
Verifying the Rewrite Rules of Vercors Using Interactive Theorem Provers
CONNOR BLEUMINK, University of Twente, The Netherlands

Vercors uses rewrite rules to check whether code is working correctly, these
rewrite rules have yet to be proven. this paper has verified 60 rewrite rules
using Coq. for this purpose 9 categories were found that all had a specific
approach to proof the rules.

Additional Key Words and Phrases: Rewrite Rules, Validation, Interactive
Theorem Provers

1 INTRODUCTION
Software has become omnipresent in people’s daily life. With a
wide range of applications, such as games, business software, and
embedded control software. it is becoming increasingly more im-
portant to make sure that the software works as intended. For this
purpose tools have been developed to validate the workings of the
software. One of these tools is called Vercors, which with the help of
annotations made by the programmer will transform the code to the
intermediate language of Viper and then uses existing tools to check
whether the code is working as intended. Vercor is specifically made
to work with concurrent programs, both heterogeneous systems (e.g.
Java programs) as homogeneous systems (e.g. GPU kernels) [3, 4] To
be able to achieve this as efficient as possible, Vercors changes the
lines within the program according to their defined rewrite rules.
These rewrite rules have not been formally proven to transform the
code into equivalently working but easier to prove code. This is a
problem, as Vercor cannot correctly conclude whether the system
is working as intended. This is due to the fact that the program
can be rewritten into a differently acting system if the rewrite rules
are incorrectly defined. This study aims at the verification of these
rewrite rules with the help of the interactive theorem prover Coq.
The reason for using Coq over other theorem provers is due to Coq
having integration with the Iris project, which has been created to
help with proving theorems in a concurrent setting.

2 RESEARCH QUESTION
It is important that VerCors rewrite rules are verified, as the usage
of incorrect rewrite rules can make it such that a program will be
incorrectly validated by VerCors. For this purpose the following
research questions will be answered.

• How can the rewrite rules of VerCors be categorized?
• Are the rewrite rules of VerCors Correct?

3 RELATED WORK
To find articles related to the research, the domains Scopus, Google
Scholar, and IEEE were used. using terms akin to "verification", "
rewrite rules", and "Automatic Theorem Provers" Some papers could
be found.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fig. 1. Example Coq Proof

Winter et al. in 2004 wrote a paper about the use of transformation
rules and how they can help verify, data movement within Java class
loaders. In the paper, it is also discussed how this application of
rewrite rules can be verified. [8]
Arendt et al. in 2005 wrote a paper about the automatic verification
of rewrite rules that are used while verifying JAVA source code. [1]
Jaquel et al. wrote a paper in 2011, about the verification of B prove
rules using automated theorem checkers. In this paper, they discuss
how they approached the verification of rewrite rules.[5]
Morin-Allery et al. have done research on the validation of rewrite
rules for assertion languages using automated theorem provers.[6, 7]
Bertot and Casteran wrote an elaborate book about how Coq can
be used and the theoretical research behind the proofs that can be
made using Coq.[2]

4 BACKGROUND

4.1 Coq
Coq is a program that assists its users with proving theorems, and
can also be used to verify programs. When used it provides the user
with an interface as shown in Figure 1. To help its users with their
proofs it shows the parts that still need proving as goals (red box).
To prove theorems the user inputs commands called tactics (yellow
box), if a tactic succeeds, it either results in a finished proof or it
will change the goal of the proof. The blue box shows the context
in which the goals have to be proven, the context in the example
consists of variables that are present, but it can also hold hypotheses.

5 METHODOLOGY
To answer how the rewrite rules of VerCors can be categorised, a
literature research was used to see how rewrite rules have been cat-
egorised by others for the purpose of verification. Then the rewrite
rules of VerCors were divided between the categories. After this the
rules Were verified using Coq. Coq has been chosen as it came up in
other literature about proving rewrite rules, and has good material
to learn it. On top of this, it has an active user base and keeps being
updated when new discoveries are made in theorem proving. The
biggest reason Coq was used is because it has an extension based on
the Iris Project. The Iris Project is a framework to help to reasoning
about the safety of concurrent programs. After the rewrite rules
were proven, another look was given to the chosen categories and

1



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

Category Amount Proven
Rational Arithmetic 21 21
Rational Division 5 5
Integer Modulo 4 4
Boolean Logic 21 21
Selections 5 5

Comparisons 12 12
Separation Logic 6 2
Out of Scope 42 0
Table 1. Rewrite Rule Distribution

they were refined to better reflect the differences in the approach
needed to prove them.

