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High quality images play an important role in medical diagnosis and analysis.
To ensure that microscopic imaging results are qualitative, most microscope
systems nowadays are equipped with autofocusing hardware or software-
based components. Nonetheless, there are cases when the optimal focal
distance is not correctly identified and images present out-of-focus areas
or are completely affected by defocus blur. In this paper, we investigate a
generative model with twofold applicability. It can be used for recovering
from defocus blur as well as for synthesizing defocus blur for data augmen-
tation purposes. Both these tasks are achieved through interpolation in the
latent space of an autoencoder. We apply two forms of linear enforcement
to the latent space of an autoencoder trained to synthesize defocus blur in
microscopy images. We evaluate the models and find that the regularized
autoencoders outperform the baseline model in terms of synthesizing blur
and deblurring images.

Additional Key Words and Phrases: latent space, linear interpolation, au-
toencoder, deblurring, microscopy, defocus blur synthesis

1 INTRODUCTION
In the medical domain, access to high-quality images is critical
for professionals and programs since it affects image analysis and
diagnosis. Computer vision is widely used in medical image pro-
cessing, especially ever since research in deep learning has led to
advancements in the performance of tasks such as cell segmentation
[21], disease classification [33], image denoising [17], and image
enhancement [9], [3].

A commonly usedmethod of acquiring high resolution cell images
is through the use of whole slide scanners [14]. Such systems have
software or hardware-based autofocus components used to capture
microscopy images at an optimal focal distance. This task is often
impeded by the structure of the tissue that is scanned, as not all the
cells may lie at an equal distance from the lens. Therefore, some
images produced this way are prone to being affected by out-of-
focus areas [8], which negatively impact their analysis.
Numerous deblurring solutions based on deep learning have

emerged in the past years. Generally, these solutions can be di-
vided in two categories, those using a blur kernel for the deblur
operation, and kernel-free approaches. Kernel-dependent solutions
may require computing this kernel, which is often a complex op-
eration and could negatively impact the deblurring process if not
correctly estimated [30]. Other works assume that the blurring
kernel is known, which makes the applicability of these solutions
limited. Deblurring through depth map estimation has also been
proposed, but this is rather a computationally heavy task [23, 35, 38].
For the kernel-free solutions, recovering the sharp image is often
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Fig. 1. Blurring (a) and deblurring (b) through interpolation in the latent
space. The 𝛼 parameter controls the level of synthesized blur or the sharp-
ness of the deblurred image. The z-notation indicates that images in the
last column are obtained from interpolated latent representations, whereas
the digits indicate the focal length of the picture. Smaller digits correspond
to higher levels of defocus blur.

achieved by training complex networks from an architectural and
computational standpoint. Such solutions usually involve the use
of adversarial training [27] or multiscale networks [18, 34]. Finally,
most papers focus on deblurring solutions applied to real-world
data sets, while microscopy images are utilized in only a few studies
[6, 13, 22].
We propose a generative model based on linear interpolation in

the latent space, with twofold applicability. Firstly, it can be used as
a data-augmentation technique to generate images with different
blur levels. Images generated this way could be used to assess or
enhance the robustness of certain models against noise induced by
defocus blur. The blur is synthesized through linear interpolation
between latent representations of images taken at different focal
distances. Secondly, we employ the model for deblurring images by
reversing the interpolation operation. We reconstruct an in-focus
image through linear interpolation between the representations of
two out-of-focus images, captured at different focal planes, as dis-
played in Figure 1. Themain advantage of ourmodel is its simple and
cost-effective architecture. We bypass any complex operations such
as depth map or blur kernel estimation and the training procedure
is stable, compared to that of a GAN or VAE.

We train a model to synthesize blur through linear interpolation
in the latent space. The embedded linear relationship between la-
tent representations of images captured at different focal distances
should enable themodel to disentangle blur level from image content.
The choice of using linear interpolation to perform blur synthesis
has two advantages. Firstly, it enables the model to learn a revertible
mapping from two out-of-focus images to a more in-focus image.
Therefore, we can leverage the representations of out-of-focus im-
ages to recover the corresponding in-focus image. Secondly, this
operation allows us to control the blur synthesis and blur removal
through a single interpolation parameter, 𝛼 , ranging from 0 to 1.
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The choice of 𝛼 should be fairly intuitive given two input images,
and easy to fine-tune depending on the expected target image.
The results of the experiments prove the feasibility of recover-

ing in-focus images through interpolation in the latent space. The
proposed regularized autoencoders show improved blur synthesis
ability compared to a vanilla autoencoder. One of the regulariza-
tion methods increases the degree of linear dependence between
latent representations of blur levels. Therefore, linear traversals in
the latent space between two given points provide better results
compared to the baseline in terms of replicating defocus blur and
deblurring images.

