
Weighted Abstract Syntax Trees for Program Comprehension in Java
BERKE GUDUCU, University of Twente, The Netherlands

In this paper, we examine the generation and applications of Weighted Ab-

stract Syntax Trees (WAST) for Java based on usage statistics. We discuss

several use cases for WASTs, and look into how they can aid in program

comprehension. Program comprehension is the activity that developers take

part in to understand the source code of a software system. A Weighted

Abstract Syntax Tree’s potential uses in program comprehension is show-

cased and an algorithm for generating them is described. The algorithm’s

results are demonstrated with open-source Java projects. We suggest that

the algorithm can be used to analyse the characteristics of Java projects,

which would aid in program comprehension.

Additional Key Words and Phrases: Java, Abstract Syntax Tree, AST, Code

Analysis, Program Comprehension

1 INTRODUCTION
Program comprehension takes around half the time of all software

maintenance tasks [2]. Program comprehension refers to the task

that developers go through to understand the software system they

are working with. Furthermore, software maintenance uses more

resources of software groups than any other task [9, 12]. Thus, any

improvements in the area of program comprehension could be quite

beneficial to software development groups. We propose Weighted

Abstract Syntax Trees (WAST) to aid in program comprehension

tasks. WASTs extend regular Abstract Syntax Trees (AST) by adding

weights, which represent usage percentage of code elements. Two

tasks that help developers in program comprehension are alternative

representations and comparison with other source code [11]. WASTs

help software maintainers comprehend source code by proving them

with an alternative AST based representation. In addition, WASTs

can be used inmaking comparisons with other source code to further

assist in program comprehension tasks. The generated WASTs are

also suggested to be easier to comprehend than regular ASTs thanks

to the use of the source code analysis tool Spoon [10]. The paper,

first describes the algorithm that generates WASTs, then some test

cases are provided to verify the results of the algorithm, and finally,

potential use cases are discussed.

2 PROBLEM STATEMENT
Weighted Abstract Syntax Trees have the potential to reduce the

time and resources spent on software maintenance related costs.

Thus, WASTs can benefit to software teams in this regard. Although

there has been work that has looked into uniqueness of code and

code generation using grammars, there has not been work that

has explored the use of Weighted Abstract Syntax Trees for use in

program comprehension. WASTs have the benefit of containing a lot

of information about the source code, while being easy to visualize

and comprehend.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

A simplified Java code grammar could look like this:

statement
: 'if' '(' expression ')' statement ('else' statement)?
| 'while' '(' expression ')' statement
| 'for' '(' forInit? ';' expression? ';' forUpdate? ')'

statement
;

The end result with the weights attached was expected to look

like this:

statement
: [42%] 'if' '(' expression ')' statement ([32%]
'else'statement | [68%] \e)
| [23%] 'while' '(' expression ')' statement
| [35%] 'for' '(' ([91%] forInit | [9%] \e) ';'

([88%] expression | [12%] \e)
';' ([77%] forUpdate | [23%] e) ')' statement

With the use of Abstract Syntax Trees for a Class with a method

containing one type of loop could normally look like:

Class

Method: typeMember

Block: body

If: statement

Class

Method: typeMember

Block: body

While: statement

Class

Method: typeMember

Block: body

For: statement

Here, for each node, the colon (":") separates the element type and
the role in parent. The roles, here, relate to the ones that would occur
in a grammar.

The generated Weighted Abstract Syntax Tree (WAST), which

merges the above ASTs from different files, could look like:

Class

Method: typeMember

Block: body

If: statement

0.33

While: statement

0.33

For: statement

0.33

Thus, it was decided to develop an algorithm to create thisWeight-

ed Abstract Syntax Tree. Then, it was also decided that the results

would have to be tested on real software projects to try and value

the usefulness of this WAST in program comprehension. With these

goals in mind, the main research question for the paper and the

sub-questions that have guided the research and methodology are

provided below:

(1) Main Research Question: To what extent can Weighted Ab-

stract Syntax Trees (WAST) based on usage statistics be used

to generate tests and measure the uniqueness of Java code

samples?

1

TScIT 37, July 8, 2022, Enschede, The Netherlands Berke Guducu

(2) Sub-Question 1: How can a WAST based on Java usage statis-

tics be implemented?

(3) Sub-Question 2: How can GitHub projects be used to generate

WASTs for Java?

(4) Sub-Question 3: To what extent can WASTs aid in Program

Comprehension tasks?

