
Help Rich Info Get Richer: Enriching a semi-structured dataset using a
Semantic Web approach
YUJIE LIU, University of Twente, The Netherlands

This article presents a data integration approach to enrich a semi-structured
dataset called ProVerB. ProVerB is a project to explain and classify program
veri�cation tools. It o�ers some URLs linking to external supporting re-
sources for each tool. However, these URLs contain little information, and a
user needs to explore them manually to �nd what they need. Therefore, a
data integration project is conducted to supply these tools with additional
information by fetching original data from these URLs. The solution is im-
plemented using a Semantic Web approach to preserve the structure of
ProVerB and explore possible relationships among incoming data. The new
data and their potential relationships are inserted back into ProVerB to help
this dataset become richer.

Additional KeyWords and Phrases: SemanticWeb, Data integration, Program
veri�cation, Ontology, Open API

1 INTRODUCTION
The ProVerB [12, 13] project aims to explain and classify program
veri�cation tools and helping software developers �nd the tools on
their demand. It is a part of the SLEBoK project [6] in a speci�c
domain. ProVerB is constructed with semi-structured data. For each
tool, a brief introduction and sample input/output are given, along
with internals linking to other tools in the project and URLs linking
to external supporting resources, like project repositories and related
papers. All these tools are classi�ed into six hierarchy PV levels
based on their application scenarios, namely PV1 - PV6.

1.1 Research goals and requirements
Since ProVerB only contains basic information, the users need to
turn to the supporting resources to get details about the tools they
are interested in. However, these URLs contain little information,
and the users need to click on them and �nd what they need in the
new tabs manually. This process is cumbersome when quite a few
tools need to be reviewed. For example, suppose a user wants to �nd
the tool that is under the most active development from several ones.
In that case, the user needs to open several tabs for repositories to
see the latest commit of each tool.

Moreover, a cross-reference for the data with the same semantic
meaning but from di�erent sources can be helpful for the user to
explore the details of the tools. For example, exploring the authors
of the tool’s related papers and the code contributors of the tool
to see who may be the most suitable one to contact for the latest
research of this tool.
Therefore, the goals of this research are:
• G1: Find an e�cient way to reduce the cost of the repeated
click & browse process for the ProVerB users.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The de�nitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

• G2: Find a way to explore the possible relationships for the
incoming data from di�erent supporting resources.

We also notice that although the ProVerB dataset is not huge,
manual data modi�cations should also be avoided in achieving our
goals. What’s more, the dataset is visualized on a website hosted by
GitHub IO. A python script is used to auto-generate the web pages
following the structure of the dataset. This structure should also be
intact after modi�cations to not destroy the website generation.

Based on these facts, two requirements that this research should
follow are proposed below:

• R1: The structure of the ProVerB dataset should be preserved.
• R2: The process of achieving the goals should be automatic
to minimize manual operations.

1.2 Technology
The main technologies in this research are explained below, along
with a brief introduction about why and where these technologies
were used in our approach. Some references are also provided for
the reader to get more if necessary. Similar works using some of
these technologies are discussed in 2. The implementation of these
technologies in our approach are detailed explained in section 3.
A data integration project can be introduced to solve the G1

problem by usingmashup [10]methodology to build a SemanticWeb
application [3], compositing information from di�erent sources into
one dataset. A mashup is a web-based application that is created by
combining and processing content from more than one online third-
party resource that contributes to data and/or presentation [11]. In
this research, the mashup approach is used to combine the semi-
structured data from ProVerB and data from third-party open APIs
like GitHub and Springer.
The Semantic Web approach is chosen because we need to con-

sider the semi-structural nature of the ProVerB dataset (R1). To
preserve the structure during the integration with additional infor-
mation, the project is implemented with a Semantic Web application
based on a customized ProVerB ontology.