To guide this study, we identify two research questions and two
sub-questions.

RQ1 To what extent can image representations interpolated in the
latent space be decoded to generate images with intermediate blur
levels?

RQ1.1 How does a vanilla autoencoder optimized only for image
reconstruction represent different blur levels in the latent space?
RQ1.2 How can we impose a linear relationship on representa-

tions of different blur levels in the latent space of an autoencoder?

RQ2 How suitable is the constrained latent space for recovering a
sharp image through linear interpolation between the latent codes
of images captured at different focal distances?

To answer these questions, we train three autoencoders with
different types of regularization or no regularization. These models
are described in detail in Section 3.

The paper is organized as follows. Section 2 gives an overview of
papers on topics of interest to this work. Next, Section 3 describes the
blurring and deblurring tasks, the proposed models and evaluation
metrics. The data set, and training details are provided in Section 4
alongside the experiments results. In Section 5 we discuss the results
and suggest further aspects that can be investigated to potentially
improve the proposed solution. Finally, in Section 6 we outline the
conclusions we draw from this research.

2 RELATED WORK
Literature relevant for this paper can be divided in three categories.
Firstly, solutions for deblurring and super-resolution are discussed.
Next, an overview of studies on regularizing the learned represen-
tations of autoencoders is provided. Finally, research on blurring
techniques is reviewed.

2.1 Deblurring and Super-Resolution
Recent image deblurring solutions are based on convolutional neural
networks and employ residual learning, multiscale training, GAN-
based models or a combination of these. Quan et al. [30] propose a
non-blind deblurring network based on a scale-recurrent attention
module. In [34] and [1], the authors use multiscale U-net architec-
tures with residual learning, for recovery from defocus blur and
image super-resolution tasks. Residual learning is further employed
by Pham et al. [29] andMahapatra et al. [24] for the super-resolution
task, and by Nimisha et al. [27] for image deblurring. All of these

papers rely on local or global residual connections, which are useful
for recovering information that may be lost through down sampling,
as well as for optimizing the training process for the models [25].
The authors of [15] propose a defocus map estimation model and
assess its performance by using the predicted maps for enhancing
blur in images and for recovering a sharp image from a blurred
input. The defocus map is used to compute the pixel-wise blur level
and magnify it by a given factor, while for the deblurring task they
use the defocus map to estimate a per-pixel Gaussian kernel and
perform a hyper-Laplacian deconvolution. They do not quantita-
tively measure the performance of blurring and deblurring images
using the estimated defocus maps they provide, so it is not clear how
well this method works and whether it is suitable for microscopic
images as well.
Jiang et al. [11] and Zhang et al. [37] tackle multi-cause blur

and propose deep-learning models that can recover sharp images
affected by either motion or defocus blur. Both solutions have the
disadvantage of being too slow for real-time usage, predicting the
sharp image in 1.5 and 1.67 seconds, respectively.
Other papers take a different approach by processing the image

at a patch-level, to classify images based on blur quality [32, 36] or
to remove blur from images [6, 18]. Their motivation is based on the
idea that the blur level is invariant throughout the image and that it
is well-defined only in the foreground, which leads to a patch-level
approach having a more powerful blur-level assessment and blur
removal quality. In [16], a new type of filter is proposed to handle
spatially-varying and large defocus blur, based on stacks of pixel-
wise deblurring filters. The pixel-wise approach handles spatially
variant blur, while stacks of small, separable filters aid recovery
from large defocus levels. Despite showing very good results, their
model is sensible to bright patches which are usually present in
microscopy images.

2.2 Regularized autoencoders
Vanilla autoencoders are prone to model a latent space which does
not reflect the real distribution of the data and cannot capture the
relationship between data points [4]. Several solutions based on
adversarial training of plain autoencoders have emerged. Oring et
al. [28] propose a regularized version of an autoencoder, based on
several loss terms used to impose smoothness and convexity on
the latent space distribution. Similarly to our method, they perform
interpolation between latent representations of the same object,
captured at different rotation angles. Hence, they generate a smooth
transition from one position to another by traversing the latent
space between representations of the same object at different ro-
tation angles. A shortcoming of their study is that they only test
the proposed method on a simple dataset of rotating objects, so
it is unknown whether the approach performs well on more com-
plex data distributions. In [31], two autoencoders are used, one as
a generator and one as a discriminator, where the latter is used to
train the generator in an adversarial manner to reconstruct realistic
images, which are pixel-wise close to the original input. Other pa-
pers perform adversarial training on VAEs to ensure that generated
images are realistic. The authors of [5] use a discriminator network
which predicts the probability that a generated image belongs to

