

1

Real-time pitch detection using resource constrained IoT Device

Job Römer, University of Twente, The Netherlands

ABSTRACT
A trained ear for the recognition of notes, intervals and chords in music
is a difficult skill for beginning musicians to develop due to lack of
reference of these musical aspects and boring nature of its training. A
system or program could rectify this issue and allow users to train their
ears for this purpose. Multiple existing algorithms can distinguish pitch
and chords from given audio files, using signal analysis or neural
networks. However, these solutions provide only the recognition of one
of the three relevant pitch based aspects. This research contributes to
the development of a system that does all three by using models based
on convolutional neural networks. New, custom, datasets were created
to facilitate training and evaluation of the models as well. The final
models were optimized and vary in terms of accuracy but show promise

to be further developed into a reliable system.

Additional Key Words and Phrases: Pitch Recognition, Real-Time Pitch
Recognition, IoT device, convolutional neural network, Mel-Filterbank.

1 INTRODUCTION

1.1 Context and Motivation

Like many other skills, learning to play a musical instrument is
difficult and time-consuming. Through a combination of physical
movements and coordination, music theory, “an ear” for pitch
and “a feeling” for rhythm, a musician can express themselves in
nearly infinite ways.

While the former two skills can be practiced and taught, the
latter two cannot be simply explained through lecture or learned
through practice of an instrument. These are some of the most
vital skills one can have as a musician, as reinforced by (Willis,
1998) [1] in his book, and may be what constitutes intuition in
music. However, training the ear for these purposes requires
time, dedication and reference of different pitches and rhythms
and can often be boring or unengaging as noted by (Rizqyawan,
& Hermawan, 2015) [2]. Usually, one is exposed to exercises
through a music teacher and only after the student has become
accustomed to their instrument of choice. Due to the boring
nature of ear training relative to the practice of their instrument,
many inexperienced students choose to skip it. However, they
later realize that they cannot play new songs because they do not
know patterns that they had previously blindly copied for other
songs and cannot create their own solos, songs or their “own
sound”. A trained ear can rectify this, and to this end, this
research will explore a way to help people train their ears,
without the need for a music teacher’s continued effort.

1.2 Research

This research puts the focus exclusively on the problem of pitch
recognition, specifically in terms of single notes, intervals, and
simple chords, and details the development of a prototype of a
recognition system run on an IoT device. This tool should be able
to listen to real-time input in the form of musical data originating
from a musician playing their instrument and provide feedback
about the note, interval, or chord that they have played.

The goal of this research is to determine the feasibility and
potential of such a system. The research questions following
from this goal are:
1. What are available methods to detect one or more pitches

and how accurate and applicable to the proposed system are

these methods?

2. In what ways can we optimize the selected pitch recognition

method’s accuracy?

3. How does the realized system perform in terms of accuracy?

1.3 Approach and Structure
As stated, the chosen approach to answering these questions is

the development of a prototype of the proposed pitch

recognition system. A literary review of the state of the art and

older research answers the first research question and

additionally serves the secondary purpose of laying the

groundwork for the selection of the pitch recognition method for

the proposed system. This literary review is detailed in Section

2. The selected method is then implemented. The context

surrounding this method and the structure and workings of the

implementation are detailed in Sections 3 and 4, respectively.

The latter section also describes parameters that were tested in

order to answer the second research question. Finally, the

system is evaluated in a computer environment with given audio

files and on an embedded device with real time playing, which

present the answers to the final research question. The results

and analysis of these experiments are detailed in Section 5.

1.4 Definitions and Terminology
In order to avoid confusion, a few terms and definitions are
explicitly mentioned in this section. Table 1 contains the
important music theory related definitions and terminology
used within this paper.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

Willis

2

TScIT 37, July 8, 2022, Enschede, The Netherlands Job Römer

Table 1. Definitions and terminology for this paper.

2 LITERARY REVIEW

In this section, multiple methods that may be used or adapted to
recognize notes, intervals or chords are highlighted and some
requirements for the proposed system are identified.

This research falls under the Music Information Retrieval
(MIR) research area, which is concerned with retrieving
information like rhythms, time signatures, keys, instruments,
notes, and other musical aspects from written music scores or
from audio input, which includes existing audio files as well as
real-time audio (Jensen & Andersen, 2004) [3]. Many
researchers have already researched ways to extract pitches
from single notes, notes that make up a chord and even the notes
of all simultaneously playing instruments. All of them use
techniques to compute time-frequency representations of the
audio, which is often referred to as a Spectrogram. Algorithms
can then perform feature extraction using this spectrogram to
determine frequencies, instruments and other quirks present in
the musical data. Multiple approaches for feature extraction
exist and one of the more prominent in the present day is neural
networks.

