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The recent growth in the number and complexity of software applications
is producing an increasing need for high-quality software requirements.
Manual classification of requirements can be a cumbersome and tedious
process, which leads to leveraging Machine Learning and Natural Language
Processing techniques for automated classification. This paper explores the
effects of augmenting a software requirement dataset with synonymous
words by using the word2vec word embedding technique and diverse feature
extraction and classification methods. The experiment results show that the
proposed augmentation technique improves the F1-score when using the
Multinomial Naive Bayes and Logistic Regression classifiers by 0.57% and
0.88% respectively.
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cation, word2vec, PROMISE_exp

1 INTRODUCTION

Requirements Engineering (RE) serves as one of the most important
pillars in the development of software applications. This discipline
involves the elucidation, analysis, verification, and documentation
of user requirements usually conveyed in natural language [3]. A
crucial part of this process is classification, which separates require-
ments into Functional Requirements (FR), which describe the impor-
tant features of the project, and non-functional requirements (NFR),
which specify quality constraints and attributes. The resulting docu-
mentation is called the Software Requirements Specification, which
represents an essential aspect in the success of a software project
[2].

Numerous studies [4, 22] show that although it’s possible to clas-
sify requirements manually, it is a time-consuming and error-prone
process, for reasons such as depending on the analyst’s understand-
ing of the topic or analysts using different terminologies for the
same underlying concept. Hence, recent works in the domain of
Machine Learning (ML) have analysed algorithms for efficient auto-
matic classification of software requirements.

Text classification algorithms are usually deployed for categoriz-
ing data expressed in natural language. The supervised learning
algorithms of this type label textual documents with predefined
classes. In traditional approaches, statistical methods are used to
represent a document using vectors, with the relationships and se-
mantics between the words being ignored [1]. However, these tech-
niques can disregard useful information that can be used to improve
classification performance. For example, two words constituted of
different letters that have a synonymous meaning are treated as
separate entities in the vector space. Since the effectiveness of the
classification performance is largely limited by the quality of the
features extracted [14], the traditional methods allow further refine-
ments. To mitigate these drawbacks, this paper aims to evaluate the
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efficiency of text classification with semantic features, by answering
the following research questions:

RQ1: What are the most efficient feature extraction methods
to classify software requirements in Functional Requirements and
subclasses of Non-Functional Requirements?

RQ2: Which classification algorithms perform best to classify
software requirements in Functional Requirements and subclasses
of Non-Functional Requirements?

RQ3: How do the previous best feature extraction and classifica-
tion methods change when the dataset is augmented with several
similar words?

RQ4: How does the augmentation of a dataset with similar words
impact the overall classification performance?

In this work, we augmented the PROMISE_exp requirements
dataset with synonymous words to analyse the effects on classifi-
cation performance and the best algorithms choice. To accomplish
this, we implemented an array of feature extraction and classifica-
tion techniques to find the combination with the highest efficiency.
Then, we augmented the dataset by utilizing the similarity scores
provided by the word2vec word embedding technique. Lastly, we
applied the same feature extraction and classification techniques to
the augmented dataset to assess how the results have changed.

The rest of the paper is structured as follows. Section 2 presents
past works and developments in classifying requirements and the
usage of the word2vec tool. Section 3 introduces the concepts and
implementation techniques that were used to conduct the research
process. The findings of the study are presented in Section 4, to-
gether with an analysis of the results. Section 5 presents the possible
limitations of the study and the threats to validity. Lastly, the results
are summarized, and the future work is presented in Section 6.

2 LITERATURE REVIEW

This paper is based on previous work in the field and aims to repro-
duce the results whenever possible, to build a stable base for answer-
ing the research questions. More specifically, we will try to replicate
the results from Dias, Cordeiro et al. [6], who evaluated the classi-
fication performance of algorithms on the PROMISE_exp dataset.
They have extracted features using the Bag of Words (BoW) and
Term Frequency—Inverse Term Frequency (TF-IDF) vectorization
techniques and used the Chi? method to remove insignificant words.
For classification, the authors used Support Vector Machine (SVM),
Multinomial Naive Bayes (MNB), k-Nearest Neighbours (kNN) and
Logistic Regression (LR). Based on the F-measure, the greatest perfor-
mance was achieved by TF-IDF followed by LR, with a classification
performance of 78%.