6 RESULTS
Using the variable types and the operations within the rewrite rules,
the following categories have been found:

• Rational Arithmetic
– Rational Division

• Integer Modulo
• Boolean logic
• Selections
• Comparisons
• Separation Logic
• Out of Scope

The following segments will explain what kind of rewrite rules are
part of each category and show how they can be proven using Coq.

6.1 Rational Arithmetic
For a rewrite rule to be part of the Rational Arithmetic category its
variables can only consist of rationals, and can have any number
and combination of addition, subtraction, and multiplication. Some
examples would include:

• ∀𝑖, 𝑖 ∈ Q, 𝑖 + 0 ≡ 𝑖

• ∀𝑖, 𝑖 ∈ Q, 𝑖 × 0 ≡ 0
• ∀𝑖, 𝑖 ∈ Q, 𝑖 − 0 ≡ 𝑖

• ∀𝑎, 𝑎 ∈ Q,∀𝑏,𝑏 ∈ Q, 𝑎 × 𝑏 + 𝑎 ≡ 𝑎 × (𝑏 + 1)
For proofs using rationals, Coq has the library QArith, this library
gives access to the rational type Q, and contains the logic for op-
erators on rationals. Hence it is first required to have the library
imported using Require Import QArith.
The proofs of all rewrite rules of this category are done in the same
way. It starts by removing the quantifiers over the variables using
the intros tactic, followed by the automatic tactic of ring. intros is a
variant of the coq tactic intro, which repeats intro until the proof
term has reached a state in which it can no longer be reduced. The
tactic intro uses head reduction to remove parts of the proof goal
and add them to the context; when quantifiers are involved, the
variable is added to the context. When implications are involved,
it would add the implication to the context as a hypothesis and
transform the proof goal into the final state of the implication. The
tactic ring can be used to automatically solve equations of a ring

Manual Automatic Outliers
2 1 1

Table 2. Proof Distribution of Integer Modulo

structure, since this category consists of only rational equations
that do not include division, and all have a ring structure.

6.2 Rational division
This category is an extension of Rational Arithmetic, because it
includes the division, which required a different tactic to be solved.
Examples include:

• ∀𝑖, 𝑖 ∈ Q, 𝑖/1 = 𝑖

• ∀𝑛𝑢𝑚,𝑛𝑢𝑚 ∈ Q,∀𝑑𝑒𝑛, 𝑑𝑒𝑛 ∈ Q, 𝑛𝑢𝑚 ∗ (1/𝑑𝑒𝑛) = 𝑛𝑢𝑚/𝑑𝑒𝑛
To prove the rules within this category one starts again with remov-
ing the quantifiers using intros. Since these rules include division
they do not have a ring structure and thus the tactic ring cannot
be used to automatically solve them. However, they do have a field
structure. To deal with these structures Coq has the field tactic which
is part of the Field library, which can be imported using Require
Import Field. While the field command is able to prove rules using
division, it will not immediately result in a full proof for rewrite
rules akin to the second example. When used on the second example
Coq requires a proof for 𝑑𝑒𝑛 = 0 → 𝐹𝑎𝑙𝑠𝑒 which states that den
cannot be 0. Since VerCors checks for division by 0, den cannot be 0
when this rule is used. Due to the impossibility of den being 0, this
line can be added as an assumption into the context, allowing for
the use of the assumption tactic to complete the proof.

6.3 Integer Modulo
This category deals with rewrite rules, that contain variable of the
Integer type and include the usage of the modulo operator. An
example would be:

• ∀𝑖, 𝑖 ∈ I, 𝑖 mod 𝑖 = 0
For proofs using integers, Coq has the library ZArith. This library
gives access to the integer type Z, and contains the logic for opera-
tors on integers. The start of the proof always starts with the tactic
intros to remove the quantification. The next step is to either use
the tactic trivial, which is a tactic that automatically finds a proof
for the most simple cases, or to use the tactic apply, which when
used will transform the proof-state using a term that is part of the
context. Since the proofs are dealing with integers, lemmas from
the ZArith library can be used as an argument for the apply tactic.
Although modulo works using division, the lemmas that can be used
with the apply tactic can be used even with division by 0.