(Voinov et al., 2019) [4] analyze several algorithms for single
pitch detection and propose a three-layer neural network
implementation for chord recognition that has an accuracy of 95-
99% on a small set of 10 simple chords. They also note that, for
recognizing multiple notes at the same time (intervals and
chords), single note recognition algorithms are too inefficient
and therefore neural networks should be the optimal choice for
this kind of task. Similarly, (Korzeniowski et al., 2015) [5] use
convolutional neural networks to achieve a chord recognition
model that allegedly performs on par with or better than state-
of-the-art competitors (with an accuracy of 82.9%) on the set of
all major and minor triads. (Sigtia et al., 2016) [6] put this
approach in a slightly different context by using the neural
network for the purposes of polyphonic piano transcription.
Analogous to a speech recognition system, two neural networks
were used: one acoustic model for estimating probabilities in
pitch and a music language model which correlates intervals and
chords over time. The end result is a model that can transcribe

polyphonic piano music into a written score. With adaptation,
this model can be efficient enough to run in real-time
applications.

Older research, dating back to 2009 and prior, also consider
pitch recognition methods in the form of Signal Processing
algorithms using different principles and spectrogram
techniques. (Black & Donohue, 2000) [7] mention and evaluate
multiple of these algorithms, those being a generalized
spectrum-based algorithm, an autocorrelation-based algorithm,
and a cepstrum-based algorithm. (Huang & Yu, 2018) [8] make
use of the cepstrum-based algorithm to detect stable pitches in
humming melodies and (Kuhn, 1990) [9] provides a technical
explanation of the workings and drawbacks of autocorrelation in
real-time applications, one of the latter being that it is a
computationally intensive method. Kuhn also proposes another
method: the FMP method, which is detailed in his journal article.

Lastly, probabilistic models in conjunction with adaptive
pattern matching are used by (Kashino & Murase, 1998) [10] to
identify notes and the instruments that produce them.

These solutions are all interesting and have their pros and
cons but are all focused on either single note recognition or
chord recognition. The method for my proposed system has to
have the capability of recognizing single notes, intervals, and
chords rather than only one of these three. Moreover, the chosen
method needs to be capable of recognizing audio from a
musician’s playing in real-time and doing so efficiently to make
it viable for an IoT device as well. Specific challenges result from
differing audio qualities, possible limitations in terms of storage,
battery life and computing power of the IoT device and real-time
recognition.

3 PROPOSED METHOD

The following section covers the choice of pitch recognition
method and in general how the chosen solution operates. In the
first subsection, the chosen method is revealed and the second
will focus on a brief explanation of the workings of this method.

3.1 Choice of Method
The selection of the proposed method is carefully considered
using applicability to the problem, speed, efficiency, and
accuracy as the general criteria. Due to the first criteria, any
simple signal processing algorithms such as autocorrelation are
unfit methods for the system due to their inability to detect
multiple notes whereas models based on convolutional
networks, similar to (Korzeniowski et al., 2015) [5]’s work show

Term Explanation
Pitch A frequency that can be related to a musical note. The

term note and pitch will be used interchangeably in
this paper.

Sharps/Flats Some notes are enharmonically equivalent, meaning
that they produce almost the same frequency. The
most important are sharps and flats, detailed in Table
2 in Appendix A. All flat notes will be referred to as
their enharmonic sharp equivalents to avoid
unnecessary complexity of the paper.

Interval Two notes played at the same time. The name of the
interval is determined by the distance between the
two notes. Appendix A contains more information on
intervals and interval inversion.

Chord/Triad Three or more notes played at the same time. Both
terms will be used to refer to simple chords that
consist exactly of three notes. These two terms are
therefore used interchangeably in this paper and
cover only a small subset of possible chords.

3

Real-time pitch detection using resource constrained IoT Device TScIT 37, July 8, 2022, Enschede, The Netherlands

more promise, since these neural networks are not only efficient
and fast, but also show the capability of recognizing multiple
pitches at once with adequate accuracy. Moreover, this solution
shows to be viable for a real-time applications as well, as shown
by (Sigtia et al., 2016) [6]. Therefore, convolutional neural
networks are used as the chosen pitch recognition method for
the final system.

