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Abstract
Processing big-data has been shown to have a many fold

speedup for GPU hardware, however the process of retriev-

ing ready-to-use data from storage devices still requires a

process of decompression, currently performed on the CPU.

Due to the increasing computational power of GPUs, the

decompression step starves the GPU of data, effectively do-

ing nothing until more data is available to process. This

research analyses the minimum required speed of decom-

pression on a GPU, such that offloading the decompression

step to the GPU, is faster than traditional methods that uti-

lize the CPU. Results show that GPUs cannot outperform

CPUs when considering compression ratio, however the im-

proved parallelism of GPUs allows for a 2 times reduction in

decompression times.

Keywords: GPGPU, bypassing CPU decompression, big-data

compression and decompression algorithms, decompression

algorithm recommender system, GPU guidelines

1 Introduction
Ever since the creation of the Electronic Numerical Integra-

tor And Computer (ENIAC), computers have been steadily

increasing in complexity and computational power. In re-

cent years, however, big data processing has emered as a

difficult task a computer can tackle. Nowadays, big data

processing is primarily carried out on specialised pieces of

hardware, named accelerators, such as Graphical Processing

Units (GPUs). The usage of GPUs has been highly aided not

only by improvements in the hardware itself, but also by

optimizations in the software and firmware ran on GPUs.

For big data, data transfer overhead between different

memory spaces and extensive storage footprint, can become

significant performance challenges. One solution to reduce

this overhead is to store data, on persistent memory devices

such as HDDs or SSDs, in a compressed form. However,
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processing the data requires it to be decompressed, which in

turn adds extra compressing/decompressing steps between

storage and processing units (e.g. GPUs or CPUs). Up until

now, the path used by the system to load and decompress

data into the GPU utilizes the system’s CPU, main memory,

and a PCIe bus. Specifically, data is loaded from I/O storage

to the main memory of the system, decompressed by the

CPU, and further stored in the main memory, from where it

is transferred to the Video Memory (VRAM) of the GPU.

Figure 1. Current and proposed data transfer paths

New developments, like GPUDirect [22], enable direct

SSD-to-GPU data paths. Thus, in this work, we investigate

the benefits (and pitfalls) of bypassing the CPU and main

system memory, and performing decompression in the GPU

memory directly. Figure 1 shows a comparison between the

current path and the one proposed by our research. It illus-

trates both the current path (i.e., via the CPU), and the pro-

posed path, which streamlines the process. The new, novel,

path offloads the decompression process from the CPU to

the GPU, assuming (a) the compressed data transfer to GPU

memory is shorter, and (b) the decompression on the GPU

is not significantly slower than on the CPU. In fact, with

the recent developments in GPU computation power, newer

and faster decompression algorithms are being developed

and implemented on GPUs [7, 20, 23, 29], leading to faster

decompression times compared to CPUs.

In this work, we provide a quantitative comparison of

these two ways to process big data with accelerators, and
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aim to determine what is the more efficient version for a

specific case-study from particle physics (provided by CERN

1
). The main question that we aim to answer is:

Is there a performance benefit to use IO-to-GPU instead
of IO-to-CPU-to-GPU for compressed data?

The following questions are aimed at building and sup-

porting the main research question:

RQ1: What are accurate analytical models for the two sys-

tem architectures?

RQ2: WhichGPU decompression algorithms provide a speed-

up in processing big-data ?

RQ3: What are guidelines to select themost effective (de)com-

pression algorithm for the IO-to-GPU architecture?

2 Related Work
GPUs are a category of hardware accelerators designed to

perform massively parallel tasks. One example of such a

parallel task is matrix multiplication, a task suitable for the

gaming industry which enables GPUs to be a cheaper option

than similar hardware accelerators [6, 10]. GPU Decompres-

sion has only become viable in recent years, but considering

the rate at which GPUs increase in performance [26], it is

set on a path to be a very relevant optimization subject into

the future. Moreover, as GPU compute power increases, the

need for utilizing the full potential of GPUs requires and

enables multitasking techniques [4, 33].

A 2010 paper on trends in both hardware and software de-

velopment for GPUs[19], exemplifies the interest boom that

GPUs had around a decade ago, as well as the developments

that have been made in both GPU hardware and software.