However, the category has one rule that could not be solved in the
above-describedway. This rulewas∀𝑛𝑢𝑚,𝑛𝑢𝑚 ∈ Z,∀𝑑𝑒𝑛𝑜𝑚,𝑑𝑒𝑛𝑜𝑚 ∈
Z, (𝑛𝑢𝑚/𝑑𝑒𝑛𝑜𝑚)×𝑑𝑒𝑛𝑜𝑚+(𝑛𝑢𝑚 mod 𝑑𝑒𝑛𝑜𝑚) = 𝑛𝑢𝑚. For this rule
there was a similar lemma within the ZArith library, however apply
could not be used to prove the rule. This is most likely due to the dif-
ference in how they were structured, the lemma started with num =
and instead of ((𝑛𝑢𝑚 𝑑𝑒𝑛𝑜𝑚)×𝑑𝑒𝑛𝑜𝑚 it was𝑑𝑒𝑛𝑜𝑚×(𝑛𝑢𝑚/𝑑𝑒𝑛𝑜𝑚).
To make up for these differences Coq has the rewrite tactic, this tac-
tic can be used to transform parts of the proof goal keeping the

2



Verifying the Rewrite Rules of Vercors Using Interactive Theorem Provers TScIT 37, July 8, 2022, Enschede, The Netherlands

Manual Automatic outlier
15 4 2

Table 3. Proof Distribution Boolean Logic

new goal equivalent to the previous one. To solve this outlier, firstly
the second difference was rewritten, and after the similar lemma
was used to rewrite the goal into num = num, which could then be
solved using the trivial tactic.

6.4 Boolean Logic
This category consists of rewriting rules that use booleans and
boolean operations: and, or, implies, and negation. Some examples
would include:

• ∀𝑏,𝑏 ∈ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛, 𝑏 ∧ 𝑡𝑟𝑢𝑒 = 𝑏

• ∀𝑏,𝑏 ∈ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛, 𝑡𝑟𝑢𝑒 ∨ 𝑏 = 𝑡𝑟𝑢𝑒

• ∀𝑏,𝑏 ∈ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛,¬¬𝑏 = 𝑏

• ∀𝑏,𝑏 ∈ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛, 𝑏 =⇒ 𝑏 = 𝑡𝑟𝑢𝑒

For proofs using booleans, Coq has the library Bool, which gives ac-
cess to the boolean type Bool and the logic for operators on booleans.
The start of a proof always starts with the tactic intros to remove
the quantification. The next step is to either use the trivial tactic or
to use the apply tactic using lemmas from the Bool library.
The boolean logic category has two outliers. The first is similar

to the outlier in the integer modulo category where both sides of
the equal sign were swapped. This problem could once again by
using the rewrite tactic followed by the trivial tactic. The second
outlier was of a different case. For this outlier, there were no similar
lemmas. This outlier is: ∀𝑏, 𝑏 ∈ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛,∀𝑎, 𝑎 ∈ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛, 𝑎∧ (𝑎 =⇒
𝑏) = 𝑎 ∧𝑏. After using the intros tactic to remove the quantification,
it was first required to transform 𝑎 =⇒ 𝑏 into ¬𝑎∨𝑏. Then the and
could be distributed over the or resulting in (𝑎∧¬𝑎)∨ (𝑎∧𝑏) = 𝑎∧𝑏.
Finally before it could be solved with the trivial tactic, 𝑎 ∧ ¬𝑎 had
to be transformed into false.

6.5 Selections
This category are rewrite rules that use the if-then-else structure.
While in programming these structures take a boolean for the condi-
tion, the similarly functioning if-then-else structure of Coq uses the
type Prop. Since Prop functions similarly to how a booleanwould oth-
erwise, these were used for the proofs. Some examples of a rewrite
rule from this category are:

• ∀𝑐𝑜𝑛𝑑, 𝑐𝑜𝑛𝑑 ∈ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛, 𝑖 𝑓 𝑏 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒 𝑒𝑙𝑠𝑒 𝑓 𝑎𝑙𝑠𝑒 = 𝑐𝑜𝑛𝑑

• ∀𝑐𝑜𝑛𝑑, 𝑐𝑜𝑛𝑑 ∈ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛,∀𝑙, 𝑙 ∈ Q,∀𝑟1, 𝑟1 ∈ Q,∀𝑟2, 𝑟2 ∈ Q, 𝑙 <
(𝑖 𝑓 𝑐𝑜𝑛𝑑 𝑡ℎ𝑒𝑛 𝑟1 𝑒𝑙𝑠𝑒 𝑟2) = 𝑖 𝑓 𝑐𝑜𝑛𝑑 𝑡ℎ𝑒𝑛 (𝑙 < 𝑟1) 𝑒𝑙𝑠𝑒 (𝑙 <
𝑟2)

The start of a proof always starts with the tactic intros to eliminate
the quantification. Unlike the previous categories, it is useful to give
names for the variable as arguments. This is due to the second step
involving the use of the elim tactic with the name given to cond
as an argument. The use of elim here is to remove the if-then-else
structure and to split the proof into 2 parts. The first part is to prove
the resulting statement of when cond is true, the seconds part is to
prove the resulting statement of when cond is false. For all rewrite

rules of this category both of these could be proven with the trivial
tactic.

