Parser Benchmarking for Legacy Languages

TOM MEULENKAMP, University of Twente, The Netherlands

EDIT

Command ===>
KKKKKKKKKKKKKKKKKKKKKXKKKKKkX Top of Data xx

Bo0100
0oB200
BoBO300
0oB400
0o0O500 Bl NUMZZ

(a)afa]eya]a) @1 NUMDOLL
0BB700 B1 NUMSTAR

0BOS0O
0BB910o
BOBSZ20
0BB330
0B1000
001100
001200
001400

000805

00855

806855
"NUMZZ :
"NUMDOLL :' NUMDOLL
"NUMSTAR :'

Z57658. SOURCE.COBOL(EDITCHAR) - 01.00

EDITCHAR.

Z77179.
$99999.
x99999.

NUMZZ

NUMDOLL

NUMSTAR
NUMZZ

NUMSTAR.

Fig. 1. A snippet from the COBOL language. [27]

Legacy languages are still being used in critical systems and are in constant
need of support. Parsing frameworks play an important role in the con-
struction of support tools. These are mainly focused on modern languages,
but not on legacy languages. We do not really know how well these frame-
works support legacy code features. In this paper, we evaluate one of these
frameworks and its ability to support legacy programming languages.

CCS Concepts: « Software and its engineering — Parsers; Preproces-
sors.

Additional Key Words and Phrases: parsing, preprocessing, legacy, ANTLR,
BabyCobol

1 INTRODUCTION

Today many programming languages are available on the market,
with many of them aimed at easing the life of the programmer.
However, dated languages are unfortunately still around in essential
systems of many institutions [16]. Often, these languages are com-
plex and come equipped with functionalities that can easily cause
code smells. This makes them hard to maintain and analyse. A good
example is COBOL [13]. It has been and is still being used in critical
banking systems that are often too essential to be replaced and thus
have to be maintained. Rewriting or reengering these systems is
a notorious job and can sometimes not be achieved, due to risks
or other constraints [22]. Examples of these constraints include
the requirement to translate native language features to simulated

TScIT 37, July 8, 2022, Enschede, The Netherlands

© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

constructs in the target language, or just pure oversimplification
of the requirements for a given conversion tool. Therefore, it is
important that tools can be developed to make the code more main-
tainable and hence more programmer friendly. These tools range
from extensive debugging solutions to refactoring tools to simple
syntax-highlighting.

All of these tools share one crucial requirement, the ability to
efficiently and effectively scan and parse the written code. However,
where most languages today have evolved to be more accessible and
maintainable, older languages are usually more complicated and
difficult to parse due to peculiar edge cases and possible ambiguities.

Hence, there is a need to check how compatible a given frame-
work is with legacy languages. The contribution of this paper will be
an implementation of the BabyCobol language in the ANTLR parser
generator framework. And is guided by the following research ques-
tion: "Can a modern parsing tool, like ANTLR, contribute to legacy
code support and enhancement?" This research question will be
answered with the following sub-research questions:

SRQ1 Is it possible to parse the BabyCobol language completely
within the ANTLR framework?

SRQ2 Can this be done without resulting in complex structures that
make use of more than the grammar language itself?

SRQ3 If complex operations have to be used, how much does this
affect the parsing speed?

1.1 Parsers

The field of parsing concerns itself with "recognising grammatically
formed sentences, providing error-correcting feedback, constructing
graph-based representations, as well as optimising such algorithms
on time, memory and lookahead" [33, p. 50]. The final goal of a
parser is usually, but does not always have to be, to return a data

TScIT 37, July 8, 2022, Enschede, The Netherlands

structure, called an Abstract Syntax Tree (AST) [2, p. 227]. This
tree can be used for all kinds of purposes with respect to language
analysis. Mostly these are used by compilers, in order to generate
machine code. Another application would be syntax highlighting in
your IDE or auto-completion. Although parsing can happen in a lot
of different steps, there are at least two steps present. The lexical

analysis and the parsing of the tokens generated by the first process.

These are shown in Figure 2.

abstract syntax tree
LEXER fokens PARSER exer
437 +734 U, P, > am
—> 137+ 734 SN

437 + 734
Fig. 2. The lexing and parsing phases [23]
1.1.1 Lexical analysis. Most programming languages work with

keywords, numbers, and identifiers. All these values have their
own structure and always come together. If one looks at the Java

programming language, some keywords are: class, static or void.

During the lexical analysis we divide the stream of characters that
a parser receives into so-called tokens. Tokens are small pieces
of text that will be fed to the parser. Usually each keyword has
its own token, then there is a token for an identifier, integer, and
other numbers. Other tokens are also available like brackets and
semicolons. The collection of these tokens is done by a scanner, also
known as a lexer. Regular expressions can also be used in tokens,
such that they can for example match numbers of an arbitrary length
[2, Chapter 2].