An ontology is an engineering artifact widely used in the Semantic
Web approach, whichmodel (some aspect of) theworld. It introduces
vocabulary describing various aspects of the domain being modeled,
and provides an explicit speci�cation of the intended meaning of
that vocabulary [8]. For example, Figure 1 shows a basic model of
ontology. The Author and Book are two classes in this ontology,
each class has a data property called ’name’. And the ’writer’ is
an object property indicating the relationship between these two
classes.
A particular �le type called Resource Description Framework

(RDF) [7] is used to persist the ontology with classes and their
properties. Figure 2 shows an example of how data is stored in an
RDF �le in a triple format, i.e. <Domain, Relationship, Range>. The

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


TScIT 37, July 8, 2022, Enschede, The Netherlands Yujie Liu

Fig. 1. Example of ontology

edges represent the named relationship between the two instances
of the Domain and Range class, represented by the graph nodes.

Fig. 2. Example of RDF and Linked Data

Similar approaches are widely used to build a formal dataset
conforming to OWL ontology in Semantic Web application devel-
opment [8, 10, 23], which are discussed in section 2.
To ful�ll the goal G2 based on the data integration project of

G1, the application also performs a cross-evaluation of the data
to distinguish the possible relationships, following the prede�ned
patterns written by the ProVerB maintainers. In this research, we
mainly focus on adding ’same as’ relationship. which is one of the
methods to construct linked relationship in Linked Data [4, 20, 22].
The Linked Data is a kind of structured data that contains interlinks
with other data, which makes it more useful through semantic
queries.

As you can see in Figure 2, it looks like there are two books with
di�erent titles, but in fact, it is one book with the same story trans-
lated into di�erent languages. In this way, no matter the language
we use to query, the system will know we are looking for the same
concept.

A speci�c language called SPARQL [2] is also introduced to query
the linked data. The structure of SPARQL is similar to SQL, but
uses speci�cations in a triple format that follows the RDF speci�ca-
tion. An example of SPARQL query can be found in Figure 6 with
explanation in section 3.4.

Moreover, to ful�ll the requirement R2, we also considered how
to automate the enrichment process. GitHub work�ow is chosen
to support the entire process. Details about the work�ow are intro-
duced in section 3.

1.3 Research questions and contributions
The goals and the technologies used to reach the goals lead to the
following two main research questions.

• RQ1: How to implement the data integration project of goal
G1? This can be divided into three ordered sub-questions:
– RQ1-1: How to design the ProVerB ontology?
– RQ1-2: How to implement the integration application?
– RQ1-3: How to save the composited data into one dataset?

• RQ2: How to cross-evaluate the data to ful�ll the goal G2?
This can be divided into two ordered sub-questions:
– RQ2-1: How to explore the possible relationships?
– RQ2-2: How to make sure that the explored possible rela-
tionships are valid?

The contributions of this research are as follows:
(1) C1: An application for data enrichment and relationship ex-

ploration for the ProVerB dataset. This is the deliverable of
answering the RQ1 and RQ2, which ful�lls the goals of G1
and G2.

(2) C2: Execute the enrichment process to get and transform the
composited dataset back into the ProVerB’s original dataset.
This can ensure that the application in C1 can be deployed,
and this data integration process can be executed regularly
on a schedule using GitHub work�ow.

The remainder of this paper is organized as follows. Section 2
introduces the related work. In section 3, the implementation of our
approach is discussed in detail. In section 4, we analyze the results
and artifacts of the research. Section 5 discusses the limitations and
future work of this research, and section 6 concludes.

2 RELATED WORK
In Semantic Web development, the ontology approach has become
more popular for integrating heterogeneous data from di�erent
sources. These related research projects can be divided into two
main categories based on research direction: how an ontology can
be used in Semantic Web applications[21], and how an ontology is
designed and implemented in a speci�c topic [8, 10, 23].

