Extracting Sections From PDF-Formatted CTI Reports

BEN DE KONING, University of Twente, The Netherlands

CTIPreprocessor

Introduction

Threat

Mitigation steps

Fig. 1. A graphical display of how CTIPreprocessor takes a PDF-formatted CTI report and returns the different sections of the CTI report.

Extracting text from a PDF file is a task that sounds easier than its real-life
execution. PDF files namely only know the position of the characters on
the page, not knowing that the characters form words together. Another
challenge is to separate it into different sections and paragraphs. The text
and section extraction is important for pre-processing Computer Threat
Intelligence (CTI) reports. Processing these reports is part of the task descrip-
tion of Security Operation Centers (SOCs). These reports contain valuable
information on active cyber threats and are therefore important for cyberse-
curity. This research paper focuses on text extraction from a PDF-formatted
CTI report, intending to extract the text separated into the sections present
in the CTI report. This paper presents, after a thorough analysis of multiple
candidate tools, which text extraction tool is preferred for text and section
extraction from a PDF file using Python. This tool is then implemented to
work on a real-world CTI report.

Additional Key Words and Phrases: PDF, CTI Report, SOC, Text extraction,
Python, PDFPlumber, PyMuPDF, PyPDF2, Levenshtein

1 INTRODUCTION

Cyber Threat Intelligence (CTI) reports consist of incidents found
by a Security Operation Centre (SOC). SOCs are responsible for
the security of the IT infrastructures of businesses. CTI reports
are important for SOCs since they provide a lot of information
on a security alert, from background information to mitigation
steps. This information can then be used by others to improve their
cybersecurity systems and thus preventing a possible cyberattack
or a virus from entering their systems.

Processing CTI reports manually is a time-consuming and in-
efficient task[11]. Moving from manual processing to automated

TScIT 37, July 8, 2022, Enschede, The Netherlands

© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

processing would be an important improvement in the workflow
of SOCs. By using less time, costs per CTI report could go down,
more CTI reports could be processed per day, and processed CTI
reports allow for improved working efficiency because of function-
alities like searching and filtering. However, automated processing
requires the reports to be pre-processed so that a computer will be
able to understand the report. This pre-processing is necessary since
the documents are written in natural language, while the computer
would need raw text. CTIPreprocessor is a tool in development with
the goal to automate the pre-processing of CTI reports from various
sources on the internet. CTIPreprocessor will be able to process
two different report formats: HTML and PDF. This project will be
focused on PDF-formatted CTI reports.

Pre-processing CTI reports formatted as PDF is quite difficult due
to the way PDF files are structured. PDF files do not work with words
and paragraphs, but with the locations of the characters, making
it a layout-based format[10]. This makes retrieving information
from PDF files difficult, especially when structural details are to be
retrieved as well, e.g., section and paragraph details. This project
aims to solve the difficulty of pre-processing PDF-formatted CTI
reports for CTIPreprocessor.

The goal of this research is to explore how to extract text from
a PDF-formatted CTI report without losing document details (e.g.,
paragraphs, sections, etc.). To achieve the goal of this research, the
following research question has been defined:

e RQ - To what extent is it possible to extract text from a PDF-
formatted CTI report without losing document details, e.g.,
paragraphs and sections?

To help answer the research question, the following research sub-
question has been defined:

o RSQ - What text extraction techniques can be used to extract
text from a PDF document?

TScIT 37, July 8, 2022, Enschede, The Netherlands

This research is designed as a quantitative research. During the
evaluation, a quality metric and a duration metric are used to de-
termine the preferred text extractor from the list of candidate tools.
This research started with determining the text extractors that are
evaluated during this research (see Section 2). When the list of text
extractors is complete, a theoretical analysis of the documentation
of each text extractor is conducted (see Section 3). This analysis
aimed to determine the theoretical functionalities of the text ex-
tractors. After the theoretical analysis, an evaluation of each tool
is conducted within a controlled environment (see Section 4). This
environment consists of 100 generated PDF files, each containing
four predetermined sections with randomized but controlled text.
See figure 3 for an overview of the evaluation process. Next, the
preferred text extractor will be implemented on an actual CTI report,
allowing an evaluation of its real-world capabilities (see Section 5).
Finally, the discussion of the research results (see Section 6) and
the conclusion (see Section 7) are presented. In the appendix (see
Appendix A) are graphs belonging to the evaluation located.

