Performing Bisimulation Minimisation To Parity Game Strategies To

Improve Controller Quality

FEIJE VAN ABBEMA, University of Twente, The Netherlands

Reactive synthesis is the process of creating a controller out of a high-level
specification. Recently, new research created a way of converting a linear
temporal logic specification to an and-inverter graph. In this process, a parity
game is created and solved to obtain a strategy which is directly translated
into an and-inverter graph. However, the strategy of the parity game could
have some redundant states. Reducing the number of states will result in
a smaller graph and therefore a smaller and more efficient controller. This
paper investigates how much parity game strategies can be reduced in the
reactive synthesis process. Around half of the strategies can be reduced
in size and when reduction is possible on average 28% of the strategy is
reduced.

Additional Key Words and Phrases: automata, parity games, bisimulation,
bisimulation minimisation, partition refinement, binary decision diagrams

1 INTRODUCTION

Using Linear Temporal Logic (LTL) you can construct a specification
that captures the behaviour of a system. It is desirable to automat-
ically create a controller only by specifying a LTL specification
since this controller is a physical object that adheres to the LTL
specification. This process can be done using reactive synthesis.
Abraham [1] created a new way to synthesise a controller out of a
LTL specification in his master thesis.

The process of reactive synthesis is complex. The scope of this
paper is to improve a specific part of this process. But before that
will be discussed, a few concepts need to be explained. Firstly, w-
automata and the parity game and secondly bisimulation will be
explained.

1.1 Parity games and bisimulation

w-automata are automata that run on an infinite input of symbols
instead of a finite input of symbols. A run on an w-automaton is an
infinite sequence of states such that for each symbol in the word
there is a state transition that can be taken to the next state e.g. the
word can run through the automaton. Furthermore, instead of a set
of accepting states, an acceptance condition is used to determine if
a run is accepted. This acceptance condition depends on the type of
w-automata. [3]

A game is a type of w-automata. In a game, an arena and a winning
condition are used. An arena is defined as follows: A = (Vy, V1, E)
where V) is the 0-vertices, V; is the 1-vertices disjoint from Vj and
E € (Vo UVy) X (Vo U V) is the edge relation. This automaton is
controlled by two players. Player 0 controls Vj and player 1 controls
V1. A play on a game is then a run through the automaton where
the players make the transitions on the vertices that they control.

(3]

TScIT 37, July 8, 2022, Enschede, The Netherlands

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

Fig. 1. An example parity game

A parity game is a game with a specific winning condition. For
the winning condition of a parity game, each state has to receive a
colour i. A play is then winning for player 0 if and only if the lowest
colour i in a play that is visited infinitely often is even. [3]

An example parity game can be found in fig. 1 where one player
controls the vertices that are circles and the other player controls
the vertices that are triangles.

Automata can be reduced in size by performing bisimulation
minimisation. This is done by reducing a set of bisimilar states to
only one state. There are multiple types of bisimulation [2] but for
this paper, we will apply strong bisimulation as described by van
Dijk et al. [6]. This is because the parity games do not have any
internal state transitions (also called r-transitions) and the other
types of bisimulation are illogical to apply because they deal with
internal state transitions. Strong bisimulation only deals with states
and their observable state transitions and therefore this type of
bisimulation will be used.

In this paper, bisimulation will refer to strong bisimulation (or a
conjugation of it). A set of states are bisimilar if the states have the
same behaviour, in other words, the transitions one state can make
can also be made by the other state.

In fig. 1 there are some bisimilar states. For example vertices Vp
and V; are bisimilar. They both have only one outgoing transition to
V5. The same goes for V5 and Vg which both only have one outgoing
transition to V7. Consider that V5 and V, are now replaced by a
single state. It can then be seen that V3 and V4 both only have one
transition to the same state and are also bisimilar. More formally, V3
and Vj both have a transition to a state that belongs to the bisimilar
set of states which contains V5 and V.

1.2 Related work

In the reactive synthesis process of Abraham [1], some optimisations
and suggestions are made. One of these optimisations is to improve
the quality of the controller. Abraham suggests that the quality of
the controller can be improved by investigating if the number of
states in the parity game can be reduced. He indicates applying
bisimulation minimisation is the way to go.