Moreover, the paper concludes with a call for direct connec-

tion with non-volatile storage devices, and claims that such

a change may bring a new development revolution.

Furthermore, research into the benefits of direct access

to non-volatile memory, such as [3], showcase benchmark

results and implementations that yield a 35% decrease in data

transfer times, as well as a 20% increase in end-to-end perfor-

mance when using the new proposed path (IO-to-GPU - see

Figure 1), bypassing the CPU, compared to the old path (IO-

to-CPU-to-GPU). Benefits of direct storage access are further

emphasized by [17] and [27], which present the discrepancy

between slow storage devices and fast GPU processing times.

Many past works relate that the benefits of direct access to

the non-volatile memory are relevant for larger I/O file sizes

than for smaller I/O file sizes [3, 7, 21], thus proving the point

that the technology is relevant for big-data environments

where file size is constantly increasing.

Last but not least, there needs to be a mention to the recent

advancements made by NVIDIA, a leader in the development

of GPUs. The development and support of CUDA (Compute

Unified Device Architecture) enables parallel processing on

1
CERN is the European Organization for Nuclear Research.

the GPU, reducing processing bottlenecks [24]. In addition

to that, NVIDIA has been creating an easy to access API,

named GPUDirect, that enables developers and researchers

to easily create a direct link between the non-volatile mem-

ory and the GPU [22]. Further developments by NVIDIA

include NVComp, a fast in-house built compression and de-

compression algorithm, specifically made to run on NVIDIA

GPUs [23].

3 Methodology
To answer the main research question, we propose a three-

stage research plan, driven by the following research mile-

stones:

3.1 RQ1: Defining analytical models
We conduct a content-analysis of the typical systems and

applications that use GPUs for big data processing. As a

result of content-analysis, we provide a high level description

of the system by means of an UML diagram. The diagram

showcases what the components used for the interoperability

of non-volatile memory and GPU are. Moreover, further

analysis of the interaction between components will enable

us to derive functional analytical models of the system(s)

under consideration, capturing both the IO-to-CPU-to-GPU

and IO-to-GPU configurations.

3.2 RQ2: Analysing GPU-decompression algorithms
To understand the feasibility of GPU decompression - in

terms of functionality and speed - we conduct a literature

study. The findings of this literature review will lead to a

basic understanding of the current situation and limit the

scope of the analysis. Based on the analytical models pro-

posed (see RQ1), combined with the decompression speeds

published in literature, we construct an initial list of candi-

date GPU decompression algorithms that could enable faster

processing times in big-data applications. Furthermore, we

conduct detailed experiments to benchmark (some of) these

candidate GPU decompression algorithms, aiming to confirm

their relevance.

3.3 RQ3: Development of guidelines for selecting a
GPU decompression algorithm

Using parameters defined within the analytical model and

the list of tested GPU decompression algorithms, we pro-

pose a set of guidelines for selecting the most appropriate

decompression algorithm for a given application. The guide-

lines are based on parameters such as compression ratio

and decompression speed, and indicate the best GPU decom-

pression algorithm to be used such that the requirements

of a stakeholder are best met. For our specific case-study,

these guidelines enable CERN to make an informed choice

when selecting the decompression algorithm suitable for

their specific particle physics applications.
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4 Analytical model
Any computer system is comprised of multiple inter - con-

nected components, each acting at different parameters and

speeds. Loading compressed data and transforming it into

ready-to-use, decompressed data requires precise coordina-

tion between the components of a computer system.

To compare the proposed, IO-to-GPU system and the cur-

rent, IO-to-CPU-to-GPU one, we focus on execution time. We

further assume that runtime of the actual application is not
affected by the data transfer, and, therefore, is the same for

the two systems. Thus, the comparison will effectively focus

on the time taken by each system to load the first data into

the GPU (video) memory.

To compare the data transfer of the two systems, we de-

velop an analytical model that can be used to determine the

time taken by each system for this operation. Utilizing Fig-

ure 2 and Figure 3 we define an argument for the importance

of each component and the time required by it.

