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Job Römer, University of Twente, The Netherlands 

ABSTRACT 
A trained ear for the recognition of notes, intervals and chords in music 
is a difficult skill for beginning musicians to develop due to lack of 
reference of these musical aspects and boring nature of its training. A 
system or program could rectify this issue and allow users to train their 
ears for this purpose. Multiple existing algorithms can distinguish pitch 
and chords from given audio files, using signal analysis or neural 
networks. However, these solutions provide only the recognition of one 
of the three relevant pitch based aspects. This research contributes to 
the development of a system that does all three by using models based 
on convolutional neural networks. New, custom, datasets were created 
to facilitate training and evaluation of the models as well.  The final 
models were optimized and vary in terms of accuracy but show promise 

to be further developed into a reliable system. 

Additional Key Words and Phrases: Pitch Recognition, Real-Time Pitch 
Recognition, IoT device, convolutional neural network, Mel-Filterbank. 

1 INTRODUCTION 

1.1 Context and Motivation  

Like many other skills, learning to play a musical instrument is 
difficult and time-consuming. Through a combination of physical 
movements and coordination, music theory, “an ear” for pitch 
and “a feeling” for rhythm, a musician can express themselves in 
nearly infinite ways.   

While the former two skills can be practiced and taught, the 
latter two cannot be simply explained through lecture or learned 
through practice of an instrument. These are some of the most 
vital skills one can have as a musician, as reinforced by (Willis, 
1998) [1] in his book, and may be what constitutes intuition in 
music. However, training the ear for these purposes requires 
time, dedication and reference of different pitches and rhythms 
and can often be boring or unengaging as noted by (Rizqyawan, 
& Hermawan, 2015) [2]. Usually, one is exposed to exercises 
through a music teacher and only after the student has become 
accustomed to their instrument of choice. Due to the boring 
nature of ear training relative to the practice of their instrument, 
many inexperienced students choose to skip it. However, they 
later realize that they cannot play new songs because they do not 
know patterns that they had previously blindly copied for other 
songs and cannot create their own solos, songs or their “own 
sound”. A trained ear can rectify this, and to this end, this 
research will explore a way to help people train their ears, 
without the need for a music teacher’s continued effort. 

1.2 Research 

This research puts the focus exclusively on the problem of pitch 
recognition, specifically in terms of single notes, intervals, and 
simple chords, and details the development of a prototype of a 
recognition system run on an IoT device. This tool should be able 
to listen to real-time input in the form of musical data originating 
from a musician playing their instrument and provide feedback 
about the note, interval, or chord that they have played.   

The goal of this research is to determine the feasibility and 
potential of such a system. The research questions following 
from this goal are: 
1. What are available methods to detect one or more pitches 

and how accurate and applicable to the proposed system are 

these methods? 

2. In what ways can we optimize the selected pitch recognition 

method’s accuracy?  

3. How does the realized system perform in terms of accuracy? 

1.3 Approach and Structure 
As stated, the chosen approach to answering these questions is 

the development of a prototype of the proposed pitch 

recognition system. A literary review of the state of the art and 

older research answers the first research question and 

additionally serves the secondary purpose of laying the 

groundwork for the selection of the pitch recognition method for 

the proposed system. This literary review is detailed in Section 

2. The selected method is then implemented. The context 

surrounding this method and the structure and workings of the 

implementation are detailed in Sections 3 and 4, respectively. 

The latter section also describes parameters that were tested in 

order to answer the second research question. Finally, the 

system is evaluated in a computer environment with given audio 

files and on an embedded device with real time playing, which 

present the answers to the final research question. The results 

and analysis of these experiments are detailed in Section 5.     

1.4 Definitions and Terminology 
In order to avoid confusion, a few terms and definitions are 
explicitly mentioned in this section. Table 1 contains the 
important music theory related definitions and terminology 
used within this paper. 
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Table 1. Definitions and terminology for this paper. 

2 LITERARY REVIEW 

In this section, multiple methods that may be used or adapted to 
recognize notes, intervals or chords are highlighted and some 
requirements for the proposed system are identified.   