J. Slankas and L. Williams [24] have extended the regular PROMISE
dataset [5] with various documents such as data use agreements,
install manuals, regulations, requirements specifications and user
manuals, creating an extensive corpus of 11876 requirements. In-
tending to classify the NFR in the documents into 14 categories
(Availability, Legal, Maintenance, etc.), they obtained the highest F1
measure of 62.3% using an SVN classifier. Although the F1 score is
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16% lower than the results from Dias, Cordeiro et al. [6], most of
this study’s requirements were not stated formally but extracted
from large blocks of text. Thus, it gives baseline expectations on
how well ML algorithms can generalize to requirements outside
formal software requirements specification documents.

The word2vec approach has been used by other scientists as well.
Lu et al. [17] have tested the efficiency of augmenting user reviews
with the word2vec tool, with the scope of classifying them in FRs,
four types of NFRs (Usability, Reliability, Portability, Performance),
and Others. The method proposed by them consists in concate-
nating the training data set with several words that are similar to
the original reviews and applying BoW vectorization. Using three
different classifiers (Naive Bayes, J48 and Bagging) they observed
improvements in the F1 measure ranging between 1.4% and 2.4%.

Joseph et al. [15] have analysed a newsgroup text dataset of
roughly 18000 samples, to categorize it into 20 different topics. The
authors found that when they concatenated the base document
with the TF-IDF weighted similar words provided by word2vec and
used a linear SVM for classification, the accuracy was improved by
1.4%. This improvement, however, was not consistent across all the
categories, since, among a few of them, the method resulted in a
hundredth of a percentage lower performance.

Lastly, we have found two writings that investigate a topic similar
to our first and second research questions. The first one is a Master’s
thesis recently written by N. Thuy [19], which analyses whether
ML algorithms intended for functional requirements can be used for
non-functional requirements and vice-versa, and if these methods
can be extended to classify both types of requirements. Using a total
of 20 different ML methods applied to a dataset consisting of 1838
requirements, the author found that 15 out of 20 methods can be
successfully applied for requirement types they are not intended
for, and 17 out of 20 can be applied for classifying mixed require-
ments. The second work is written by A. Mitrevski [18] and aims to
reproduce the findings from Dias, Cordeiro et al. [6], while adding
additional classification methods such as Gradient Boosted Decision
Trees (GBDT) and Recurrent Neural Network (RNN).

3 METHODOLOGY

In this section, we will discuss the methods used in the research
project and their role in the data workflow. As seen in Figure 1,
the first step is normalizing the PROMISE _exp dataset. This step
is particularly important since the normalized dataset will act as
input for all the remaining steps. We achieve this by converting the
words to lower case, removing stop-words and applying lemmati-
zation. Secondly, we will create the augmented dataset using the
word2vec tool. The next steps onwards are applied for both the
original PROMISE_exp dataset and the one that is augmented.
Features will be extracted using the BoW and TF-IDF vectorization
techniques and reduced using the DF, Chi? and ANOVA statistical
significance tests. Then, for each distinct set of word vectors, we will
be applying the MNB, LR, SVN and kNN classification algorithms
and determine the performance based on the F1-score. Finally, we
will compare the performances originated from the initial dataset
and the augmented one, and draw conclusions from the results.
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Fig. 1. Data workflow.

Table 1. Requirement labels classification

Requirement Label Count
Functional Requirement F 444
Availability A 31
Legal L 15
Look and feel LF 49
Maintainability MN 24
Operability (¢} 77
Performance PE 67
Scalability SC 22
Security SE 125
Usability Us 85
Fault Tolerance FT 18
Portability PO 12
Total 969

3.1 Dataset overview

This paper uses the PROMISE_exp, which is based on the tera-
PROMISE dataset [5], that Lima et al. [16] extended using several
software requirements specification documents. The extended cor-
pus increased the total number of requirements to 969, compared to
the original dataset which contains only 625. When looking at the
class distribution of this dataset in Table 1, it can be observed that
the number of Non-Functional Requirements types is highly unbal-
anced. The least represented NFR type, Portability, composes 1.2%
of the dataset, while Security, the most represented one, constitutes
12.9%.

3.2 Normalization

A.Uysal and S. Gunal showed in their article [26] that when it comes
to textual classification, it is always recommended to perform exten-
sive pre-processing methods, the most significant technique being
stop-word removal. For this reason, the dataset was normalized
by converting the words to lower case, removing “stop words” i.e,
“what’, “to”, ‘T’ “because”, numbers and punctuations. To get a con-
sistent form of words, lemmatization was also used to replace words
with their dictionary form, using the NLTK ! library.

