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Using accelerometer and gyroscope sensors to detect and differentiate 

between eating movements associated with different foods 

Viktor Tonchev, University of Twente, The Netherlands 

Dietary monitoring is a tool used to track and alter the eating habits of 
individuals, specifically those that are overweight or obese. Automated 
Dietary Monitoring (ADM) aims to automate this process, in order to 
make it more accurate and efficient. Existing ADM systems have used 
various sensors worn on the body to detect eating events, such as 
gestures, chewing and swallowing, via machine learning algorithms.  
This research set up an experiment, where an IMU (Inertial 
Measurement Unit) with accelerometer and gyroscope sensors was 
worn on the wrist and participants consumed 7 different types of foods. 
The data from the experiment was used to train classification algorithms 
using machine learning in an attempt to differentiate individual foods 
based on the movements recorded by the sensors. The models are 
effective at recognizing when food is being eat, but the results suggest 
that they are not sufficient on their own to recognize the food itself. 

Additional Key Words and Phrases: Machine Learning, Automatic 
Dietary Monitoring, Eating habits, Eating detection, Accelerometer, 
Gyroscope, LSTM. 

1 INTRODUCTION 

Overweight and obesity, defined as having a BMI over 25 and 30 
respectively, are a problem all around the world, with the rate of 
both rising over recent years [1, 8]. Obesity has been associated 
with various health risks and overall mortality [2, 13]. Short sleep 
duration, low dietary calcium intake and high disinhibition 
eating behavior are all risk factors significantly associated with 
obesity [4] and the change of such habits is recognized to be an 
effective measurement to combat obesity [16]. Therefore, keeping 
track of what and how much one eats plays an important role in 
weight loss. This can be done manually by keeping a food intake 
diary either physically or by means of a phone application. The 
problem with this method is that people have been observed to 
inaccurately report their intake when recording it manually by 
over- or underestimating it or just forgetting to do it at all [14]. 
This is where ADM comes into play, striving to make the process 
both more efficient and accurate by automating it. 

This research will be using an IMU with accelerometer and 
gyroscope sensors worn on the wrist to identify movements 
during eating and try to differentiate between the foods being 
consumed. The sensor is a good choice as it is comfortable, 
accessible, easy to use, and similar setups have been successfully 
used to identify eating gestures. In [17] a machine learning 

framework using a 6-axis inertial wrist-worn censor is 
suggested, which showed reliable classification of feeding 
gestures (75% F-measure) and a 94% accuracy of feeding 
gesture count in an unstructured eating experiment. Dong, et al. 
used accelerometer and gyroscope sensors on the wrist to detect 
motion indicating eating activities in a free-living environment. 
They achieved an accuracy of 81% with a 1-s resolution [5]. 
Kyritsis et al. detect food intake cycles during a meal using an 
IMU achieving precision and recall scores of 0.78 and 0.77 
respectively [11]. Sen et al. used the accelerometer and gyroscope 
in a smartwatch to detect eating episodes and mode of eating 
(hands, chopsticks, or spoon) and then try to recognize the food 
by using the smartwatch’s camera [15]. They detected eating 
episodes with an accuracy of 97% and eating mode with an 
accuracy of 85.51%. In their thesis, Mevissen set up an 
experiment, where a sensor system, consisting of a smartwatch, 
a piezoelectric sensor and respiratory inductance 
plethysmography bands, is used for the detection of eating 
gestures, chewing, and swallowing food respectively [12]. The 
highest F1-score achieved by the algorithms were 0.82 for the 
classification of eating gestures (including telling apart eating 
yogurt and eating a croissant), 0.94 for chewing food and 0.53 
for swallowing food.  

The difference between this and previous research is that the 
focus is on differentiating between multiple foods being 
consumed, instead of just detecting eating movements or 
periods of eating.  

1.1 Problem Statement 

Existing research has used accelerometer and gyroscope sensors 
to detect eating gestures, movement and periods of eating, but 
none try to differentiate the foods themselves with these sensors 
alone. This paper aims to expand on previous work, by testing 
the effectiveness of these 2 sensors further. 
 