Souza et al. [21] use Web Ontology Language (OWL) [1] to design
an ontology for web data integration in a speci�c domain and come
up with �ve scenarios where semantic information can be used
for integration. Compared to our work, they mainly focus on the
domain of Information Quality (IQ) to explore the combination of
semantic information and IQ.
Horrocks [8] gives a detailed introduction and a demo to show

how an ontology can be used to provide the semantics. This article
is an introduction about Semantic Web and ontology design, o�er-
ing some high-level guidance for us to develop our own ProVerB
ontology.
Kalou et al. [10], and Vivar et al. [23] come up with correspond-

ing topic-speci�c ontologies to handle their problems in web book
mashup application and academic data management. Compared to
our research, we share a similar approach, i.e., building an ontology
as a guidance for domain speci�c application, but we have di�erent
goals for respective research problems.

3 APPROACH
To answer the proposed research questions, we take the following
six steps shown in Figure 3. After steps 1-5, the application for con-
tribution C1 should be delivered. Step 6 is the data transformation

2



Help Rich Info Get Richer: Enriching a semi-structured dataset using a Semantic Web approach TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 3. Steps towards the enrichment solution

for contribution C2. The details of each step are introduced in the
upcoming subsections.

The development of this six-steps process is performed in an iter-
ative way. Each iteration will add more concepts into the ontology,
get more data from di�erent sources, extract possible relationships,
and transform more data back to the original dataset. A GitHub
work�ow is deployed to support this process. This is because the
ProVerB project is also hosted by GitHub, and the data enrichment
process should also be platform compatible to maximize the process
automation.

3.1 Step 1: Design the ontology
In the �rst step, an ontology is designed using OWL and Protege,
which conforms to the structure of the ProVerB dataset and can be
extended to �t the data structure of APIs. Protege [19] is a suite
of tools to construct domain models with ontology. The ProVerB
ontology is written in OWL and saved as triples in an RDF �le [9].
In this step, the RQ1-1 is answered.
The current version of the ProVerB ontology [17] includes 11

classes shown in Figure 4, with respective functions and properties
listing in table 1 and table 2. The Repository and Article classes
are used to instantiate the repository links and DOI links extracted
from the original dataset and open APIs, which will be introduced
in section 3.2 and 3.3. The CodeContributor and Writer classes
are used to instantiate the contributors of the code and the authors
of the paper, and explore the possible overlap between these two
roles in section 3.4.

We also need to clarify that since the ProVerB ontology is only an
intermediate product for the enrichment process and not a crucial
part of this research, the design, development, and validation of
this ontology are simpli�ed to meet the only requirement, i.e., "If
it works, it works." But we do leave some room for future study
based on this ontology. For example, the Concept class is left for
domain experts in the program veri�cation area to classify the tools
on their application domain. And the Format class is left for future
research to explore the possible input-output relationship between
tools. For example, if the output of one tool can be used as the input
of another tool. These two directions introduced above are beyond
the scope of this research.

Fig. 4. ProVerB Ontology

3.2 Step 2: From ProVerB to RDF
In the second step, the data from the ProVerB dataset is imported into
an RDF �le containing the ProVerB ontology, which is an artifact
released in the previous step. The extracted data is stored in triples
format conforming to the ProVerB ontology. A helper tool [15] is
designed and implemented to achieve this conversion. This helper
tool is a part of the mashup application to answer RQ1-2, but in
a di�erent GitHub repository to decouple the application artifacts
and simplify the GitHub work�ow.

The implementation of this converter is based on pattern match-
ing throughmanually adding patterns into the converter application.
The converter will follow these patterns to extract the data from the
original ProVerB dataset. The data includes the tool’s name, URLs
for the GitHub repository, and DOI links to the related paper. After
extraction, the data will be cleaned based on the prede�ned patterns
and escape some characters that the charset of RDF standard doesn’t
support.

