherlands/overijssel/hengelo?page=past-
weather#day=18&month=6 Last accessed: 26/06/2022.

[42] Guoqing Xu. 2013. CoCo: Sound and Adaptive Replacement of Java Collections. In
27th European Conference on Object-Oriented Programming. Springer, Heidelberg,
Germany, 1–26. https://doi.org/10.1007/978-3-642-39038-8_1

9

https://oeis.org/A061418
https://doi.org/10.1145/3030207.3030221
https://doi.org/10.1145/3485832.3485902
https://doi.org/10.1145/3485832.3485902
https://developer.arm.com/documentation/den0042/a/Memory-Ordering
https://developer.arm.com/documentation/den0042/a/Memory-Ordering
https://doi.org/10.1002/cpe.3304
https://doi.org/10.1109/NAS51552.2021.9605443
https://doi.org/10.1145/2884781.2884869
https://www.ibm.com/docs/en/aix/7.2?topic=monitoring-garbage-collection-impacts-java-performance
https://www.ibm.com/docs/en/aix/7.2?topic=monitoring-garbage-collection-impacts-java-performance
https://www.intel.com/content/www/us/en/support/articles/000029868/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000029868/processors/intel-core-processors.html
https://doi.org/10.1145/3133873
https://doi.org/10.1145/2568225.2568297
https://www.noureddine.org/research/joular/joularjx
https://www.noureddine.org/research/joular/joularjx
https://github.com/Chickenpowerrr/joularjx
https://github.com/Chickenpowerrr/joularjx
https://doi.org/10.1109/MSR.2019.00033
https://hg.openjdk.java.net/jdk7/jdk7/jdk/file/9b8c96f96a0f/src/share/classes/java/util/LinkedList.java#l567
https://hg.openjdk.java.net/jdk7/jdk7/jdk/file/9b8c96f96a0f/src/share/classes/java/util/LinkedList.java#l567
https://github.com/openjdk/jmh
https://github.com/openjdk/jmh
https://github.com/openjdk/jol
https://github.com/openjdk/jol
https://docs.oracle.com/javase/tutorial/collections/implementations/summary.html
https://docs.oracle.com/javase/tutorial/collections/implementations/summary.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/javase/specs/jls/se18/html/jls-17.html
https://docs.oracle.com/javase/specs/jls/se18/html/jls-17.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/concurrent/CopyOnWriteArrayList.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/concurrent/CopyOnWriteArrayList.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/concurrent/CopyOnWriteArraySet.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/concurrent/CopyOnWriteArraySet.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.instrument/java/lang/instrument/Instrumentation.html#getObjectSize(java.lang.Object)
https://docs.oracle.com/en/java/javase/18/docs/api/java.instrument/java/lang/instrument/Instrumentation.html#getObjectSize(java.lang.Object)
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/LinkedList.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/LinkedList.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/RandomAccess.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/RandomAccess.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/Vector.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/Vector.html
https://doi.org/10.1145/2896967.2896968
https://doi.org/10.1145/2568225.2568297
https://doi.org/10.1145/3238147.3240473
https://doi.org/10.1109/ICSME.2016.34
https://openjdk.java.net/jeps/318
https://shipilev.net/jvm/objects-inside-out/#_observation_array_base_is_aligned
https://shipilev.net/jvm/objects-inside-out/#_observation_array_base_is_aligned
https://tweakers.net/reviews/5909/all/throttling-van-laptops-vandaar-die-variatie-in-prestatie.html
https://tweakers.net/reviews/5909/all/throttling-van-laptops-vandaar-die-variatie-in-prestatie.html
https://doi.org/10.1145/1275937.1275941
https://doi.org/10.1145/1275937.1275941
http://essay.utwente.nl/87064/
https://www.weer1.com/europe/netherlands/overijssel/hengelo?page=past-weather#day=18&month=6
https://www.weer1.com/europe/netherlands/overijssel/hengelo?page=past-weather#day=18&month=6
https://doi.org/10.1007/978-3-642-39038-8_1

	Abstract
	1 Introduction
	2 Background
	2.1 Implementations
	2.2 Features to Analyze
	2.3 Methods to Analyze

	3 Benchmarks
	3.1 Selected Implementations
	3.2 System

	4 Performance
	4.1 Hypothesis
	4.2 Results

	5 Energy
	5.1 Hypothesis
	5.2 Results

	6 Memory
	6.1 Hypothesis
	6.2 Instant
	6.3 Running

	7 Discussion
	8 Conclusions and Future Work
	References

