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Java is a widely used programming language, running on different devices
and used by many businesses. The Java Collections Framework is the official
backbone of data structure and algorithm related matters. Nowadays, there
are other Collections frameworks, providing data structures. However, such
frameworks can provide amuch better performance than the Java Collections.
This raises the question of how the Java Collections can be modified or
extended to achieve greater performance. We investigated how this could be
achieved for data structures that base their implementations on the List and
the Set data structure. Our benchmarks showed that Unrolled Linked Lists
and Skip Lists provide a faster List data structure, and that Bloom Filters
provide a much lower memory consumption than sets.

Additional Key Words and Phrases: Java Collections, Performance Bench-
mark, Data Structure, List, Set, Filter

1 INTRODUCTION
There are many data structures and implementations thereof, pro-
vided by languages, libraries and frameworks. For most data struc-
tures within a certain category, the operations are the same, often
times specified by an interface, as it is the case within the Java
Collections.

We can distinguish between different data structures through some
attributes: whether the order matters, whether duplicate elements
are allowed, how elements are accessed, or whether elements are
mapped to one another. The way that such data structures are im-
plemented is mostly hidden to the developer.

The Java Collections is a framework that has been introduced several
years ago and over time they were maintained and extended, adding
support for modern functionality such as Lambda Expressions and
Streams [3]. Other frameworks, such as Guava by Google 1 or the
Apache Commons Collections 2 aim to offer similar functionality.

The amount of data structures provided by the Java Collections is
rather small. For instance, the only implementations of the List in-
terface are LinkedList and ArrayList [7] as shown in Table 1. An
empirical study conducted by Costa et. al has shown that for most
scenarios when using the Java Collections, there was an alternative
implementation, that would have led to an increase in performance
and reduced memory usage [16].

In this research paper, we try to identify the main set of operations
for different types of data structures, re-implement variants from
inside Java Collections and new data structures outside the Java
1https://guava.dev/
2https://commons.apache.org/proper/commons-collections/
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Collections and evaluate the performance, eventually discussing if
it would make sense to introduce the benchmarked data structures
to the Java Collections.

RQ1: What list implementations can be introduced to the Java Col-
lections, that provide better performance or memory usage over
existing list implementations, for some use cases?
RQ2: What set implementations can be introduced to the Java Col-
lections, that provide better performance or memory usage over
existing list implementations, for some use cases?

Related work: Benchmarking the Java Collections [16, 17, 20, 25],
Benchmarking techniques in Java [19, 21], Lists implementations
[22, 23, 27–29] and Bloom Filters [13, 15, 18, 23].
Voorberg carried out a performance analysis of integer-based mem-
bership data structures in Java [34]. This includes data structures
that support insert, delete and isMember operations. Addition-
ally, he proposed a new hash map data structure, and he looked
into ways to improve collision resolution in hashing-based data
structures. Parts of the benchmarking setup are taken and adopted
from his research.

The paper is arranged as follows: Section 2 will introduce details
of Java Collections about its structure, design goals and related re-
search work. Section 3 will outline the setup of the benchmarks,
conducted in this paper. Sections 4 and 5 will analyse the imple-
mented and other existing data structures for Lists and Unordered
Sets, respectively. Eventually, Section 6 will summarize our research
work.

2 JAVA COLLECTIONS
The Java Collections is the prominent framework, consisting of
Interfaces, general-purpose, special-purpose and concurrent imple-
mentations thereof, and other classes.

Most implementations are part of one out of four families: the List,
the Set, the Map and the Queue family. Lists are an ordered data
structure that can be indexed and where duplicate elements are
allowed. Sets can be either ordered or unordered, and they do not
allow duplicate elements. Maps can be thought of as an extension
to sets, as they map a key, to a value. Traditionally, sets and maps
use hashing functions, to find a location in memory for each value.
Finally, queues have a FIFO or, in the case of a Stack, LIFO ordering.
They do not support indexing, but they allow for duplicate elements.

For each of the families, there can bemultiple interfaces, for instance
Set and SortedSet. The list of all interfaces and implementations
can be found in the Java Documentation 4.