1.1.1 Research Question 

The problem statement leads us to the following research 
question: 

To what extent can a sensor system, consisting of an 
accelerometer and gyroscope worn on the wrist, detect and 
differentiate eating movements for various types of food? 
To answer this main question, we have the following sub-
questions: 

•Can a sensor system, consisting of an accelerometer 
and gyroscope worn on the wrist effectively 
differentiate between eating and non-eating 
movements for various types of food? 

 
TScIT 37, July 8, 2022, Enschede, The Netherlands 
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and 
Computer Science. 
Permission to make digital or hard copies of all or part of this work for personal 
or classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice 
and the full citation on the first page. To copy otherwise, or republish, to post on 
servers or to redistribute to lists, requires prior specific permission and/or a fee. 



 

2 

TScIT 37, July 8, 2022, Enschede, The Netherlands Viktor Tonchev 

•To what extent can a sensor system, consisting of an 
accelerometer and gyroscope worn on the wrist, 
differentiate between eating movements associated 
with various types of food? 

To answer this, an experiment was set up, where participants 
consumed different types of food, while sitting and wearing the 
IMU device with the accelerometer and gyroscope sensor. The 
data is then used to create machine learning algorithms to 
recognize when food is being consumed and to differentiate the 
type of food consumed. 

 

2 METHODOLOGIES 

2.1 Experiment 

An experiment was conducted in order to collect data with the 
sensor to use in the classification algorithms. Participants were 
asked to consume various types of food, while a video was 
recorded to establish ground truth. Ethical consent to perform 
the experiment was granted by the Ethics Committee Computer 
& Information Science of the University of Twente. 

2.1.1 Setup 

The sensors were both set to 50Hz and placed on the wrist of the 
right hand of the subject (all the participants ate with the right 
hand). Then the subjects were asked to sit at a table, while being 
recorded by a camera, and consume 7 different types of food:  

• Yogurt in a bowl 

• Cereal in a bowl 

• Piece of bread with hummus on it 

• Small croissant 

• Grapes 

• Pieces of corn in a bowl 

• Sliced pieces of cucumber 
The idea was to have multiple foods that are eaten in a similar 
manner to test whether they can be distinguished from one 
another (the corn and cucumber are there because the 
experiment was done in collaboration with another paper, which 
needed the data from them). For example, croissant and bread 
are both consumed with the hand and have similar movements. 
Same goes for eating yogurt and cereal with a spoon. Participants 
were also asked to perform several movements to act as counter-
gestures to eating. They were as follows:  

• Random movement of the right arm 

• Scratching the right cheek with the right hand 

• Scratching under the chin with the right hand 

• Scratching the back of the head with the right hand 
Aside from the random movement, which is there to provide 
data on movements outside of the experiment, the other 
gestures were chosen to resemble eating movements, to check 
how well the algorithm can distinguish them from actual eating. 
These actions were done in alteration, with participants being 
asked to perform the counter-gestures in between eating. The 
full protocol for the experiments can be found in appendix A.  
 

2.1.2 Annotations 

The video recordings made during the experiments were used to 
establish the ground truth to be used for the algorithms. All the 
different foods have their own label, the random movement and 

counter-gestures are all under the label of “Other” and 
everything in between is under the label "Leftover". The 
annotations were also used to synchronize the data from the 
sensor with the data from the video. This was done by tapping 
the sensor 5 times at the beginning of each experiment. The 
software used for this was ELAN 6.3 [7]. 
 

2.2 Data Processing 

After the experiments were conducted, the data had to be 
processed in order to be used for the algorithms. The experiment 
was conducted with 8 subjects, which amounted to almost 2 
hours of video and data. First the data was plotted to figure out 
when the 5 taps needed to synchronize with the annotations 
occurred. Then those times were used to synchronize the 
annotations and the data from the sensors, by figuring out the 
difference between the two and subtracting it from the 
annotations to match the sensor data. After that the data was 
split into windows of 1 second, with an overlap of 50%. When 
splitting the data, only a small portion of the “Leftover” data was 
used, as it does not provide that much information and this way 
the models takes less time to train. Finally, using the annotations, 
the ground truth was established and recorded for every time 
window.  