6.6 Comparisons
The category of comparisons deals with rewrite rules using rationals,
where a comparison is made between these rationals. examples
include:

• ∀𝑙, 𝑙 ∈ Q,∀𝑟, 𝑟 ∈ Q,¬(𝑙 > 𝑟 ) ⇔ 𝑙 <= 𝑟

• ∀𝑟, 𝑟 ∈ Q, 𝑟 < 𝑟 ⇔ 𝑓 𝑎𝑙𝑠𝑒

• ∀𝑟, 𝑟 ∈ Q, 𝑟 < (𝑟 + 1) ⇔ 𝑡𝑟𝑢𝑒

The proof begins with the intros tactic to remove the quantification.
Since these rules use the double arrow, the split tactic is required
after. The split tactic is used to split the proof goal into all smaller
proof goals, in the case of 𝑟 < (𝑟 + 1) ⇔ 𝑡𝑟𝑢𝑒 it would be split into
𝑟 < (𝑟 + 1) =⇒ 𝑡𝑟𝑢𝑒 and 𝑡𝑟𝑢𝑒 =⇒ 𝑟 < (𝑟 + 1) which both would
need to be true for the rewrite rule to be correct. After the split, the
goals will take 1 of the following forms:

(1) 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 =⇒ 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

(2) 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 =⇒ 𝑡𝑟𝑢𝑒

(3) 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 =⇒ 𝑓 𝑎𝑙𝑠𝑒

(4) 𝑡𝑟𝑢𝑒 =⇒ 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

(5) 𝑓 𝑎𝑙𝑠𝑒 =⇒ 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛

Goals of the form 1 and 3 required manual solving with the use of
the apply tactic using lemmas from the QArith library. Goals of the
form 5 are always true due to the ex falso principle, which states that
anything can be proven using incorrect/false assumptions. Coq uses
the contradiction tactic to proof goals of this form. Goals of form
2 are trivially true, and can thus be proven using the trivial tactic.
The proof of a goal of form 4 starts with the tactic intro to add the
true hypothesis to the context, so it was only necessary to prove the
comparison, which can be done using the automatic tactic reflexivity.
This tactic is used for proofs with reflexive or equivalence relations
to see whether the relation holds true. Most of the comparisons
within the rewrite rules either had a relation of this form or could
be transformed into such a form using the apply or rewrite tactics,
using lemmas from the QArith library.

6.7 Separation Logic
The category of separation logic has rewrite rules using the sepa-
rated conjunction operator. An example is:

• ∀𝑏, 𝑏 ∈ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑟𝑢𝑒 ∗ 𝑏 ∗ − ∗ 𝑏
Coq in itself is not able to reason about these rules, hence Iris and
its standard heaplang language were used for the proofs. Since only
2 rules were proven it is difficult to say whether a framework exists
to prove these rules. Before the rewrite rule can be transformed into
the Iris syntax one needs to establish the language they are using,
for heaplang this is done by Context { !heaplangGS Σ }. A resource
is represented by a pointer and value duo as 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 ↦→ 𝑣𝑎𝑙𝑢𝑒 . The
proof starts with the intros tactic to remove the quantifiers. Then
the Iris tactic iSplit is used to split the goal, similar to how the tactic
split functions for proofs in the comparisons category.

For the proof of 𝑡𝑟𝑢𝑒 ∗ 𝑏 − ∗𝑏 the Iris tactic iIntros "[_H]" is used.
This works similarly to intros, however, the part between quotation
marks breaks up the conjunction into two different hypotheses, here

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

the underscore is used to discard one of the hypotheses and the H
is the name of the other one, a question mark can be used instead
of a word/letter to assign a random name. From this all that is left
is to prove b, which is the hypothesis so the Iris tactic iAssumption
can be used to finish the proof for this goal.