2 CANDIDATE TOOLS

To determine when a text extractor is a usable and valid solution for
CTIPreprocessor, it is good practice to create a list of requirements
that a text extractor must fulfill to be a candidate for CTIPrepro-
cessor. This list contains two distinct categories of requirements:
mandatory requirements and preferred requirements. The manda-
tory requirements are:

o Able to extract text from a PDF-formatted file with the text

not displayed within an image

e Able to be used with Python3

e Using this tool, being able to identify sections

o Using this tool, able to identify paragraphs

The preferred requirements are:

e The tool is open source
o Able to select which parts of the document you want to extract

Next, a search for candidate text extractors was started. This
search took place on the internet, using Google Search and forums
like StackOverflow[2] and Codegrepper[8][9]. From this search, the
following candidate text extractors have been found:

e PDFPlumber - After finding the GitHub repository of this
tool[12], a quick read of the description showed that this tool
is capable of text extraction from a PDF file, consists of 99.5%
of Python code, and can extract detailed information about
the characters, including the font and font size. The font and
font size can be used to determine different sections within a
PDF file. Also, PDFPlumber is open-source, and when using
the location of the characters, the ability to select which parts
of the document you want to extract could be realized as well.

e PymuPDF - After finding the PyMuPDF GitHub directory[13],
it describes the tool as a connection of the original tool
MuPDEF[5] to Python. A quick read of the description re-
veals that PyMuPDF allows for the extraction of text from a
PDF file preserving the layout of the document. This feature
description could allow for the extraction of sections and
paragraphs. The tool can also be used in Python, although it
is mostly written in SWIG.

Ben de Koning

e PyPDF2 - In the documentation of PyPDF2[1] is mentioned
that the library can extract text from a PDF file, although this
is a difficult thing to achieve. There is no other information
about its capabilities, only that it is pure-python and capable
of extracting metadata as well. Altogether, it made it worth
it to have PyPDF?2 in the list of candidate text extractors for
CTIPreprocessor.

3 THEORETICAL ANALYSIS
3.1 PDFPlumber

PDFPlumber’s documentation[12] analysis reveals that PDFPlumber
is capable of two different text extraction versions: with layout and
without layout. The layout refers to the layout of the words on the
page of the PDF file, allowing PDFPlumber to copy this layout and
space the words and sentences so the layout of the text extraction
is similar to the layout of the PDF file. For example, when the PDF
file has the date written in the top right corner of the page, the
layout functionality of PDFPlumber would space the words in the
text extraction in such a way that the date is also in the top right
corner of the result. When the layout functionality is disabled, the
text extraction simply extracts the text, without focusing on the
layout.

For text extraction, the following four parameters can be altered
to influence the text extraction:

e X_tolerance - Altering this parameter can result in more or
fewer spaces between characters

e Y tolerance - Altering this parameter can result in more or
fewer newline characters between characters.

e X_density and Y_density — Altering these parameters can
result in more or fewer characters or newlines per point, with
point referring to the PDF unit of measurement. This is used
when the layout functionality is active.

It is also possible to extract the words with their details, like
location and font size. This could be an important functionality for
the extraction of the different sections since the font size can be
used to determine the headers.

Other functionalities include the extraction of tables and the
creation of an image of the PDF file’s pages that have rectangles
surrounding each detected word.

3.2 PyMuPDF

PyMuPDF has multiple different text extraction options for extract-
ing text from a PDF[6]:

o text — This option extracts plain text without any formatting.
This is the default option.

e blocks — This option extracts the text in blocks. If text is
connected (e.g., a paragraph or a sentence), then they will
also be combined into one block. This option returns the
blocks as a list.

o words - This option will generate a list containing the words
found in the PDF file. Spaces will be left out.

e html - This option transforms the PDF file into a fully work-
ing HTML file.