3https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
4https://docs.oracle.com/javase/8/docs/technotes/guides/collections/reference.html
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Table 1. Overview of existing general-purpose implementations in the Java Collections 3

Interface Hash Table (HT) Resizable Array Balanced Tree Linked List (LL) HT + LL
Set HashSet TreeSet LinkedHashSet
List ArrayList LinkedList
Dequeue ArrayDequeue LinkedList
Map HashMap TreeMap LinkedHashMap

Next to the general-purpose implementations shown in table 1,
there are both special-purpose and concurrent implementations for
different uses. Interestingly, not all concurrent implementations
have a non-concurrent implementation. By way of example, there
is a concurrent implementation of the Skip List Set named Concur-
rentSkipList 5, but there is no non-concurrent implementation of
the Skip List Set. This suggests that some concurrent data structures
could be re-implemented without support for concurrency, in order
to increase performance when concurrent features are not needed.

The primary reason to use the Java Collections are included but
not limited to a reduced programming and learning effort to the
user, as well as an increase in performance [4]. The data structures
implemented by the Java Collections often times have thousands of
line and complex optimizations, to fulfil the latter goal.

As mentioned in the Introduction and as seen in Table 1, the quan-
tity of general-purpose implementations for the shown interfaces is
fairly small, with 3 implementations at maximum. Some of the cells
are left empty, as it would not make sense to have an implemen-
tation of an interface with all of the listed data structures, simply
due to redundancy. As an example, the only general-purpose classes
implementing the List interface are ArrayList and LinkedList,
whereas efficient general-purpose implementations such as Unrolled
Linked Lists [32] and Skip Lists [28] are not implemented.

Famous competing existing libraries are the Apache Commons Col-
lections, Guava, the Eclipse Collections (formerly known as GS or
Goldmansachs Collections) and Koloboke, some of which were se-
lected for an empirical study conducted by Costa et. al [16].

As found out in the same study, it is not trivial to select the correct
Java Collection and implementations thereof: in contrary, a selection
of unsuitable collections can lead to runtime bloat and higher mem-
ory usage [16]. At the same time, it was discovered that for most
scenarios of the study, there was an alternative implementation that
would have led to an increase in performance and reduced memory
usage [16].

A metric that can be taken into consideration in addition to effi-
ciency and memory usage is energy efficiency. This has become
increasingly important in mobile devices, such as phones and lap-
tops. Some of the most widely-used data structures from the Java

5https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ConcurrentSkipListSet.html

Collections, including the ArrayList and the HashMap have bad
energy-efficiency [25]. Energy efficiency will not be taken into con-
sideration within this research paper, but it is a parameter which
could be taken into account for future research work on the modifi-
cation of the Java Collections.

2.1 Choice of Data Structure Families
We chose to focus on the List and Set interfaces. On one hand,
those two interfaces have wide use cases, and we assume that they
are amongst the most used interfaces. On the other hand, there exist
a number of implementations not present in the Java Collections or
improvements to be taken on existing implementations, as shown
in Chapter 5.

All data structures are implemented either by ourselves, or they are
adapted from the Open Data Structures book [23] or other licensed
repositories. We do not implement all methods specified by the
interface, but the ones for which the performance is relevant.

Initially, we implemented the data structures by ourselves. However,
this approach was both time-consuming and error-prone, and we
soon realized that we gain little from implementing complex classes
by ourselves. Therefore, for some data structures, we reused and
adapted methods or classes from licensed open source repositories
or from books [23].

The data structures were found out about by reading books about
algorithms and data structures, or by visiting programming threads.
At the start of the research, our focus was on improving hashing
collisions, by using Cuckoo Hashing, and comparing tree implemen-
tations against each other, such as Scapegoat Trees, Splay Trees and
Left-Leaning-RBTrees. After a while, our focus shifted to Bloom Fil-
ters, Unrolled Linked Lists and Skip Lists, since our impression was
that these data structures would have a larger use-case over the
previously mentioned ones.

3 METHODOLOGY
For all the categories that were tested, benchmarks were performed,
making benchmarks an essential part of this research. Due to the
similarity of the research topic, many benchmarking methods were
adopted from Voorberg’s paper in 2021 [34].

3.1 Benchmarking Structure
A benchmark can be split into two phases: the setup phase and the
experiment phase. In the setup phase, a varying number of elements
is inserted into the data structure, in order to create a base layer for
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the experiment. In the experiment phase, the methods of the data
structures are executed in different combinations. For both experi-
ments, the sum of the actions are measured. For some experiments,
only a subset of the operations will be measured, in order to get a
more accurate result.