!https://www.nltk.org/
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3.3 Word2vec

Word2vec is a technique utilized for Natural Language Processing
that applies a multi-layer neural-network model to learn associa-
tions between words. In this technique, each word is represented
by a vector in a space built such that similar words are close to
each other. Due to this structure, word2vec provides excellent per-
formance in finding the similarity between words and suggesting
additional words [11], usually by computing the cosine similarity
between the vectors. However, when it comes to text classification,
this technique has one disadvantage: it is not aware of the impor-
tance of words within the document. To mitigate this, we will test
different methods to weight the scores reported by the library.

At the time of writing, the most extensive pre-trained model of
word2vec is provided by Google 2. This model has been trained
on 100 billion words originating from Google News posts, uses a
skip-gram model with a vector size of 300 and has been successfully
used in previous studies [21] that focus on deep learning approaches.

3.4 Augmentation method

The augmentation method proposed by Lu et al. [17] consists of
appending several similar words to the user requirement. To deter-
mine the similarity between a requirement and a potential similar
word, the following formula from Li et al. [13] will be used:

n
sim(rg, tj) = Z (wi * sim(tj, t))
ti€rk

Here, ry represents a requirement k, t; a term j chosen from the
corpus and sim(t;, t;) is the similarity score between the terms i
and j, as computed by word2vec. Finally, to get the similarity score
between the requirement rj. and the term ¢;, we have to compute the
weighted sum consisted of the similarity between ¢; all the terms t;
in rg.

For the weighting method, we considered the matrixes resulting
from the BoW, TF-IDF and the custom OKAPI Best Matching weight
formula, taken from [13]. These weights are referred to in the for-
mula by w;. In all combinations between vectorization techniques
and classification methods, using TF-IDF as the weights for the
words consistently facilitated the highest results. These findings
correlate with the results found by Joseph et al. [15], where the
authors also used the TF-IDF formula for the weights.

Using the formula explained above, for each requirement, we
go through all the unique terms in the corpus and calculate the
similarity score between the requirement and the unique term. Then,
we order the terms descending based on the score, and add only the
most important ones to the requirement.

The number of added words is given by Equation 1 [17], where
0 refers to a variable increasing from 0 to 2 with an increment of
0.1 and user_requirement_length is given by the number of words
in the original requirement. All the 20 possible values for § were
tested, and 6 between 0.2 and 0.25 gave the most significant results
for all the classification algorithms.

N = 0 = user_requirement_length (1)

Zhttps://code.google.com/archive/p/word2vec/
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This method can be illustrated using the preprocessed user re-
quirement “system shall refresh display every second”. By using the
TF-IDF weights, the most similar words for this requirement would
be: “first”, “another”, “next”, “entire”, etc. Using 6 = 0.2 for the N
formula, we need to pick 0.2 * 6 = 1.2 words. Finally, after rounding
N to the nearest integer, the new requirement becomes “system shall
refresh display every second first”.

3.5 Feature extraction

3.5.1 BoW. Bag of Words [20] is one of the most common methods
for vectorizing text documents, due to its high performance and
simplicity. This technique essentially creates a histogram, which is
a vector of the number of unique word references, such that each
word has a weight equal to the number of occurrences as found
through the document. One drawback of this method is that it is only
a lexical method and does not consider the number of documents
that contain a term, or the relationship between words.

3.5.2  TF-IDF. Term Frequency—Inverse Document Frequency [23]
aims to normalize the BoW method, by multiplying the frequency
of a term in a requirement and the inverse document frequency for
each term. This can be seen in Equation 2, where f,, » is the number
of times the word w appears in requirement r, D is the corpus, and
|D| is the size of the corpus (the total number of requirements).

TF-IDF(term,r) = fw,r * log(|D|fy,p) @

3.6 Feature selection

Feature selection has the purpose of retaining as much accuracy as
possible, in some cases even improving it, while greatly reducing the
time and complexity of ML algorithms. To accomplish this, a depen-
dence relationship is identified between each feature and the target
class. Afterwards, features, or in the context of textual classification,
words, that are independent of the target are discarded.