Furthermore, data is transferred using the PCIe connection.

The PCIe connection is a serial, low-latency bus used to

interconnect many components within a compute system.

The connection uses series of 2 channels, one for sending

and one for receiving. Therefore, a naming scheme exists to

express the number of simultaneous connections that can

exist between two components.

For example, GPUs require an x16 connection to be able

to operate at their full potential. Moreover, the current gen-

eration of PCIe , PCIe 4.0, provides a theoretical bandwidth

of up to 64GB/s. Each generation of PCIe aims at doubling

the effective transfer speed, version 5.0 aiming to provide a

theoretical max speed of 128GB/s [11]. Moreover, PCIe can

be used together with other technologies such as NVIDIA’s

proprietary High-Speed GPU Interconnect, NVLink2 [31]

4.1 The traditional system: IO-to-CPU-to-GPU
As observed in Figure 2, the current system utilizes the RAM

memory to store data until it is required by the CPU for

decompression. During this transfer, we denote data as being

in compressed form, thus expecting it to require less storage

space, aiding the time of transfer (𝑇𝑅𝐴𝑀−𝐶𝑃𝑈 ).
With data in memory, the CPU performs the decompres-

sion, which varies in time depending on the specifications

of the CPU and on the decompression algorithm itself. This

time is denoted by𝑇𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 . After the decompression pro-

cess, the CPU temporarily stores data into system memory

𝑇𝐶𝑃𝑈−𝑅𝐴𝑀 until it can be transferred to the video memory of

the GPU.𝑇𝐶𝑃𝑈−𝑅𝐴𝑀 is expected to be greater than𝑇𝑅𝐴𝑀−𝐶𝑃𝑈
as the data is now in decompressed form, requiring more

space and a longer transfer time.

Last, but not least, a data transfer exists between the main

system memory and the GPU video memory (𝑇𝑅𝐴𝑀−𝐺𝑃𝑈 ).

This transfer time depends on 3 parameters: (1) read speed

2https://www.nvidia.com/en-us/data-center/nvlink/

Figure 2. Traditional flow of transferring data

of the CPU RAM; (2) transfer speed of the PCIe bus; (3) write

speed of the GPU VRAM. We note that accurately bench-

marking (1) and (3) is cumbersome for modern systems, and,

therefore, our PCIe benchmark measures all three compo-

nents into a single 𝑇𝑅𝐴𝑀−𝐺𝑃𝑈 value.

The total time of transferring data while utilising the tra-

ditional path is given by summing all the required times:

𝑇𝐼−𝐶−𝐺 = 𝑇𝑅𝐴𝑀−𝐶𝑃𝑈 +𝑇𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 +𝑇𝐶𝑃𝑈−𝑅𝐴𝑀 +𝑇𝑅𝐴𝑀−𝐺𝑃𝑈

(1)

4.2 The proposed system: IO-to-GPU

Figure 3. New proposed system workflow: IO-to-GPU

By analysing the proposed system following Figure 3,

only three important times can be identified: (1) the transfer

time required to load data from non-volatile storage to the

3
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GPU (video) memory, (2) the decompression time required

by the GPU (𝑇𝐺𝑃𝑈−𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 ), and (3) the time required to

store the decompressed data into the video memory again

(𝑇𝐺𝑃𝑈−𝑉𝑅𝐴𝑀 ).

We acknowledge that the non-volatile storage devices and

their speeds are irrelevant for the analytical model, as the

expected performance, while not throttled by other compo-

nents, is assumed to be the same between the two systems,

and, therefore, provides no added value to the comparison.

Thus, we will disregard (1) from the final equation. Thus,

the total time required for the proposed path consists of

summing the times required for each transfer individually:

𝑇𝐼−𝐺 = 𝑇𝐺𝑃𝑈−𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 +𝑇𝐺𝑃𝑈−𝑉𝑅𝐴𝑀 (2)

4.3 Complete equation
To ensure the new system (IO-to-GPU) provides better per-

formance than the traditional version, the following must

hold:

𝑇𝐼−𝐺 < 𝑇𝐼−𝐶−𝐺 (3)

To further continue the analysis, we split the times into two

categories: Decompression and Transfer. Due to a double

transfer of uncompressed data supplemented by a transfer of

compressed data compared to two transfers of compressed

and uncompressed data respectively, the traditional system

yields a lower transfer time compared to the proposed sys-

tem.