3.2 Convolutional Neural Networks
A neural network is an algorithm loosely modelled after the
human brain, consisting of neuron layers that can find
relationships between labelled data and the features they have.
In the end, the neural network will be able to classify new data
based on features it learns from previous data and the
relationships between this data and the corresponding labels. As
(Korzeniowski et al., 2015) [5] explain in their paper,
convolutional neural networks differ from traditional neural
networks in that they generally make use of two additional types
of computation layers, those being convolution layers and pooling
layers. A convolution layer computes a convolution of its input to
find out how the features affect each other. A pooling layer
generalizes the features from the convolution layers, helping the
network learn faster due to the reduced number of features and
parameters resulting from the generalization. The combination
of efficiency, accuracy and applicability to the problem made this
method perfect for the proposed system.

4 IMPLEMENTATION

In this section, the development of the proposed system is
detailed. The first subsection covers the general structure of the
models and their purpose, while the second provides in-depth
explanations of the separate parts that make up the models, such
as the preprocessing and the convolutional neural network.

4.1 Model Design
The system prototype consists of 4 different models:

• The Single Note model classifies instances of one pitch. In

total, there are 12 notes commonly found in Western music

and these notes were used as the 12 classes that the model

would have to distinguish between. Along with a “No Note”

class, the model consists of 13 total classes.

• The Interval model classifies instances of intervals based on

distance between notes. There are 12 different intervals that

one can construct using the notes in Western Music and as

such this model has 13 classes, the last one being “No

Interval”.

• The Interval Root model classifies instances of intervals

based on the lower (root) note of the interval. Together with

the Interval model, the outputs can be used to exactly

determine what interval and what exact notes are present in

an audio signal. In this research, this combination is not

implemented but could be added in future work. Analogous

to the Single Note model, there are 13 distinguishable

classes for this model.

• The Chord model classifies instances of simple major or

minor chords. A restriction to a reasonable set of classes is

made because the total number of different chords is too

large to otherwise consider. There are exactly 12 major

chords and 12 minor chords one can construct with the notes

commonly found in Western music. Along with the “No

Chord” class, this model thus consists of 25 classes.

4.2 Neural Network Design
The EDGE Impulse Website facilitates creation, management,
training, and testing of the convolutional models. The platform
moreover makes deploying the models for an IoT device simple
as well. The IoT device of choice is a Samsung Galaxy A51 phone
in this research but more devices, like a Raspberry Pi 4, are also
supported by the platform.

A model based on a convolutional network has four parts in
this implementation:

• A dataset, which is split into a training set and a testing set

(typically with a ratio of 80/20)

• A time series data block

• An audio processing block (MFE) and

• A (Keras) classification block.

This general structure of the models is schematically depicted
in Figure 1 and the next subsections will go over each of these
parts and explain what was done, how each block works and the
parameters they have.

4.2.1 Dataset
The datasets to train the models are completely custom and all
datapoints are created by me. These datapoints are all created
using the Ableton Live 11 Digital Audio Workstation (DAW) and
9 different MIDI and free VST instruments that come packaged
with the DAW or can be found online. All data is recorded at 120
BPM and each note, interval or chord is held for 2 bars, resulting
in 2 seconds of audio for each instance.

The recorded data is split into a total of three different
datasets: one for single notes, one for intervals, which the two
interval models share, and one for chords. The aim is to have
sufficient data that represents all possible classes for all selected
instruments in all three datasets and as such the single note
dataset consists of 289 instances, the interval dataset consists of
1009 instances and the chord dataset consists of 984 instances.
More data would be needed to make these datasets represent all
possible audio instances, but these datasets should cover most
common instances and provide a nice basis for the research.

Figure 1. Schematic representation of a convolutional network model on the EDGE Impulse platform.

4

TScIT 37, July 8, 2022, Enschede, The Netherlands Job Römer

4.2.2 Time Series Data Block

In this block, instances of audio are divided into windows in
order to create more datapoints. Parameters include length of
the windows, window increase (in case a sample is larger than
the window, a sliding window will go over the sample. This
parameter tells the block by how much to increase the sliding
window each time), an option of zero-padding the data (in case
a sample is shorter than the window, silence is added at the end),
and sampling frequency (which determines audio quality after
processing). This windowed data is then fed into the audio
processing block.

4.2.3 Mel Frequency Energy Processing Block

This block transforms the windowed audio input into a
spectrogram and features for the classification block. The
selected Mel-Filterbank Energy (MFE) block, like its name
suggests, uses a Mel-filterbank to extract features from a
spectrogram created by a Fast Fourier Transform (FFT). This
filterbank excels at audio that can be distinguished by human
ears, making it very applicable for distinguishing pitches.