Extracting Sections From PDF-Formatted CTI Reports

Visual Overview: the TextPage Dictionary Structure

Page: {“width”: w, “height”: h, “blocks”: [blocks]}

Image block: {“type”: 1, “bbox": (x0, y0, x1, y1), “ext”: “png”, “width”: w, “height”: h, “colorspace”: n,
“xres”: xres, “yres": yres, “bpc”: bpc, “transform”: (a, b, ¢, d, e, f), “image”: b"."}

Text block: {“type”: 0, “bbox": (x0, y0, x1, y1), “lines”: [lines]}
E Line: {"bbox": (x0, y0, x1, y1), “wmode”: m, “dir”: (x, y), “spans”: [spans]}

|
|_> Span: {"bbox”: (x0, y0, x1, y1), “color”: sRGB, “font”: fontname, “size”: fontsize, “flags”: flags,
“origin”: (x, y), “text”: text}

Span: {"bbox": (x0, y0, x1, y1), “color”: sRGB, “font": fontname, “size”: fontsize, “flags”: flags,
“origin”: (x, y), “chars”: [chars]}

Char: {"bbox": (x0, y0, x1, y1), “c”: character, “origin”: (x, y)}

Image block Text block dict rawdict only

Fig. 2. Structure of TextPage object in PyMuPDF[7]

e dict or json - This option extracts the text as a dictionary or
a JSON string. It is said to have the same information level as
html.

e rawdict or rawjson — This option is a more detailed version
of dict or json. It namely also includes character details.

o xhtml - This option extracts the text with a similar quality as
text but also includes images and can be opened in a browser.

e xml - This option returns an XML object that contains posi-
tional and font information of each character.

From this list of text extraction options, text, blocks, and html are
the most interesting. text can be used if only plain text is needed,
blocks is mentioned to have the ability to be divided into paragraphs
as shown in the PDF file, and html could be interesting since HTML
code could be easier to extract sections from, depending on how the
HTML is generated.

Next to the text extraction option, there is also the functionality
of creating a so-called TextPage[7]. This object contains python
dictionaries of a page of a PDF file. Each dictionary has another
dictionary or list embedded, containing more detailed information.
The structure of a TextPage can be seen in Figure 2. This function-
ality looks to be a powerful asset in determining the sections of a
PDF file.

33 PyPDF2

PyPDF2’s documentation[1] does not mention any extra features
next to the plain text extraction. The PdfReader Class documen-
tation does not mention any interesting features regarding text
extraction. Also, the PageObject class only mentions the standard
text extraction functionality, which does have some spacing param-
eters. PyPDF2 does have a vast list of other functionalities it can do
with a PDF file, making it an interesting tool for other tasks than
text extraction. Because of the limited time this project has and the
documentation showing no sign of text extraction functionalities
with unique features, PyPDF2 will not be included in the evaluation.

TSclT 37, July 8, 2022, Enschede, The Netherlands

Test started

4

Generate
different Generated
section text

Lorem Ipsum
text sections

%

<+
Generate 100
PDF reports

Extract
headers

:

Extract Headers
sections of F-——-—— >/ with
each header sections

1

v v
Determine

edit distance ------ +/ distance
per section scores

=

Y

Yes Generate test
PDFs tested result report /<
on?

Fig. 3. The evaluation process.

4 EVALUATION
4.1 Methodology

For the evaluation, a controlled evaluation process was designed
in Python. This process is visualized in Figure 3. During this evalu-
ation, a test is defined as extracting the headers and sections, and
determining the metrics for one PDF file. Thus, each evaluation has
an equal number of PDF files as tests. The evaluation begins with
preparation for the tests by first generating four different Lorem
Ipsum texts, followed by generating 100 PDF files. each PDF file con-
tains four different sections: Introduction, Background Information,
Threat Information, and Mitigation Steps. The text of each section
is a randomized choice between the four Lorem Ipsum texts. Also,
the section Threat Information contains a lorem ipsum list of bullet
points. This is added to analyze how such a list influences the results.
With the PDF files ready, the text extractor is used on each PDF file.
this subprocess starts with the extraction of the headers. This is
done by filtering the font size. Next, the sections are extracted us-
ing the earlier extracted headers as dividers of the sections. Finally,
the extracted sections are compared with the Lorem Ipsum text it
originated from. This comparison is scored using the Levenshtein
edit distance. When all one hundred scores have been collected,