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Yujie Liu

Class Functions Example
Format Input/output format of the tools and other speci�cation formats .aadl �le

Repository A GitHub or GitLab URL indicating the repository of the tools https://github.com/
loonwerks/AGREE

Tool A tool in ProVerB dataset AGREE

Concept
All tags, application domains, etc., can be the concepts.
Some speci�c concepts in the ProVerB domain will be created as sub-class.
This allows the domain experts to modify the ontology for the tool classi�cation

Model checking

Conference Sub class of Concept. The conferences that the proceedings come from (Reliability Engineering
& System Safety ’21)

PV Sub class of Concept. Six hierarchy levels that classify tools PV 1 - PV 6

Article An DOI link pointing to the publication of the tool https://doi.org/10.1016/
j.ress.2021.107649

Person Persons related to the tools, the proceedings and any other concepts
Writer Sub class of Person. Speci�c to the author of Article name of the writer
CodeContributor Sub class of Person. Speci�c to the contributor of Repository name of the contributor

Table 1. Classes with respective functions

Property Domain Range
author Article Person
category Tool Concept
contributor Repository Person
relatedpaper Tool Article
repository Tool Repository
name Thing
abstract Thing

Table 2. Ontology Properties

The GitHub Actions will support this conversion by fetching the
newest ProVerB ontology and the newest ProVerB dataset as the
inputs of the work�ow. After that, the converter will be executed
and �nally publish the conversion artifact to a daily release. This
artifact includes the ProVerB ontology and the data from the ProVerB
dataset, which will be used as an input for the next step.

3.3 Step 3: Data enrichment
In step 3, the mashup application is implemented under the Java
Spring framework, along with a popular framework called Jena.
Jena is an open-source Java framework Apache project for building
Semantic Web and Linked Data applications [5]. There are three
main services in this mashup application listing below. After this
step, RQ1-2 is answered.

Ontology Service Ontology service is used to execute queries
to get the supporting URLs from the RDF �le we created in the
previous step. This service is also responsible for converting
the enriched data from di�erent sources back to the RDF �le,
conforming to the ontology.

Repository Service Repository Service is for fetching reposi-
tory and contributor-related data from the third-party code
hosting platforms. Currently, we only support GitHub since

most of the code bases that appeared in the ProVerB dataset
are hosted by GitHub. GitHub o�ers a set of open REST APIs
for developers under fair rate limitations. The APIs for the
repository, the contributors of the speci�c repository, and the
user detail are used in this service.

Article Service Article Service is responsible for getting the ab-
stract, authors, and metadata of the article through a DOI link.
In the ProVerB dataset, most of the related papers are pub-
lished by Springer, but there are a number of papers hosted by
other publishers. To deal with this situation, the API provided
by CrossRef is used as a backup of Springer.

The GitHub Actions will support this enrichment step. The time
schedule of this step is set after the previous conversion in sec-
tion 3.2, so that the newest extracted RDF �le can be used for enrich-
ment. Some tricks are used to let the GitHub Actions automatically
close this Spring-boot application after enrichment. After execution,
the enriched RDF �le will be released under the daily tag in GitHub
Release, which will be used in RDF to ProVerB dataset conversion
in section 3.6.

3.4 Step 4: Data evaluation
The data evaluation is developed as a built-in module of the integra-
tion application in the previous step. This is an engineering trade-o�
to reduce the workload of the development.

In this section, wewill discuss how the data can be cross-evaluated
in order to explore relationships between data from di�erent sources
(RQ2). Prede�ned patterns are used to identify possible linked re-
lationships. These patterns are stored as GitHub issues with the
label ’automate’, conforming to an issue template we designed. This
allows the ProVerB maintainers to easily direct the exploration of
new relationships. The evaluation module reads these patterns and
use them to generate corresponding SPARQL queries to explore the
relationships. Once a relationship has been found, it will be saved
into the dataset.