A Mel-filterbank is a collection of triangular filters which is
based on human perception experiments as noted by (Tak,
Agrawal, & Patil, 2017) [11] who used the Mel Filterbank
Cepstral Coefficient (MFCC) technique for automatic speech
recognition. To mirror the human ears, these filterbanks are
designed to extract more features with lower frequencies and
less features with high frequencies. This results in a more refined
spectrogram called a Mel Spectrogram.

The MFE block has a few parameters concerning the FFT,
including frame length (the length of each frame in seconds),
frame stride (the step between successive frames) and FFT
Length (the number of FFT points), as well as a few parameters
for the Mel-filterbank including filter number (how many
triangular filters are used), low frequency (lower bound for
frequencies in the audio) and high frequency (upper bound for
frequencies in the audio). There is also a normalization step that
is performed afterward in the form of a noise floor parameter,
which disregards any audio data under a specified decibel level.
After processing, the data is fed into the classification block.

4.2.4 Keras Classification Block

After feature extraction, the features are given to the Keras
Classification block for classification of the windows. This block
makes use of the convolutional neural networks, the general
workings of which are explained in Section 3.2. The training data
is further split into an actual training set and validation set, the
former of which is used to train the model and the latter of which
is used to tune parameters of the classifier. Additionally, the
EDGE Impulse platform makes use of the validation set to create
a feature explorer and confusion matrix to illustrate how the
network classifies data points in this dataset. This is useful in
identifying potential reasons for low accuracies in models.

Parameters of this block include number of training cycles
(number of epochs to train the network on), learning rate (how
fast the neural network learns), validation set size (changes ratio
for training and validation data during training. The default ratio
is 80/20) and options to enable automatic balancing of the

dataset for underrepresented classes and data augmentation in
the form of adding noise or masking time and frequency bands.
The block also provides control over the structure of the
network. One can add more layers and change parameters of
these layers as well. One final, parameter that is important for
this block is the confidence threshold, which determines how
confident a model needs to be before a classification can be
made. If the confidence value for one class exceeds the
confidence threshold, the network will classify the sample as the
class with the highest confidence value. After this block finishes,
one has a classified data point.

4.3 Optimization of parameters
The parameters, specifically those of the Keras Classification
block, present interesting opportunities to improve the accuracy
of the models. The number of training cycles and learning rate
can be used to increase how well the model learns from
instances in the training set, and naturally should be as high as
possible while avoiding potential overfitting of the models.
Overfitting refers to the phenomenon of a network or statistical
model performing worse on unseen data because it learns too
many details of its training data. Additionally, the confidence
threshold may have effect on the accuracy of the models in the
sense that considering lower confidence values may make it
easier for a network to classify instances. Finally, the network
structure may have impact on how well the model performs.
Deciding between a number of convolution layers, kernel size,
number of filters and overall structure of the network all affect
the accuracy. Some of these parameters are experimented with
and these experiments and their results are detailed in the next
section.

Parameters of the time series data block and MFE block may
induce changes in accuracy as well, however these parameters
are harder to change in the model’s favor as these changes
directly affect the output audio or spectrogram. As a result, these
changes may specifically favor accuracy on certain data points
while hurting the accuracy on others. An obvious example of this
in the MFE block is the noise floor parameter. If this parameter
is set too high, data points of high volume may benefit from a

Figure 2. Graph plotting accuracy against numbers of epochs

5

Real-time pitch detection using resource constrained IoT Device TScIT 37, July 8, 2022, Enschede, The Netherlands

lower amount of unwanted noise while the frequencies in low
volume data points may entirely be disregarded, since they
might fall under the noise floor.

5 EXPERIMENTS AND RESULTS

In the first subsection, results of experiments regarding the
effects of four parameters on the model accuracies are
presented, in the second subsection, possible explanations for
low accuracies of certain models are provided and in the final
subsection, the final experiment is detailed, in which the models
are run on an embedded IoT device and accuracies of the models
in two different environments are compared.

5.1 Parameter Experiments
The aim of this section is to raise the accuracy of the models and
the effects of the parameters are tested through systematic
experiments. The tested parameters are the number of epochs,
learning rate, confidence threshold and structure of the
networks. The models are evaluated on the accuracy that they
achieve on the datapoints in the testing dataset.