TScIT 37, July 8, 2022, Enschede, The Netherlands

the evaluation result report is generated. This report contains the
following information about the evaluation:

o the full extraction result of the last PDF file. It is displayed
per section, with the header above the text of the section, -

o the duration of the evaluation, the average edit distances per
section, and the average edit distance in total, -

o and the individual edit distances collected during the evalua-
tion.

By exporting the individual edit distances to Excel, the data is vi-
sualized in graphs with each graph showing the edit distances of a
different section throughout the evaluation. These graphs can be
found in the appendix (see Appendix A.1 and A.2).

Important to note is that the edit distance scores are only saved
when the header of the section is correctly extracted. This means
that having one hundred edit distances saved for a certain section,
the header extraction works flawlessly.

4.1.1 Measurement tools. The accuracy scoring system used during
this research is the Levenshtein edit distance between two given
strings. This metric determines the number of steps it takes to
convert the first string of text into the second one. Conversion
is done with only three different tasks: deletion, insertion, and
substitution[4]. The lower the edit distance is, the more similar the
two strings are. When the edit distance equals zero, the two strings
are considered identical. The library used is called the Levenshtein
library.

The duration of the evaluation is determined using the time li-
brary. This library can determine the current time in high detail and
allows calculations with it. By subtracting the starting time of the
evaluation from its ending time, the duration is determined.

Other libraries used worth mentioning are the following:

o from fpdf: FPDF, HTMLMixin - This library is responsible
for the creation of PDF files in Python. Using this library, one
can create a PDF file with images, text, and cosmetic details.
Locations and details of the various parts of the PDF file can
all be customized, making it a powerful tool for automated
PDF file creation.

o pdfplumber - This library is responsible for running the tool
PDFPlumber.

o fitz - This library is responsible for running the tool PymuPDF.

e from PyPDF2: PdfReader - This library is responsible for
running the tool PyPDF2.

4.1.2 Measurement environment. The evaluations are run on an HP
ZBook Studio G4. This laptop is equipped with 32GB of memory,
a 1TB SSD for storage, an Intel Core I7-7700HQ processor, and
an Nvidia Quadro M1200M graphics card. The evaluations are not
connected to or influenced by the internet connection, making the
network quality unimportant. The laptop is running Windows 10
Home version 21H2. The evaluation is run in Python, with the
version used during this evaluation being version 3.10.4:9d38120.
The evaluation environment is created in the programming tool
called Microsoft Visual Studio Code (VSC). This tool allows for
the creation of programming projects and the management of files
within them. It also contains a market for extensions, allowing a
programmer to use it for most programming projects.

Ben de Koning

RESULTS (repeats = 100)

Section 'Introduction' scored 34.5

Section 'Background Information' scored 35.26
Section 'Threat Information' scored 108.28
Section 'Mitigation Steps' scored 39.14
Average score in total: 54.295

Duration of test: --- 47.8108491897583 seconds ---

Fig. 4. Results of the PDFPlumber test

The evaluation is conducted on 100 separately generated PDF
files. The 100 PDF files have a combined size of 398 kB, which results
in an average file size of 3.98 kB. Next to the PDF files, there is also
one metadata.txt file, which size equals 9.57 kB for 100 PDF files.
The result of the evaluation will be saved in a .txt file. The size of
this document varies, depending on the PDF file size. The size of
the evaluation result files can be expected to be around 11.5 kB.