2



Defocus Blur Synthesis and Deblurring through Interpolation in the Latent Space TScIT 37, July 8, 2022, Enschede, The Netherlands

the original manifold. In [2] and [10] a slightly different approach
is employed. A critic network is used, which predicts the interpola-
tion parameter corresponding to a generated image. The generator
must minimize the output of the critic, thus ensuring that generated
images are realistic.

2.3 Generating blur
Defocus blur generation techniques can be split in two categories:
solutions that involve a deblurring step prior to the blur generation
and direct image-to-image blurring solutions. The former approach
is applied by the authors of [16] and [26], who use a reblurring
loss to train their image deblurring network. Lee et al. [16] achieve
reblurring by reverting a deblurring function. However, this method
is clearly dependent on a deblurring function, which requires addi-
tional steps to be computed and may affect blurring performance if
not correctly estimated. The approach of Nah et al. [26] is to recover
the initial blur kernel from the remaining kernel, after a deblurring
operation was performed. For direct image-to-image blurring, the
most frequently used solution is to perform a convolution operation
on the input image, using a Gaussian filter. This process results in
smoother edges and surfaces, and, depending on the chosen kernel
size and 𝜎 parameter, can generate different levels of blur. The ker-
nel size controls the extent of smoothing, as each pixel is blurred
using a rectangular kernel, and larger kernels lead to more smooth-
ing. The 𝜎 parameter is the variance of the Gaussian distribution
from which the elements of the kernel are sampled. It also has an
influence on the extent to which high frequency features around
the pixel are reduced. Gaussian kernels are employed in [15], which
synthesize defocus blur in images based on a discrete defocus map.
This approach is useful for images with complex scenes, where
object positioning and the associated depth map are important.

3 METHODOLOGY

3.1 Task description
3.1.1 Mimic defocus blur. We want to impose a linear dependence
relation between latent representations of images with different
focal lengths. To achieve this, we train a model to synthesize blur
through linear interpolation in the latent space. The goal is to recon-
struct an image which has a defocus level intermediate to those of
the two input images. Let 𝑥1 and 𝑥2 be two images of a microscopic
slide captured at different focal distances, where 𝑥2 has a higher
blur level compared to 𝑥1. Additionally, let 𝑧1 and 𝑧2 be the latent
codes of 𝑥1 and 𝑥2. We define the reconstructed interpolated image
as:

𝑥 ′3 = 𝐺 (𝑧′3) (1)
where

𝑧′3 = 𝛼𝑧1 + (1 − 𝛼)𝑧2 (2)
In Equation 1, G is a decoder, trained to reconstruct the input images
encoded by network E or resulted from interpolations in the latent
space of E. In Equation 2, 𝑧′3 is a latent representation obtained from
interpolation and 𝛼 is the interpolation parameter which controls
the level of blur in the interpolated image based on the input images
as follows: if 𝛼=0, the interpolated image is simply 𝑥2, if 𝛼=1 the
interpolated image is 𝑥1 and as 𝛼 increases from 0 to 1, the blur level
of the generated images will decrease. Note that the notations 𝑧3 and

𝑥3 are reserved for the image representation and reconstruction of
the ground-truth image 𝑥3. The corresponding interpolated image
representation of 𝑥3 and its reconstruction are denoted as 𝑧′3 and
𝑥 ′3.

3.1.2 Deblurring through linear interpolation in the latent space. The
latent space of a model trained on the blur synthesis task is used to
perform deblurring through linear interpolation in the latent space.
The goal is to reconstruct the sharp image corresponding to z-stack
16, starting from the most out-of-focus image with z-stack 0 and
using a second image, in the range from z-stack 2 to z-stack 14. The
linear interpolation for this operation is shown in Equation 3, where
𝛼 is the interpolation parameter used in the blurring operation
described in Equation 2, 𝑧′3 and 𝑧1 are two latent representations
of blurred images and 𝑧2 is the interpolated latent representation
corresponding to the sharp image with z-stack 16.