2.3 Classification 

The final step is to use the collected and processed data to train 
models for activity recognition. Neural Networks have been 
successfully used in Human Activity Recognition before, with 
high accuracy and F1 scores [9]. The best choice for this research 
is the LSTM (Long Short-Term Memory) network model. This is 
because this model can learn directly from the data itself and 
does not require the manual engineering of features, which 
requires expertise beyond the scope of this paper. The model is 
also appropriate for long sequences of data, can support 
multiple parallel sequences of data (such as the x, y and z axes 
of the accelerometer and gyroscope sensors) and can extract 
features from the sequences of this data. All of these suggest it 
to be a good fit for the data. The model was based on the one in 
[3]. 

In total 4 models were built: 2 to answer the first sub-question 
and 2 to answer the second one. The reason for building 2 
models for each question is to check how the classification does 
when it has trained on a subject’s data already compared to 
when the data is completely new to it. In other words, this helps 
show the generalizability of the model. The 4 models built are 
as follows: 

1. Model trained and tested on all of the data (we will call 
this a generic model) to differentiate between eating 
and non-eating movements 

2. Generic model trained to differentiate between 
movements associated with the different foods 

3. Model trained on data from all but one subject and 
tested on the subject left out, also known as LOSO 
(Leave One Subject Out) models, to differentiate 
between eating and non-eating movements 
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4. LOSO model to differentiate between movements 
associated with the different foods 

The classes for models 1 and 3 are simply “Food” and “Other”. 
“Food” includes all eating movements, while “Other” contains 
everything else. The classes for models 2 and 4 are one 
individual class for every food and one “Other” class that 
contains everything else. 

The train/test splitting for the generic model is done as follows: 
to make sure there is no data leakage (or at least minimal), due 
to the 50% overlap in the time windows, every window is 
assigned an identifying number. Then the data is shuffled, and 
the assigning of training and testing data starts – there is an 
80% chance for a window to be assigned to training and 20% 
to testing. However, before the random chance, it is checked 
whether the previous or next window is labeled as testing or 
training and if it is, this window is labeled as the same, to avoid 
leakage. Of course, there have to be points in the data where the 
training and testing data meet. However, with the windows 
being 1 second, the overlap there is half a second, which 
compared to the total amount of data is almost insignificant. 
Aside from this, to ensure all foods have movements in both 
training and testing, a counter with the total movements in 
training and testing is kept for each subject, to ensure that at 
least a minimal number of movements are in each set. 
Additionally, when evaluating these models, they are run 
multiple times with different shuffling, to act as a kind of cross-
validation. 

Since the classification is done using LSTMs, which are 
stochastic in nature, they give slightly different results when 
run multiple times, so the models were evaluated by being run 
10 times each (more repetitions were not possible due to time 
constraints) and taking the mean accuracy and F1-score, as well 
as the standard deviation. During evaluation, the weight of each 
class is also considered. This is done by counting the instances 
of each class, comparing it to the other classes and taking it into 
account when calculating the evaluation scores. 

3 RESULTS 

Table 1 shows the results for all of the models. 

The class names were shortened because of the size of the matrix 
(otherwise they would overlap each other). Here are what the 
shortened names stand for: 

• Oth – Other class 

• Yog – Yogurt class 

• Cer – Cereal class 

• Br – Bread class 

• Cro – Croissant class 

• Gr – Grapes class 

• Corn – Corn class 

• Cuc – Cucumber class 

The generic model trained to differentiate only between eating 
and non-eating movements had accuracy and F1-score both of 
0.939, with a standard deviation of 0.018 for both as well. 

Table 1. Accuracy and F1-score of the 4 models 

 

Fig. 1. Confusion matrix of generic model trained to differentiate between 

the different foods 

 

 

Fig. 2. Confusion matrix of LOSO model trained to differentiate between 

the different foods 

Model Average 

Accuracy 

Average F1-score 

Generic for just eating 0.939  

(+/- 0.018) 

0.939  

(+/- 0.018) 

Generic for different 

foods 

0.555 

(+/- 0.020) 

0.555  

(+/- 0.018) 

LOSO for just eating 0.858 

(+/- 0.095) 

0.859 

(+/ 0.092) 

LOSO for different 

foods 

0.402 

(+/- 0.051) 

0.393 

(+/- 0.063) 
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The generic model trained to differentiate between the different 
foods had an average accuracy of 0.555, with a standard 
deviation of 0.020, and an average F1-score of 0.555, with a 
standard deviation of 0.018, Figure 1 shows a confusion matrix 
for 1 of the instances of this model. 