4



Help Rich Info Get Richer: Enriching a semi-structured dataset using a Semantic Web approach TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 5. Pa�ern for ’sameAs’ relationship between Contributor and Writer

Since we already know the data structure of ProVerB and APIs,
we can easily infer the �elds which may have relationships. In this
research, only the code contributors and the authors of the papers
will be evaluated to inspect the possible overlaps. A pattern for this
exploration can be found in Figure 5 or in this issue 1. It means there
are possible sameAs relationships between the domain class Writer
and the range class CodeContributor, and the pattern to identify
this relationship is to �nd the instances from these two classes
whose property name is the same as the other. To maintain the
quality of these relationships, only the perfect match of the names
will be considered. That’s why only the equal method is used. In
this research, the template supports one relationship (sameAs) and
twomethods (equal and approximate equal).
After fetching the patterns from GitHub, the evaluation module

will transform these patterns into corresponding SPARQL queries.
The transformation result of the above pattern is shown in Figure 6.
It’s straightforward to understand this SPARQL query. It will select
the instances of domain and range classes who have identical
property names. After query execution, a sameAs relationship is
added to the model for each domain-range pair of the query result.

After exploration, the application saves the enriched model with
additional relationships into an RDF �le. This RDF �le is published
as an artifact in the GitHub Release. These GitHub issues are left
open for evaluation in the next enrichment iteration. The ProVerB
maintainers can prevent the application from executing the rela-
tionship exploration patterns by closing the corresponding issues.

3.5 Step 5: Enriched RDF file
After the step of data evaluation, the additional data will be inserted
into the RDF �le in OWL format with optionally linked relationships.
The implementation of this step is a part of the Ontology Service
in section 3.3. This step is the answer of RQ1-3.

3.6 Step 6: From RDF to ProVerB
After constructing the enriched RDF �le in section 3.3, a helper
tool [16] will be executed to transform the triples in the RDF �le
back to the ProVerB dataset. This step is also under the GitHub
work�ow with time schedule after the enrichment and evaluation.
1https://github.com/LiuLiujie/ProVerBMate/issues/3

Fig. 6. Generated SPARQL query for relationship exploration

The helper tool is also implemented using the Jena framework to
query the data from the enriched RDF �le, and save the data into
the Markdown �le of the corresponding tool in the ProVerB dataset.
After conversion, a GitHub Release will be published containing the
enriched ProVerB dataset.

4 RESULT
In this section, the result of executing the enrichment process will
be discussed. The goal of this section is to explain the results we
achieved from each step in the enrichment process and try to make
a conclusion from those results for the research questions. The
released artifacts and metrics of the following four steps will be
discussed. Noted that the following result is based on the logs from
GitHub Action on 29-06-2022 daily work�ow, and the artifacts re-
leased on 29-06-2022 under tag daily.

An running example will also be given by tracing the enrichment
steps of a veri�cation tool called AGREE. Noted that all the �gures
about this example are shown in Appendix A.

4.1 ProVerB to RDF
The result of this step is related to the answer of the research ques-
tion RQ1-1.
The daily release of the ProVerB to RDF (P2R) converter can be

found here2. There are 425 tools in total in the ProVerB dataset,
and 400 tools are extracted properly. What’s more, since not all
tools include supporting URLs, only 269 repository links and 525
article links are extracted from the original dataset. These links are
not clean enough since pattern matching can only eliminate the
data which does not follow the prede�ned patterns. And there are
still some links that are invalid but still conform to the patterns,
for example, the link pointing to GitHub organization instead of
concrete repositories of the organization, or the link directing to
speci�c branch of the repository.

As for the example tool AGREE, Figure 8 in Appendix A.1 shows
the result of extraction. We can see that one repository and two
related papers are extracted, along with metadata like name, basic
introduction (abstract), and corresponding PV level.

4.2 Data Enrichment
The result of this step is related to the answer of research question
RQ1-2 and RQ1-3.
2https://github.com/LiuLiujie/ProVerBMate-P2RConverter/releases/tag/daily

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Yujie Liu

The daily release of the enrichment can be found here3. During
the enrichment, 256 repositories and 518 articles are enriched suc-
cessfully, 1419 code contributors and 1188 paper authors are found.
Of these code contributors, 1086 people have provided their names,
which can be proved through the SPARQL query shown in Figure 7.