3 RELATED WORK

3.1 Work on Weighted Abstract Trees
There has been work that has usedWeighted Syntax Trees for source

code plagiarism [6]. The work aims to find similarities in source code

to detect plagiarism cases in software assignments. The weights

in the work are oriented towards detecting these similarities. The

ASTs used in the work do not aim to be understandable by common

programmers, as the generated AST does not necessarily need to

be interpreted by a human. Thus, while their work aims to solve

problems related to plagiarism in education, this paper is oriented

towards program comprehension.

3.2 Work on Computational Linguistics
Computational linguistics is one of the areas in which weighted

grammars are used [4, 5]. Probabilistic context-free grammars are

used in natural language processing, linguistics, and pattern recog-

nition [3]. These are aimed at understanding the structure of natural

languages. Similarly to this paper, they make use of frequency based

generation of probabilities. However, there have not been any works

that have used programming languages for generating the probabil-

ities.

3.3 Work on Usage Statistics
There has been work that utilizes usage statistics for code com-

pletion in IDES [13]. Similarly to what this paper aims to do, the

work uses GitHub projects to obtain usage statistics. In contrast

to this paper, their work uses these statistics to create better code

completion for IDEs.

3.4 Work on Code Uniqueness
There has also been work that has examined the uniqueness of the

source code [1, 7, 8]. In addition to GitHub sources, Gabel’s study

collects their corpus from the Java source code at https://www.java-

source.net [7]. This work has also been used for the selection of cor-

pus of this study, as Gabel’s work has already established Java works

that were relevant for source code analysis. Gabel’s work makes use

of n-gram language models to analyze the uniqueness of software.

This differs from the weighted grammar based on probability used

by this paper.

4 METHODOLOGY

4.1 Generating The Weighted Abstract Syntax Tree
The WAST was generated using Abstract Syntax Trees based on the

Spoon Meta Model. Spoon is an open-source Java library that is used

for code transformation and analysis [10]. In this paper, the analysis

tools of Spoon were used to generate an Abstract Syntax Tree. The

Spoon Meta Model was chosen because it is easier to understand

by most programmers, in comparison to compiler-based Abstract

Syntax Trees.

The Spoon language has many analysis tools and interfaces to

be easily usable by most Java programmers, however, it is made

with only general Abstract Syntax Tress in mind and did not in-

clude methods that would be suitable for representing a Weighted

Grammar. Thus, new objects were created that made use of the AST

created by Spoon rather than extending the Spoon library directly.

The weights were then attached to these new objects.

Use of the Spoon Meta Model. The Spoon Meta Model is easier to

understand thanks to its simpler AST model [10]. To illustrate this,

Figure 1 shows the structural elements of the model. The limited

number of these AST classes can make the model easier to under-

stand for the average developer. Spoon simplifies Java ASTs by

deleting and creating nodes from the original AST [10]. This means

that the nodes of the AST that are only relevant for parsing and do

not concern developers’ understanding of the code are purged [10].

Furthermore, the Spoon Meta Model is complete, meaning that it

actually contains all the information from the original files to run

them [10]. This suggests that it also is suitable for program compre-

hension, as it includes all the necessary elements to understand the

program. Another advantage of the spoon AST is that it includes

comments. This could help in program comprehension by showing

which areas of the program are lacking in comments. Every node in

the generated WAST contains one of the Spoon AST classes.

4.2 Representation of the Weighted Grammar
The Weighted Abstract Syntax Tree was represented as nested Java

objects, modelling the nodes of the tree. Each node has a map of

nodes, that represent the children of the node, and the associated

weight. The nodes were represented with the WeightedSelfNodeOb-
ject that contains this map, the element type of the object (from

the Spoon AST model), and the information needed to generate the

weights.

public class WeightedSelfNode {
int numberOfTimesSeen;
Class<? extends CtElement> elementKlass;
Map<WeightedSelfNode, Double> childrenWeights;
CtRole roleInParent;

Here, the elementKlass is the type of the element. For example,

an if, while or for statement. numberOfTimesSeen is how many

times this particular element has been seen at this part in the tree.

roleInParent is the role this particular element has in its parent,

so for example, the roleInParent would be "statement" for an
if statement. The childrenWeights holds the children and the

associated weights. Children being other WeightedSelfNodes and
the weights are represented as doubles.

4.3 Merging of Abstract Syntax Trees of Different Files
In order to generate aWeighted Abstract Syntax Tree that was based

onmultiple Abstract Syntax Tress, it was necessary tomerge them in

some way. This was achieved by first generating the Abstract Syntax

Tree of the first file, and then merging this with the subsequently

generated AST of the other files.