Though Abraham indicates that bisimulation minimisation can
be applied at various stages of the reactive synthesis, this research
will only focus on applying it after the winning strategy for the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 37, July 8, 2022, Enschede, The Netherlands

parity game is found. This strategy is directly translated in the and-
inverter graph so optimisations will directly impact the controller
quality.

Cranen et al. [2] already showed that parity games can be checked
for bisimulation relations. Multiple bisimulations (including strong
bisimulation) can be applied to parity games to find out if states
are bisimilar. According to this research, we can conclude that the
parity games in the reactive synthesis process can also be checked
for bisimilarity. It can therefore be a way to reduce the size of the
parity game.

Van Dijk [6] created a tool to apply bisimulation minimisation
to labelled transition systems and continuous-time Markov chains.
Though this tool is not usable for minimising parity games, the
ideas for minimising through signature-based partition refinement
are similar and will also be used in this paper.

1.3 Contribution

This paper will investigate how much parity games can be reduced in
the reactive synthesis process. It is already known that states can be
bisimilar but it is not known how much reduction can be performed
if bisimulation minimisation is performed on a parity game created
through Abraham’s novel way of synthesis [1]. Therefore, this paper
will answer the following question:

(1) How many redundant states can be removed if you apply
bisimulation minimisation to the strategy of the parity game
in the reactive synthesis process from a LTL specification to
a controller?

1.4 Approach and structure

In order to answer this research question, the tool Knor will be used
which will be explained in subsection 2.1. In Knor an algorithm will
be created to transform the states into a list of blocks. Each block will
then represent a set of bisimilar states. How this algorithm works is
described in the rest of section 2. Finally, the number of states and
amount of blocks are presented in the results. These results will be
presented and discussed in section 3. The paper will be concluded
in section 4.

2 MEASUREMENT ENVIRONMENT
2.1 Knor

Knor! is a tool to synthesise a controller out of Extended Hanoi
Omega Automata (ehoa) files. These ehoa files are used as input
for Knor. In an ehoa file, an automaton is described. This includes
the kind of automaton, the atomic propositions (AP), which APs
are controllable and the states with the transitions and APs that are
taken. These files are parsed by Knor and put into a binary decision
diagram.

A binary decision diagram (BDD) is a data structure that is used
to represent a boolean function. At each level of the diagram, there
will be a node and a variable belonging to that level. If the variable
is false then the low edge of the BDD is followed to the lower level
which usually is the edge that goes to the left. If the variable is true,
the high edge is followed to the lower level which usually is the

!The tool can be found on https://github.com/trolando/knor

F. van Abbema

edge that goes to the right. In Fig. 2 the low edge is indicated with a
dashed line while the high edge is indicated with a solid line.

BDDs can also be used for representing an automaton. Fig. 2
shows an example of how that works. It shows how the 9 states
of fig. 1 are modelled in a BDD with their state transitions. In the
software, the v0 to v8 labels are not added but for this figure, it is
added for convenience. The label true means it is a true terminal and
the relation exists in the parity game. Likewise, the label false means
it is a false terminal and the relation does not exist. The BDD also
simplifies the tree if all paths lead to the same result. For example,
if one follows the low edge and then the high on Vj it will result in
a false terminal meaning that Vj has no transition to V4, V5, V4 and
V7. Another example is when the high edge is followed at the top of
the BDD. This results directly in Vg since all other vertices belong
to the low edge.

Knor itself also uses the tools Sylvan and Oink. Sylvan[4] is used
to represent the parity automata and parity games as BDDs and
Oink[5] is used to solve parity games.

Knor parses an ehoa file and creates a symbolical parity game out
of it. This parity game is encoded in a BDD. The structure of this
BDD is shown on the left of fig. 3. It solves the game and gives a
strategy for the parity game. This strategy tells for each reachable
state in the game and each uncontrollable atomic proposition (UAP)
possible in that state which controllable atomic proposition (CAP)
has to be performed. This can also be seen in the top-right of fig. 3.
From this strategy, for each state the BDD is calculated and used to
create an And-Inverter Graph (AIG). Together with the BDDs for
the CAPs, the AIG is made complete.