5.1.1 Number of Epochs
As can be seen in Figure 2, the number of epochs that the model
goes through seems to have relatively little effect on the
accuracy. At low numbers of epochs, the accuracy varies around
2% to 7%, while converging at higher numbers of epochs. This
also suggests that the models are not overfitting since there is no
perceived drop in accuracy at these higher values. Due to
constraints on the runtime of models imposed by the EDGE
Impulse platform, some datapoints are not obtainable, which is
why some models lack tests after a certain number of epochs.
This may be rectified in future work if one has access to an
unrestrained model.

5.1.2 Learning Rate
Learning rate seems to have more of an impact on accuracy, as
shown in Figure 3. The accuracies seem to vary with different
learning rates, between 2% and 12% to be exact, but a clear
correlation between higher and lower learning rates cannot be
made, outside of the fact that lower learning rates seem to
perform slightly better than higher learning rates in most cases.
It is also worth noting that with very high learning rates, the
accuracies drop significantly, likely because these higher values
cause the models to overfit. As was the case with the epochs
experiment, some datapoints are unobtainable due to time
constraints imposed by the EDGE Impulse platform.

5.1.3 Confidence Threshold
The confidence threshold seems to have a more significant effect
on the accuracy of the models, as can be seen in Figure 4.
Changing this parameter induces large variations of potentially
30% for the Interval and Chord models, 15% for the Interval
Root model and a less significant 8% for the Single Note model.
In general, confidence thresholds between 0.2 and 0.4 produce
maximum accuracies, and lower or higher confidence thresholds
cause the accuracy to drop significantly, with a confidence value
of 1 causing an accuracy of 0% in all models. This suggests that
the models have a hard time pinpointing the exact classes
instances belong to, seeing as a lot of data instances are
predictably classified as the “Uncertain” class with higher
confidence thresholds.

5.1.4 Network Structure
This experiment consists of only a small subset of possible
network structures due to time constraints. The general
structure that is used is schematically depicted in Figure 5. The
layers that are most relevant to this experiment are the sets of
convolution and pooling layers. EDGE Impulse allows the user to Figure 3. Graph plotting accuracy against the learning rate.

Figure 4. Graph plotting accuracy against the confidence threshold

Figure 5. Schematic representation of the default network structure.

6

TScIT 37, July 8, 2022, Enschede, The Netherlands Job Römer

change the number of convolution layers in each set, up to a
maximum of 3.

The representation of “x-y” is used to denote the network
structure on the x-axis, where x is the number of convolution
layers in the first set and y the number of convolution layers in
the second set.

Figure 6 shows that all models perform better with relatively
simple network structures. It also makes apparent that network
structure affects accuracy only marginally, showing only small
variations in accuracy, which range from only 2% between two
relatively close network structures to at most 15% between
relatively distant network structures. Of note as well is that the
“3-3” datapoint for the Chord model is unobtained due to time
constraints imposed by the EDGE Impulse platform.

The Single Note model shows preference for a structure with
3 convolution layers followed by 1 convolution layer, beating the
next best option by about 2%. The Interval model shows peak
accuracy with 1 convolution layer followed by 2 convolution
layers, beating the next best option by 0.5%. The Interval Root
and Chords models perform best with a structure containing two
instances of 1 convolution layer, beating the next best option by
around 3% and 4% respectively.

5.2 Explanations for low accuracies
The Single note model performs the best by far, but the other
models are somewhat lacklustre in their observed accuracy.
There are likely many reasons why their accuracy is lower and,
since we cannot accurately predict how the neural network itself
works, we can only make reasonable assumptions to explain
why the network may be mislabelling instances. In this
subsection, three possible causes for low accuracy of the models
in this environment are mentioned.

5.2.1 Challenges due to interval inversion
The confusion matrix of the Interval model reveals that the
model most often mis qualifies windows as an interval that is
relatively close to the actual interval (major 2nd vs minor 2nd for
example) or as one that is or is close to the inverted interval
associated with it. Inverting an interval means moving one of the

notes in it up or down an octave, which preserves the harmonic
relationship between the notes but increases/decreases the
distance between them and garners the interval a new name.
Figure 8 in Appendix A illustrates this concept of inversion. The
model may have trouble differentiating intervals and their
inversions and may misclassify one as the other more often,
which would provide one reason for its lacklustre accuracy.