The main method for feature selection used in this study is Uni-
variate Feature Selection, which utilizes statistical tests to select the
features that convey the most information. In this method, each
feature gets a score, and only the ones with the highest mark will
be retained in the dataset. This will be implemented using the Selec-
tKBest function from the scikit 3 library, which, for each term and
class, returns the score of the statistical test and a probability value
used to test the significance of the relationship.

According to the overview study about feature selection methods
in textual classification conducted by Yang et al. [27], Document
Frequency (DF), Information Gain (IG) and Chi-square scores have
a strong correlation, each of them giving excellent performance.
For this reason, we will be using DF and Chi-square. Additionally,
we will utilize the F-score ANOVA test. Although it has not been
applied in requirements engineering in the past, it has been used
successfully to select features for other classification purposes [7]
[12].

3.6.1 Document Frequency. Document Frequency [8] is a simple
method that measures how many documents a given word appears
in. This method is included in the BoW and TF-IDF algorithms

Shttps://scikit-learn.org/stable/
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implementations as two different parameters: minimum frequency
(min_df) and maximum frequency (max_df) setting. As explained
in Yang et al. [27], DF seems to favour common terms over rare
terms. Consequently, in this approach, we will only be restricting
features solely based on the minimum number of documents that
they appear in.

For BoW, the most optimal value for min_df is 0.002. This means
that if a word appears in less than 0.2% of documents, we will discard
it. Considering that the corpus used has 969 requirements, this
implies that each word has to be present in at least two requirements.
However, for TF-IDF, we found that the most optimal value for
min_df is 1, meaning that no features should be discarded. This
is expected since TF-IDF is already making the necessary weight
adjustments based on how many documents a word appears in.

3.6.2 Chi-squared. Chi-squared (y?) is a test used to measure the
dependence between a term ¢ and a classification class c¢. According
to Yang et al. [27], the formula for this test is the following:

N (A*D~-CxB)?

(A+C)«(B+D)*(A+B)* (C+D)

where N is the total number of requirements, A is the number of
times the term t occurs in class ¢, B is the number of times t occurs
outside ¢, C is the number of times ¢ occurs without t and D is the
number of times neither ¢ nor ¢ occurs.

All the terms with a statistical significance under a value « are
picked. For this study, the greatest results were given for a = 0.085
for BoW and « = 0.82 for TF-IDF.

xi(tc) =

3.6.3 ANOVA. The analysis of variance (ANOVA) test is used to
determine how different factors affect a given dataset, by making
comparisons in the means of a categorical variable in three or more
independent population samples. The formula for this test is given in
Equation 3, where between-group variance represents the variation
between the means of all the samples, and within-group variance is
the variation within each sample. The resulting number is formally
called the F-value, as the equation is using the F-statistic, which is
simply the ratio between two variances.

between-group variance

ANOVA F-value = ——— - 3)
within-group variance

In the context of textual classification, the F-value ANOVA test is
used to determine how discriminative a word is for a given class.
Consequently, features that are independent of the target class can
be removed.

Justlike in the Chi-square approach, the a value has been adjusted
such that the highest F1 measure is obtained. The greatest results
are achieved by using a = 0.17 for BoW and a = 0.75 for TF-IDF.

3.7 Classification

Most software requirements specification documents contain mixed
FR and NFR requirements. For this reason, we focused on a general
classification method, that analyses FR together with subclasses
of NFR. Considering the structure of the PROMISE_exp corpus
(Table 1), we classified requirements into 12 classes.

Due to the limited number of requirements available in the dataset,
cross-validation was used to split the data into training and testing
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data. Furthermore, we noticed that the dataset is highly imbalanced
in the number of NFR classes: there are 125 security requirements,
but only 12 about portability. We adjusted for this imbalance by
using a Stratified 10-Fold Cross-validation. In stratified sampling,
instead of randomly picking requirements, the distribution of the
classes from the dataset will be preserved inside the individual folds
as well.

According to the literature review on the current state of the prac-
tice in "Machine Learning & Requirements Engineering" created by
Igbal et al. [10], Logistic Regression (LR), Multinomial Naive Bayes
(MNB), Support Vector Machine (SVM) and k-Nearest Neighbours
(kNN) are the most widely used techniques for classifying software
requirements. For that reason, we adopted the same methods in this
research as well.

3.7.1 Logistic Regression. Logistic Regression (LR) uses a regression
model to estimate the probability that a data sample belongs to a
target class. To achieve this, it is using the sigmoid function to
compute a probability between 0 and 1, and a decision boundary,
which represents a threshold above which the data sample will be
classified in a certain class.