1.1.2 Parsing. Once we have retrieved all the tokens in the lexing
phase, we can determine the structure the tokens are trying to
convey. Just like natural languages, programming languages have a
grammar, which the programmer should adhere to. The grammar
for a programming language is defined as a list of statements that
contain a name for a statement on the left-hand side and the tokens
or other "grammar rules" on the right-hand side. These rules make
use of regular expressions, just like the lexer does. An example
can be found in Listing 1. Once the tokens and grammar rules are
determined one can implement the parser [2, Chapter 3]. This can
either be done completely by hand or (semi-)automatic. In our case,
the parser will eventually return an AST based on the input text
and the specific grammar rules and tokens. If the input text does
not adhere to the specified grammar rules, the parser will return an
error message and possibly a partial AST instead.

ifStatement: IF condition THEN body (ELSE body)?;
catchStatement: TRY body CATCH '(' expr ')' body;

Listing 1. An example of two grammar rules, where full uppercase words
are tokens, and other words indicate other grammar rules

Tom Meulenkamp

1.1.3 Semi-parsing. A paradigm within parsing is semi-parsing
[6, 29], more specifically a version of it is called island parsing [25].
This form of parsing does not parse the entire input text that it
receives, but the parser only takes out certain pieces of data and
creates a structure according to that. This type of parsing is useful
when one has to extract only small pieces of logic from a given
input. Examples where semi-parsing is used are PHP, since it can
be embedded in HTML [10]; and SQL code that is embedded within
a piece of COBOL code [3, p. 20].

1.2 ANTLR

As described in the previous section, a parser can be written by
hand, but it can also be (semi-)automatically generated. ANTLR
[21] is a parsing framework that generates both the scanner and
parser for you, based on a grammar and set of tokens that you
provide to it. ANTLR makes use of the powerful parsing algorithm
named Adaptive LL(*) [20]. This gives the language engineer a lot of
freedom and ease when developing a grammar for a given language.
Terence Parr, the creator of ANTLR, is an active member of the
parsing and compiler community and understands the challenges
that are faced during the development of a parser. Furthermore, the
tool is very well documented [17, 18] and has an active community.
It can also be used well for literature research based on grammars
that have been written for ANTLR, since almost each grammar for
a language can be found in the public GitHub repository [8].

1.3 BabyCobol

BabyCobol is a lab-made language that is specifically designed to
challenge a software engineer to support legacy languages. The
language was first introduced in a paper by Vadim Zaytsev [30].
In this paper the language is introduced and also the reasons why
it has been created. In short, as discussed in the beginning of this
section, it is important that new tools are still being developed
for legacy languages. Since it is a lot of work to write a parser by
hand, there are nowadays frameworks that can generate a lexer and
parser for you, like ANTLR. However, since they are quite recent,
they mainly focus on languages that are currently popular. So the
BabyCobol language is created as a test or benchmark to see if a
given framework is able to fully support legacy languages. More
specifically BabyCobol is inspired by AppBuilder [7], CLIST [11],
COBOL [13], FORTRAN [1], PL/I [14], REXX [4] and RPG [12]. An
example of the BabyCobol language can be seen in Listing 2.

In the sample program there is a person defined with a first and
last name. Also, an agent is like a person and inherits its structure.
Once the program starts, the first and last names of the agent are
collected and printed on the screen.

2 EXISTING SOLUTIONS & RELATED WORK

The idea of parsing goes back as far as 1951, when Stephen Kleene
introduced the idea of regular expressions [15]. Later, the first com-
plete compiler was introduced by the FORTRAN team in the year
1957 [1]. Refactoring tools that make use of new or existing parsers
and compilers are also nothing new, as Méndez and Mariano [16]
in 2011 indicate. Manually refactoring software programs that are,
for example, written in FORTRAN is a big challenge and often not

Parser Benchmarking for Legacy Languages

000001 IDENTIFICATION DIVISION.
000002 AUTHOR. TOM MEULENKAMP.
000003 PROGRAM-ID. AGENT.
000004 DATA DIVISION.

000005 @1 WORKING-STORAGE-AREA.

000006 02 PERSON.

000007 03 FIRST-NAME PICTURE IS 25(X).
000008 03 LAST-NAME PICTURE IS 25(X).
000009 02 AGENT LIKE PERSON.

000010 PROCEDURE DIVISION.

000011* Asks for the name of an agent and prints their
000012x full name at the end.

000013 MAIN.

000014 DISPLAY "Agent first name: ".

000015 ACCEPT FIRST-NAME OF AGENT.

000016 DISPLAY "Agent first name: " FIRST-NAME OF
000017-AGENT.

000018 DISPLAY "Agent last name: ".

000019 ACCEPT LAST-NAME OF AGENT.

000020 DISPLAY "Agent full name: " FIRST-NAME OF

000021-AGENT " " LAST-NAME OF AGENT.
000022 STOP

Listing 2. BabyCobol sample program

desired. In their paper, they discuss the creation of an automated

refactoring tool, specifically designed for the Global Climate Model.

Another example is an ANTLR-based COBOL parser implemented
by Wolffgang [28]. In his implementation, he has decided to first
make use of a preprocessor to normalise the file before actually
parsing it. This preprocessor, for example, checks for indentation

and normalises comments. Afterwards, the actual parser takes over.