This research falls under the Music Information Retrieval 
(MIR) research area, which is concerned with retrieving 
information like rhythms, time signatures, keys, instruments, 
notes, and other musical aspects from written music scores or 
from audio input, which includes existing audio files as well as 
real-time audio (Jensen & Andersen, 2004) [3]. Many 
researchers have already researched ways to extract pitches 
from single notes, notes that make up a chord and even the notes 
of all simultaneously playing instruments. All of them use 
techniques to compute time-frequency representations of the 
audio, which is often referred to as a Spectrogram. Algorithms 
can then perform feature extraction using this spectrogram to 
determine frequencies, instruments and other quirks present in 
the musical data. Multiple approaches for feature extraction 
exist and one of the more prominent in the present day is neural 
networks. 

(Voinov et al., 2019) [4] analyze several algorithms for single 
pitch detection and propose a three-layer neural network 
implementation for chord recognition that has an accuracy of 95-
99% on a small set of 10 simple chords. They also note that, for 
recognizing multiple notes at the same time (intervals and 
chords), single note recognition algorithms are too inefficient 
and therefore neural networks should be the optimal choice for 
this kind of task. Similarly, (Korzeniowski et al., 2015) [5] use 
convolutional neural networks to achieve a chord recognition 
model that allegedly performs on par with or better than state-
of-the-art competitors (with an accuracy of 82.9%) on the set of 
all major and minor triads. (Sigtia et al., 2016) [6] put this 
approach in a slightly different context by using the neural 
network for the purposes of polyphonic piano transcription. 
Analogous to a speech recognition system, two neural networks 
were used: one acoustic model for estimating probabilities in 
pitch and a music language model which correlates intervals and 
chords over time. The end result is a model that can transcribe 

polyphonic piano music into a written score. With adaptation, 
this model can be efficient enough to run in real-time 
applications.  

Older research, dating back to 2009 and prior, also consider 
pitch recognition methods in the form of Signal Processing 
algorithms using different principles and spectrogram 
techniques. (Black & Donohue, 2000) [7] mention and evaluate 
multiple of these algorithms, those being a generalized 
spectrum-based algorithm, an autocorrelation-based algorithm, 
and a cepstrum-based algorithm. (Huang & Yu, 2018) [8] make 
use of the cepstrum-based algorithm to detect stable pitches in 
humming melodies and (Kuhn, 1990) [9] provides a technical 
explanation of the workings and drawbacks of autocorrelation in 
real-time applications, one of the latter being that it is a 
computationally intensive method. Kuhn also proposes another 
method: the FMP method, which is detailed in his journal article. 

Lastly, probabilistic models in conjunction with adaptive 
pattern matching are used by (Kashino & Murase, 1998) [10] to 
identify notes and the instruments that produce them. 

These solutions are all interesting and have their pros and 
cons but are all focused on either single note recognition or 
chord recognition. The method for my proposed system has to 
have the capability of recognizing single notes, intervals, and 
chords rather than only one of these three. Moreover, the chosen 
method needs to be capable of recognizing audio from a 
musician’s playing in real-time and doing so efficiently to make 
it viable for an IoT device as well. Specific challenges result from 
differing audio qualities, possible limitations in terms of storage, 
battery life and computing power of the IoT device and real-time 
recognition.  

3 PROPOSED METHOD 

The following section covers the choice of pitch recognition 
method and in general how the chosen solution operates. In the 
first subsection, the chosen method is revealed and the second 
will focus on a brief explanation of the workings of this method. 

3.1 Choice of Method 
The selection of the proposed method is carefully considered 
using applicability to the problem, speed, efficiency, and 
accuracy as the general criteria. Due to the first criteria, any 
simple signal processing algorithms such as autocorrelation are 
unfit methods for the system due to their inability to detect 
multiple notes whereas models based on convolutional 
networks, similar to (Korzeniowski et al., 2015) [5]’s work show 

Term Explanation 
Pitch A frequency that can be related to a musical note. The 

term note and pitch will be used interchangeably in 
this paper. 

Sharps/Flats Some notes are enharmonically equivalent, meaning 
that they produce almost the same frequency. The 
most important are sharps and flats, detailed in Table 
2 in Appendix A. All flat notes will be referred to as 
their enharmonic sharp equivalents to avoid 
unnecessary complexity of the paper.  