The LOSO model trained to differentiate only between eating and 
non-eating movements had an average accuracy of 0.858, with a 
standard deviation of 0.095, and an average F1-score of 0.859, 
with a standard deviation of 0.092.  

The LOSO model trained to differentiate between the different 
foods had an average accuracy of 0.402, with a standard 
deviation of 0.051, and an average F1-score of 0.393, with a 
standard deviation of 0.063. Figure 2 shows a confusion matrix 
for 1 of the instances of this model.  

4 DISCUSSION 

The purpose of this research was to figure out whether 
gyroscope and accelerometer sensors worn on the wrist are 
sufficient on their own to differentiate between the eating 
movements associated with different foods. 

4.1 Differentiating eating and non-eating movements 

Looking at the results, the models had no problem differentiating 
between eating and non-eating movements. The generic model 
did so with almost perfect accuracy, while the LOSO models still 
retained a very good score. This is in-line with previous research 
and shows that these sensors can be used to detect eating 
movements for various types of foods. Sen et al. achieved an 
accuracy of 97% in classification of eating episodes. The 
difference is slight but can be explained by the higher sample 
rate used (100 Hz), as well as the fact that they applied 
smoothing to their original results of 92% (they check if the next 
two frames and previous 2 frames are different from the current 
frame and adjust based on it). Dong et al. achieved an accuracy 
of 81% in detecting eating activities. The difference can be 
explained by the free-living conditions used in their experiment, 
which is not done in this research. 
 

4.2 Differentiating between different foods 

The results make it clear that the models had a hard time telling 
apart the different foods, especially when it comes to foods that 
have similar eating movements. If we look at figures 1 and 2, we 
can see how the models had no problem differentiating the foods 
from non-eating movements, but very much had trouble telling 
them apart from other foods. We can also see those foods eaten 
in similar a manner (yogurt and soup for example) were 
confused with each other more often than with the other foods. 
Mevissen achieved an accuracy of 0.82 when it came to 
differentiating eating gestures, which included telling apart 
eating yogurt and eating a croissant. This higher score can be 
explained by the limited number of foods, as well as the different 
movements performed when eating these foods. As we can see 
in figures 1 and 2, the models in this research very rarely 

confused these foods as well. Overall, the results suggest that 
these 2 sensors are not sufficient to differentiate between many 
types of food on their own, especially those similar in their 
manner of eating. 

 

4.3  Generalizability 

The results for the generic and LOSO models were not too far off 
from each other, suggesting that the models may be 
generalizable. Of course, the models for recognizing different 
foods did not work well in this case, but for future research it 
might be good to note that it should be possible to create 
generalizable models. 

 

5 CONCLUSION 

 
Using gyroscope and accelerometer sensors worn on the wrist 
can be used to effectively differentiate between eating and non-
eating movements for multiple types of food, with varying 
similarity. However, when it comes to differentiating between 
the foods themselves, the 2 sensors prove insufficient to do so on 
their own, especially when it comes to foods with similar eating 
movements. The models proved to be generalizable, so for 
similar research in the future it might be worth building such 
models.  
 
Using extra sensors to differentiate the foods themselves might 
be a good approach. For example, a small camera worn 
somewhere on the body (on a necklace perhaps), can be used, as 
image recognition has been shown to be effective in this 
matter[10] and has even been used to estimate calories[6], which 
should prove important for the future of ADM. The camera can 
be used in combination with the smartwatch: when the 
smartwatch detects eating gestures, the camera can turn on and 
record video or take pictures. There is also the need for doing 
similar research for left-handed people. Furthermore, this 
research does not take into account different eating styles: 
people might eat rice with a fork, spoon, or chopsticks, for 
example.  
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