4.2 Results

4.2.1 PDFPlumber. The PDFPlumber evaluation was completed in
47.8 seconds. the text extractor scored an average edit distance of
54.295, meaning that on average there are 54.295 steps to be taken
for the text extraction of PDFPlumber to be equal to the original text.
The average edit distance per section can be found in Figure 4. The
lowest average edit distance equals 34.5 and is given to the section
Introduction, while the highest average edit distance equals 108.28
and is given to the section Threat Information (note that a lower
score is considered better). The graph containing the edit distances
collected per section can be found in Appendix A.1. Each graph
contains one hundred data points, which shows that the extraction
of the headers has not failed once during this evaluation. Looking at
the extracted text itself, it can be noted that PDFPlumber keeps the
same sentence structure as the PDF. This means that when a row in
the PDF ends, the text extractor adds a line break to the extracted
text. The result does not show any signs of paragraph separation.

4.2.2 PyMuPDF. The PyMuPDF evaluation was completed in 2.90
seconds. the text extractor scored an average edit distance of 24.588,
meaning that on average there are 24.588 steps to be taken for the
text extraction of PDFPlumber to be equal to the original text. The
average edit distance per section can be found in Figure 5. The
lowest average edit distance equals 17.46 and is given to the section
Background Information, while the highest average edit distance
equals 42.76 and is given to the section Threat Information (note
that a lower score is considered better). The graph containing the
edit distances collected per section can be found in Appendix A.2.
Each graph contains one hundred data points, which shows that the
extraction of the headers has not failed once during this evaluation.
Looking at the extracted text itself, PyMuPDF allows for the text to
be extracted in paragraphs. Each paragraph is in one line, making it
easy and convenient to extract the sections in paragraphs.

4.3 Comparison

When comparing the scores of both tools, it becomes clear that
PyMuPDF has significantly better scores than PDFPlumber. The

Extracting Sections From PDF-Formatted CTI Reports

RESULTS (repeats = 1@8)

Section 'Introduction’ scored 18.62

Section 'Background Information® scored 17.46
Section 'Threat Information' scored 42.76
Section 'Mitigation Steps' scored 19.51
Average score in total: 24.588

Duration of test: --- 2.9022371768951416 seconds ---

Fig. 5. Results of the PyMuPDF test

average edit distance scored during the evaluation of PyMuPDF is
about three times lower than PDFPlumber. A similar trend is visible
when comparing the average edit distances per section. When com-
paring the text extraction itself, it becomes clear that PDFPlumber
does not show any functionality in separating paragraphs, while
PyMuPDF separated each paragraph it detected and allows for easy
paragraph extraction.

When looking at the graphs, it becomes clear that every section
has one hundred data points, which shows that the extraction of the
headers from the PDF files works flawlessly. Comparing the graphs
show that the evaluation of PDFPlumber shows significantly larger
fluctuations than the evaluation of PyMuPDF. This trend is expected
to reflect the consistency of text extraction quality, showing that
PDFPlumber has difficulty being consistent with the extraction
quality.

4.4 Preferred Text Extractor

Based on the comparison of the evaluations of PDFPlumber and
PyMuPDF, PyMuPDF is the preferred tool for usage in CTIPreproces-
sor. The main argument for this is that PyMuPDF has a significantly
better score and time, next to the more convenient extraction of
paragraphs. Also, the edit distances of PyMuPDF are more consistent
over 100 generated PDF files than the edit distances of PDFPlumber.

5 IMPLEMENTATION

Now that the preferred text extractor for CTIPreprocessor is de-
termined, it can be further implemented for usage on an actual,
real-world CTI report. The report is collected from the website of
the Cybersecurity & Infrastructure Security Agency (CISA) [3]. The
following improvements were made:

e The text extractor will try to limit the text extraction to the
middle area of the page, thus excluding the header and footer
of the page. This prevents text equally sized as the header
or paragraphs from extracting as well. This is still not fully
working due to the difficulty of determining the borders be-
tween the header, footer, and middle parts. The measuring
unit is not specified in the documentation.

o The extracted text is now actively filtered on excessive spaces

and line breaks.

The header extraction is now capable of extracting headers

that are divided over two or more rows.

e Other small improvements of stability of the code.

TSclT 37, July 8, 2022, Enschede, The Netherlands

After updating and improving the code, it was executed on the
real-world CTI report, with the result exported in a .txt file. This re-
sulted in the following noticeable differences from what is expected
from the text extraction:

o Although the code tries to ignore the header, a sentence with
the same font size as the headers was extracted as a header
as well. This header does not have any text connected to it,
however, making it easy to remove after extraction.