3.7.2  Multinomial Naive Bayes. Multinomial Naive Bayes (MNB) is
a specialized version of the Naive Bayes algorithm, used to classify
data which cannot be expressed numerically. This method computes
the probability of a data sample belonging to a class and then chooses
the class with the highest probability.

3.7.3  Support Vector Machine. Support Vector Machine (SVM) is an
algorithm capable of solving both linear and non-linear classification
problems. To achieve this, it is creating an optimal hyperplane in
N-dimensional space (N representing the number of classes) that
separates the data into their different categories.

3.7.4  K-Nearest Neighbours. K-Nearest Neighbours (kNN) classifies
a data sample by computing the distance of the new data with all
the other existing points, and the nearest K points are used to make
a prediction, assuming that similar points are close to each other.

3.7.5  Model selection. To make a fair comparison between classifi-
cation and vectorization methods, everything needs to be operating
at the highest standard. Hyperparameter tuning aims to achieve
this goal, by selecting the best possible parameters for learning
algorithms. Using the scikit library, we passed a parameter grid and
a classifier to the GridSearchCV class. This class tested each combi-
nation of parameters from the grid and returned the one with the
highest performance for the given classifier. To come up with the
grid of parameters, we started with an initial wide range of values
and then narrowed the range on further iterations.

Due to the scarcity of the available data, the hyperparameter
tuning was performed on the whole dataset. This usually produces
over-optimistic results, since the hyperparameters will overfit the
data. Holding out a separate portion for testing was not an op-
tion because a significant portion of the dataset would become
unused, which would result in a high variance in the results. Nested
cross-validation (Nested-CV) is another possibility to resolve this.
In nested cross-validation, each outer loop has another inner loop
used solely for finding the hyperparameters, thus reducing the risk
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of overfitting. However, this method is only used theoretically to
indicate generalization performance, as in deployed applications
it’s not possible to use multiple sets of hyperparameters. Further-
more, the increased training time would prove unsuitable for some
classifiers.

For each algorithm, the following hyperparameters were consid-
ered:

MNB - “alpha’ represents the additive smoothing parameter. Little
to no smoothing was preferred, with values ranging from 0.001 to
0.1.

LR - ’class_weight’ was set to balanced, to automatically adjust the
weights based on the class frequencies. Then, 'C’, the regularization
strength was tested for values between 0.1 and 10. Higher values
of °C’ instruct the model to put more weight on the training data,
while lower values will put a higher penalty on the parameters. The
best value of ’C’ varies across the vectorization methods, resulting
in a wide range of values being considered.

SVN - Two hyperparameters were evaluated. The first one is the
’kernel’, a function that solves non-linear problems, which considers
two values: linear and rbf. The linear kernel was preferred in all
cases. The second hyperparameter, 'C’, represents the regularization
parameter and has the same function as described above in LR. The
results show that there is not a single preferred value, and the entire
range [0.1, 10] needs to be considered to find the optimal value.

kNN - °n_neighbours’ represents the number of nearest neigh-
bours that are considered by the algorithm. Surprisingly, the clas-
sifier performs best when n_neighbours = 1, which represents the
most complex kNN model. Considering the simplicity of the dataset,
this likely leads to overfitting and lower performance, as the al-
gorithm tries to generate models that are too complex and do not
generalize well to the test data. Additionally, three values for the
‘algorithm’ hyperparameter are considered: ball_tree, kd_tree and
brute, with the most optimal value depending on the vectorization
methods.

3.8 Performance measurement

Performance metrics are mathematical formulas used to evaluate
the performance of classification algorithms. The “correct” metric
to use can differ between settings [25]; in some cases, it might be
more important to correctly identify positive examples, whereas in
others, correctly identifying negative examples could be vital.

In the application of text classification [25], Precision, Recall and
F1-Score are three common performance measurements. Precision
(Equation 4) represents how many samples classified as X actually
belong to class X. On the other hand, recall (Equation 5) corresponds
to how many samples belonging to class X were correctly classified
as X.