Interval Two notes played at the same time. The name of the 
interval is determined by the distance between the 
two notes. Appendix A contains more information on 
intervals and interval inversion. 

Chord/Triad Three or more notes played at the same time. Both 
terms will be used to refer to simple chords that 
consist exactly of three notes. These two terms are 
therefore used interchangeably in this paper and 
cover only a small subset of possible chords. 
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more promise, since these neural networks are not only efficient 
and fast, but also show the capability of recognizing multiple 
pitches at once with adequate accuracy. Moreover, this solution 
shows to be viable for a real-time applications as well, as shown 
by (Sigtia et al., 2016) [6]. Therefore, convolutional neural 
networks are used as the chosen pitch recognition method for 
the final system. 

3.2 Convolutional Neural Networks 
A neural network is an algorithm loosely modelled after the 
human brain, consisting of neuron layers that can find 
relationships between labelled data and the features they have. 
In the end, the neural network will be able to classify new data 
based on features it learns from previous data and the 
relationships between this data and the corresponding labels. As 
(Korzeniowski et al., 2015) [5] explain in their paper, 
convolutional neural networks differ from traditional neural 
networks in that they generally make use of two additional types 
of computation layers, those being convolution layers and pooling 
layers. A convolution layer computes a convolution of its input to 
find out how the features affect each other. A pooling layer 
generalizes the features from the convolution layers, helping the 
network learn faster due to the reduced number of features and 
parameters resulting from the generalization. The combination 
of efficiency, accuracy and applicability to the problem made this 
method perfect for the proposed system.  

4 IMPLEMENTATION 

In this section, the development of the proposed system is 
detailed. The first subsection covers the general structure of the 
models and their purpose, while the second provides in-depth 
explanations of the separate parts that make up the models, such 
as the preprocessing and the convolutional neural network. 

4.1 Model Design 
The system prototype consists of 4 different models: 

• The Single Note model classifies instances of one pitch. In 

total, there are 12 notes commonly found in Western music 

and these notes were used as the 12 classes that the model 

would have to distinguish between. Along with a “No Note” 

class, the model consists of 13 total classes.  

• The Interval model classifies instances of intervals based on 

distance between notes. There are 12 different intervals that 

one can construct using the notes in Western Music and as 

such this model has 13 classes, the last one being “No 

Interval”.   

• The Interval Root model classifies instances of intervals 

based on the lower (root) note of the interval. Together with 

the Interval model, the outputs can be used to exactly 

determine what interval and what exact notes are present in 

an audio signal. In this research, this combination is not 

implemented but could be added in future work. Analogous 

to the Single Note model, there are 13 distinguishable 

classes for this model. 

• The Chord model classifies instances of simple major or 

minor chords. A restriction to a reasonable set of classes is 

made because the total number of different chords is too 

large to otherwise consider. There are exactly 12 major 

chords and 12 minor chords one can construct with the notes 

commonly found in Western music. Along with the “No 

Chord” class, this model thus consists of 25 classes.   

4.2 Neural Network Design  
The EDGE Impulse Website facilitates creation, management, 
training, and testing of the convolutional models. The platform 
moreover makes deploying the models for an IoT device simple 
as well. The IoT device of choice is a Samsung Galaxy A51 phone 
in this research but more devices, like a Raspberry Pi 4, are also 
supported by the platform.  

A model based on a convolutional network has four parts in 
this implementation:  

• A dataset, which is split into a training set and a testing set 

(typically with a ratio of 80/20) 

• A time series data block 

• An audio processing block (MFE) and  

• A (Keras) classification block.    

This general structure of the models is schematically depicted 
in Figure 1 and the next subsections will go over each of these 
parts and explain what was done, how each block works and the 
parameters they have. 

4.2.1 Dataset 
The datasets to train the models are completely custom and all 
datapoints are created by me. These datapoints are all created 
using the Ableton Live 11 Digital Audio Workstation (DAW) and 
9 different MIDI and free VST instruments that come packaged 
with the DAW or can be found online. All data is recorded at 120 
BPM and each note, interval or chord is held for 2 bars, resulting 
in 2 seconds of audio for each instance. 