Recent advances in GPU decompression algorithms [17,

20, 28, 29] indicate GPU decompression can outperform CPU

decompression, even by as much as 5 times. In the following

chapters, we will quantify both the transfer and decompres-

sion times for the two different systems, to determine when

Equation 3 holds.

5 Evaluation
CERN

3
has provided a real use-case for the technologies pre-

sented in this paper. Specifically, this case-study focuses on

ROOT, a framework for data processing, born at CERN, at

the heart of high-energy physics research. Every day, thou-

sands of physicists use the ROOT data format and analysis

tools to analyse their data and/or to perform simulations. As

ROOT continuously improves the performance of its tools,

the developers want to determine whether the IO-to-GPU

system is beneficial for their ROOT data-sets and tools by

allowing for faster processing, storing, or accessing data. To

this extent, they have provided multiple data-sets that were

used to test the algorithms, and a brief description of sce-

narios of interest. In this section, we discuss in more details

how we set-up and benchmark a representative case-study.

3
CERN is the European Organization for Nuclear Research - https://home.
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5.1 Compression and Decompression algorithms
Compression and decompression on GPUs has been exten-

sively investigated in the past years [2, 7, 8, 17, 20, 23, 28, 29,

32], motivated by rapid GPU development. For our analysis,

we investigate the capabilities of NVComp, an NVIDIA de-

veloped library aimed at simplifying the transition process

of developers to GPU compression and decompression.

NVComp provides two C++ interface levels: (1) a high-

level API, intended for new and inexperienced developers,

and (2) a low-level API, allowing developers to tweak a larger

set of parameters, potentially improving the compression /

decompression further. The latest version of NVComp is 2.3
at the time of writing and includes support for 7 decompres-

sion algorithms, presented in Table 1.

Cascaded High-throughput compressor ideal for analyt-

ical / tabular data

LZ4 A General-purpose byte-level compressor,

suited for a wide range of use cases

Snappy Similar to LZ4, however is a more popular

format used for tabular data

GDeflate An in-house built compressor based on en-

tropy encoding and LZ77 providing high com-

pression ratios

Deflate This is a Huffman and LZ77 combination. It

is provided as a compatibility compressor for

existing deflate-compressed data-sets (such as

GZip)

Bitcomp A compressor built in-house that is designed

to be used in scientific computing applications

ANS An in-house entropy based compressor.

Table 1. Algorithms tested from NVComp version 2.3

To evaluate the performance of IO-to-CPU-to-GPU, we also
require performance data for CPU decompression algorithms

(see Figure 2 and Equation 3). We have selected the following

two CPU algorithms: ZLIB4 and FastLZMA25. We simply

selected these two algorithms because they are two of the

most used, and perform well on CPUs [12].

For the purpose of this research, we have analyzed the

performance of each decompression algorithm on uncom-

pressed data provided by CERN, with the end goal of select-

ing the most suitable algorithm(s) for the specific case (and

data) from CERN.

5.2 Experimental Setup
In order to test the algorithms mentioned in the previous

section, we have used a local system, named showcees, de-
ployed at the University of Amsterdam, and multiple system

configurations offered on the Distributed ASCI Supercom-

puter 6 (DAS-6) [1]. The hardware configurations of both

4https://zlib.net/
5https://github.com/conor42/fast-lzma2
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systems are presented in Table 2. The showcees system has

been used to develop and test benchmarks, whilst the DAS-6
has been used for performing the final benchmarks with

GPUs such as A4000, A6000 and A100.

UvA Showcees DAS-6

CPU Intel Xeon Gold 6148

AMD EPYC-2 7402P

AMD EPYC-2 7282

GPU* NVIDIA GTX 1080Ti

NVIDIA RTX A4000

NVIDIA RTX A5000

NVIDIA RTX A6000

NVIDIA A100

RAM** 400GB 128 GB

OS Cent OS 7 Rocky Linux 8

Table 2. Specification of hardware used

* - GPU configuration depends on the node tested

** - Defined per node.

Both systems run NVIDIA’s CUDA Toolkit version 11.2

and NVComp version 2.2. Furthermore, the systems were

also provided with NVIDIA GDS 1.3, enabling a direct path

between the storage device and the GPU.