𝑧2 =
1

1 − 𝛼
𝑧′3 −

𝛼

1 − 𝛼
𝑧1 (3)

3.2 Proposed models
3.2.1 Baseline model. We use a vanilla AE trained for image re-
construction as the baseline for our experiments. Using this type of
model allows us to investigate how well blur can be disentangled
from image content in the latent space, without explicitly optimizing
the model for this task. We expect that the image representations
will not be suitable for synthesizing blur through linear interpo-
lation, since the model can learn arbitrary representations which
minimize the loss function without learning factors of variation in
the data.

3.2.2 Regularized models. We propose a modified optimization ob-
jective for the autoencoder such that the latent representations
reflect the variation in blur level. In this way, transitions from in-
focus images to out-of-focus images are represented in the latent
space as linearly dependent vectors. We introduce two differently
regularized models.

Weakly-regularized AE. The first model is an autoencoder trained
for the image reconstruction task, with aweak form of regularization
in the latent space. The model receives as input three images of one
slide, captured at different focal planes. Its training objective is to
minimize the loss function shown in Equation 4. The first term
ensures pixel-wise similarity between the reconstructions and the
input images with the lowest and highest z-stack levels. The third
term is the weak-regularization used to ensure a pixel-wise similar
reconstruction of the interpolated image 𝑥 ′3 and its corresponding
ground-truth 𝑥3, the third input image with median z-stack. This last
term is a form of weak regularization since it enforces reconstructed
images to be visually similar to their ground-truth versions, but it
does not impose any constraints on how the latent space is modeled.
We expect this weak form of regularization to help themodel enforce
a linear relation between the latent representations of the inputs.
Pixel-wise similarity between two images is computed using the L1
loss function.
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𝐿𝑤𝑒𝑎𝑘 =
1
2
((𝑥1 − 𝑥1) + (𝑥2 − 𝑥2)) + (𝑥3 − 𝑥 ′3) (4)

Strongly-regularized AE. The last model we investigate employs
a stronger form of regularization and is a fine-tuned version of
the weakly-regularized model. Essentially, we want to evaluate the
added value of using a regularization term directly in the latent
space of the autoencoder. The strong regularization term adds a
constraint that the distance between the linearly interpolated image
representation and the ground-truth image representation must
be minimized. The new loss function is shown in Equation 5. The
choice for this constraint directly on the latent representations is
motivated by the idea that the latent vectors capture high level
features which have a more significant impact on the reconstruction
than minimization of a per-pixel loss at the whole image level.

𝐿𝑠𝑡𝑟𝑜𝑛𝑔 = 𝐿𝑤𝑒𝑎𝑘 + (𝑧3 − 𝑧′3) (5)

3.3 Evaluation metrics
The goal of this study is to develop a model that allows blur synthe-
sis and deblurring through linear interpolation in the latent space.
There are three aspects that must be evaluated, namely geometric
properties of the latent space, model ability to synthesize blur and
ability to deblur images.

3.3.1 Assessing linear dependence in the latent space. We employ
both visual inspection and metric-based evaluation to assess the
degree of linear dependence between latent representations of blur
levels. We quantify the degree of linear dependece between image
representations based on two geometric propoerties. Firstly, the
latent vectors should have the same direction. This can be mea-
sured using a cosine-similarity based metric. We call this the Linear
Dependence Score (LDS) and its formula is shown in Equation 6,
where M is the number of images in the test set, N is the number of
representations obtained through linear interpolation between two
fixed latent points. Finally, 𝑧′𝑛 and 𝑧𝑛 are the interpolated latent rep-
resentation of an image and its corresponding ground truth latent
representation.

𝐿𝐷𝑆 =
1
𝑀

𝑀∑︁
𝑖=1

1
𝑁

𝑁∑︁
𝑛=1

𝑐𝑜𝑠_𝑠𝑖𝑚(𝑧′𝑛, 𝑧𝑛) (6)

Using linear interpolation to compute latent representations of
images forces vectors belonging to a transition from in-focus to
out-of-focus to be equally distanced from one another. The metric
we use to measure this second property of the latent space structure
is shown in Equation 7, and we call it the Average Pairwise Distance
(APD), where M and N are the same as defined above and 𝑧𝑛 and
𝑧𝑛+1 are representations of two consecutive images in terms of blur
level. Essentially, APD is a measure of the overlap between original
and linearly interpolated image representations.