The recorded data is split into a total of three different 
datasets: one for single notes, one for intervals, which the two 
interval models share, and one for chords.  The aim is to have 
sufficient data that represents all possible classes for all selected 
instruments in all three datasets and as such the single note 
dataset consists of 289 instances, the interval dataset consists of 
1009 instances and the chord dataset consists of 984 instances. 
More data would be needed to make these datasets represent all 
possible audio instances, but these datasets should cover most 
common instances and provide a nice basis for the research. 

Figure 1. Schematic representation of a convolutional network model on the EDGE Impulse platform. 
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4.2.2 Time Series Data Block 

In this block, instances of audio are divided into windows in 
order to create more datapoints. Parameters include length of 
the windows, window increase (in case a sample is larger than 
the window, a sliding window will go over the sample. This 
parameter tells the block by how much to increase the sliding 
window each time), an option of zero-padding the data (in case 
a sample is shorter than the window, silence is added at the end), 
and sampling frequency (which determines audio quality after 
processing). This windowed data is then fed into the audio 
processing block. 

4.2.3 Mel Frequency Energy Processing Block 

This block transforms the windowed audio input into a 
spectrogram and features for the classification block. The 
selected Mel-Filterbank Energy (MFE) block, like its name 
suggests, uses a Mel-filterbank to extract features from a 
spectrogram created by a Fast Fourier Transform (FFT). This 
filterbank excels at audio that can be distinguished by human 
ears, making it very applicable for distinguishing pitches.  

A Mel-filterbank is a collection of triangular filters which is 
based on human perception experiments as noted by (Tak, 
Agrawal, & Patil, 2017) [11] who used the Mel Filterbank 
Cepstral Coefficient (MFCC) technique for automatic speech 
recognition. To mirror the human ears, these filterbanks are 
designed to extract more features with lower frequencies and 
less features with high frequencies. This results in a more refined 
spectrogram called a Mel Spectrogram.  

The MFE block has a few parameters concerning the FFT, 
including frame length (the length of each frame in seconds), 
frame stride (the step between successive frames) and FFT 
Length (the number of FFT points), as well as a few parameters 
for the Mel-filterbank including filter number (how many 
triangular filters are used), low frequency (lower bound for 
frequencies in the audio) and high frequency (upper bound for 
frequencies in the audio). There is also a normalization step that 
is performed afterward in the form of a noise floor parameter, 
which disregards any audio data under a specified decibel level. 
After processing, the data is fed into the classification block.  

4.2.4 Keras Classification Block  

After feature extraction, the features are given to the Keras 
Classification block for classification of the windows. This block 
makes use of the convolutional neural networks, the general 
workings of which are explained in Section 3.2. The training data 
is further split into an actual training set and validation set, the 
former of which is used to train the model and the latter of which 
is used to tune parameters of the classifier. Additionally, the 
EDGE Impulse platform makes use of the validation set to create 
a feature explorer and confusion matrix to illustrate how the 
network classifies data points in this dataset. This is useful in 
identifying potential reasons for low accuracies in models. 

Parameters of this block include number of training cycles 
(number of epochs to train the network on), learning rate (how 
fast the neural network learns), validation set size (changes ratio 
for training and validation data during training. The default ratio 
is 80/20) and options to enable automatic balancing of the 

dataset for underrepresented classes and data augmentation in 
the form of adding noise or masking time and frequency bands. 
The block also provides control over the structure of the 
network. One can add more layers and change parameters of 
these layers as well. One final, parameter that is important for 
this block is the confidence threshold, which determines how 
confident a model needs to be before a classification can be 
made. If the confidence value for one class exceeds the 
confidence threshold, the network will classify the sample as the 
class with the highest confidence value. After this block finishes, 
one has a classified data point.  