All tests were carried out in an automated way by means

of a Python script, which allows setting multiple benchmark

parameters such as iteration count (1), chunk size (2), or

GPU warm-up (3). These parameters are explained in Table 3.

Furthermore, the code used for testing can be found in the

GitHub repository [9].

(1) Defines the number of times the compression is run

and returns the average of all runs

(2) Defines the size of the chunks. In theory, higher

chunk sizes allow for higher compression ratios at

the expense of less parallelization.

(3) The number of times the compression methods are

accessed before running the benchmark. In practice

warming up the kernel code can provide significantly

better results [25].

Table 3. Parameters used for testing

Both systems have been tested for their PCIe latency using

a benchmark provided by in NVIDIA’s CUDAToolkit. Table 4

illustrates the PCIe version, and the measured transmission

speed from CPU to GPU and vice-versa.

System PCI-E version HtoD
6
speed DtoH

7
speed

Showcees 3.0 12000 MB/s 12800 MB/s

DAS-6 5.0 25000 MB/s 16200 MB/s

Table 4. PCIe performance on both systems.

6
Host-To-Device

7
Device-To-Host

5.3 The ROOT data-sets
The case-study from CERN focuses on data using a novel,

ROOT-specific data format. The data-sets are represented by

columnar files called pages. Multiple pages can be concate-

nated directly, in order, to create an RNTuple. Each page has

a limit of 65KB which is an inherited trait of ROOT, allowing

for very fast write speeds when creating the page file.

The pages store data of different types: boolean, integer,

float, and string. The data can be used for processing in differ-

ent combinations. For our evaluation, we have assumed the

following scenarios: (1) single-file and (2) multi-file. Specif-

ically, in the case of single-file, we assume the processing

requires a single page, while in the case of multi-file, we

assume the processing requires multiple pages at the same
time, potentially of different types.

6 Results
In this section we present a subset of our results from bench-

marking NVComp for different application scenarios, us-

ing both systems and different algorithms. All data gath-

ered through benchmarks has been collected in the project’s

GitHub repository
8
[9] .

6.1 Single-file applications
The first tests are performed on 5 randomly chosen files from

the same data-set, containing integer values. Figure 4 shows

the compression ratio across all algorithms for integer-like

data types. We observe that compressors designed to deal

with analytical or tabular data such as Cascaded, perform

much better than general purpose algorithms such as Snappy

or LZ4. This can also be seen in Table 5, where the throughput

of each compressor is listed. The values in red are algorithms

that resulted in a compression ratio lower than 1, deeming

the compression useless. The green values are the next best

values that provide a compression ratio above 1. Bold cells

represent the highest (i.e., best) value in a certain column.

Figure 4. Average compression ratio across all algorithms

Moreover, Table 3 introduces one inter-changeable param-

eter within the tests, the chunk size, which defines smaller

chunks that the GPU divides the data into such that it can

perform parallel compression and decompression. Larger

chunk sizes typically lead to higher compression ratios, at

the expense of less parallelism exposed to the GPU. NVComp

defaults to a chunk size of 64KB, which usually proves to be

a good starting point for compressing data. However, 64KB

8https://github.com/AndreiArdei/NVCOMP_CompressionBenchmarks
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Bool Float Integer String

Compress Decompress Compress Decompress Compress Decompress Compress Decompress

0.05 0.07 0.73 1.02 1.23 2.13 0.55 0.86 ANS

0.42 0.00 7.68 0.06 7.85 0.04 3.19 0.04 Bitcomp

0.00 0.00 3.33 4.10 3.94 3.05 0.00 0.00 Cascaded

0.02 0.02 0.22 0.30 0.18 0.40 0.05 0.13 Deflate

0.02 0.05 0.24 0.85 0.16 1.10 0.05 0.25 GDeflate

0.05 0.18 0.55 2.35 0.21 0.47 0.06 0.12 LZ4

0.08 0.22 0.79 1.91 0.28 0.98 0.06 0.26 Snappy

0.01 0.18 0.02 0.24 0.00 0.86 0.01 0.43 ZLIB

0.02 0.03 0.03 0.03 0.01 0.27 0.01 0.10 FastLZMA

Table 5. Compression and decompression throughput of each algorithm in GB/s. In bold: the best results in a certain column; in
Red: results with compression ratio less than 1; in Green: the best results per data type with compression ratio larger than 1.