Fig. 7. SPARQL query for the number of contributor with name

For the running example, Figure 9 and Figure 10 in Appendix A.2
show the enriched repository of AGREE and one of the contributors.
The last commit date of AGREE repository is 20 May, 2022, which
means this tool is still under active development. The tool AGREE
has two related papers, and the enrichment results of these articles
are also shown in Figure 11 and Figure 12 in Appendix A.2.

4.3 Data Evaluation
The result of data evaluation be responsible for answering the re-
search question RQ2.
During the evaluation step, 273 sameAs relationships have been

found following our prede�ned patterns. This number can be vali-
dated through the SPARQL query shown in Figure 13 in Appendix B.

This information can be used to determine which author may be
the best one to contact for further information of the tools, since they
participate in both code development and paper writing. Through
the SPARQL query in Figure 14 in Appendix B, we show that 169
tools contain at least one expert who knows both the papers and
the code.

4.4 RDF to ProVerB
The RDF to ProVerB transformation is the last step of this integra-
tion approach. The result of this step is not directly related to any
research questions, but an evidence that the contribution C1 and
C2 are ful�lled.
The daily release of the enrichment can be found here4. All the

data items about repositories and related papers in the RDF �le are
successfully converted back to the corresponding Markdown �le of
the tool.

5 DISCUSSION
There are still some optimizations we can do to improve this re-
search.

Firstly, the work�ow of the enrichment step can still be optimized.
In the current design, all the extracted repositories and papers will
3https://github.com/LiuLiujie/ProVerBMate/releases/tag/daily
4https://github.com/LiuLiujie/ProVerBMate-R2PConverter/releases/tag/daily

be enriched again in every iteration. However, this is unnecessary
since some of the additional data items may not be changed or
seldom changed once published, for example, the authors and the
abstract of a paper. For these data items, enriching once is enough.

Also, more open API providers can be included in the mashup ap-
plication. Currently, only GitHub API for repositories, and Springer
and CrossRef API for articles are used in the application. However,
we do notice that some repositories of the tools are hosted by GitLab,
which provides another set of APIs for fetching information related
to repositories and code contributors. And integrating their APIs
may increase the success rate of repository enrichment.
Some future research projects can also be conducted based on

this data integration project.
Firstly, several properties can still be enriched through this pro-

cess. For example, the introduction of the application domain/�eld
can be enriched by using third-party APIs like Wikipedia, or link-
ing the instances in our dataset to Linked Open Dataset [18] like
DBpedia [14]. Another example is adding some code snippets to the
expected input and output format using GitHub search APIs, which
is helpful for the developers to get started with the tools.
Moreover, as we state in section 3.1, the ontology of ProVerB is

not fully utilized. A lot of further research can be conducted based
on this ontology to inspect the possible matches among the tools.
For example, catalog the tools based on their application domains,
or explore the input-output relationships of the tools.

6 CONCLUSION
This article presented a data integration project to enrich a semi-
structured dataset with additional linked data using a Semantic Web
approach without breaking the original structure.

We show that 400 of 425 tools are included in this enrichment. 256
of 269 repositories and 518 of 525 articles related to these tools are
enriched with their name and abstract. 1419 new code contributors
of the tools and 1188 authors of the related papers are added to
our dataset. By evaluating these new data, we show that at least
273 authors participate in the tool’s code development and paper
writing. And at least 169 tools have at least one such expert who
may be the best contact person for further information. Based on
these numbers, we can conclude that our research questions RQ1
and RQ2 are answered, and the application that should be delivered
in contribution C1 is �nished.
We also show that a GitHub work�ow is well con�gured to au-

tomatically iterate the enrichment process regularly on a schedule,
since all the numbers above are fetched and analyzed from the daily
release on 29-06-2022, which is published by the work�ow automat-
ically. An enriched ProVerB dataset in the original structure will
also be published daily. We can conclude that the contribution C2
is �nished.

Finally, we can make a conclusion that our goals G1 and G2 are
ful�lled by answering the two research questions RQ1 and RQ2
with contributions C1 and C2.