Reducing the size of the strategy BDD will result that less has to
be modelled in the AIG. In the next subsection, the algorithm for
reducing the size of the strategy is explained.

2.2 Algorithm: bisimulation

This algorithm? is adapted from van Dijk et al. [6]. In the adaption,
the signature computation is different because the tree structures are
not the same. Furthermore, this algorithm does not run in parallel
while the algorithm of Dijk et al. does execute in parallel. Therefore,
we will not be concerned with actions that ensure thread safety. The
ideas of refining each state and creating new blocks when a new
signature is found are still the same.

The goal of this algorithm is to divide all states among some
blocks. Each block is then a set of bisimilar states. The algorithm
can be found at alg. 1

The code can be found on https://github.com/FeijevanAbbema/knor_bisim

https://github.com/trolando/knor
https://github.com/FeijevanAbbema/knor_bisim

O 0 N NG R W N

[T ST T S S
T R R R L N ¥ B N S R O

Performing Bisimulation Minimisation To Parity Game Strategies To Improve Controller Quality TSclT 37, July 8, 2022, Enschede, The Netherlands

Fig. 2. The BDD representation of fig. 1. A dashed line indicates the low edge while a solid edge indicates the high edge. Furthermore, a triangle indicates that

there is a BDD below it but for simplicity it is left out.

Algorithm 1. Compute bisimulation

def calculate bisimulation:
blocks [0] = states;
while no_block != no_old_blocks:
new_blocks = blocks
for each block in blocks:
first_sig = true
known_signatures = []
for each state in block:
signature = compute_signature(state , [])
if first_sig:
known_signatures.append(signature)
first_sig = false

else if signature not in known_signatures:

new_blocks.append ([state])
block .remove(state)
known_signature.append(signature)
else if known_signatures[0] != signature:
block .remove(state)
block_no = find_block(signature)
blocks [block_no].append(state)
blocks = new_blocks
no_blocks = new_blocks. size

The algorithm initialises by putting every state in one block (line
2). Then the algorithm will iteratively try to refine each block into
the coarser partition (lines 5-20). This is done by calculating the
signature of each state (line 9). A different signature within a block
means that two states are not bisimilar. How the computation of the
signature works will be described in subsection 2.3. The algorithm
keeps track of every new signature that is found in a block (lines 7,
11, 16). The signature that is computed first, belongs to the block
number that already exists (lines 10-12). If that is not the case but
if a new signature is found, a new block is created and the state is
added to the newly created block and removed from its former block
(lines 13-16). If a state has a known signature but the signature does
not belong to the first block, it belongs to a block recently created
in this iteration. Therefore, it has to move to the new block (lines
17-20). Finally, after some iterations, the algorithm converges to the
coarsest partition which means that the blocks cannot be refined
any further (line 3). This means that each block is a set of bisimilar
states.

2.3 Algorithm: signature computation

A signature of a state is used in the algorithm of bisimulation. This
subsection will explain how the signature is computed.

TScIT 37, July 8, 2022, Enschede, The Netherlands

state

priority

next_state

Fig. 3. The left BDD shows the structure of transition relation BDD. The
right-top BDD shows the structure of strategy BDD. The right-bottom part

is the block numbering. The green parts indicate what the signature consists
of

The signature defines the behaviour of a state. It contains what
uncontrollable atomic propositions (UAP) can be done and which
controllable atomic propositions (CAP) are used in response. Fur-
thermore, it matters to which block it will transition given a UAP
and CAP. In fig. 3 a visual representation is shown of what the sig-
nature looks like in the BDD. Knor’s strategy BDD (the one which is
used to decide what the response of the controller will be) consists
of a state layer, a UAP layer and a CAP layer. Therefore, for each
state, the UAP and CAP in the BDD can be used for the signature.
However, the next block number is not available in this BDD. This
has to be determined by tracking down the same path in the transi-
tion relation BDD. This path will result in the next state (after falling
through the priority part). This state can be mapped to the known
state to block mapping to get the block number. The UAPs, CAPs
and the next block numbers will be used to compute the signature.
The pseudocode of the algorithm can be found at alg. 2