The number of instructions in the experiment phase is always, 220
and the number is shared equally throughout the instruction types.
This number was used by Voorberg’s research to cover a large
variety of performance cases, and it was equally optimal in our
benchmarks [34]. The setup phase inserts 2𝑛 elements into the list,
where 𝑛 = {10, 11, .., 20}. Again, we found that this range gave
us representative results, while keeping the run time at a bearable
level. The benchmarks are always applied to uniformly and normally
distributed data.

3.2 Benchmarking in Java
Benchmarking in Java is quite different than in other languages, due
to factors such as Garbage Collection (GC), the Java Virtual Machine
(JVM) and Just-In-Time compilation (JIT). There are a number of
different ways to perform benchmarks, by for instance running a
test over multiple iterations over the same data set or different sets,
only taking the best runs or by excluding compilation time, as found
out in a research article from 2007 [19].

Throughout this research, we will take the median of 10 iterations
over the same data set. This is done for a different number of el-
ements, inserted in the setup phase. There will only be one VM
invocation, such that we will measure the steady-state performance,
which should resemble a real use case scenario as close as possible
[19]. The same applies to GC: similarly to Voorberg’s research work
[34], we are not aiming to reduce GC. Thus, there are some non-
deterministic influences by the GC. However, this is important to our
benchmarking, as we want it to be similar to a real use case scenario.

As suggested by researchers in 2015 [21], it is advisable to ’warm-
up’ the JVM, in order to reduce other non-deterministic influences,
including JIT compilation time. Therefore, we will run the methods
of the setup and experiment operations, before performing the actual
benchmark.

3.3 Measurements
The performance is measured through the System.currentTime
method in Java [11]. For each benchmark iteration, there will be a
time measurement for the setup and for the experiment phase.

The memory usage is measured through the jcmd tool [5]. To our
surprise, this was a lot harder than expected, because jcmd would
group the memory usage for classes from the Java Collections, and
it would only show the memory consumption for the class headers
and the pointer to the internal classes.

We have tried using different commands in the jcmd utility other
than GC.class_histogram and we tried to use VisualVM, but we

faced the same problems there.

The most promising alternative to jcmd was jol [9]. Using jol,
the memory values would be consistently shown for all data struc-
tures. However, the values were not reliable. When benchmarking
the Bloom Filter and the Counting Bloom Filter, the Bloom Filter
had the same memory consumption as the Counting Bloom Filter,
although the memory consumption of the Counting Bloom Filter
should have been higher by a factor of 4. We faced the same problem,
with the Array List and the Unrolled Linked List.

After talking to Voorberg, who used jcmd and faced similar issues,
we decided to stick with theoretical computations for the excep-
tional classes. For data structures such as the Bloom Filter this was
not an issue, since the its memory consumption is straightforward
to compute. For classes such as the Unrolled Linked List, it was much
harder to compute, since the data structure could resize. We ended
up inspecting the class instances in the debugger of the benchmarks,
and basing our computations on that data, as it would help us ap-
proximate the real memory consumption value.

Both values are measured for each iteration of each file, distinguish-
ing between setup and experimental time. Whenever applicable,
only a subset of operations will be measured, in order to get a better
idea of how long different operations take.
The testing environment was running Arch Linux 5.16 (64bit) with
an i7-4700MQ processor and 16GB of RAM.

3.4 Statistical Analysis
In our benchmarks, we have 10 iterations for each value of n, in
which three to four data structures are compared. We compute 95%
Confidence Intervals, providing us with an interval that the values
will appear with a probability of 95% [30, p. 131]. In order to compute
the confidence interval, the distribution of the data needs to be
known.We conduct a KS test, to check the distribution that our result
data adheres the most to [30, p. 175]. Our results have shown, that it
mostly follows an inverse gamma distribution for timed experiments,
and a normal distribution for memory experiments. The prior is the
same as in Voorberg’s research, which is likely to happen because
of the similar benchmark setup. Thus, the experiment data is fit into
the corresponding distribution, and afterwards the CI intervals are
computed. In the plots, they are represented by the shaded areas
surrounding the mean line.

4 LISTS
List data structures have two important properties: elements are
ordered, and duplicate elements are allowed. Therefore, elements
can be selected by their index, which is less common in other data
structures. Lists typically support the following operations [23, p.
7]:

• size(): returns the length of the list
• get(i): returns the value of 𝑥𝑖
• set(i, x): sets the value of 𝑥𝑖 equal to 𝑥
• add(i, x): inserts 𝑥 at index 𝑖
• remove(x): removes the element 𝑥𝑖

3
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Fig. 1. Skip List of height 3 with 5 elements.
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These methods rely on finding an element by its value and optionally
doing an operation (contains, depending on the implementation
also remove), or accessing an index and doing an operation (get,
set, add).