6



Help Rich Info Get Richer: Enriching a semi-structured dataset using a Semantic Web approach TScIT 37, July 8, 2022, Enschede, The Netherlands

REFERENCES
[1] OWL Working Group 2012. OWL - Semantic Web Standards. OWL Working

Group. Retrieved May 2, 2022 from https://www.w3.org/OWL/
[2] SPARQL Working Group 2013. SPARQL - Semantic Web Standards. SPARQL

Working Group. Retrieved May 2, 2022 from https://www.w3.org/2001/sw/wiki/
SPARQL

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. 2001. The Semantic Web: A
New Form of Web Content That is Meaningful to Computers Will Unleash a
Revolution of New Possibilities. Scienti�cAmerican.com (05 2001).

[4] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked Data - The Story
So Far. Int. J. Semantic Web Inf. Syst. 5, 3 (2009), 1–22. https://doi.org/10.4018/
jswis.2009081901

[5] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne, and
Kevin Wilkinson. 2004. Jena: Implementing the Semantic Web Recommendations.
Association for Computing Machinery. https://doi.org/10.1145/1013367.1013381

[6] Jean-Marie Favre, Ralf Lämmel, Anya Helene Bagge, Tijs van der Storm, Mats
Stijlaart, and Vadim Zaytsev. 2017. SLEBoK: Software Language Engineering Body
of Knowledge. Retrieved May 2, 2022 from https://slebok.github.io

[7] Jeremy J. Carroll Graham Klyne. 2004. Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation. Retrieved May 2, 2022
from https://www.w3.org/TR/rdf-concepts/

[8] Ian Horrocks. 2008. Ontologies and the Semantic Web. Commun. ACM 51, 12 (dec
2008), 58–67. https://doi.org/10.1145/1409360.1409377

[9] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. 2003. From
SHIQ and RDF to OWL: the making of a Web Ontology Language. Journal of Web
Semantics 1, 1 (2003), 7–26. https://doi.org/10.1016/j.websem.2003.07.001

[10] A.K. Kalou, Dimitrios Koutsomitropoulos, and Georgia Solomou. 2016. Combining
the Best of Both Worlds: A Semantic Web Book Mashup as a Linked Data Service
Over CMS Infrastructure. Journal of Library Metadata 16 (10 2016), 0. https:
//doi.org/10.1080/19386389.2016.1258897

[11] Agnes Koschmider, Victoria Torres, and Vicente Pelechano. 2009. Elucidating the
mashup hype: De�nition, challenges, methodical guide and tools for mashups.
(01 2009).

[12] Sophie Lathouwers and Vadim Zaytsev. 2021. ProVerB: Program Veri�cation Book.
Retrieved May 2, 2022 from https://slebok.github.io/proverb/index.html

[13] Sophie Lathouwers and Vadim Zaytsev. 2022. Modelling Program Veri�cation
Tools for Software Engineers. In Proceedings of the ACM/IEEE 25th International
Conference on Model Driven Engineering Languages and Systems (MoDELS), Eugene
Syriani, Houari Sahraoui, and Nelly Bencomo (Eds.). IEEE. In print.

[14] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A large-scale, multilingual
knowledge base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.
https://doi.org/10.3233/SW-140134

[15] Yujie Liu. 2022. LiuLiujie/ProVerBMate-P2RConverter. Retrieved Jun 19, 2022 from
https://github.com/LiuLiujie/ProVerBMate-P2RConverter

[16] Yujie Liu. 2022. LiuLiujie/ProVerBMate-R2PConverter. Retrieved Jun 20, 2022 from
https://github.com/LiuLiujie/ProVerBMate-R2PConverter

[17] Yujie Liu. 2022. ProVerB-Ontology/ProVerB_1.4.0.owl. Retrieved Jun 19, 2022 from
https://github.com/LiuLiujie/ProVerB-Ontology/blob/main/ProVerB_1.4.0.owl

[18] John P. McCrae. 2022. The Linked Open Data Cloud. Retrieved Jun 21, 2022 from
https://lod-cloud.net