𝐴𝑃𝐷 =
1
𝑀

𝑀∑︁
𝑖=1

1
𝑁 + 1

𝑁−1∑︁
𝑛=0

|𝑑 (𝑧𝑛, 𝑧𝑛+1) − 𝑑 (𝑧′𝑛, 𝑧′𝑛+1) | (7)

For visually evaluating the linear dependence, the latent repre-
sentations modeled by the autoencoders must be inspected. This is
achieved by mapping the latent representations to a 2D space. We
use PCA, a dimensional reduction technique which preserves the
linear relationship between data points [19].

3.3.2 Blur synthesis. The quality of the reproduced blur is quan-
tified by comparing the reconstructions of original image repre-
sentations and those of interpolated image representations using
Peak Signal-to-Noise-Ratio (PSNR), the Fréchet Inception Distance
(FID) [7], and the Focal Frequency Loss (FFL) proposed by Jiang et
al. [12]. The scores are computed between generated images from
linearly interpolated representations and the reconstruction of the
corresponding ground-truth image. The PSNR score computed this
way will be later referred to as PSNR-blur. Reconstruction fidelity
against the original images is measured with PSNR, referred to later
as 𝑃𝑆𝑁𝑅𝑏𝑙𝑢𝑟 − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦.

3.3.3 Deblurring. To assess the performance of the models on
recovering from defocus blur, we use PSNR. We call this metric
PSNR-deblur, and we compute it the same way as PSNR-blur, hence
measuring the similarity between reconstructions of sharp images
and the corresponding deblurred version obtained through inter-
polation in the latent space. Reconstruction fidelity against the
original sharp images is measured with PSNR, referred to later as
𝑃𝑆𝑁𝑅𝑑𝑒𝑏𝑙𝑢𝑟 − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦.

4 EXPERIMENTS AND RESULTS

4.1 Data set
The data set used to train and evaluate the proposed models is the
BBBC006v1 collection obtained from the Broad Bioimage Bench-
mark Collection [20]. It consists of 768 in-focus images (z-stack 16),
and for each in-focus image 16 versions taken below the focal plane
(z-stack 0 to 15), and 17 images taken above the focal plane (z-stack
17 to 33). The image with z-stack 16 was captured at an optimal
focal distance auto-detected by the microscope. For the experiments
we conduct, only the images with even z-stack values from 0 to 16
are used. The images are 696x520 pixels.
It is important to note that the data set includes two different

types of slides. The w1 slides stained with Hoechst 33342 markers
represent nuclei, while the w2 slides stained with phalloidin repre-
sent the cell-structures. The experiments are conducted separately
on the w1 and w2 slides, due to the difference in their underlying
distributions. The data is split in a training, a validation and a testing
set, in a 70:10:20 ratio. The images are ordered alphabetically before
the split, with the order of the splits being test-validation-train.
Since the model should learn to map representations of images

taken at different focal distances as linearly dependent, we use
triplets spanning the range from z-stack 16 to z-stack 0. This way,
the autoencoder sees all these blur levels, either as inputs or as
interpolated representations. We set 𝛼 = 0.5 for the training phase
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Table 1. Blur synthesis (FFL, FID, PSNR-blur), deblurring (PSNR-deblur), and image quality (𝑃𝑆𝑁𝑅𝑏𝑙𝑢𝑟 − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝑃𝑆𝑁𝑅𝑑𝑒𝑏𝑙𝑢𝑟 − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦) results. The
arrows indicate whether a lower or a higher score is desirable. The best scores are highlighted.

W1 slides W2 slides

Baseline Weak Strong Baseline Weak Strong

Blur synthesis FFL (10−4)↓ 6.48 5.88 5.27 4.70 4.33 4.31

FID ↓ 11.07 6.58 5.99 13.96 11.70 11.17

PSNR-blur ↑ 31.22 31.36 31.95 33.06 33.43 33.57

Image reconstruction quality 𝑃𝑆𝑁𝑅𝑏𝑙𝑢𝑟 − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ↑ 29.01 26.98 27.81 28.39 28.22 27.96

𝑃𝑆𝑁𝑅𝑑𝑒𝑏𝑙𝑢𝑟 − 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ↑ 23.60 24.56 23.83 21.86 21.88 21.68

Deblurring PSNR-deblur ↑ 22.07 22.48 22.22 24.12 24.41 24.72

Table 2. We quantify the linear dependence of the image representations with LDS, a cosine similarity-based metric which measures how close to pointing
in the same direction the latent vectors are and APD, which is a measure of the overlap between original image representations and their corresponding
interpolated representations. The arrows indicate whether a lower or a higher score is desirable. The best scores are highlighted.