4.3 Optimization of parameters 
The parameters, specifically those of the Keras Classification 
block, present interesting opportunities to improve the accuracy 
of the models. The number of training cycles and learning rate 
can be used to increase how well the model learns from 
instances in the training set, and naturally should be as high as 
possible while avoiding potential overfitting of the models. 
Overfitting refers to the phenomenon of a network or statistical 
model performing worse on unseen data because it learns too 
many details of its training data. Additionally, the confidence 
threshold may have effect on the accuracy of the models in the 
sense that considering lower confidence values may make it 
easier for a network to classify instances. Finally, the network 
structure may have impact on how well the model performs. 
Deciding between a number of convolution layers, kernel size, 
number of filters and overall structure of the network all affect 
the accuracy. Some of these parameters are experimented with 
and these experiments and their results are detailed in the next 
section.  

Parameters of the time series data block and MFE block may 
induce changes in accuracy as well, however these parameters 
are harder to change in the model’s favor as these changes 
directly affect the output audio or spectrogram. As a result, these 
changes may specifically favor accuracy on certain data points 
while hurting the accuracy on others. An obvious example of this 
in the MFE block is the noise floor parameter. If this parameter 
is set too high, data points of high volume may benefit from a 

Figure 2. Graph plotting accuracy against numbers of epochs 
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lower amount of unwanted noise while the frequencies in low 
volume data points may entirely be disregarded, since they 
might fall under the noise floor.  

5 EXPERIMENTS AND RESULTS 

In the first subsection, results of experiments regarding the 
effects of four parameters on the model accuracies are 
presented, in the second subsection, possible explanations for 
low accuracies of certain models are provided and in the final 
subsection, the final experiment is detailed, in which the models 
are run on an embedded IoT device and accuracies of the models 
in two different environments are compared.   

5.1 Parameter Experiments 
The aim of this section is to raise the accuracy of the models and 
the effects of the parameters are tested through systematic 
experiments. The tested parameters are the number of epochs, 
learning rate, confidence threshold and structure of the 
networks. The models are evaluated on the accuracy that they 
achieve on the datapoints in the testing dataset.  

5.1.1 Number of Epochs 
As can be seen in Figure 2, the number of epochs that the model 
goes through seems to have relatively little effect on the 
accuracy. At low numbers of epochs, the accuracy varies around 
2% to 7%, while converging at higher numbers of epochs. This 
also suggests that the models are not overfitting since there is no 
perceived drop in accuracy at these higher values. Due to 
constraints on the runtime of models imposed by the EDGE 
Impulse platform, some datapoints are not obtainable, which is 
why some models lack tests after a certain number of epochs. 
This may be rectified in future work if one has access to an 
unrestrained model.  

5.1.2 Learning Rate 
Learning rate seems to have more of an impact on accuracy, as 
shown in Figure 3. The accuracies seem to vary with different 
learning rates, between 2% and 12% to be exact, but a clear 
correlation between higher and lower learning rates cannot be 
made, outside of the fact that lower learning rates seem to 
perform slightly better than higher learning rates in most cases. 
It is also worth noting that with very high learning rates, the 
accuracies drop significantly, likely because these higher values 
cause the models to overfit. As was the case with the epochs 
experiment, some datapoints are unobtainable due to time 
constraints imposed by the EDGE Impulse platform. 

5.1.3 Confidence Threshold 
The confidence threshold seems to have a more significant effect 
on the accuracy of the models, as can be seen in Figure 4. 
Changing this parameter induces large variations of potentially 
30% for the Interval and Chord models, 15% for the Interval 
Root model and a less significant 8% for the Single Note model. 
In general, confidence thresholds between 0.2 and 0.4 produce 
maximum accuracies, and lower or higher confidence thresholds 
cause the accuracy to drop significantly, with a confidence value 
of 1 causing an accuracy of 0% in all models. This suggests that 
the models have a hard time pinpointing the exact classes 
instances belong to, seeing as a lot of data instances are 
predictably classified as the “Uncertain” class with higher 
confidence thresholds.  

5.1.4 Network Structure 
This experiment consists of only a small subset of possible 
network structures due to time constraints. The general 
structure that is used is schematically depicted in Figure 5. The 
layers that are most relevant to this experiment are the sets of 
convolution and pooling layers. EDGE Impulse allows the user to Figure 3. Graph plotting accuracy against the learning rate. 

Figure 4. Graph plotting accuracy against the confidence threshold 

Figure 5. Schematic representation of the default network structure. 
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change the number of convolution layers in each set, up to a 
maximum of 3.  