5.2.2 Possible bias toward instrument timbre
All models, except for the Single Note model, show another
strange behaviour. The models group sample windows of the
validation set not on the perceived frequencies but rather on
instrument timbre, which refers to the sound indicative of a
particular instrument. A violin and a trumpet have a different
timbre for example, and the models seem to group windows in
the validation set primarily based on the texture of the
instrument’s sound (grouping violins and trumpets separately).
This leads me to believe that the features extracted by the audio
processing block are more geared to differentiating one sound
from another based on its “texture” or timbre, rather than
frequencies. This may be rectified in the future by writing a
custom audio processing block that applies a higher weight to
perceived frequencies, as the EDGE Impulse provides little to no
possibilities of interacting with output features of the MFE block.

5.2.3 Multiple frequencies clutter the signal
This issue mostly applies to the Interval Root model specifically
but may also be accountable in the Interval and Chord models.
Since the Single Note recognition model performs well, it might
be assumed that recognising the root note of an interval should
perform about equally in terms of accuracy, as it analogously
should only have to recognise one note. However, it is also fairly
obvious that the introduction of a second note may complicate
the labelling process due to overlapping frequencies and
overtones produced by the second note. Additionally, this model
may struggle finding which of the two notes is the root note of
the interval since it perceives the frequencies of both notes.

5.3 Deployment of models on IoT Device
The final test for each model consist of a few classifications using
the selected IoT Device (which is a Samsung Galaxy A51
smartphone in this research) and a comparison of their accuracy
between this device and the computer environment in which the
models were trained.

5.3.1 Test outline
Each test dataset consists of 30 new custom instances (created
by me) that the models have not encountered before. The models
are first started and then an appropriate instance of a note,
interval or chord is played on a musical instrument. The first 3
or more consecutive windows of said instance that are labelled
as the same class will be taken as the model’s classification and
when less than 3 windows of the instance are labelled as a
certain class or the model classifies the instance as the
“Uncertain” class, the result of the test is noted as an uncertain
in the results. Afterward, the number of correctly identified
instances for each model and the corresponding accuracy of the

Figure 6. Graph plotting accuracy against the network structure.

7

Real-time pitch detection using resource constrained IoT Device TScIT 37, July 8, 2022, Enschede, The Netherlands

model are calculated. An uncertain is treated as a wrong answer
for this calculation. Additionally, more calculations are
performed to determine accuracy on some particular groups of
instruments per model.

A wide range of lower and higher instances (in terms of
frequency) as well as instances using instruments that the
models are not trained on are included to test the robustness of
the models. This is to ensure that the models are evaluated on as
many possible instances and to identify potential weak points of
the models that are not easily verifiable in a computer
environment.

Of note is that the microphone on the IoT device produces in
audio quality reduced data points when working in conjunction
with the models as opposed to the microphone’s audio quality
with the voice recorder app on the phone. This is one of the
secondary reasons to test the models when embedded on the
device; evaluating how robust the models are even with subpar
recording equipment.

5.3.2 Single Note Model
This test consists of 12 piano instances, 6 acoustic guitar
instances, 3 trumpet instances, 3 organ instances, and one
instance of a violin, square wave synthesiser, kalimba,
saxophone, accordion, and the human voice.

In total, the Single Note model correctly classifies 21 out of 30
instances, resulting in an accuracy of 70%. Moreover, the
accuracy on the piano instances is around 67%, the guitar
instances are classified with 50% accuracy, the trumpet
instances are classified with around 67% and the church organ
instances are correctly classified with 100% accuracy.

However, low notes seem to be mislabelled most often in this
test and this is likely because there are few of these lower notes
in the training dataset.

5.3.3 Interval Model
This test contains 12 piano instances, 6 acoustic guitar instances,
3 sawtooth wave synthesiser instances, 3 strings instances, and
one instance of a trumpet, an electric Rhodes piano, clarinet,
violin, electric organ, and a church organ.

In total, the Interval model correctly classifies 5 out of 30
instances, resulting in an accuracy of around 17%. Moreover,
the accuracy on the piano instances is 25%, the guitar instances
are classified with around 17% accuracy, and the sawtooth synth
and strings instances are classified with 0% accuracy.

One issue with this model in particular seems to be that the
model has difficulties classifying the same interval when
produced by different instruments or played in different octaves.
This may suggest that the data was not representative enough in
this model, seeing as instances are correctly identified in some
cases, but not in others.

5.3.4 Interval Root Model
This test consists of 12 piano instances, 6 acoustic guitar
instances, 3 electric organ instances, 3 trumpet instances, and
one instance of an accordion, clarinet, square wave synthesiser,
strings, electric Rhodes piano and a kalimba.