is too large a size compared to the 65KB file size of each

individual page. We measured the impact of the chuck size

by benchmarking, and the results are presented in Figure 5.

We observe that, whilst a chunk size of 4KB does provide

greater compression and decompression speeds, it shows an

average drop of 15% in compression ratio. In contrast, higher

chunk sizes do provide slightly higher compression ratios,

but are slower. We further observe a clear drop-off in both

the compression ratio and the (de)compression speeds at the

32KB mark. Intuitively, any chunk size larger than that of

the page file performs the same, effectively using the entire

file at once, and not performing any paralellization.

Figure 5. Average change of performance identified at dif-

ferent chunk sizes for a 65KB file.

6.2 Multi-file applications
We further considered the use of CUDA streams [16, 18, 30]

as means of parallelizing compression and decompression

tasks for multi-file applications. By default, all GPU tasks

are submitted to a single queue (called default stream) and

performed in FIFO
9
order, where each task has exclusive

use of the full GPU (i.e., all available CUDA cores). In most

cases, this is not an efficient way of performing (small) tasks,

which have insufficient work to "fill" the GPU, and therefore

under-utilize the system. To counter such underutilization,

9
First In, First Out

Figure 6. Compression and decompression results utilizing

multiple streams performed at 4KB chunks

GPUs can make use of multiple CUDA streams. This allows
tasks to be distributed over multiple queues, which are ex-

ecuted in parallel, thus providing more work to the GPU

and enabling better utilization of the full GPU potential. For

example, assuming a 3-task application,such an approach

would prove beneficial - We define 𝑇𝑠𝑒𝑞 (Equation 4a) as the

time required for the tasks running in sequential order, and

𝑇𝑝𝑎𝑟 (Equation 4b) as the time required to when running the

tasks in parallel over multiple parallel streams.

𝑇𝑠𝑒𝑞 = 𝑇1 +𝑇2 +𝑇3 (4a)

𝑇𝑝𝑎𝑟 = max(𝑇1,𝑇2,𝑇3) (4b)

Previous benchmark runs have been performed using only

one stream for compression and decompression. We have

created a multi-stream benchmark that allows the GPU to

compress and decompress multiple files in parallel, utilizing

the performance of the CUDA cores more efficiently. The

performance results gathered with this benchmark are pre-

sented in Figure 6. We note that our parallel implementation

of Deflate and GDeflate does not perform correctly, therefore

their performance has been omitted.

Furthermore, Figure 7 presents the performance deficit

(that is, the additional time required for a sequential task

compared to a parallel one) experienced in sequential runs

compared to parallel runs as the chunk size increases.

6
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Figure 7. Performance deficit of sequential tasks compared

to parallel tasks as chunk size increases.

6.3 Limitations
Throughout our empirical evaluation, we have identified a

couple of limitations of our approach. To begin with, for the

data provided by CERN, compression and decompression

algorithms have proven to be highly dependent on the data

type (e.g., double vs. string). A worst-case example of such a

dependency, visible in Table 5, are IEEE 754 double-precision

floating point numbers [5, 13, 14], which are prevalent in

the provided data-sets. This 64 bit representation of floating

point numbers proves difficult for compression algorithms

to detect a relevant level of entropy and, therefore, the com-

pression ratio is up to 5× worse than for other data-sets.

Moreover, in some cases, the overhead created by the com-

pression algorithm results in a compressed file larger than

the initial uncompressed file - as seen in the Float column

of Table 5. This issue can be improved upon by introducing

split encoding in ROOTs file system, and thus allowing for

better bit packing solutions or adopting more specialized

algorithms such as [15].