More specifically to ANTLR there are already a lot of readily

available grammars out there that have been written for ANTLR [8].

However, the grammars that can be found in the repository are not
always accurate or miss certain features. In addition to grammars
that can be found in the wild on the internet, there are also more
private grammars available that have specifically been written for
BabyCobol. During the master course "Software Evolution" at the
University of Twente [32], students have to implement a complete
compiler for the BabyCobol language. Some of the projects make
use of ANTLR. However, after studying the grammars that have
been written, complicated parsing problems have been skipped by

all groups, like non-reserved keywords and white space ignorance.

Therefore, there is room for improvement.

3 NEW ARCHITECTURE

A parser generally consists of multiple phases, where each phase
has its own specific goal. The parser that has been implemented for
BabyCobol consists of two phases that are dedicated to parsing, but
an additional phase has been added that checks for the proper use

TSclT 37, July 8, 2022, Enschede, The Netherlands

of sufficient qualification. A visual representation of the steps taken
can be found in Figure 3.

Preprocessing Jq ANTLR Postprocessing

Fig. 3. Steps taken in the parser

3.1 Preprocessor

Before the actual parser can be run over the code that is given as an
input, it is required to give a more consistent structure to the code.
The reason why the code does not have this structure by default
is due to the fact that it has been made for punch cards, which
only have a limited number of columns to use [5]. The preprocessor
especially takes care of the following things:

(1) Position-based syntax and semantics checks.

(2) Line indicator checks

(3) Line continuations and comments

(4) Copy statements

As discussed in "Software Language Engineers’ Worst Nightmare"
[30], BabyCobol makes use of position-based syntax and semantics.
This feature is inspired by COBOL, and makes use of the same rules.
The preprocessor splits each line into distinct sections: sequence
area, line indicator, area A, area B, and ignored characters. This
can also be seen in Figure 4, where the numbers above the arrows
indicate the column numbers that belong to each section. Only the
content area, also known as area A and area B combined, will be
handed to the parser. Instead of using ANTLR for this, it was chosen
to work with plain Java and regular expressions. Since ANTLR
works with tokens and not necessarily with character indexes, it
can be quite tricky to know for sure where a token is taken. Whereas
regular expressions in Java allow for given positions to be defined.
This preprocessor is greatly inspired by the one that Wolffgang [28]
has written for his implementation of the COBOL parser.

1-6 7 8—12
seq. area

13-72 73+
area A area B

line ind. ignored

Fig. 4. Sections within a single line

BabyCobol only allows for three types of line indicators: _, -, *.
Which respectively indicate a line of executable code; a continued
line; and a line that has been commented. Any other character is
invalid and raises a parsing error.

To let the parser focus purely on the text itself, all comments are
ignored, and all line continuations are merged into a single line.
The final lines are stored in special Line objects, that preserve the
original line numbers, in order to give proper error messages later
on in the parsing process.

BabyCobol supports copy statements. These statements allow us
to insert another BabyCobol code file into the current file. Addition-
ally these statements have the ability to replace strings in the file
that is being imported. To once again let the parser focus on just
parsing, all the copy statements are immediately executed in the

TScIT 37, July 8, 2022, Enschede, The Netherlands

preprocessor. To be able to identify copy statements, a small gram-
mar was written that performs island parsing on each line. When
a copy statement is executed, the line is split into three distinct
sections: the code before the statement; the statement itself and the
code after the statement. Each section receives its own line again.
Except when a line is empty, then it is ignored. The copy statement
then imports the file and replaces all occurrences indicated in the
copy statement.

000006 ...

000007 PROCEDURE DIVISION.

000008 main.

000009 IF A = "Z" THEN COPY toCopy.bc REPLACING
000010-===A.=== BY ===B=== ELSE DISPLAY A B END.
000011

* Contents of toCopy.bc

000001 DISPLAY A.

Listing 3. Code file with a copy statement

In Listing 3 one can find a code section that will only execute the
contents of the file toCopy.bc if the field A is equal to the string
"Z". It also contains the contents of the file to be copied into the
code. In Listing 4 the result is found after the copy statement has
been processed.

Note it was later found out that the copy statement refers to a
program name, which means that a file extension is not needed.
This is also discussed upon in Section 5.1.2.

000006 . ..
000007 PROCEDURE DIVISION.
000008 main.

000009 IF A = "Z" THEN
000010 DISPLAY B

000011 ELSE DISPLAY A B END.
000012 ...

Listing 4. The result after processing the statement

After all the copy statements have been processed, the individual
lines are aggregated and cleaned. Here, the latter means that all the
sequence numbers are removed and all characters are ignored after
the 72nd column. Afterwards they are passed on to the parser itself.

3.2 ANTLR

The ANTLR grammar is inspired by the grammar provided in the
original paper about BabyCobol [30] and updated based on the most
recent documentation as found in the language documentation [31].
However, not all details were provided, and the grammar hints that
have been given by the sources are not always in the most optimal

Tom Meulenkamp

format, in order to work with ANTLR. This section will discuss the
most important features included in the parser and how they have
been implemented.