The representation of “x-y” is used to denote the network 
structure on the x-axis, where x is the number of convolution 
layers in the first set and y the number of convolution layers in 
the second set. 

Figure 6 shows that all models perform better with relatively 
simple network structures. It also makes apparent that network 
structure affects accuracy only marginally, showing only small 
variations in accuracy, which range from only 2% between two 
relatively close network structures to at most 15% between 
relatively distant network structures. Of note as well is that the 
“3-3” datapoint for the Chord model is unobtained due to time 
constraints imposed by the EDGE Impulse platform. 

The Single Note model shows preference for a structure with 
3 convolution layers followed by 1 convolution layer, beating the 
next best option by about 2%. The Interval model shows peak 
accuracy with 1 convolution layer followed by 2 convolution 
layers, beating the next best option by 0.5%. The Interval Root 
and Chords models perform best with a structure containing two 
instances of 1 convolution layer, beating the next best option by 
around 3% and 4% respectively. 

5.2 Explanations for low accuracies  
The Single note model performs the best by far, but the other 
models are somewhat lacklustre in their observed accuracy. 
There are likely many reasons why their accuracy is lower and, 
since we cannot accurately predict how the neural network itself 
works, we can only make reasonable assumptions to explain 
why the network may be mislabelling instances. In this 
subsection, three possible causes for low accuracy of the models 
in this environment are mentioned. 

5.2.1 Challenges due to interval inversion 
The confusion matrix of the Interval model reveals that the 
model most often mis qualifies windows as an interval that is 
relatively close to the actual interval (major 2nd vs minor 2nd for 
example) or as one that is or is close to the inverted interval 
associated with it. Inverting an interval means moving one of the 

notes in it up or down an octave, which preserves the harmonic 
relationship between the notes but increases/decreases the 
distance between them and garners the interval a new name. 
Figure 8 in Appendix A illustrates this concept of inversion. The 
model may have trouble differentiating intervals and their 
inversions and may misclassify one as the other more often, 
which would provide one reason for its lacklustre accuracy.    

5.2.2 Possible bias toward instrument timbre  
All models, except for the Single Note model, show another 
strange behaviour. The models group sample windows of the 
validation set not on the perceived frequencies but rather on 
instrument timbre, which refers to the sound indicative of a 
particular instrument. A violin and a trumpet have a different 
timbre for example, and the models seem to group windows in 
the validation set primarily based on the texture of the 
instrument’s sound (grouping violins and trumpets separately). 
This leads me to believe that the features extracted by the audio 
processing block are more geared to differentiating one sound 
from another based on its “texture” or timbre, rather than 
frequencies. This may be rectified in the future by writing a 
custom audio processing block that applies a higher weight to 
perceived frequencies, as the EDGE Impulse provides little to no 
possibilities of interacting with output features of the MFE block. 

5.2.3 Multiple frequencies clutter the signal 
This issue mostly applies to the Interval Root model specifically 
but may also be accountable in the Interval and Chord models. 
Since the Single Note recognition model performs well, it might 
be assumed that recognising the root note of an interval should 
perform about equally in terms of accuracy, as it analogously 
should only have to recognise one note. However, it is also fairly 
obvious that the introduction of a second note may complicate 
the labelling process due to overlapping frequencies and 
overtones produced by the second note. Additionally, this model 
may struggle finding which of the two notes is the root note of 
the interval since it perceives the frequencies of both notes. 

5.3 Deployment of models on IoT Device 
The final test for each model consist of a few classifications using 
the selected IoT Device (which is a Samsung Galaxy A51 
smartphone in this research) and a comparison of their accuracy 
between this device and the computer environment in which the 
models were trained. 

5.3.1 Test outline 
Each test dataset consists of 30 new custom instances (created 
by me) that the models have not encountered before. The models 
are first started and then an appropriate instance of a note, 
interval or chord is played on a musical instrument. The first 3 
or more consecutive windows of said instance that are labelled 
as the same class will be taken as the model’s classification and 
when less than 3 windows of the instance are labelled as a 
certain class or the model classifies the instance as the 
“Uncertain” class, the result of the test is noted as an uncertain 
in the results. Afterward, the number of correctly identified 
instances for each model and the corresponding accuracy of the 

Figure 6. Graph plotting accuracy against the network structure. 
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model are calculated. An uncertain is treated as a wrong answer 
for this calculation. Additionally, more calculations are 
performed to determine accuracy on some particular groups of 
instruments per model. 