7 Algorithm selection guidelines

CPU Decompression GPU Decompression

Bool 6.97 54.14

Float 140.82 15.42
Integer 5.42 3.62
String 13.51 5.87

Table 6. Times (in 𝜇𝑠) as predicted by the analytical model.

Following the results from the previous section, as well as

the application of section 4 in Table 6, we observe that no

single algorithm fits all scenarios. Instead, the NVcomp algo-

rithms perform significantly different for different data-sets.

To effectively compare the use of decompression in our two

systems, we use the models from Equation 1 and Equation 2

to calculate the overall performance for IO-to-CPU-to-GPU

and IO-to-GPU, respectively. Table 7 shows the top three

results
10
. We note that the PU-to-memory transfer times (i.e.,

10
The complete results are presented in [9]

Compression Decompression Ratio

Bool ANS ZLIB FastLZMA

Float Cascaded Cascaded FastLZMA

Integer Bitcomp Cascaded FastLZMA

Strign Bitcomp ANS ANS

Table 7. Best result for each data type

𝑇𝑅𝐴𝑀−𝐶𝑃𝑈 ,𝑇𝐶𝑃𝑈−𝑅𝐴𝑀 ,𝑇𝐺𝑃𝑈−𝑉𝑅𝐴𝑀 ) are all included in the de-

compression times during benchmarking (for CPU and GPU,

respectively), while the 𝑇𝑅𝐴𝑀−𝐺𝑃𝑈 is negligible for small file

sizes such as the ones we used.

Table 7 displays the best algorithms for compression, de-

compression and compression ratio in each of the data types.

As can be seen, most algorithms appear in each column; how-

ever, a few patterns are worth mentioning. Algorithms per-

formed on the CPU show a clear win in all data types when

considering the compression ratio, providing an increase

factor of at least 2 times. Furthermore, GPU algorithms can

utilize their parallelism capabilities to provide much faster

compression and decompression throughput performance.

We reinforce that GPU decompression is highly influenced

by the chunk size, with smaller chunk sizes resulting in sig-

nificantly higher throughput for both compression and de-

compression. However, the increase in throughput comes at

the cost of compression ratio. Additionally, Figure 6 shows

that we can further exploit parallelization on the GPU by

utilizing multiple streams, transforming the sequential pro-

cessing time in a parallel one, as illustrate in the example in

Equation 4a and Equation 4b.

When considering which algorithm to use, the needs of

the application play an important role. For example, if com-

pression is used prior to storing data long term, a CPU-based

algorithm may offer better performance, due to its increased

compression ratio, that results in lower file size. If the goal of

compression is to stream data faster, GPU-based algorithms

may be considered as the increased parallelism allows for

higher throughput of data, however compressing this data

with the required algorithm is proven to be slow in general.

8 Conclusion and Future Work
Developments in GPU technology have enabled new ways to

transfer, process and utilize data. In this context, we analysed

the potential of improving GPU-based big-data analysis by

using direct I/O to GPU data transfers. Our analysis stems

from a CERN case-study, where data is stored in compressed

format, and needs to be processed on a GPU. Thus, we eval-

uated the performance difference of data transfers with and

without the CPU in the loop. The two data paths differ in

transferred data volume (compressed or decompressed) and

decompression algorithm (CPU- or GPU-based).

7
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8.1 Summary and main findings
To determine whether GPU-based decompression can im-

prove big-data processing when data is stored in a com-

pressed format, we formulated three research sub-questions

(see section 1). We answer them as follows.

RQ1: What are accurate analytical models for the two
system architectures?
We created analytical models for both systems incorporating

GPU hardware. We acknowledge two important limitations

of our models. First, they do not include data type as pa-

rameter. Our work proved that data types play an important

role in (de)compression performance. Second, some of the

parameters (i.e., PU to RAM transfers) in these models can-

not be measured in isolation; however, our measurements

do include them correctly.

We further used the models to estimate the perfomrance of

the two GPU systems for single file applications. Our results

demonstrate the models can capture the differences between

the two architectures, and select the best performing one

when calibrated with measured data.