2

https://www.java-source.net
https://www.java-source.net

Weighted Abstract Syntax Trees for Program Comprehension in Java TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 1. Spoon Meta Model Structural Elements [10]

1: procedure merge(𝑡𝑜𝑀𝑒𝑟𝑔𝑒,𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑜) ⊲ Merge 𝑡𝑜𝑀𝑒𝑟𝑔𝑒 to

𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑜 and return the merged tree

2: if toMerge = null then
3: return𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑜

4: end if
5: for all 𝑐ℎ𝑖𝑙𝑑 in 𝑡𝑜𝑀𝑒𝑟𝑔𝑒 .children do
6: if 𝑐ℎ𝑖𝑙𝑑 in𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑜 .children then
7: 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶ℎ𝑖𝑙𝑑 ← 𝑡𝑜𝑀𝑒𝑟𝑔𝑒 .children.get(𝑛𝑜𝑑𝑒)

8: increment existingChild.occurenceCount
9: 𝑚𝑒𝑟𝑔𝑒𝑑𝐶ℎ𝑖𝑙𝑑 ← merge(𝑐ℎ𝑖𝑙𝑑, 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝐶ℎ𝑖𝑙𝑑)
10: 𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑜 .replaceChild(𝑐ℎ𝑖𝑙𝑑,𝑚𝑒𝑟𝑔𝑒𝑑𝐶ℎ𝑖𝑙𝑑)

11: else
12: 𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑜 .addChild(𝑐ℎ𝑖𝑙𝑑);

13: end if
14: end for
15: return𝑚𝑒𝑟𝑔𝑒𝑑𝑇𝑜

16: end procedure
The merge algorithm works recursively and mutates the second

object(𝑀𝑒𝑟𝑔𝑒𝑑𝑇𝑜). The algorithm goes through each child of the tree

in a pre-order traversal way. The end result is a combination of the

two Weighted Abstract Syntax Trees with the correct occurrence

counts. These occurrence counts are then used to calculate the

weights. Thus, it is important to note that the given pseudocode

creates a tree that does not have the probabilities (weights) yet.

These final weights are calculated in yet another iteration of the

three. The formula for each weight in the node with 𝑖 as the index

of the child, and 𝑛 being the count of direct children, as can be seen

in Equation 1:

Weighti =
OccurenceCounti∑n−1
j=0 OccurenceCountj

(1)

The weight given by this equation for each node represents the

likelihood that it will occur, under this particular parent, in the

project.

In addition to merging the ASTs, it was necessary, to have a way

to traverse the tree. Traversal allows finding specific elements for

tests, and makes is easier to get all the descendants of a specific

node. Thus, a Breadth First Search algorithm was written for the

nodes. The Breadth-first Search (BFS) algorithm for WAST works

in the same way as it does for other trees. It uses a queue to keep

track of the next element.

5 RESULTS

5.1 Results for Sub-Question 1: How can a WAST based on
Java usage statistics be implemented?

5.1.1 Results of the Implementation. The results on how WASTs

can be implemented based on Java have been discussed in detail in

section 4: Methodology. The result is that WASTs based on usage

statistics can be generated using the Spoon Meta Model AST and

the merging algorithm. The merging algorithm puts the ASTs into

one Weighted Abstract Syntax Tree (WAST).

5.1.2 The Results for Same Elements with Different Parents. The
weighted grammar generated results in weights being very specific

to a part in the Abstract Syntax Tree. However, it is an interesting

question to pose if the results for each class without considering

3

TScIT 37, July 8, 2022, Enschede, The Netherlands Berke Guducu

where they are located in the tree is more relevant. To demonstrate,

an if statement can occur directly in the body of a method, but

if statements can also occur inside many other elements, such as

other if statements. Then a question can be asked: Is it more useful

to retrain this context information, as is done in this paper? Or,

alternatively, does one consider all statements of this type, regardless

of where they occur, disregarding the context in which they occur?

In this paper, we have chosen to keep this information. It is still

achievable by using the generated WAST to have results for each

type of element. The context information could still be removed

by finding all occurrences of a certain element and merging all the

information.