3.2.1 Non-reserved keywords. The most important feature that has
been implemented in the ANTLR grammar is the ability to use key-
words as identifiers, procedure, and paragraph names. The problem
with the implementation of this feature is in how ANTLR handles
ambiguity. ANTLR always returns a single parse tree. For most lan-
guages, this is a great feature and allows the programmer to focus
on other more important matters. Unfortunately, this makes the
ability to implement this specific feature quite difficult.

If there is any form of ambiguity when ANTLR tries to parse a
given input, then the ambiguity is automatically resolved by choos-
ing the first option that the parser can find. Which is always the
first grammar rule or lexical token that is defined in the grammar
specification. Unfortunately, BabyCobol does not work with this
structure, since the language does not disambiguate based on natu-
ral precedence in the order of a given grammar, but based on the
case in which a token is typed. If there is an ambiguity present then
BabyCobol assumes a keyword if it is written in full upper case,
whereas otherwise it sees it as an identifier.

The problem with this logic in combination with ANTLR is that it
can only be evaluated when both options have been tried. However,
once this has happened, ANTLR has already made the choice to go
with the first fitting grammar rule or token, and the parser cannot
be redirected on the basis of the case. One feature that allows one
to partially resolve this is the use of predicates [18] [17, p. 196].
These allow one to turn of given rules before the parser attempts to
evaluate them.

000004 ...
000005 DATA DIVISION.

000006 01 If PICTURE IS 9.
000007 01 ELSe PICTURE IS 9.
000008 01 then PICTURE IS 9.

000009 PROCEDURE DIVISION.
000010 MOVE.

000011 IF if = then THEN DISPLAY then ELSE
000012-display iF END.

000013 STOP

Listing 5. Keywords as identifiers, where bold text is a keyword and under-
lined text is an identifier

The final solution is a limited implementation of this feature
with the help of ANTLR predicates. Every field that is declared is
placed into a set. If a keyword is also used as an identifier, then
it is automatically recognised as an identifier when it is not com-
pletely uppercase. If, however, it is used in full uppercase, then it
is a keyword. If the keyword is not declared as identifier, then this
distinction does not apply. An example of how this affects any writ-
ten code can be found in Listing 5. This implementation has a direct

Parser Benchmarking for Legacy Languages

’ procedureDivision ‘

[PROCEDURE DIVISION]

paragraphName

TSclT 37, July 8, 2022, Enschede, The Netherlands

sentence

elseExpression

Fig. 5. The parse tree for the procedure division from Listing 5 as generated by ANTLR

influence on the case-insensitivity feature that is discussed in the
next section.

This implementation only applies to references to fields and not
to procedure and paragraph names. These can unambiguously be
identified as just a keyword used as a name since they end directly
with a period. This is also the reason that one can use the keyword
MOVE on line 10 in Listing 5. Unfortunately, there is one edge case that
is not covered properly when one uses keywords for paragraph and
procedure names. This edge case is elaborated on more in Section 5.

3.2.2 Case-insensitivity. The next feature supported by the parser
is case-insensitivity. Technically speaking, BabyCobol is fully case-
insensitive. However, as has been hinted on in the previous section,
there are cases where the parse has to be altered based on the case.
This used to be an issue for older versions of ANTLR, since case-
insensitivity was never properly supported right out of-the-box. An
option used to be to convert the incoming stream to all lower or
uppercase letters. Another grammar option is to define a fragment,
which is a part of a token, for each character and let it match with
both upper and lowercase versions. But, with the release of version
4.10 [19] it is finally possible to declare an entire grammar case-
insensitive. The beauty of this is that the original case remains
preserved, which cannot be said if one would have to modify the
input stream, as has been suggested before.

3.2.3 Ignored sections. One of the first issues that have been en-
countered when working out the exact grammar with ANTLR was
the parsing of the identification division. The parser generally does
not really care about what is going on in the identification division.

It is only there for humans, and it will not be used whatsoever in
any application. However, it should be able to contain all characters
when defined, where the only special character is the period (.).
Since ANTLR requires that every piece of text be part of some token,
there is a token named IGNORED that accepts any single character.
This allows any value to be placed in the body of the identification
division. The reason why this issue differs with for example a string
is that a string has a distinct begin and end marker ("). Whereas
these ignored sections do not have this.

3.2.4 White space ignorance. The last interesting feature to look
at for a parser is the idea of white space ignorance. Where most
languages nowadays use white space to split the tokens in the lexing
phase of the parser, BabyCobol ignores all white space. This means
that the statements shown in Listing 6 can possibly express identical
behaviour.