Since precision and recall are not very useful metrics when iso-
lated, the F1-Score (Equation 6) combines these two in a harmonic
mean. Unlike the F2-score which weights recall higher than preci-
sion, the F1-score gives the same weight to both. Since this metric
is often used to compare the performance of two classifiers [9], it
is the main performance measurement method in this research as
well.
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4 RESULTS AND DISCUSSION

In this section, we will present the results of the research and their
implications for the Requirements Engineering field. The results
obtained from the PROMISE_exp dataset are presented in Table 2
and will be referred to as “Baseline Results”. When we compare
them with the “Classification with 12 Granularities” table from Dias,
Cordeiro et al. [6], we can see that they are very similar, with only
a couple of points difference, which is most likely the effect of dif-
ferent implementations and hyperparameters being used. Since the
unmodified and the augmented dataset use the same methodology,
the reproducibility with older studies offer a strong base of support
for the results to come.

In the baseline results, the absolute highest performance of 76.6%
was achieved by combining TF-IDF vectorization, the ANOVA test
for feature selection and MNB classification. When it comes to the
best feature selection method, TF-IDF coupled with DF gets the
highest average score. However, when we exclude the kNN classi-
fier, which consistently performed worse than the other classifiers
and got an abnormally high value on TF-IDF and DF, the best fea-
ture selection method is in line with the highest value: TF-IDF and
ANOVA. Then, looking at the classifiers, LR performs on average
the best, with a performance of 75.7%, closely followed by MNB
with 75.5%.

The results of the word augmentation can be seen in Table 3. To
easily compare the values with the original ones, higher F1 scores
from the same row and column are marked with bolded text. Similar
to the baseline results, the TF-IDF, ANOVA and MNB combination
still managed to achieve the greatest performance, with 77.6%. When
we look at the values of the feature selection methods in the aug-
mented dataset, and we do not take kNN into account, TF-IDF with
ANOVA remains the best feature selection method. Additionally, LR
remains the most performant classifier with 76.4%, closely followed
by MNB with 75.9%. It can be observed that the combinations of
classifiers and vectorization methods which performed good on the
baseline dataset, also performed well on the augmented dataset.

These results suggest that the augmentation of similar words
can provide benefits in non-complex classification methods, such
as MNB and LR. Surprisingly, we were unable to match the 1.4%
improvements observed by Joseph et al. [15] with the use of word2vec
and linear SVM. However, this lack of improvement is likely the
cause of a significantly smaller dataset used by us (the authors used
roughly 18,000 samples, while we had 969), and not because of the
relationship between SVN and word2vec. This is further explained
below.

The average difference between the augmented and baseline re-
sults for each classification algorithm is as follows: MNB: +0.57%;
LR: +0.88%; SVN: -0.62%; KNN: -0.05%. Overall, the classification was
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Table 2. Baseline results

DF Chi? ANOVA

BoWw TF-IDF BoW TF-IDF BoW  TF-IDF
MNB | 0.749 | 0.747 0.763 0.740 0.762 0.766
LR | 0.765 | 0.758 0.754 | 0.751 0.751 0.762
SVN | 0.752 | 0.757 | 0.742 0.74 0.742 | 0.745
kNN | 0.597 | 0.691 | 0.591 | 0.583 | 0.585 0.517

Table 3. Augmented results

DF Chi? ANOVA

BoWw TF-IDF BoW TF-IDF BoW  TF-IDF

MNB | 0.743 | 0.748 | 0.770 | 0.742 | 0.774 | 0.776
LR 0.753 | 0.767 | 0.763 | 0.763 | 0.766 | 0.769
SVN | 0.733 0.749 | 0.743 | 0.743 | 0.734 | 0.748
kNN | 0.609 | 0.675 0.581 0.581 | 0.591 | 0.525

improved in the MNB and LR algorithms, stayed almost the same
in kNN, and was slightly decreased in SVN. All the differences are
under 1%, due to the small number of words that were added. After
removing the stop words, the dataset contains 1566 unique words,
creating a restricted pool of words available for augmentation. Con-
sequently, picking more than 0.2 x user_requirement_length words
resulted in a significantly lower F1 score. This is because word2vec
calculates the similarity between words using Cosine similarity, and
has no underlying knowledge of the probability of two words belong-
ing to the same class. Using different criteria for adding words and
classification is thus likely to create incorrect relationships between
features and classes, and to even weaken correct correlations.