5.2 Results for Sub-Question 2: How can GitHub projects
be used to generate WASTs for Java?

Results for Java Projects. The algorithmwas tested on open-source

projects by feeding their src folders into the algorithm. Some pop-

ular open-source projects were used, such as Stendhal
1
and Sweet-

Home3D
2
. These Java projects used to evaluate the results were

gathered from another study [7]. Choosing popular projects con-

sidering the number of start on GitHub was considered, but was

deemed a flawed approach for use in this paper. This is because

most of these projects did not represent a typical Java project that

most software teams would use. Some of these projects were, for

example, solutions to coding challenges. Using the established rele-

vant corpus from the study, ensured that the chosen projects were

open-source projects that were actual Java programs that are in use.

To demonstrate the results of the algorithm, the combined out-

put of the Stendhal project can be seen in Figure 2. In the figure,

the weights of the children of Class can be seen. To demonstrate

another layer in the tree, the weights of the children of a method
can also be seen in Figure 3.

5.3 Results for Sub-Question 3: To what extent can WASTs
aid in Program Comprehension tasks?

The answer to Sub-Question 3 concerns what can be achieved with

the algorithm in terms of program comprehension. It suggested that

the generated Weighted Abstract Syntax Tree can play a role in

program comprehension, in combination with the existing tools.

Example Program Comprehension with the aid of WAST. Look-
ing at Figure 2 generated from the Stendhal project’s classes and

Figure 4 generated from classes in SweetHome3D, it can be seen

that the classes in the Stendhal game project generally have a con-
structor. The weights for a constructor in a Class being: 0.30 for

Stendhal, and 0.05 for SweetHome3D. In addition to this fact, Sweet-

Home3D has many fields, apparent with a weight of 0.29. Stendhal

has less, having only 0.13 as weight. Thus, from these two results, it

can be seen that SweetHome3D project makes use of many more

fields, while also having less constructors. This could suggest that

SweetHome3D relies more heavily on fields, and makes less use

of constructors compared to Stendhal. This could suggest that the

1
Stendhal is an open source multiplayer online adventure game www.github.com/

arianne/stendhal

2
SweetHome3D is an open source application for architectural interior design www.

sweethome3d.com/

classes have many more fields in Stendhal, and they are being ini-

tialized less. This train of thought can be further analysed by going

deeper in the AST, and comparing the children of the constructors,

for example. It is hard to make concrete conclusions about the soft-

ware projects from these result alone, but this could help the process

of program comprehension by giving insights into the software.

For the algorithm to be effectively used by software teams, it

would be beneficial to visualize the results, and also provide metrics

for which parts of the generated WAST deviate from the norm. This

could be achieved by running the algorithm on a large number of

projects and merging the results.

5.4 Limitations
The weighted grammar generated is limited by which files Spoon

can process. For example, Spoon cannot parse template files; this

limits the projects that Spoon can be run on directly. Template files

are generally in the resources folder, but this is not always the case.
To avoid these files, for this paper, it was deemed sufficient to select

the right folders from the projects to avoid parsing the template files.

The folders are generally the source (src) folders of the repositories.

However, this significantly limited the number of projects that were

fed into the algorithm, as now it was required to check the contents

of each Java repository before being able to use it.

Spoon was made with extending the code in mind, proving some

interfaces. However, these were not deemed sufficient to be used for

creating the WAST by extending these methods. If it was achieved

to extend the Spoon library for this task, some convenience methods

provided by Spoon could have been used, proving better functional-

ity for the generated WAST.

The choice of using doubles to represent the weights means that

confidence intervals need to be used to verify the results. As doubles

are not perfect representations of ratios, the total weights can some-

times different from precisely one. So the results are checked to be

within a certain interval of the expected answer. This is done in Java

as follows, for example, to check that the total of all the weights

of all the children of a certain node is always 1: Math.abs(total-
1.0)< 𝜀 . Where total is the total of weights of all the children,
and 𝜀 being the confidence interval which is typically very close to

0.

Performance. The main bottleneck of the performance of the al-

gorithm was the generation of Spoon Model Abstract Syntax Trees.

The experiments were run on a MateBook X Pro MACHR-W19 with
an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz processor.
For 3021 Java files that Spoon analysed from the jTDS

3
project

and the Stendhal project combined, the process took 66.96 seconds,

while the corresponding WAST generated from the ASTs took an

extra 0.04 seconds. Generating traditional ASTs instead of the Spoon

Model AST would most likely take a shorter time, because they are

optimized for faster run times, while the Spoon Model does not ex-

plicitly focus on exceeding performance, because it is more a tool for

analysis [10]. With program comprehension as the goal of this paper,

the performance issues were not deemed a big issue, as the program

has negligible waiting times in this use case. The algorithm would

3
JTDS is an open source driver for Microsoft SQL Server and Sybase Adaptive Server

Enterprise http://jtds.sourceforge.net/

4

www.github.com/arianne/stendhal
www.github.com/arianne/stendhal
www.sweethome3d.com/
www.sweethome3d.com/
http://jtds.sourceforge.net/