Although lists are ordered, it is important to note this property does
not imply that lists are sorted. In unsorted lists, operations such as
element querying can have different look up times, depending on
whether the list is sorted or unsorted.

Provided implementations of the List interface are ArrayList and
LinkedList, which is actually a Doubly Linked List [6], as well as
synchronized Lists [7], which we are not relevant in this research
work. Array Lists support direct lookup, which ensures that get
and set operations are performed at 𝑂 (1). For add and remove,
elements of the array may need to be shifted, which gives a worst-
case run time of 𝑂 (𝑛). Because Doubly Linked Lists do not support
direct look, but instead elements are found by iterating over the
nodes, the runtime for get and set is𝑂 (1+min(𝑖, 𝑛−1)). As adding
and removing elements only requires to adjust links, the runtime
for those operations are the same as for get and set.

4.1 Modern implementations
Some of the list implementations that have not made it into the Java
libraries yet are Unrolled Linked Lists and Skip Lists [28, 29, 32], both
of which have been part of extensive research on variants, such as
Concurrent Unrolled Linked Lists, or Deterministic Skip Lists [24], or
theoretical analyses on Skip Lists [26, 31].

Fig. 2. Illustration of an Unrolled Linked List with 3 blocks
of size of 4 and 9 elements

1 2 3 •

5 6 •

9 10 11 20

A further improvement to Doubly Linked Lists can be made by stor-
ing the XOR operation of the neighbouring node addresses, instead
of the two addresses [33]. However, due to the lack of using pointers
in Java code, such a data structure cannot be implemented.

Unrolled Linked Lists can be seen as Linked Lists consisting of
arrays, called blocks, as shown in Figure 2. Not only does this make
indexing faster, but there is also less overhead due to a single pointer
needed for multiple elements, instead of just a single element [23, p.
71]. Whereas Linked Lists have the disadvantage that their data is
spread out in memory, and Array Lists have the disadvantage that
they insert and delete at 𝑂 (𝑛) due to shifting operations, Unrolled
Linked Lists minimize both problems [22].
The conventional Skip List data structure is probabilistic, as some
randomness is involved when inserting elements. Due to its run
time, it is often being compared to balanced trees. Skip Lists can be
thought of Linked Lists, with multiple links to next elements, setup
similarly to binary trees. Skip Lists provide a similar run time to
balanced trees, which makes them highly efficient [28]. While the
worst case run time is better for balanced trees than for skip lists
[28], it has been shown that the worst case run time is achieved
rarely in practice [31]. An overview of the run times of the list
implementations can be found in Table 2.

4.2 Experimental Design
The data structures used in this experiment are the Array list, Dou-
bly linked list, Unrolled linked list and the Skip list The data con-
sists of a generated list of indexes that are within the interval
[0, list.length]. We split the experiment into an experiment with
get and set instructions, and an experiment with add and delete
instructions, since those two pairs of methods have similar opera-
tions and run times. In the add and delete test suite, the instructions
alternate to ensure that the generated indices are in range of the
list size. For the other test suite, the order of the instructions is
randomized.

The split will also give us an idea of which list would be best suited,
when it needs to be modified frequently, when it needs to be ac-
cessed frequently or when both cases are needed often.

We perform a total of 220 instructions on lists of size 210, 211, ...
220. Finally, we decided to generate test suites for both uniformly
distributed data and normally distributed data with 𝜇 = 2exp−1 and
𝜎 = 2exp−3.

4.3 Benchmarking Results
4.3.1 Time behaviour. Overall, the results seem to align with the
theoretical run times of each data structure. With its linear run time,
the Linked list has by far the worst performance, and we couldn’t
include it in most experiments as the benchmarks would take sev-
eral minutes to finish.