This idea is exemplified by analysing the number of features
selected by Chi%. In TF-IDF combined with Chi?, the number of
features was reduced from 505 to 470. In this combination, the most
important word was “second”, with y? = 498.4. After augmenta-
tion, the same word was still the most important one, but with a
lower score: y? = 465.29. The reasoning for the lower score is the
following: in the baseline document, the word "second" is used 48
times, of which 34 times on PE requirements. However, in the aug-
mented document, the same word is used 53 times, but only on 35
PE requirements. Consequently, we can see how the importance
of this word is lowered by adding it to the requirements of other
types. A similar argument can be made for the other classifier and
vectorization combinations, where more features are selected af-
ter the augmentation. In those cases, words with previously low
importance are added to multiple requirements, due to their high
word2vec similarity score.

Figure 2 illustrates the confusion matrix of the algorithm with the
most significant performance (in this case the augmented dataset
with TF-IDF, ANOVA and MNB). Generally, the requirements types
that have a limited amount of available samples, portability (PO)
and fault tolerance (FT) have a lower F1 score than the others, due to
a low recall score. This means that when a requirement is predicted
to belong to these classes, the prediction is generally good (high
precision), but only a trivial part of the requirements belonging to
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Fig. 2. Confusion Matrix

PO and FT were correctly retrieved (low recall). A possible cause
for this is that words such as "server”, "standard", and "operate"
are used in PO and FT requirements, and also used in many other
requirements types with many more samples. Consequently, these

words are more likely to be associated with other classes.

5 LIMITATIONS AND THREATS TO VALIDITY

One of the limitations of this study is given by the dataset size. Since
a larger corpus creates a more significant pool of unique words, the
probability of appending the same word to multiple requirements
is likely to diminish. This would suggest that the performance of
the word augmentation technique is directly proportional to the
size of the dataset and the richness of the vocabulary. However, this
assumption would need to be further tested.

Another limitation is represented by the uneven distribution of
classes in the dataset. Even if various weighting techniques were
used to mitigate this issue, generally, the classes that had fewer
samples showed lower performance than their counterparts. With a
higher number of Portability, Legal, and Fault Tolerance samples, the
F1-score for these classes should be improved, as the classification
algorithms will be better in distinguishing their unique properties.

Lastly, it may be possible that the observed results are a by-
product of a lucky combination of methods and parameters, and
that the results cannot be reproduced in other scenarios. To reduce
this chance, further studies that analyse the effect of augmenting a
software requirement dataset with similar words would need to be
conducted in the future.

6 CONCLUSION

In this paper, we used 2 vectorization techniques: BoW and TF-IDF,
3 tests for dimensionality reduction: DF, Chi? and ANOVA and 4
classification algorithms: MNB, LR, SVN and kNN, to categorize
software requirements in 12 different types: FR and 11 NFR classes.
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We found that simple classification algorithms such as LR and MNB
perform best, and also benefit the most from the augmentation
technique, while more complex classifiers such as SVM or kNN
create relationships and formulas that do not generalize well to
unseen test data. Additionally, due to the low number of samples in
the dataset, the augmentation technique obtained improvements of
under 1% in two classification algorithms.

Answering RQ1, we found that TF-IDF is the most performant
vectorization method, as measured by the F1-score metric. Addi-
tionally, it performs best when the features are selected using the
ANOVA statistical test. When it comes to the RQ2, the best classifi-
cation method is LR, closely followed by MNB, with only 0.2 points
difference in performance.

The next aim was to determine whether appending similar words
to the end of user requirements can boost classification performance.
We have utilized the word2vec library to determine the similarity
between words using cosine similarity and weighted the scores by
the TF-IDF formula. We found that TF-IDF remains the best vector-
ization method, while LR, followed by MNB, also resemble classifiers
with the highest performance. Answering RQ3, the augmentation
method maintained the order of efficiency in the algorithms.

The augmentation of similar words using word2vec favours simple
algorithms such as Multinomial Naive Bayes and Logistic Regression.
Answering RQ4, we obtained +0.57% and +0.88% improvements
in these classification methods, and a performance decrease of -
0.62% in SVM and -0.05% in kNN. Considering that older papers
found improvements of 1.4% to 2.4% on datasets with larger samples
using a similar word2vec augmentation technique, we suggested
that the classification performance is likely dependent on the size
and diversity of words of the underlying dataset.

In the future, we aim to broaden the research in the following
ways:

(1) Extend the PROMISE_exp dataset with additional Software
Requirements Specification documents, to test whether the
augmentation technique described in this paper can produce
even higher improvements.

(2) Explore further techniques and methodologies that help un-
balanced classes with a low number of samples achieve higher
performance.
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