For the proof of 𝑏−∗𝑡𝑟𝑢𝑒 ∗𝑏 the Iris tactic iIntro is used to add the
hypothesis _: b to the context. Then the Iris tactic iSplit was used to
split the conjunction, leaving us to prove the goals true and b. For
true the tactic done is used, this tactic is used to tell the program that
the proof goal is correct. For the goal b the Iris tactic iAssumption
was used, this tactic works like the Coq tactic assumption and can
be applied because we have a hypothesis added by iIntro.

6.8 Out of Scope
The out of scope category contains all rewrite rules that have not
been fully categorized; this is due to it requiring more advanced
knowledge of both Coq and Iris. These rules contain: nesting, de-
pendencies, ranges, ∀∗ quantifiers, and use variables that do not
have a representation in Coq or Iris.

7 CONCLUSION
The rewrite rules of VerCors could be categorized into 8 different
categories, of which 5 had a different approach to proving. Integer
modulo and Boolean logic had a similar approach, except that the
lemmas were found in different libraries. During the proving process
there were 3 rewrite rules that did not adhere to any of the proof
approaches given by the 7 categories proofs were used, 2 of these
were similar to lemmas that Coq can use for proofs but were written
slightly differently. The last outlier did not have a similar lemma in
the Coq library, instead requiring its own approach. Since all the
categories had a distinct approach it could be possible to more easily
prove some of the rewrite rules that were categorised under the out
of scope category, as well as new rewrite rules that get created. In
the end, 70 out of 112 rewrite rules were proven to be correct.

8 FUTURE WORK
Since not all of the rewrite rules were proven, there exists the possi-
bility to continue research to verify the remaining 42 rewrite rules.
Furthermore, due to the categorization process, further research
can focus on the creation of a script to automatically verify rewrite
rules in Coq.

REFERENCES
[1] Wolfgang Ahrendt, Andreas Roth, and Ralf Sasse. 2005. LNAI 3835 - Automatic

Validation of Transformation Rules for Java Verification Against a Rewriting Se-
mantics.

[2] Yves Bertot and Pierre Casteran. 2004. Interactive Theorem Proving and Program
Development. https://doi.org/10.1007/978-3-662-07964-5

[3] Stefan Blom, Marieke Huisman, Saeed Darabi, and Wytse Oortwijn. 2017. The
VerCors Tool Set: Verification of Parallel and Concurrent Software. Vol. 10510. Springer
International Publishing. https://doi.org/10.1007/978-3-319-66845-1

[4] Marieke Huisman and Raúl E. Monti. 2020. On the Industrial Application of Critical
Software Verification with VerCors. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12478 LNCS, 273–292. https://doi.org/10.1007/978-3-030-61467-6_18

[5] Mélanie Jacquel, Karim Berkani, David Delahaye, and Catherine Dubois. 2011.
LNCS 7041 - Verifying <TEX>{B}</TEX> Proof Rules Using Deep Embedding and
Automated Theorem Proving.

[6] Katell Morin-Allory, Marc Boulé, Dominique Borrione, and Zeljko Zilic. 2008.
Proving and disproving assertion rewrite rules with automated theorem provers.

Proceedings - IEEE International High-Level Design Validation and Test Workshop,
HLDVT, 56–63. https://doi.org/10.1109/HLDVT.2008.4695875

[7] Katell Morin-Allory, Marc Boulé, Dominique Borrione, and Zeljko Zilic. 2010.
Validating assertion language rewrite rules and semantics with automated theorem
provers. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 29 (9 2010), 1436–1448. Issue 9. https://doi.org/10.1109/TCAD.2010.2049150

[8] Victor L. Winter, Steve Roach, and Fares Fraij. 2004. Higher-order strategic pro-
gramming: A road to software assurance. Proceedings of the Eigtht IASTED Inter-
national Conference on Software Engineering and Applications (2004), 350–355.

4

https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-66845-1
https://doi.org/10.1007/978-3-030-61467-6_18
https://doi.org/10.1109/HLDVT.2008.4695875
https://doi.org/10.1109/TCAD.2010.2049150

	Abstract
	1 Introduction
	2 Research Question
	3 Related Work
	4 background
	4.1 Coq

	5 Methodology
	6 Results
	6.1 Rational Arithmetic
	6.2 Rational division
	6.3 Integer Modulo
	6.4 Boolean Logic
	6.5 Selections
	6.6 Comparisons
	6.7 Separation Logic
	6.8 Out of Scope

	7 Conclusion
	8 Future Work
	References