For the get and set benchmark, the Array list with stellar𝑂 (1) run
times outperformed the the other two data structures. However, both
the Unrolled linked list and the Skip list still had decent performance,

4
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Table 2. Runtime of List implementations for n elements, operations at index i and 𝑏 =
√
𝑛 blocks [23, p. 23]

List get(i)/set(i,x) add(i,x)/remove(i)

ArrayList 𝑂 (1) 𝑂 (𝑛)
DoublyLinkedList 𝑂 (1 +min{𝑖, 𝑛 − 𝑖}) 𝑂 (1 +min{𝑖, 𝑛 − 𝑖})
UnrolledLinkedList 𝑂 (1 +min{𝑖, 𝑛 − 𝑖}/𝑏) 𝑂 (𝑏 +min{𝑖, 𝑛 − 𝑖}/𝑏)𝐴
SkipList 𝑂 (log𝑛)𝐸 𝑂 (log𝑛)𝐸

𝐴 - Amortized run time
𝐸 - Expected run time

Fig. 3. Performance of get and set methods benchmarked
on uniform data

with the Skip List performing better for an increasing amount of
elements, due to its logarithmic run time. The result for the get and
set benchmark can be seen in Figure 3.
In the add and remove benchmark, the Unrolled linked list and the
Skip list had about the same performance as in the previous bench-
mark suite, since the theoretical run times are about the same. The
Array list on the other hand had an extremely high run time, due to
the need of shifting elements in the array after each add and remove
instruction. The result can be seen in Figure 4.
We got similar results for normally and uniformly distributed data
for all benchmarks.

4.3.2 Memory behaviour. We had to manually compute the mem-
ory consumption of the Unrolled Linked List. The Array List had
the lowest memory consumption, which we expected.

The Skip List had a similarly high memory consumption as the
Linked List. Although that is very high memory consumption, the
Skip List proves to be a much faster list implementation than the
Linked List, at the same memory consumption.

Our computations of the memory consumption of the Unrolled
Linked List have shown that it is slightly worse than the memory
consumption of the Array List, but better than the memory con-
sumption of the other two data structures. We expected this result,

Fig. 4. Performance of add and removemethods benchmarked
on uniform data

Fig. 5. Memory consumption for accessing lists (uniform
data)

since the Unrolled Linked List can be seen as a combination of
arrays and a Linked List. In practice, it is likely that the memory
consumption of the Unrolled Linked List is slightly higher than in
our computations, due to some overhead that was not visible to us.
The memory usage can be seen in 5.
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4.3.3 Conclusion. We have seen an incredible improvement in the
performance of add and remove instructions for the new list imple-
mentations, at the cost of a higher memory consumption and slower
direct access times, than with Array Lists. In use cases where an
ordered and indexable data structure with frequent modifications is
needed, the two implementations proved their value in the exper-
iments. In any case, the two data structures are an improvement
over the Linked List.

Hence, we think that it would make sense to introduce one, if not
both of the data structures to the Java Collections. Our results have
shown that both the Skip List and the Unrolled Linked List provide
their own benefits: while the Skip List has a logarithmic and thus
more scalable run time for add and remove instructions, the Unrolled
Linked List has a lower memory consumption.

5 UNORDERED SETS
Unordered sets are unordered and duplicate elements are not al-
lowed. Many set implementations make use of hash functions, due
to the elements being unique. This results in direct lookup and thus
very fast run times.

The operations supported by Sets are the following [23, p. 8]:

• size(): returns the size of the set
• add(x): adds x to the set, if not already present
• remove(x): removes x from the set, if present
• contains(x): checks whether x is a member of the set

Although the theoretical worst-case run time is 𝑂 (𝑛), in practice,
if the table size is large enough, i.e. if the load factor is below 1,
meaning that it is expected that there is just one element per bucket,
one can expect a run time of 𝑂 (1).

The only general-purpose unordered set that is available for use in
the Java Collections is the HashSet [10]. The HashSet implementa-
tion in Java relies on the Java HashMap implementation, which uses
self-balancing Trees as a chaining method for collision resolutions.

Looking back at Section 4, if one were to implement a Hash Set or
Hash Map by themselves, a Skip List could be used as a chaining
method for collision resolution. We do not think that it would be
advisable to introduce such a data structure to the Java Collections,
because the advantages of a Skip List cannot be applied to this case:
it does not matter that Skip Lists are easier to implement than self-
balancing trees, because the implementation is not a concern of
the user of the Java Collections, but of the developers of the Java
Collections, which does not provide value to the user. On top of
that, Skip Lists do not have a better run time than self-balancing
trees.

5.1 Modern Implementations
Besides the Hash Set, famous unordered sets are Bloom Filter imple-
mentations. Bloom Filters and variations thereof are one of the most
time and memory-efficient set implementations that one could use
[13, 18].