Weighted Abstract Syntax Trees for Program Comprehension in Java TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 2. WeightedNode object for a class of the Combined Weighted Abstract Syntax Trees of The Stendhal Java project

Fig. 3. WeightedNode object for the expanded child method of the Class in Figure 2

Fig. 4. WeightedNode object for a class of the Combined Weighted Abstract Syntax Trees of The Sweet Home3D Java project

Fig. 5. WeightedNode object for the expanded child method of the Class in Figure 4

only need to be run only once on a certain project, in most cases. In

addition, as the tool is aimed at program comprehension, the speed

would not be the biggest concern, as these can be run a certain time

before the programmers start a program comprehension task.

This performance issue, however, limited this study’s initial idea

of using WASTs for code uniqueness as running the source code

for the whole corpus that has been used in Gabel’s work with 420

million lines of code would takemore than 2300 hours [7]. This could

be reduced to a feasible amount of time in a cloud environment,

with a faster computer, or even with parallel processing of the files

which would be possible as merging two WASTs can already be

merged.

6 VERIFICATION
The results were verified using unit tests. Small test cases were

created to ensure that the created weighted grammar trees were

as expected. The base test case was created by having three simple

Java classes, each for one type of loop. These files, for one partic-

ular test, were added each added a certain number of times to the

algorithm to test if the algorithm correctly produces the weights

5

TScIT 37, July 8, 2022, Enschede, The Netherlands Berke Guducu

for their occurrences. In one particular test, the class with the if
statement was added four times, a while statement two times, and

a for statement four times, totalling a total of nine files. Thus, the

expected weights in this particular case were: number of times
the file occurs/total number of files. The resulting map

with {ElementType: RoleInParent}=weights, as verified by the

unit test, were as follows:

{CtIf: statement}=0.4444444444444444,
{CtWhile: statement}=0.2222222222222222,
{CtFor: statement}=0.3333333333333333}

The map representation can also be seen in Figure 6.

This test was used to verify that the algorithm was able to gen-

erate the weights of a children based on the frequency of usage in

multiple files.

In addition to unit tests, some small Java projects were manually

tested to see if the results matched expectations.

These test naturally do not mean that the software will produce

correct results for every Java file. However, we believe that the

provided unit tests and the manual tests that were performed are

sufficient for now.

7 FUTURE WORK
An interesting area of use of WASTs is their use for test generation.

WASTs could perhaps be used in this area as well, as WASTs also

contain relevant information in this regard. We can see what needs

to tested in a code base by looking at high and low percentage

weights.

It would be interesting to do a study similar to Gabel’s study of

source code uniqueness, but with the use of WASTs [7]. WASTs

could provide a different approach to uniqueness, as they could

provide more insight into uniqueness than line by line analysis. For

this to succeed, the algorithm can run in a cloud environment with

more resources.

For the algorithm to be easier to use in software groups, a vi-

sualization tool would be ideal. The visualization tool can make

the software easier to use. In addition, software can play a role in

existing analysis tools that help with program comprehension. This

would also help to further promote the usage of the algorithm. Fur-

thermore, the usefulness of the software to software teams can be

measured in a field study. In addition, the program can be adapted to

be run on GitHub projects directly by correctly identifying correct

Java files.

8 CONCLUSIONS
We have demonstrated an algorithm for generating Weighted Ab-

stract Syntax Trees (WAST) and demonstrated the use of it in aid of

program comprehension. The generated WAST showed promising

use cases in the field of program comprehension, as it is suggested

that it can aid in comprehending characteristics of software projects.

However, for software teams to use this algorithm effectively, the

algorithm could make use of a visualization tool, better flexibility

to work with any project, and a comparison tool to compare the

project with the suggested uniqueness tool. Nonetheless, we believe

we have shown WAST’s potential for program comprehension, and

we hope that future work is done in the area to further examine

their feasibility in actual software teams.

ACKNOWLEDGMENTS
I would like to thank my supervisors, Vadim Zaytsev and Marcus

Gerhold for their guidance throughout the project. In addition, I

would like to especially thank them for their wittiness during our

meetings, which I truly enjoyed. I have learned a lot in terms of

academic writing thanks to them, their guidance kept me on track,

and I have been inspired by their words and work.