On the first page, a text block called Best practices is placed
on the right of the text. This resulted in the text extractor
failing to successfully determine the paragraphs of the text.
Luckily, the text block is not spread throughout the text but is
added at the bottom of the text extraction of that section. This
shows that the text extractor is capable of dividing multiple
columns of text.

5.1 Future Work

For further versions of this text extractor of CTI reports, it is sug-
gested to focus on the system for determining what is a header and
what is text. Currently, the font sizes of the headers and the text are
expected to be known before text extraction. Also, the system for
ignoring the header and footer can use some improvements. Cur-
rently, the limits are hard-coded, while it would be better to have
this automatically determined or at least able to be provided. Finally,
the text extraction can be worked on for even better detection of
paragraphs, although it currently works well as well.

6 DISCUSSION

Looking at the evaluation results of PDFPlumber and PyMuPDF, it
becomes clear that the section Threat Information has significantly
higher scores than the other sections. This trend is visible for both
tools. A possible explanation for this is the addition of the bullet
points to the section Threat Information, which is the only difference
between this and the other sections.

The graphs also show another interesting trend, namely that the
edit distance values per section are only four different values. This
is best noticeable in the graphs of the PDFPlumber evaluation since
these data points show a larger fluctuation in values. The reason for
this trend is that there are four different section texts from which
the PDF generator can choose.

The edit distance fluctuation of the PDFPlumber evaluation is also
significantly larger than the edit distance fluctuation of PyMuPDF.
This, however, can also be influenced by the difference in imple-
mentation of both tools. Although the implementation of both tools
was aimed to be as similar as possible, the tools do not have equal
capabilities. Therefore, the fluctuation is still a good representative
of the consistency of text extraction quality.

7 CONCLUSION

Based on the evaluation results of this research, it can be said that it
is possible to extract text from a PDF-formatted CTI report without
losing document details. However, it must be noted that it would
require noticeably more time and effort that this research project
allowed. Also, perfect extraction of document details will be hard
to accomplish, although the results can be close to perfect.

TScIT 37, July 8, 2022, Enschede, The Netherlands

There are numerous tools available that all use a slightly different
technique for extracting text from a PDF file. Based on the results of
this research paper, PyMuPDF is the preferred tool for text extraction
using Python, followed by PDFPlumber.

REFERENCES

[1] 2005. Welcome to pypdf2. https://pypdf2.readthedocs.io/en/latest/index.html
[2] 2016. How to extract text from a PDF file? https://stackoverflow.com/questions/
34837707/how- to-extract-text-from-a-pdf-file
[3] 2022. Alert (AA22-158A). https://www.cisa.gov/uscert/ncas/alerts/aa22-158a
[4] 2022. Levenshtein distance. https://en.wikipedia.org/wiki/Levenshtein_distance
[5] 2022. MuPDF Overview. https://mupdf.com/
[6] 2022. PyMuPDF documentation. https://pymupdf.readthedocs.io/en/latest/
[7] 2022. TextPage. https://pymupdf.readthedocs.io/en/latest/textpage.html#textpage
[8] 2022. the hacker man’s Profile. https://www.codegrepper.com/profile/zeke-john
[9] 2022. XeNNON’s Profile. https://www.codegrepper.com/profile/priyam-harsh
[10] Hannah Bast and Claudius Korzen. 2017. A Benchmark and Evaluation for Text
Extraction from PDF. In 2017 ACM/IEEE Jjoint Conference on Digital Libraries
(JCDL). 1-10. https://doi.org/10.1109/JCDL.2017.7991564
[11] Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, and Xi Niu. 2017. TTP-
Drill: Automatic and Accurate Extraction of Threat Actions from Unstructured

Ben de Koning

Text of CTI Sources. In Proceedings of the 33rd Annual Computer Security Applica-
tions Conference (Orlando, FL, USA) (ACSAC 2017). Association for Computing Ma-
chinery, New York, NY, USA, 103-115. https://doi.org/10.1145/3134600.3134646