000008 DISPLAY ABC.
000009 DISPLAY AB C.
000010 DISPLAY A B C.

Listing 6. A demonstration of the repercussions of white space insignifi-
cance

The problematic aspect is that these decisions must be made in
some logical sense. It would, for example, make more sense to split
it into the second suggestion if the field ABC is not defined, but the

TScIT 37, July 8, 2022, Enschede, The Netherlands

fields AB and C are. The issue is only that, in order to do this, one
needs to make sure that the lexer and parser work together and are
not two distinct processes. Unfortunately, this is not how ANTLR
handles things. There is a clear distinction between the tokenizer and
the parse tree generation. Hence, the option of providing white space
ignorance in any form within a keyword or identifier is impossible
with this framework. It is of course possible to instead of using a
single space between two tokens to use multiple spaces, just like
one could do in a language like Java.

3.3 Postprocessor

The entire parser is now finished, since ANTLR will output its own
version of an AST, of which an example is shown in Figure 5. For
clarity, the terminals have been printed in blue. However, we have
decided to use one application of the parse tree, which is to check for
sufficient qualification. BabyCobol’s sufficient qualification feature
allows the programmer to not have to write down the entire path
to a given variable when needed. An example use where sufficient
qualification is important is shown in Listing 7.

000007 ...

000008 DATA DIVISION.

000009 o1 C1.

000010 02 C2.

000011 03 A PICTURE IS 99.
000012 03 C3.

000013 04 B PICTURE IS 99.
000014 02 X PICTURE IS XX.
000015 02 B PICTURE IS 9X.
000016 01 Y LIKE B.

000017 PROCEDURE DIVISION.

000018 ACCEPT B OF C2.
000019 ACCEPT B OF C1.
000020 DISPLAY X.
000021 DISPLAY Y A.
000022 ...

Listing 7. Sufficient qualification example

The implementation of sufficient qualification goes twice over the
generated AST. In the first iteration, a tree visitor is used, with which

you can explicitly tell ANTLR which nodes to visit and which to skip.

In this first run the data division is visited and the data structure
that is represented in this division is generated. We chose to make
use of a tree structure where nodes have children and properties,
in which each node with children should be a BabyCobol container
and not a field. The resulting data structure that will be used for
the sufficient qualification check, can be seen in Figure 6, which is
based on Listing 7. As can be seen, each node level corresponds to
the level in the tree. The root node makes sure that also the top level
fields (indicated in this case with @1) have a single shared parent.
In the second iteration over the tree, both the data division and
procedure division are checked. Instead of a tree visitor, a tree

Tom Meulenkamp

Fig. 6. Data structure after sufficient qualification

listener was used. The advantage of this is that there is no longer
a need to explicitly indicate which node to visit, since all nodes
are visited. This simplifies the logic a bit more, since identifiers
are used on a lot of places in the procedure division. However, the
disadvantage is that the entire tree has to be visited, which takes
more time. Although all fields have been declared, fields of type
LIKE must actually refer to a sufficiently qualified field. In Figure 6
one can see the path that the checker takes when it checks sufficient
qualification for the ACCEPT statement on line 18 in Listing 7. The
red dotted line first travels to C2 after which it jumps to its child B.
The statement B OF C1 points to the child of C1 and not to the child
of C2 although this is possible. The sufficient qualification checker
first checks if any child contains the field name; if that is true, then
direct children are checked; hence, the blue line corresponds to the
instruction B OF C1. If no direct child contains the value, then the
children are visited one by one till the field value is found. If multiple
options remain, an error is generated; this will be the case for the
LIKE statement on line 16, where B is not sufficiently qualified.

4 EVALUATION

The resulting parser has been tested throughout development with
the help of unit testing, but also with visual checks such as observ-
ing the parse tree. In order to quickly and easily test many cases and
programs after each modification, we have built a pretty printer that
allows for code comparison. This pretty printer is especially impor-
tant because it can show when the parser assumed that something
was a keyword and when it was not. All keywords are printed in
full uppercase, whereas all identifiers are printed in full lowercase.
Next to the comparison of the output of the pretty printer with
an expected file, all error messages are checked to see if they are
generated on the correct locations, with the right file names and
line numbers. An example output of the pretty printer based on the
input code for Listing 5 can be found in Listing 8.

4.1 Performance

Since we have to make use of predicates in order to determine
if a keyword is actually used as a keyword, or just an identifier;
the parser has to constantly execute these check functions. The
performance impact is quite well present when one compares it to
a grammar without support for non-reserved keywords.

Parser Benchmarking for Legacy Languages

HHHHHHH DATA_DIVISION.
HHHHHHHHHHH 01_if_PICTURE_IS.9.
HHHHHHHHHHH 01_else PICTURE_IS.9.
uuuuuuuuuuu 01_then_PICTURE_IS_9.

Listing 8. Pretty print output for Listing 5

In Figure 7 one can see the percentage of time saved when using
reserved keywords, instead of non-reserved keywords. The x axis
has slots of 10% each. The y axis indicates the amount of programs
that fall within a range of the given percentage. On average, the
parser with no support for non-reserved keywords runs 45% faster.
However, as it can already be seen, these performance increases are
not stable and can vary a lot. There is even an outlier present where
the grammar with non-reserved keywords was faster.