In total, the Interval Root model correctly classifies 10 out of
30 instances, resulting in an accuracy of around 33%.
Moreover, the accuracies on the piano and guitar instances are
both 33.33% and around 67% of the electric organ and trumpet
instances are correctly classified. These four sets of instances
comprise the entire set of correctly classified instances as well,
which reflect the model’s low accuracy.

However, the results of this test also reveal that the model
often (correctly) identifies the top note of the interval, rather
than the root. For reverse engineering of the interval, it is only
important that one of the two pitches is correctly identified, but
the intention is for this network to identify the root note of the
interval, which in the majority of cases does not happen. Future
work may instead focus on a model that identifies the top note of
an interval, rather than the root note. Tests that pit these two
different models against each other should also be performed to
determine which of these two methods is more reliable.

5.3.5 Chord Model
This test contains 12 piano instances, 6 acoustic guitar instances,
3 strings instances, 3 electric Rhodes piano instances, and one
instance of a church organ, concert flute, trumpet, square wave
synthesiser, saxophone, and a French horn.

In total, the Chord model correctly classifies 14 out of 30
instances, resulting in an accuracy of around 47%. Moreover,
the accuracy on the piano instances is around 58%, the accuracy
on the guitar instances is 0%, and around 67% of the strings and
electric Rhodes piano instances are correctly classified.

Lower accuracy on the guitar instances may be caused by
underrepresentation of this instrument. The guitar’s strings
keep resonating after they have been played in quick succession,
and the notes form a chord together. The model is exclusively
trained on chords in which the chord’s notes are always played
at the exact same time, however. The model is also not familiar
with the sound of a guitar either (although that is one of the
reasons to include the instrument in the test) and these
oversights may likely cause the model to have poor accuracy on
these specific instances.

Figure 7. Graph plotting the accuracy in a PC environment and in an
environment of an Embedded Device

8

TScIT 37, July 8, 2022, Enschede, The Netherlands Job Römer

5.3.6. Comparison between tested environments
As can be seen in Figure 7, the models perform noticeably worse
on the embedded device. In some cases, the gap in accuracy may
be as large as 27% while in others the difference in accuracy is
closer to around 10%. This may be caused by aforementioned
microphone issues, reduced audio quality in general,
background noise that is too prominent during the test or any
of the previously mentioned issues some models may have.

6 CONCLUSION

6.1 General Conclusion
The chosen convolutional network based models show promise
to be reliable recognition models in the future, but more
research should be done to further develop and optimize them.
More resources, such as a custom processing block, more
elaborate models that can be run for longer and more data,
should be prioritized to make this type of system reliable and
warrant future use.

6.2 Conclusion Research Question 1
The current state of the art includes several methods, which
work well for their intended purpose. The most promising for
this research concerns convolutional neural networks due to its
applicability to the problem and potential to be viable for a real-
time system run on an IoT Device.

6.3 Conclusion Research Question 2
Several parameters, affect accuracy in different ways and four of
these parameters are tested:

• The number of epochs seems to have a relatively little effect

on accuracy. Generally, more training cycles produce better

accuracies, without overfitting.

• The learning rate of the models affect accuracy more. Low

learning rates are preferred, and high learning rates achieve

very low accuracies near 0%.

• Lower confidence thresholds seem to make the models

perform significantly better. High confidence thresholds tend

to significantly reduce the accuracy of the models

• All models show better accuracy with simpler network

structures, using 4 convolution layers or less.

6.4 Conclusion Research Question 3
The Single Note model performs adequately on the validation
and test sets in a computer environment and on real time data
when embedded on a device with an accuracy of around 78% on
the former and 70% on the latter. The Interval recognition
model performs significantly worse in both environments, with
accuracies of circa 30% and 17%, respectively. Both the
Interval Root note and Chord recognition models perform
decently on the computer, but far from desirable on the IoT
device. The former shows accuracies of around 60% and 33%
respectively, while the latter shows accuracies of around 60%
and 47% respectively.

6.5 Future Work
Further work stemming from this research should primarily
consist of bigger tests with a custom audio processing block that
puts more emphasis on recognized frequencies as well as tests
with bigger models, more data, and the possibility for longer run
times. Furthermore, it is essential for the research of this system
that more experimentation is done to determine optimal
parameters and network structures for the models and to
further chart sacrifices that might need to be made as a result of
limited capabilities of the target device and the viability for real-
time recognition.

7 ACKNOWLEDGEMENTS
I would like to thank Yanqiu Huang for her excellent supervision
and feedback throughout this research and Gertwillem Römer
and Wietse Uittenbogaard for their assistance with data
acquisition, even though their specific data samples were not
used due to time constraints.