W1 slides W2 slides

Baseline Weak Strong Baseline Weak Strong
LDS ↑ 0.89 0.89 0.95 0.97 0.96 0.98
APD ↓ 0.02 0.02 0.0003 0.005 0.005 0.0002

and use the following triplets in the format (z-stack_left, z-stack_-
target, z-stack_right): (0, 8, 16), (0, 4, 8), (8, 12, 16), (0, 2, 4), (4, 6, 8),
(8, 10, 12), (12, 14, 16).

4.2 Training and architecture
We use a convolutional autoencoder with 5 layers in the down-
sampling part and 6 layers in the up-sampling part. Each layer in
the encoder consists of a two-strided convolution with a kernel size
of 3, batch normalization and Leaky ReLU activation. In the decoder
part, the layers are symmetrical, with transposed convolution re-
placing convolution operations. The last layer before the output is
a convolution with kernel-size 3, followed by a Sigmoid activation
to ensure the resulting image pixels are within the range [0, 1]. The
encoder layers have 64, 128, 256, 512 and 1024 output filters.
The models are trained for 40 epochs, with a batch size of 40.

Adam optimizer is used with a learning rate of 0.0001 and default
values for its other parameters. Additionally, a step scheduler is used
to half the learning rate every 15 epochs. Originally the images are
696×520 pixels, in 16 bit TIFF format with LZW compression. We
convert them to an 8 bit format as a pre-processing step and augment
the dataset by generating from each image 10 crops of size 128×128
(4 corner crops, 1 center crop and their corresponding horizontally
flipped versions). The code is written in PyTorch 1.11.0+cu113 and
makes use of the PyTorch Lightning framework. The hardware used
to train the models consists of two Tesla T4 GPUs.

4.3 Results
We conduct a total of 6 experiments, 3 for each of the w1 and w2
slides image sets. Each experiment uses one of the proposed models,
the baseline and two regularized versions of it, and they are trained
to synthesize defocus blur in microscopic images, as described in
Section 3.1.1. We evaluate the performance of these models on
defocus blur synthesis and image deblurring.

4.3.1 Comparative analysis of the learned latent space. The geomet-
ric properties of the latent space learned in the different experiments
are assessed through LDS and APD, described in detail in Section
3.3.1. These results are displayed in Table 2. To understand the effect
of the regularization on the latent space distribution, we visualize
2D projections of image representations as shown in Figure 5. In
line with expectations, the vanilla AE baseline does not model dif-
ferent blur levels as linearly dependent in the latent space. There
is however a substantial difference between the w1 and w2 slides,
the latter achieving a higher degree of linear dependence of 0.97
compared to 0.89 as measured by LDS, and of 0.005 compared to
0.02 as measured by APD. The weak regularization has no effect
on the geometric properties of the latent space, as the reported
scores indicate. The stronger form of regularization, however, leads
to substantial changes in the distribution of the latent representa-
tions. For the w1 slides, both the direction of the latent vectors, as
measured by LDS and the level of overlap between interpolated and
original image representations, as measured by APD improve. LDS
increases from 0.89 with the baseline model to 0.95 with the strong
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Original
image

Baseline

Weak
regularization

Strong
regularization

z-stack 0 z-stack 2 z-stack 4 z-stack 6 z-stack 8 z-stack 10 z-stack 12 z-stack 14 z-stack 16

(a) A transition from z-stack 0 to z-stack 16. In this order: original images,
original image reconstructions with the baseline, weakly-regularized, and
strongly-regularized models.

Original
image

Baseline

Weak
regularization

Strong
regularization

z-stack 0 z-stack 2 z-stack 4 z-stack 6 z-stack 8 z-stack 10 z-stack 12 z-stack 14 z-stack 16

(b) A transition from z-stack 0 to z-stack 16. In this order: original images,
reconstructions of interpolated image representations using the baseline,
weakly-regularized, and strongly-regularized models.

Fig. 2. Results of original image reconstructions (a) compared to synthetic
blur (b) for w1 slides. Images from z-stack 2 to z-stack 14 are obtained as
𝛼𝑧16 + (1 − 𝛼)𝑧0, with 𝛼 increasing from 0.125 to 0.875, from left to right.

regularization, while APD decreases from 0.02 to 0.0003. For the
w2 slides, the improvement in latent vector orientation is marginal,
from 0.97 to 0.98, but the APD score improves from 0.005 to 0.0002.