This test was executed with a grammar identical to the original
BabyCobol grammar. The only difference is that the predicates have
been disabled and that keywords have been removed from the iden-
tifier, paragraph, and procedure rules. For the sake of testing, only
the preprocessor and parsing steps are used. Sufficient qualifica-
tion checks have been disabled for both parsers (with and without
keywords as identifiers). The time spent performing each operation
has been calculated with System.nanoTime(). However, it must
be noted that the time spent parsing is very brief because of the
size of the sample programs, which causes a lot of variance in the

of programs

-20 0 20 40 60 80 100
% of time saved

Fig. 7. Histogram of percentage of time saved when running without non-
reserved keywords support

TSclT 37, July 8, 2022, Enschede, The Netherlands

time differences between runs. Still, Figure 7 should still be a good
indication on the average distribution. The programs that have been
used are the programs that run without errors or warnings from the
sample programs that are used with unit tests. Additionally sample
programs have been taken from other authors like groups that have
worked on the BabyCobol project in the master course [32].

T
80 [~ ® |
°
° °
60 e) -
e)
S °
S 40) N
9]
£
B 20| |
R
07 .
°
—20 ! ! ! ! [
4 6 8 10 12

lines in procedure division

Fig. 8. The relation between the time saved while parsing and the amount
of lines in the procedure division

During the testing it was also pointed out that the difference in
time does have no correlation with the amount of lines in a program,
especially the amount of lines in the procedure division since this
is where the non-reserved keywords feature plays a big role. This
relation can also be seen in Figure 8, in here it seems that the growing
amount of lines causes both high and low extreme values (ignoring
the outlier marked in blue). To truly understand how these times
differ, one would have to get a better understanding of the inner
workings of the underlying ALL(*) parsing algorithm [20], which
ANTLR is using.

5 FUTURE WORK
5.1 Preprocessor

5.1.1 Implementation in ANTLR. In the current implementation,
the preprocessor is fully implemented in Java. However, it should be
possible to have a preprocessor with the same functionalities avail-
able in the form of an ANTLR grammar and a tree visitor or listener.
This method may not be faster than the current implementation,
but it will be more uniform with the parser itself.

However, possible problems during the implementation of such a
grammar could be that one can end up with some form of scannerless
parsing [24], which simply creates a token for each character and
tries to match that with a grammar rule. Such an implementation
will have big a performance impact since each possible grammar
rule is tried on each attempt, before all the tokens are consumed. It
would then make more sense to not use ANTLR at all and to use a
SGLR-style parser [24], which stands for Scannerless Generalized

TScIT 37, July 8, 2022, Enschede, The Netherlands

LR parser. This type of parser does not have a separate lexical phase.
Another approach would be to define the sections as tokens, but one
would have to account for the fact that sections do not necessarily
have to be fully populated (although area B spans up to column
72, that does not mean that every line goes this far). Last but not
least, sections would most likely have to be checked based on the
current character positions, which can be achieved with the use
of predicates. However, this makes the grammar dependent on the
programming language.

5.1.2 Copy handling. Another improvement that could be made to
the preprocessor is the check for self-calls to copy statements. If one
would currently instruct to copy the file itself, the parsers would
gladly do this. However, this would cause an infinite loop, since
there is support for copy statements inside of files that are being
copied. A more complex problem would then also be an indirect self-
call where two or more files would import each other and cause a
loop. Another smaller issue with the copy directive is that currently
one has to give in a filename, including the . bc extension. However,
it was later found that the file extension should not be needed; this
should still be implemented.

5.2 Keywords for paragraph names

As discussed in Section 3.2.1 there is an edge case where keywords
are not properly recognised as paragraph names when they are
used as them. The issue that allows for this edge case is the way in
which the paragraph names are uniquely identified. They always
immediately end with a period and do not contain any spaces. This
is different from a sentence that contains a statement since state-
ments have (almost) always more than one token to be consumed
before the period closes of the sentence. The only case where this
is not true is for the keyword STOP. The most ideal way to fix this
issue and to immediately also be more strict on the use of the A
and B areas is to make the parser aware of these areas. Such an
implementation would need to modify both the preprocessor and
the parser itself. One technique that was around in the 1960s and
1970s is called stropping [9, p. 82]. This technique explicitly marks
characters with some character sequence. This can easily be intro-
duced in the preprocessor, which will indicate whether the line was
started in area A or area B. Next, the ANTLR grammar could be
modified in such a way to consume these markers and jump to the
correct rules based on them.

5.3 Sufficient qualification

The current implementation for the sufficient qualification check
runs twice over the parse tree, where it first collects and generates
the data structure needed to check the references later on. And on
the second run identifiers are checked against the data structure.
If we were to implement this again, then it would be suggested to
merge these two steps into a single step. Here a single parse tree
listener should be able to do the job. This will increase the efficiency
of the overall program.

6 CONCLUSIONS

To conclude this paper and to answer the research question: "Can a
modern parsing tool, like ANTLR, contribute to legacy code support

Tom Meulenkamp

and enhancement?" Yes, ANTLR is able to contribute to legacy code
support and enhancement, although in a limited matter. Certain
features of BabyCobol are not able to be fully implemented or are
simply impossible. An example of a partial implementation is the
ability to use keywords as identifiers, whereas white space igno-
rance is simply impossible to implement due to the clear distinction
between the scanner and parser phases.