REFERENCES
[1] Miltiadis Allamanis and Charles Sutton. 2013. Mining source code repositories at

massive scale using language modeling. 2013 10th Working Conference on Mining
Software Repositories (MSR) (2013), 207–216.

[2] K.H. Bennett, V.T. Rajlich, and N. Wilde. 2002. Software Evolution and the Staged

Model of the Software Lifecycle. Advances in Computers, Vol. 56. Elsevier, 1–54.

https://doi.org/10.1016/S0065-2458(02)80003-1

[3] Zhiyi Chi. 1999. Statistical Properties of Probabilistic Context-Free Grammars.

Comput. Linguist. 25, 1 (mar 1999), 131–160.

[4] Renato de Mori. 1999. Statistical Methods for Automatic Speech Recognition. In

Speech Processing, Recognition and Artificial Neural Networks. Springer London,
165–189. https://doi.org/10.1007/978-1-4471-0845-0_7

[5] Timothy A. D. Fowler. 2011. The Generative Power of Probabilistic and Weighted

Context-Free Grammars. In Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 57–71. https://doi.org/10.1007/978-3-642-23211-4_4

[6] Deqiang Fu, Yanyan Xu, Haoran Yu, and Boyang Yang. 2017. WASTK: AWeighted

Abstract Syntax Tree Kernel Method for Source Code Plagiarism Detection. Sci-
entific Programming 2017 (2017), 1–8. https://doi.org/10.1155/2017/7809047

[7] Mark Gabel and Zhendong Su. 2010. A study of the uniqueness of source code. Pro-
ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering - FSE ’10. https://doi.org/10.1145/1882291.1882315

[8] Abram Hindle, Earl Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

2012. On the naturalness of software. Proceedings - International Conference
on Software Engineering (06 2012), 837–847. https://doi.org/10.1109/ICSE.2012.

6227135

[9] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. 1978. Characteristics of Ap-

plication Software Maintenance. Commun. ACM 21, 6 (jun 1978), 466–471.

https://doi.org/10.1145/359511.359522

[10] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel

Seinturier. 2015. Spoon: A library for implementing analyses and transformations

of Java source code. Software: Practice and Experience 46, 9 (11 8 2015), 1155–1179.
https://doi.org/10.1002/spe.2346

[11] Amal A. Shargabi, Syed Ahmad Aljunid, Muthukkaruppan Annamalai,

Shuhaida Mohamed Shuhidan, and Abdullah Mohd Zin. 2015. Tasks that can

improve novices’ program comprehension. 2015 IEEE Conference on e-Learning,
e-Management and e-Services (IC3e) (2015), 32–37.

[12] Ian Sommerville. 2011. Software engineering. Pearson.
[13] Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia:

AI-assisted Code Completion System. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. https://doi.

org/10.1145/3292500.3330699

6

https://grammarware.net/
https://people.utwente.nl/m.gerhold
https://people.utwente.nl/m.gerhold
https://doi.org/10.1016/S0065-2458(02)80003-1
https://doi.org/10.1007/978-1-4471-0845-0_7
https://doi.org/10.1007/978-3-642-23211-4_4
https://doi.org/10.1155/2017/7809047
https://doi.org/10.1145/1882291.1882315
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1145/359511.359522
https://doi.org/10.1002/spe.2346
https://doi.org/10.1145/3292500.3330699
https://doi.org/10.1145/3292500.3330699

Weighted Abstract Syntax Trees for Program Comprehension in Java TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 6. WeightedNode object used in the unit test. Shows the children of a CtBock of the WAST generated from nine classes, each containing one of While, If,
or For statements

7

	Abstract
	1 Introduction
	2 Problem Statement
	3 Related Work
	3.1 Work on Weighted Abstract Trees
	3.2 Work on Computational Linguistics
	3.3 Work on Usage Statistics
	3.4 Work on Code Uniqueness

	4 Methodology
	4.1 Generating The Weighted Abstract Syntax Tree
	4.2 Representation of the Weighted Grammar
	4.3 Merging of Abstract Syntax Trees of Different Files

	5 Results
	5.1 Results for Sub-Question 1: How can a WAST based on Java usage statistics be implemented?
	5.2 Results for Sub-Question 2: How can GitHub projects be used to generate WASTs for Java?
	5.3 Results for Sub-Question 3: To what extent can WASTs aid in Program Comprehension tasks?
	5.4 Limitations

	6 Verification
	7 Future Work
	8 Conclusions
	Acknowledgments
	References