APPENDIX A: FIGURES AND TABLES FOR RELEVANT
MUSIC THEORY

Table 2. Flat notes and their Enharmonic Sharp Equivalent Notes

Flat note Enharmonic Sharp Equivalent

D♭ C#

E♭ D#

G♭ F#

A♭ G#

B♭ A#

Table 3. Intervals and distances between notes that comprise them.

Interval name Example Distance in number of notes
(Semitones)

Minor 2nd C – C# 1
Major 2nd C – D 2
Minor 3rd C – D# 3
Major 3rd C – E 4
Perfect 4th C – F 5
Tritone C – F# 6
Perfect 5th C – G 7
Minor 6th C – G# 8
Major 6th C – A 9
Minor 7th C – A# 10
Major 7th C – B 11
Octave C – C 12

Figure 8. Schematic representation of an inversion of a Major 3rd to a
Minor 6th interval through moving the lower note one octave up

9

Real-time pitch detection using resource constrained IoT Device TScIT 37, July 8, 2022, Enschede, The Netherlands

REFERENCES
[1] Willis, G. (1998.). Introduction. In Ultimate Ear Training For Guitar And Bass

(pp. 3–3). essay, Hal Leonard Corporation. Retrieved June 23, 2022, from

https://kupdf.net/download/guitar-amp-bass-book-gary-willis-ultimate-

ear-training-for-guitar-and-basspdf_5b1e16f4e2b6f5513ef77abc_pdf.
[2] Rizqyawan, M. I., & Hermawan, G. (2016). 2015 International Conference on

Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and

Information Technology (ICACOMIT). In IEEE Xplore. Bandung; IEEE.

Retrieved June 23, 2022, from

https://ieeexplore.ieee.org/document/7440200/references#references.
[3] Jensen, K., & Andersen, T. H. (2004). Computer Music Modeling and Retrieval

. In SpringerLink. Montpellier. Retrieved June 29, 2022, from

https://link.springer.com/chapter/10.1007/978-3-540-39900-1_2.
[4] Voinov, N. V., Ivanov, D. A., Leontieva, T. V., & Molodyakov, S. A. (2021). 2021

XXIV International Conference on Soft Computing and Measurements (SCM).

In IEEE Xplore. St. Petersburg; IEEE. Retrieved June 23, 2022, from

https://ieeexplore.ieee.org/document/9507134.
[5] Korzeniowski, F., & Widmer, G. (2016). 2016 IEEE 26th International

Workshop on Machine Learning for Signal Processing (MLSP). In IEEE Xplore.

Vietri sul Mare; IEEE. Retrieved June 23, 2022, from

https://ieeexplore.ieee.org/abstract/document/7738895.
[6] Sigtia, S., Benetos, E., & Dixon, S. (2016). An End-to-End Neural Network for

Polyphonic Piano Music Transcription. IEEE/ACM Transactions on Audio,

Speech, and Language Processing, 24(5).

https://doi.org/10.1109/TASLP.2016.2533858
[7] Black, T. R., & Donohue, K. D. (2002). Proceedings of the IEEE SoutheastCon

2000. 'Preparing for The New Millennium' (Cat. No.00CH37105). In IEEE

Xplore. Nashville, TN; IEEE. Retrieved June 23, 2022, from

https://ieeexplore.ieee.org/document/845433.
[8] Huang, T., & Yu, Y. (2018). 2018 International Conference on Audio,

Language and Image Processing (ICALIP). In IEEE Xplore. Shanghai; IEEE.

Retrieved June 23, 2022, from

https://ieeexplore.ieee.org/abstract/document/8455558.
[9] Kuhn, W. B. (1990). A Real-Time Pitch Recognition Algorithm for Music

Applications. Computer Music Journal, 14(3), 60–71.

https://doi.org/10.2307/3679960

[10] Kashino, K., & Murase, H. (2002). Proceedings of the 1998 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat.

No.98CH36181). In IEEE Xplore. Seattle, WA; IEEE. Retrieved June 23, 2022,

from https://ieeexplore.ieee.org/document/679655.
[11] Tak, R. N., Agrawal, D. M., & Patil, H. A. (2017). International Conference on

Pattern Recognition and Machine Intelligence. In SpringerLink. Springer,

Cham. Retrieved June 23, 2022, from

https://link.springer.com/chapter/10.1007/978-3-319-69900-4_40.