To answer the first sub-research question, it is not possible to
implement the BabyCobol language fully within the ANTLR frame-
work. As suggested in Section 5.1, it might still be possible to im-
plement a preprocessing phase with a separate ANTLR grammar.
However, it is not possible to support complete white space igno-
rance.

Can one implement BabyCobol without any complex structures?
For the most part, yes. However, in order to partially support non-
reserved keywords, predicates have to be used. These add more
complexity to the parser and make the grammar language dependent.
Furthermore, to answer the last sub-research question, predicates
have a significant performance impact, as observed in Section 4.

As a wise man once said, "information wants to be free" [26].
Hence one should also have access to the source code, which can
be found at https://github.com/supertom01/BabyANTLR.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Vadim Zaytsev. Especially for
the nice talks about random subjects and the ability to occasionally
complain about legacy languages.

REFERENCES

[1] John W. Backus, R. J. Beeber, S. Best, R. Goldberg, Lois M. Haibt, H. L. Herrick,
R. A. Nelson, D. Sayre, Peter B. Sheridan, H. Stern, L Ziller, R. A. Hughes, and
R. Nutt. 1957. The FORTRAN Automatic Coding System. In Papers Presented
at the February 26-28, 1957, Western Joint Computer Conference: Techniques for
Reliability (Los Angeles, California) (IRE-AIEE-ACM °57 (Western)). Association
for Computing Machinery, New York, NY, USA, 188-198. https://doi.org/10.1145/
1455567.1455599
[2] Keith D. Cooper and Linda Torczon. 2011. Engineering a compiler. Morgan
Kaufmann. https://doi.org/10.1016/C2009-0-27982-7
[3] James R. Cordy. 2004. TXL - A Language for Programming Language Tools and
Applications. Electronic Notes in Theoretical Computer Science 110 (2004), 3-31.
https://doi.org/10.1016/j.entcs.2004.11.006 Proceedings of the Fourth Workshop
on Language Descriptions, Tools, and Applications (LDTA 2004).
Michael F. Cowlishaw. 1990. The Rexx language: A practical approach to program-
ming. Prentice-Hall.
[5] Frank da Cruz. 2021. IBM Punch Cards.
computinghistory/cards.html
[6] Thomas R. Dean, James R. Cordy, Andrew J. Malton, and Kevin A. Schneider. 2003.
Agile Parsing in TXL. Automated Software Engineering 10, 4 (Oct. 2003), 311-336.
https://doi.org/10.1023/A:1025801405075
7] Magic Software Enterprises. 1995. AppBuilder. http://www.appbuilder.com
] Tom Everett and Ivan Kochurkin. 2022. ANTLR 4 - Grammars. https://github.
com/antlr/grammars-v4
[9] Wilfred J. Hansen and Hendrik Boom. 1977. The Report on the Standard Hardware
Representation for ALGOL 68. SIGPLAN Not. 12, 5 (may 1977), 80-87. https:
//doi.org/10.1145/954652.1781178
[10] Paul Hudson. 2022. How PHP is written — Hacking with PHP - Practical PHP.
http://www.hackingwithphp.com/2/6/0/how-php-is-written [Online; accessed
26. Jun. 2022].
[11] IBM. 1988. z/OS TSO/E CLISTs Version 2 Release 1. IBM.
[12] IBM. 1994. Programming IBM Rational Development Studio for i ILE RPG Program-
mer’s Guide. IBM.
[13] IBM. 2009. Enterprise COBOL for z/OS V4.2 Language Reference. IBM. 700 pages.
[14] IBM. 2017. Enterprise PI/L for z/OS Language Reference. IBM. 756 pages.
[15] Stephen C.Kleene. 2016. Representation of Events in Nerve Nets and Finite Automata.
Princeton University Press, 3-42. https://doi.org/10.1515/9781400882618-002

—_
=t

http://www.columbia.edu/cu/

https://github.com/supertom01/BabyANTLR
https://doi.org/10.1145/1455567.1455599
https://doi.org/10.1145/1455567.1455599
https://doi.org/10.1016/C2009-0-27982-7
https://doi.org/10.1016/j.entcs.2004.11.006
http://www.columbia.edu/cu/computinghistory/cards.html
http://www.columbia.edu/cu/computinghistory/cards.html
https://doi.org/10.1023/A:1025801405075
http://www.appbuilder.com
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4
https://doi.org/10.1145/954652.1781178
https://doi.org/10.1145/954652.1781178
http://www.hackingwithphp.com/2/6/0/how-php-is-written
https://doi.org/10.1515/9781400882618-002

Parser Benchmarking for Legacy Languages

[16]
(17]
(18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

Mariano Méndez. 2011. Fortran refactoring for legacy systems. National University
of La Plata. https://doi.org/10.35537/10915/4201

Terence Parr. 2013. The Definitive ANTLR 4 reference (2nd ed.). The Pragmatic
Programmers.