4.3.2 Blur synthesis. In Table 1, FID, FFL and PSNR-blur are used
to measure the visual quality of the replicated blur. Visualizations
of blur synthesized through linear interpolation, as well as recon-
structions of the corresponding ground-truth images, are shown in
Figures 2 and 3. For the w1 experiments with the baseline model, re-
constructions from linear traversals of the latent space between two
points result in semantically meaningful images in terms of image
content. However, as shown in Figure 4, a blending effect between
the two input images is visible, rather than a defocus blur effect. For
the w2 slides, it is harder to tell whether blur is properly mimicked,
given the more complex appearance of images. Nonetheless, quan-
titative results indicate that the baseline underperforms compared
to the regularized models, for both w1 and w2 slides. The ability to
synthesize realistic defocus blur improves with the addition of the
weak regularization, which helps to reduce the blending effect. The
strong regularization performs the best, as the latent vectors achieve
a higher degree of linear dependence, so the transitions from sharp
to in-focus are smoother, while the blur effect is still replicated. The
scores in Table 1 confirm the results from visual inspection. The
baseline underperforms compared to the regularized models, the

Original
image

Baseline

Weak
regularization

Strong
regularization

z-stack 0 z-stack 2 z-stack 4 z-stack 6 z-stack 8 z-stack 10 z-stack 12 z-stack 14 z-stack 16

(a) A transition from z-stack 0 to z-stack 16. In this order: original images,
original image reconstructions with the baseline, weakly-regularized, and
strongly-regularized models.

Original
image

Baseline

Weak
regularization

Strong
regularization

z-stack 0 z-stack 2 z-stack 4 z-stack 6 z-stack 8 z-stack 10 z-stack 12 z-stack 14 z-stack 16

(b) A transition from z-stack 0 to z-stack 16. In this order: original images,
reconstructions of interpolated image representations using the baseline,
weakly-regularized, and strongly-regularized models.

Fig. 3. Results of original image reconstructions (a) compared to synthetic
blur (b) for w1 slides. Images from z-stack 2 to z-stack 14 are obtained as
𝛼𝑧16 + (1 − 𝛼)𝑧0, with 𝛼 increasing from 0.125 to 0.875, from left to right.

Fig. 4. Blur effect to be replicated (Row 1) and blending effect resulting in
reconstructions of interpolated image representations using the baseline
model (Row 2)

weak regularization drastically reduced FID to 6.58 from 11.07 for
the w1 slides, while PSNR-blur only slightly increases. The strong
regularization achieves the highest scores, improving by 0.7dB (w1
slides) and 0.5dB (w2 slides) compared to the baseline.

4.3.3 Deblurring. The quality of the deblurred images is measured
with PSNR-deblur. Figures 7 and 8 display examples of deblurred
images using the proposed models, with two different values for 𝛼 .
For each experiment, we assess the underlying model’s performance
on the deblurring task, according to the procedure described in
Section 3.1.2. For the w1 slides, the PSNR-deblur value indicates
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(a) 2D projections of latent representations from a w1
slide
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(b) 2D projections of latent representations from a w2
slide

Fig. 5. 2D projections of latent representations obtained from the proposed models. Latent representations of the original images (dots), linear trajectory
between z-stack 0 and z-stack 16 (dashed line).

Input 1

Deblurred

Reconstructed
by model

Original
image

Input 2

α=0.125 α=0.25 α=0.375 α=0.5 α=0.625 α=0.75 α=0.875

Fig. 6. Effect of the blur level in the input images used for deblurring on
the recovered sharp image, when the optimal interpolation parameter 𝛼 is
known. Results obtained with the weakly-regularized model.

that the regularized autoencoders outperform the baseline model,
with the weak regularization achieving the best score.

It was observed that for images whose representations followed
a curvilinear path in the latent space of the baseline model, the
imposed linear dependence by the strong regularization caused the
deblurred images to be affected by artifacts. When the blur levels
were naturally mapped to more linearly dependent representations,
the regularization helped enhance this relation, without trading off
image quality. For the w2 slides, the strong regularization performs
the best, with PSNR-deblur increasing by 0.6dB, while the overall
image quality only slightly degrades by 0.18dB.

5 DISCUSSION AND FUTURE WORK
Overall, the experiments suggest the feasibility of blur synthesis
and blur removal through interpolation in the latent space using the
proposed regularized autoencoders. For blur generation, the baseline
model is not suitable, as linear interpolations result in a blending

effect. In principle, this can be easily explained by the larger gap
between the original latent representations of the images and the
interpolated ones in the latent space of the baseline model. It is
important to note that the ability to replicate blur of the regularized
models is achieved at the cost of image reconstruction quality, and
significant details are lost. Projections of the latent vectors obtained
with the strong regularization show that the imposed linearity forces
the representations to be more clustered. In turn, this may be one
of the factors leading to degraded reconstructions when using this
model, as highlighted in Figure 7b. Therefore, although the strong
regularization achieves the desired geometric properties in the latent
space, the reconstruction fidelity compared to the ground-truth is
very low.