Fig. 6. Illustration of a Bloom Filter using a single hash func-
tion together with the values 10, 20, 30 and 40. Elements with
the same hash values as 10, 20 and 30 have been inserted in
the Bloom Filter before. No elements with the same hash
value as 40 have been inserted, which means that 40 is not
present in the Bloom Filter.

0 1 0 0 0 1 1 0

0 1 2 3 4 5 6 7

10 20 30

40

ℎ (10) ℎ (20) ℎ (30)

ℎ (40)

Bloom filters update the table, without storing the value of an ele-
ment or its hash. For conventional Bloom Filters, this means that
adding an element to the Bloom Filter will set the bit of some hashed
values to 1. An example of a Bloom Filter using a single hash func-
tion is depicted in 6.

Although much more efficient than Hash Maps, this introduces the
problem of False Positives. In other words, the result of the con-
tains query is either False or Possibly True. On top of it, element
removal is no longer possible, as it would interfere with other ele-
ments with the same hash code.

Another problem is that table resizing is not possible, because the
values of the elements themselves are not stored. This means that
one would carefully have to choose the table size before creating
bloom filters.

One way to add element removal is by using Counting Bloom Fil-
ters [18], a variation, where the single bit is replaced by a numeric
counter. When running any instruction, the element will be hashed
multiple times, and the instruction is performed upon all hash value
indexes.

To resolve other issues such as the resizing issue, other variants
including the Scalable Bloom Filters have been proposed [12, 35].

The run time of the Bloom Filters is 𝑂 (𝑘) regardless of the amount
of elements present in the filter, where 𝑘 denotes the amount of
keys. In comparison, for the Hash Set with Linked List chaining,
the run time varies on the amount of elements, where it can take
between 𝑂 (1), and in the unlikely worst case, O(n).
Thememory usage is easy to compute: Bloomfilters require−1.44 log2 𝜖
bits per element [15]. At a false positive rate of 𝜖 = 0.01, this results
in 9.6 bits per element. Our implementation of the Counting Bloom
Filters takes 4 bits of space per element, meaning that the memory
usage is at roughly 38 bits per element.

6
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Table 3. Time complexity of set data structures for n elements
and k hash functions

Set add(i) remove(i) contains(i)

BloomFilter 𝑂 (𝑘) 𝑂 (𝑘)
CountingBF 𝑂 (𝑘) 𝑂 (𝑘) 𝑂 (𝑘)
HashSetLL 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)
HashSetLL𝐸 𝑂 (1) 𝑂 (1) 𝑂 (1)
HashSetRBTree 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)

5.2 Experimental Design
The data structures used in this experiment are the Hash set with
Linked list-chaining, Hash set with Red Black Tree-chaining, Bloom
filter and Counting Bloom filter We generate a list of uniformly and
normally distributed values that are added, removed or queried. We
decided to add the Red Black Tree to have another data structure for
to benchmark the filters against.

Because conventional Bloom filters lack the ability to resize, we
decided that the two Hash Maps would not need to resize either and
that they would instead have a fixed size, which would balance out
the memory usage and the run time.

We have multiple test suites to isolate the different methods: a
query test suite a dynamic test suite with add, query and delete
instructions and finally a test suite with add and query instructions.
Normal bloom filters do not support element removal. Therefore,
they are not included in the second test suite. Since we still wanted
to benchmark their add performance, we added the last test suite.

The split will give us an idea of which data structures would be
suited when the set needs to be modified frequently, when it needs
to be accessed frequently, or when both are needed.

We perform a total of 220 instructions on sets of size 210, 211, ..., 220.

All of our Set data structures use the Murmur3 hashing function,
introduced by Austin Appleby, to hash elements [1]. We chose Mur-
mur3 as our hashing method, because we were looking for a fast
and therefore non-cryptographic, but reliable hash function, which
accepts a seed to support multiple hash iterations. Murmur3 satisfies
our requirements. As a side note, it is already implemented in the
Apache Java Collections [8].

Our Bloom filters have a false positive rate of 1%, which determines
the size of the set. We concluded that this false positive rate would be
low enough to be rendered as useful. The number of hash functions
is derived from the size of the set.