[12] Jsvine. 2016. Jsvine/pdfplumber: Plumb a PDF for detailed information about
each char, rectangle, line, et cetera and easily extract text and tables. https:
//github.com/jsvine/pdfplumber

[13] Pymupdf. 2016. Pymupdf/pymupdf: Python bindings for mupdf’s rendering
library. https://github.com/pymupdf/PyMuPDF

A GRAPHS OF TEST RESULTS
A.1 PDFPlumber

Figure 6, Figure 7, Figure 8, and Figure 9 show the edit distance
scores collected during the PDFPlumber evaluation, with every
figure showing a different section.

A2 PyMuPDF

Figure 10, Figure 11, Figure 12, and Figure 13 show the edit distance
scores collected during the PyMuPDF evaluation, with every figure
showing a different section.

https://pypdf2.readthedocs.io/en/latest/index.html
https://stackoverflow.com/questions/34837707/how-to-extract-text-from-a-pdf-file
https://stackoverflow.com/questions/34837707/how-to-extract-text-from-a-pdf-file
https://www.cisa.gov/uscert/ncas/alerts/aa22-158a
https://en.wikipedia.org/wiki/Levenshtein_distance
https://mupdf.com/
https://pymupdf.readthedocs.io/en/latest/
https://pymupdf.readthedocs.io/en/latest/textpage.html#textpage
https://www.codegrepper.com/profile/zeke-john
https://www.codegrepper.com/profile/priyam-harsh
https://doi.org/10.1109/JCDL.2017.7991564
https://doi.org/10.1145/3134600.3134646
https://github.com/jsvine/pdfplumber
https://github.com/jsvine/pdfplumber
https://github.com/pymupdf/PyMuPDF

Extracting Sections From PDF-Formatted CTI Reports TSclT 37, July 8, 2022, Enschede, The Netherlands

Introduction

140

Edit distance
==
N B OO 0 O N
O O O O o o

o

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Test index

Fig. 6. Scores of PDFPlumber test for the section ’Introduction’

Background Information

140

Edit distance
=
N B OO 0 O N
O O O O o o

o

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Test index

Fig. 7. Scores of PDFPlumber test for the section ’Background Information’

Threat Information

140
120
w V- WANAS_AA NNV VSN W N ASV\S
80
60

40
20

Edit distance

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Test index

Fig. 8. Scores of PDFPlumber test for the section "Threat Information’

TSclT 37, July 8, 2022, Enschede, The Netherlands Ben de Koning

Mitigation Steps

140
120
8 100
e
S 80
]
T 60
=
T 40
20
0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Test index
Fig. 9. Scores of PDFPlumber test for the section *Mitigation Steps’
Introduction
140
120
8 100
c
S 80
2
T 60
e
S 40
20 P AANANWAAIAANAAMAAANMAS
0
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Test index
Fig. 10. Scores of PyMuPDF test for the section ’Introduction’
Background Information
140
120
8 100
o
S 80
]
T 60
=
T 40
20 NVWM/W
0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Test index

Fig. 11. Scores of PyMuPDF test for the section "Background Information’

Extracting Sections From PDF-Formatted CTI Reports TSclT 37, July 8, 2022, Enschede, The Netherlands

Threat Information

140

=
D 0 O N
o O O ©

Edit distance

N
o o

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Test index

Fig. 12. Scores of PyMuPDF test for the section "Threat Information’

Mitigation Steps

140
120
100
80
60
40
20

Edit distance

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Test index

Fig. 13. Scores of PyMuPDF test for the section ’Mitigation Steps’

	Abstract
	1 Introduction
	2 Candidate Tools
	3 Theoretical Analysis
	3.1 PDFPlumber
	3.2 PyMuPDF
	3.3 PyPDF2

	4 Evaluation
	4.1 Methodology
	4.2 Results
	4.3 Comparison
	4.4 Preferred Text Extractor

	5 Implementation
	5.1 Future Work

	6 Discussion
	7 Conclusion
	References
	A Graphs of Test Results
	A.1 PDFPlumber
	A.2 PyMuPDF