Terence Parr. 2021. ANTLR 4 Documentation. https://github.com/antlr/antlr4/
blob/master/doc/index.md

Terence Parr. 2022. Release 4.10 major feature, code clean up, and Bug Fix release.
https://github.com/antlr/antlr4/releases/tag/4.10

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) Parsing:
The Power of Dynamic Analysis. SIGPLAN Not. 49, 10 (oct 2014), 579-598. https:
//doi.org/10.1145/2714064.2660202

Terence J. Parr and Russell W. Quong. 1995. ANTLR: A predicated-LL(k) parser
generator. Software: Practice and Experience 25, 7 (1995), 789-810. https://doi.
org/10.1002/spe.4380250705

Andrey A. Terekhov and Chris Verhoef. 2000. The Realities of Language Conver-
sions. IEEE Softw. 17, 6 (2000), 111-124. https://doi.org/10.1109/52.895180
Gabriele Tomassetti. 2022. The Antlr Mega Tutorial. https://tomassetti.me/antlr-
mega-tutorial/

Mark G. J. van den Brand, Jeroen Scheerder, Jurgen J. Vinju, and Eelco Visser.
2002. Disambiguation Filters for Scannerless Generalized LR Parsers. In Com-
piler Construction, R. Nigel Horspool (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 143-158.

Arie van Deursen and Tobias Kuipers. 1999. Building documentation genera-
tors. In Proceedings IEEE International Conference on Software Maintenance - 1999
(ICSM’99). "Software Maintenance for Business Change’ (Cat. No.99CB36360). IEEE,

[26

[27

[28

[29]

[30

TSclT 37, July 8, 2022, Enschede, The Netherlands

Oxford, UK, 40-49. https://doi.org/10.1109/ICSM.1999.792497

R. Polk Wagner. 2003. Information Wants to Be Free: Intellectual Property and
the Mythologies of Control. Columbia Law Review 103, 4 (2003), 995-1034. http:
//www.jstor.org/stable/1123783

Sandip Walsinge. 2020. COBOL programming. https://zosmainframe.blogspot.
com/2020/05/cobol-programming.html

Ulrich Wolffgang. 2018. ProLeap COBOL parser. https://github.com/uwol/proleap-
cobol-parser

Vadim Zaytsev. 2014. Formal Foundations for Semi-parsing. In Proceedings of the
Software Evolution Week (IEEE Conference on Software Maintenance, Reengineering
and Reverse Engineering), Early Research Achievements Track (CSMR-WCRE 2014
ERA), Serge Demeyer, Dave Binkley, and Filippo Ricca (Eds.). IEEE, 313-317.
https://doi.org/10.1109/CSMR-WCRE.2014.6747184

Vadim Zaytsev. 2020. Software Language Engineers’ Worst Nightmare. In Pro-
ceedings of the 13th ACM SIGPLAN International Conference on Software Language
Engineering (Virtual, USA) (SLE 2020). Association for Computing Machinery,
New York, NY, USA, 72-85. https://doi.org/10.1145/3426425.3426933

Vadim Zaytsev. 2021. BabyCobol: The language reference. https://slebok.github.
io/baby/

Vadim Zaytsev. 2021. Software Evolution. https://canvas.utwente.nl/courses/7873
Vadim Zaytsev and Anya H. Bagge. 2014. Parsing in a Broad Sense. In Model-
Driven Engineering Languages and Systems, Juergen Dingel, Wolfram Schulte,
Isidro Ramos, Silvia Abrahdo, and Emilio Insfran (Eds.). Springer International
Publishing, Cham, 50-67.

https://doi.org/10.35537/10915/4201
https://github.com/antlr/antlr4/blob/master/doc/index.md
https://github.com/antlr/antlr4/blob/master/doc/index.md
https://github.com/antlr/antlr4/releases/tag/4.10
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1109/52.895180
https://tomassetti.me/antlr-mega-tutorial/
https://tomassetti.me/antlr-mega-tutorial/
https://doi.org/10.1109/ICSM.1999.792497
http://www.jstor.org/stable/1123783
http://www.jstor.org/stable/1123783
https://zosmainframe.blogspot.com/2020/05/cobol-programming.html
https://zosmainframe.blogspot.com/2020/05/cobol-programming.html
https://github.com/uwol/proleap-cobol-parser
https://github.com/uwol/proleap-cobol-parser
https://doi.org/10.1109/CSMR-WCRE.2014.6747184
https://doi.org/10.1145/3426425.3426933
https://slebok.github.io/baby/
https://slebok.github.io/baby/
https://canvas.utwente.nl/courses/7873

	Abstract
	1 Introduction
	1.1 Parsers
	1.2 ANTLR
	1.3 BabyCobol

	2 Existing solutions & Related Work
	3 New architecture
	3.1 Preprocessor
	3.2 ANTLR
	3.3 Postprocessor

	4 Evaluation
	4.1 Performance

	5 Future work
	5.1 Preprocessor
	5.2 Keywords for paragraph names
	5.3 Sufficient qualification

	6 Conclusions
	Acknowledgments
	References