RQ2. Which GPU decompression algorithms provide
a speed-up in processing big-data?
For GPU decompression, we focused on algorithms provided

by NVComp; for CPU-decompression, we used two popular

algorithms. Out of the 6 GPU algorithms, we were unable

to determine a best-fit algorithm. We have instead found

that data types have a significant impact on the performance

of each algorithm. Moreover, when compared to the perfor-

mance of CPU algorithms we notice a significant increase

in throughput, mainly due to the GPU parallelism. We con-

clude that GPU decompression can provide a speed-up over

CPU decompression, and can be used to accelerate big-data

processing. Taken together with the faster transfer of com-

pressed data, these results indicate that the proposed data

path in this work (i.e., IO-to-GPU) is likely to outperform

the traditional one (i.e., IO-to-CPU-to-GPU).

RQ3. What are the guidelines to select the most effec-
tive (de) compression algorithm for the GPU ?
Based on our empirical data, we found no winning algorithm.

However, using the analytical model, we have developed a

guideline system that allows the user to choose the best-fit

algorithm for their application. Results are refined using data
type, compression ratio, decompression throughput as param-

eters. The guidelines identify that for the intent of storing

files in compressed form, CPU algorithms still outperform

GPU ones, however once the intent is that of ’on-the-fly’

decompression, GPUs are capable of providing a many fold

increase in throughput.

Finally, we are able to answer our main research question:

Is there a performance benefit to use IO-to-GPU instead
of IO-to-CPU-to-GPU for compressed data?. The results
in Table 5 and Table 6 show that utilizing an IO-to-GPU

architecture enables much greater decompression speeds

compared to utilizing an IO-to-CPU-to-GPU architecture.

This improvement can be seen especially when the uncom-

pressed data is needed on the GPU, therefore eliminating

transfer times and requiring a single transfer of compressed,

thus smaller in size, data.

8.2 Limitations and threats to validity
We discuss three potential limitations of this work. First,

this paper analyses the performance of GPU decompres-

sion algorithms through the NVComp framework and does

not consider other, possibly more effective, algorithms. Sec-

ond, our analysis is based on data from a specific case-study,

with small files (around 65KB). This means that the GPU is

required to perform more tasks of loading and unloading

data from IO, potentially limiting its performance. However,

we expect that larger data files will further boost the per-

formance of the GPU, further reinforcing our conclusion

that IO-to-GPU is the better architecture. Third, and final,

we have analysed the performance of the data path only,

without taking into account any specific applications. One

example when this is a limitation is the single-file scenario.

When transferring a single, small file we cannot fully utilize

the throughput of the PCIe.

8.3 Future Work
We identify three directions of future work.

First, the analytical model can still be improved in different

ways. (1) Our results (see section 6 indicate data types affect

the performance of each algorithm, but are not yet taken

into account in the model. (2) Furthermore, we demonstrated

successful multi-stream decompression, but this was also not

included in the model. (3) Last, but not least, the model can

could also the time taken by the processing kernel, thus

providing a more accurate comparison between the two

systems, which would include both the data flow and the

data processing. Such an extended model, for a GPU kernel

processing 𝑛 files, 𝑓𝑖 , 𝑖 = 1..𝑛 of data types 𝑑𝑖 , would be:

𝑇𝑛𝑒𝑤
𝐼−𝐺 = max

𝑖=1..𝑛
(𝑇𝐺𝑃𝑈−𝑉𝑅𝐴𝑀 (𝑓𝑖 ) +𝑇𝐺𝑃𝑈−𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠 (𝑓𝑖 , 𝑑𝑖 ))

+𝑇𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑓1, 𝑓2, ..., 𝑓𝑛)
Further analysis and validation are, however, required before

adopting this new model.

Additional research is also needed to validate the full

model, including the I/O to PU performance. Such valida-

tion was unfeasible for the current remote machines due to

technical reasons.

Finally, in the current research, we were required to run

separate benchmarks at multiple chunk levels in order to find

peak performance. Therefore, a different, area of research

is a formal definition of chunk size. Analysing if it can be

statistically defined as a percentage of the original data size,

thus enabling developers to fine-tune their algorithms for

improved performance.
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