5.3 Benchmarking Results
5.3.1 Time Behaviour. To our surprise, the performance of the
Bloom Filters was not much better than the performance of the
other data structures. For higher List sizes, the Bloom Filters were

faster, whereas for smaller Set sizes, the Bloom Filters were notice-
ably slower. We expect that this has to do with the high amount
of hashing that the Bloom Filters undergo. This makes the Bloom
Filter slow at the start, but overall more scalable. The performance
of the Counting Bloom Filter was very similar to the one of the
Bloom Filter.

The Hash set with Linked List chaining was better for a low amount
of elements, but worse for a large amount of elements. The perfor-
mance of the Hash set with Red Black Tree chaining was bad when
there were add instructions, due to re-balancing, but for querying,
the performance had good scalability.

The performance of the Hash set with Linked list chaining was
slightly worse when using normally distributed data, since there
were more collisions and therefore longer chains of Linked lists.

The performance of the data structures can bee seen in Figures 7
and 8.

Fig. 7. Querying test for set data structures (normal data)

5.3.2 Memory Behaviour. We had to manually compute the mem-
ory consumption of the Bloom Filters. Therefore, we cannot fully
rely on the results. Nevertheless, our results have shown that the
Filters have a much lower memory consumption than the other data
structures.

This is most likely because very few bytes are allocated for each
expected element, whereas the other data structures allocate four
bytes for every element, on top of overhead data from the chaining
method.

5.3.3 Conclusion. If memory consumption is important and false
positives can be sustained, then Bloom Filters provide a solid alterna-
tive to HashSets. The performance could be improved as suggested
by existing research [14]. Resizing is not possible with the two varia-
tions shown here, however, one could use a different variant [12, 35].
If one wanted to add Bloom Filters to the Java Collections, these

7
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Fig. 8. Dynamic test case for Counting Bloom Filter and two
Hash sets (normal data)

Fig. 9. Memory consumption for querying sets (normal data)

aspects would be need to kept into account.

Our benchmarks were performed with Integer values, requiring
only 4 bytes of space. The Bloom Filter renders to be even more
space efficient compared to the other data structures, in cases in
which the data type is larger than an Integer. In that case, we still
require very few bytes, compared to multiple bytes being required
for storing the element alone.

Further investigation needs to be done, on which Bloom Filter vari-
ation would be the most fitting. Depending on the Bloom Filter that
was chosen, some properties might clash with the Set interface
defined in Java. Perhaps, it would make sense to introduce a Bloom
Filter interface, in that case.

6 CONCLUSIONS
In this research paper, we investigated if faster or more memory-
efficient List and Set data structures should be added to the Java

Collections. Throughout the benchmarks, we have seen that for
both the List and the Set interface, there are data structures that
could be added in order to fulfil these requirements and thus offer a
more versatile selection of data structures in the Java Collections.
Both the List and the Set data structures implemented adhere to
their theoretical run times in our benchmarks.

For RQ1, we have looked at the Skip List and at the Unrolled Linked
List data structures. Both data structures heavily outperform the
Linked List in terms of time, and they outperform the Array List
for add and remove instructions. For scenarios in which lists with
frequent modifications are necessary, they provide a great fit. Re-
trieving and replacing elements happens at linear run time with
the Unrolled Linked List and with logarithmic run time for the Skip
List, whereas it happens with constant run time for the Array List.
However, their performance is still fine, when compared to the per-
formance of the Array List when needing to add and remove many
elements.

For RQ2, we have looked at the conventional Bloom Filter and at
the Counting Bloom Filter. At the cost of False Positives, they pro-
vide a much more memory-efficient data structure, while providing
scalable performance. Due to some differences to the Set interface,
it could make sense to introduce a new interface.

An example where Bloom Filters could be useful is when developing
a service which keeps track of millions of URLs. Instead of storing
the entire URL string for each URL, the Bloom Filter only keeps
track of whether the URL has occurred, leading to a decreased mem-
ory consumption. Google Chrome uses Bloom Filters to check if an
entered URL is malicious [2]. Whenever the Bloom Filter returns a
value of 0, we know for certain that the URL was not visited. When-
ever the value is 1, the URL is checked in a different hash table to
verify if it is malicious.

Other Bloom Filter variants need to be investigated, in order to seek
out the best Bloom Filter variant for the Java Collections. It could
also be investigated, if data structure implementations for other
interfaces could be introduced to the Java Collections. As for mod-
ifying data structures, we could see from the research mentioned
in Section 1 that implementations of other Collections can provide
better performance for the same data structures. Therefore, some
data structures of the Java Collections could be updated accordingly.
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