[19] Mark A. Musen. 2015. The protégé project: a look back and a look forward. AI
Matters 1, 4 (2015), 4–12. https://doi.org/10.1145/2757001.2757003

[20] Lixian Ni, Zhuoming Xu, Ting Wu, and Wenjie He. 2013. Visualizing Linked Data
with JavaScript. In 2013 10th Web Information System and Application Conference.
211–216. https://doi.org/10.1109/WISA.2013.48

[21] Damires Souza, Bernadette Farias Lóscio, and Ana Carolina Salgado. 2012. Com-
bining semantic information and information quality on the enrichment of
Web Data Integration Systems. WEBIST 2012 - Proceedings of the 8th Interna-
tional Conference on Web Information Systems and Technologies (2012), 219 – 224.
https://doi.org/10.5220/0003961602190224

[22] Joachim Van Herwegen, Pieter Heyvaert, Ruben Taelman, Ben De Meester, and
Anastasia Dimou. 2018. Knowledge Representation as Linked Data: Tutorial. In
Proceedings of the 27th ACM International Conference on Information and Knowledge
Management (Torino, Italy) (CIKM ’18). Association for Computing Machinery,
New York, NY, USA, 2299–2300. https://doi.org/10.1145/3269206.3274275

[23] José Ortiz Vivar, José Segarra, Boris Villazón-Terrazas, and Víctor Saquicela. 2022.
REDI: Towards knowledge graph-powered scholarly information management
and research networking. Journal of Information Science 48, 2 (2022), 167–181.
https://doi.org/10.1177/0165551520944351

A ENRICHMENT EXAMPLE AGREE
A.1 Data Extraction

Fig. 8. Data extraction

A.2 Data Enrichment

Fig. 9. Enriched AGREE repository

Fig. 10. Enriched one of the contributors of AGREE

7

https://www.w3.org/OWL/
https://www.w3.org/2001/sw/wiki/SPARQL
https://www.w3.org/2001/sw/wiki/SPARQL
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1145/1013367.1013381
https://slebok.github.io
https://www.w3.org/TR/rdf-concepts/
https://doi.org/10.1145/1409360.1409377
https://doi.org/10.1016/j.websem.2003.07.001
https://doi.org/10.1080/19386389.2016.1258897
https://doi.org/10.1080/19386389.2016.1258897
https://slebok.github.io/proverb/index.html
https://doi.org/10.3233/SW-140134
https://github.com/LiuLiujie/ProVerBMate-P2RConverter
https://github.com/LiuLiujie/ProVerBMate-R2PConverter
https://github.com/LiuLiujie/ProVerB-Ontology/blob/main/ProVerB_1.4.0.owl
https://lod-cloud.net
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1109/WISA.2013.48
https://doi.org/10.5220/0003961602190224
https://doi.org/10.1145/3269206.3274275
https://doi.org/10.1177/0165551520944351


TScIT 37, July 8, 2022, Enschede, The Netherlands Yujie Liu

Fig. 11. Enriched article 1

Fig. 12. Enriched article 2

B SUPPORTING SPARQL QUERIES

Fig. 13. SPARQL query for the number of sameAs relationships

Fig. 14. SPARQL query for the number of tools with at least one expert

8


	Abstract
	1 Introduction
	1.1 Research goals and requirements
	1.2 Technology
	1.3 Research questions and contributions

	2 Related work
	3 Approach
	3.1 Step 1: Design the ontology
	3.2 Step 2: From ProVerB to RDF
	3.3 Step 3: Data enrichment
	3.4 Step 4: Data evaluation
	3.5 Step 5: Enriched RDF file
	3.6 Step 6: From RDF to ProVerB

	4 Result
	4.1 ProVerB to RDF
	4.2 Data Enrichment
	4.3 Data Evaluation
	4.4 RDF to ProVerB

	5 Discussion
	6 Conclusion
	References
	A Enrichment example AGREE
	A.1 Data Extraction
	A.2 Data Enrichment

	B Supporting SPARQL queries