A wide range of lower and higher instances (in terms of 
frequency) as well as instances using instruments that the 
models are not trained on are included to test the robustness of 
the models. This is to ensure that the models are evaluated on as 
many possible instances and to identify potential weak points of 
the models that are not easily verifiable in a computer 
environment. 

Of note is that the microphone on the IoT device produces in 
audio quality reduced data points when working in conjunction 
with the models as opposed to the microphone’s audio quality 
with the voice recorder app on the phone. This is one of the 
secondary reasons to test the models when embedded on the 
device; evaluating how robust the models are even with subpar 
recording equipment. 

5.3.2 Single Note Model 
This test consists of 12 piano instances, 6 acoustic guitar 
instances, 3 trumpet instances, 3 organ instances, and one 
instance of a violin, square wave synthesiser, kalimba, 
saxophone, accordion, and the human voice.  

In total, the Single Note model correctly classifies 21 out of 30 
instances, resulting in an accuracy of 70%. Moreover, the 
accuracy on the piano instances is around 67%, the guitar 
instances are classified with 50% accuracy, the trumpet 
instances are classified with around 67% and the church organ 
instances are correctly classified with 100% accuracy.  

However, low notes seem to be mislabelled most often in this 
test and this is likely because there are few of these lower notes 
in the training dataset. 

5.3.3 Interval Model 
This test contains 12 piano instances, 6 acoustic guitar instances, 
3 sawtooth wave synthesiser instances, 3 strings instances, and 
one instance of a trumpet, an electric Rhodes piano, clarinet, 
violin, electric organ, and a church organ.  

In total, the Interval model correctly classifies 5 out of 30 
instances, resulting in an accuracy of around 17%. Moreover, 
the accuracy on the piano instances is 25%, the guitar instances 
are classified with around 17% accuracy, and the sawtooth synth 
and strings instances are classified with 0% accuracy.  

One issue with this model in particular seems to be that the 
model has difficulties classifying the same interval when 
produced by different instruments or played in different octaves. 
This may suggest that the data was not representative enough in 
this model, seeing as instances are correctly identified in some 
cases, but not in others.  

5.3.4 Interval Root Model 
This test consists of 12 piano instances, 6 acoustic guitar 
instances, 3 electric organ instances, 3 trumpet instances, and 
one instance of an accordion, clarinet, square wave synthesiser, 
strings, electric Rhodes piano and a kalimba.  

In total, the Interval Root model correctly classifies 10 out of 
30 instances, resulting in an accuracy of around 33%. 
Moreover, the accuracies on the piano and guitar instances are 
both 33.33% and around 67% of the electric organ and trumpet 
instances are correctly classified. These four sets of instances 
comprise the entire set of correctly classified instances as well, 
which reflect the model’s low accuracy.  

However, the results of this test also reveal that the model 
often (correctly) identifies the top note of the interval, rather 
than the root. For reverse engineering of the interval, it is only 
important that one of the two pitches is correctly identified, but 
the intention is for this network to identify the root note of the 
interval, which in the majority of cases does not happen. Future 
work may instead focus on a model that identifies the top note of 
an interval, rather than the root note. Tests that pit these two 
different models against each other should also be performed to 
determine which of these two methods is more reliable. 

5.3.5 Chord Model 
This test contains 12 piano instances, 6 acoustic guitar instances, 
3 strings instances, 3 electric Rhodes piano instances, and one 
instance of a church organ, concert flute, trumpet, square wave 
synthesiser, saxophone, and a French horn. 

In total, the Chord model correctly classifies 14 out of 30 
instances, resulting in an accuracy of around 47%. Moreover, 
the accuracy on the piano instances is around 58%, the accuracy 
on the guitar instances is 0%, and around 67% of the strings and 
electric Rhodes piano instances are correctly classified.  