A similar effect is observed for the task of deblurring. For the
w1 slides, the deblured images using the strongly-regularized la-
tent space are too degraded in some cases (see Figure 7b). For the
w2 slides, the weak regularization maximizes image quality, while
strong regularization outperforms in terms of deblurring. The weak
regularization offers a better trade-off between the desired proper-
ties of images and latent space for the w2 slides.
Another interesting aspect applicable for both w1 and w2 slides

is that even when the deblur operation uses two images with high
levels of blur, the recovered details are still significant (see Figures
7a and 8a). Figure 6 shows how the choice of input images affects the
deblurring process. We fix one image at z-stack 0 and vary the other
one from z-stack 2 to z-stack 14. These results are in line with those
from a similar study [22], where the level of detail recovered in the
deblurred images decreases with an increase in the focal distance at
which slides are captured.

With the baseline and weakly-regularized model trained on the
w1 slides, we observe that some 2D projections of latent vectors
follow a curvilinear trajectory, while others are very close to being
linearly dependent. The curvature of these representations indicates
that there may be two directions in the latent space, one correspond-
ing to the variation in blur and one corresponding to the variation in
image content. Therefore, from z-stack 0 to z-stack 8 or 10, blur is lin-
early represented in the latent space. From these z-stacks to z-stack
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Deblurred Original
image

Input  1
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(a) Deblurring results without artifacts, 𝛼 = 0.25

Reconstruction
by model

Deblurred Original
image

Input  1
reconstructed

Input 2 
reconstructed

Baseline

Weak
regularization

Strong
regularization

(b) Deblurring results displaying a noise-like pattern, 𝛼 = 0.625

Fig. 7. Deblurring examples for w1 slides, where no artifacts appear (a) and where artifacts appear (b). From left to right: the input images used for deblurring
reconstructed by each model, the deblurred image, the corresponding sharp image reconstructed by each model, and the ground-truth in-focus image.

Reconstruction
by model

Deblurred Original
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Input  1
reconstructed

Input 2 
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Weak
regularization

Strong
regularization

(a) Deblurring results with 𝛼 = 0.25

Reconstruction
by model

Deblurred Original
image

Input  1
reconstructed

Input 2 
reconstructed

Baseline

Weak
regularization

Strong
regularization

(b) Deblurring results with 𝛼 = 0.625

Fig. 8. Deblurring examples for w2 slides. From left to right: the input images used for deblurring reconstructed by each model, the deblurred image, the
corresponding sharp image reconstructed by each model, and the ground-truth in-focus image.

16, the direction of the representations changes, andmodifications in
image content are captured by linearly dependent representations.
Due to time constraints, the architecture chosen for the experi-

ments is fairly simple and leads to reconstructions with considerable
loss of detail. This influences the blurring task slightly, but has a
more considerable negative effect on the deblurring task. Therefore,
it would be interesting to study the effects of the regularization
using a more powerful architecture, such that image reconstruction
quality will not affect the results to this extent.
Moreover, the experiments we conduct are limited to a set of

images captured above the optimal focal distance, but the dataset
we use provides images taken below the optimal focal plane as well.
A potential future direction is to perform the interpolation between
images taken both above and below this optimal point. This would
reveal whether the different information contained in these images
improves performance of the models on the deblurring task.
Lastly, the process of fine-tuning 𝛼 for deblurring should be as-

sessed, to develop a better understanding of how the unknown
relation between the blur intensities of the available images affects
the recovery of a sharp image.

6 CONCLUSIONS
High quality images are crucial in the medical domain to ensure
that noise, such as defocus blur, does not affect image analysis and
medical diagnosis. In this paper, we investigate the feasibility of a
generative model based on linear interpolation in the latent space,
for defocus blur synthesis and recovery from defocus blur.

We conduct experiments to analyze how a linear relationship can
be enforced on the latent representations learned by a convolutional
vanilla autoencoder. We find that the regularized models which we
investigate perform well on mimicking the defocus blur effect and
recovering a sharp image from two blurred inputs. However, the reg-
ularization determines low reconstruction fidelity compared to the
ground-truth images. The strong regularization performs best under
most metrics, but visually, the weak regularization outperforms in
some cases.
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