Lower accuracy on the guitar instances may be caused by 
underrepresentation of this instrument. The guitar’s strings 
keep resonating after they have been played in quick succession, 
and the notes form a chord together. The model is exclusively 
trained on chords in which the chord’s notes are always played 
at the exact same time, however. The model is also not familiar 
with the sound of a guitar either (although that is one of the 
reasons to include the instrument in the test) and these 
oversights may likely cause the model to have poor accuracy on 
these specific instances.  

Figure 7. Graph plotting the accuracy in a PC environment and in an 
environment of an Embedded Device 
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5.3.6. Comparison between tested environments 
As can be seen in Figure 7, the models perform noticeably worse 
on the embedded device. In some cases, the gap in accuracy may 
be as large as 27% while in others the difference in accuracy is 
closer to around 10%. This may be caused by aforementioned 
microphone issues, reduced audio quality in general, 
background noise that is too prominent during the test or any 
of the previously mentioned issues some models may have.  

6 CONCLUSION 

6.1 General Conclusion 
The chosen convolutional network based models show promise 
to be reliable recognition models in the future, but more 
research should be done to further develop and optimize them. 
More resources, such as a custom processing block, more 
elaborate models that can be run for longer and more data, 
should be prioritized to make this type of system reliable and 
warrant future use. 

6.2 Conclusion Research Question 1 
The current state of the art includes several methods, which 
work well for their intended purpose. The most promising for 
this research concerns convolutional neural networks due to its 
applicability to the problem and potential to be viable for a real-
time system run on an IoT Device.  

6.3 Conclusion Research Question 2 
Several parameters, affect accuracy in different ways and four of 
these parameters are tested:  

• The number of epochs seems to have a relatively little effect 

on accuracy. Generally, more training cycles produce better 

accuracies, without overfitting.  

• The learning rate of the models affect accuracy more. Low 

learning rates are preferred, and high learning rates achieve 

very low accuracies near 0%.    

• Lower confidence thresholds seem to make the models 

perform significantly better. High confidence thresholds tend 

to significantly reduce the accuracy of the models 

• All models show better accuracy with simpler network 

structures, using 4 convolution layers or less.  

6.4 Conclusion Research Question 3 
The Single Note model performs adequately on the validation 
and test sets in a computer environment and on real time data 
when embedded on a device with an accuracy of around 78% on 
the former and 70% on the latter. The Interval recognition 
model performs significantly worse in both environments, with 
accuracies of circa 30% and 17%, respectively. Both the 
Interval Root note and Chord recognition models perform 
decently on the computer, but far from desirable on the IoT 
device. The former shows accuracies of around 60% and 33% 
respectively, while the latter shows accuracies of around 60% 
and 47% respectively. 

6.5 Future Work 
Further work stemming from this research should primarily 
consist of bigger tests with a custom audio processing block that 
puts more emphasis on recognized frequencies as well as tests 
with bigger models, more data, and the possibility for longer run 
times. Furthermore, it is essential for the research of this system 
that more experimentation is done to determine optimal 
parameters and network structures for the models and to 
further chart sacrifices that might need to be made as a result of 
limited capabilities of the target device and the viability for real-
time recognition.  
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APPENDIX A: FIGURES AND TABLES FOR RELEVANT 
MUSIC THEORY 

Table 2. Flat notes and their Enharmonic Sharp Equivalent Notes 

Flat note Enharmonic Sharp Equivalent 

D♭ C# 

E♭ D# 

G♭ F# 

A♭ G# 

B♭ A# 

 
Table 3. Intervals and distances between notes that comprise them. 

Interval name Example Distance in number of notes 
(Semitones) 

Minor 2nd C – C# 1 
Major 2nd C – D 2 
Minor 3rd C – D# 3 
Major 3rd C – E 4 
Perfect 4th C – F 5 
Tritone C – F# 6 
Perfect 5th C – G 7 
Minor 6th C – G# 8 
Major 6th C – A 9 
Minor 7th C – A# 10 
Major 7th C – B 11 
Octave C – C 12 

 

 

 

 

Figure 8. Schematic representation of an inversion of a Major 3rd to a 
Minor 6th interval through moving the lower note one octave up 
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