In order to compute the signature, the signature of the low edge
and the high edge need to be known. Therefore, the signature of
both the low edge and high edge will be computed recursively (lines
12 and 20) until a terminal is reached. A false terminal means the
relation does not exist and a -1 will be recorded at location low_var
or high_var (lines 7-8 and 15-16). The low_var and the high_var
are variables that tell how deep the node in the tree is. A true
terminal means the relation does exist and the corresponding block
number has to be found (lines 9-10 and 17-18). As described above
the strategy BDD does not contain which state will be next so this is
found by tracking down the same path in the BDD containing all the
relations. Therefore, the path is also kept track of to retrace the path
in the transition relations BDD (lines 6, 13, 14, 21). Keep in mind
that when compute_signature is called in calculate_bisimulation, the
taken_path variable is initialised as an empty list.

Two signatures are equal if all transitions that are possible corre-
spond to the correct block number. This means that the list of var
and block number combinations correspond. Keep in mind that also
the false terminals should match. If they do not match it means that
one BDD does have a transition that the other BDD does not have
and they are not bisimilar.

O 0 U AW

U
=

12
13
14
15
16
17
18
19

20
21
22
23

F. van Abbema

Algorithm 2. Compute signature

def compute_signature(bdd,
low = bdd_getlow (bdd)
low_var = bdd_getvar (low)
high = bdd_gethigh (bdd)
high_var = bdd_getvar (high)
low_res, high_res = []
taken_path.append(false)
if (low == terminal_false):

,1)

terminal_true):

get_block_no(

taken_path):

low_res.append(low_var,

else if (low

low_res.append (low_var,
taken_path))

else:
low_res = computeSignature (bdd,
taken_path.pop_last ()
taken_path .append(true)
if (high == terminal_false):
high_res.append (high_var,
else if (high
high_res.append (high_var,
taken_path))

taken_path)

-1)
terminal_true):
get_block_no(

else:

high_res = computeSignature(bdd,
taken_path.pop_last ()
return low_res ++ high_res

taken_path)

3 RESULTS

In this section, the results will be presented and discussed. The
results will be divided into sets depending on the size of the parity
game strategy which will be further described in subsection 3.1.
For the discussion of the results, the results of all the games will
be discussed first, then each set will be discussed individually and
finally, the relation between the sets will be discussed.

3.1

The algorithm that is described in section 2.2 returns a mapping
from a block number to a set of states. This mapping is transformed
into some data. First, the number of states is recorded. Then the
number of blocks is recorded. Finally, for each block that exists the
number of states is recorded. This is appended as a line to a CSV
file.

This CSV file is then read in a python script®. This small script
calculates the data that is represented in the table 1. The script
divides each minimised game over 3 sets. The first set contains all
the games that started with 1-10 states, the second set contains all
games that started with 11-100 states and the last set contains all
the games that contain more than 100 states. The reason that these
games are divided is to investigate if the size of the game influences
the calculated data.

For each set the script will calculate the following statistics:

Gathering data

e The maximal number of states that could be reduced
o The average number of states that could be reduced

3The code and CSV file can be found on https://github.com/FeijevanAbbema/knor_bisim

https://github.com/FeijevanAbbema/knor_bisim

Performing Bisimulation Minimisation To Parity Game Strategies To Improve Controller Quality

Fig. 4. Scatter plot of the set of small games. The x-axis has the number of
states and the y-axis has the number of blocks. If a point is larger, there are
more games with the same amount of states and blocks

o The average number of states that could be reduced over the
games where there was at least one block with more than
one state

o The highest percentage of reduction

e The average percentage of reduction

o The average percentage of reduction over the games where

there was at least one block with more than one state

The size of the block with the most states in it

The average size of the blocks

The number of reduced games

The percentage of reduced games

e The number of games

The average values are calculated as follows:

where s; is the amount for game i and n is the number of games.
Furthermore, if the average is calculated for games that have at least
one block that has more than one state in it (e.g. where reduction
is possible), s; is the amount for game i where something can be
reduced and n is the number of games where something can be
reduced.

All these values will also be calculated for all the games (indepen-
dent of which set they belong to).

The data that has been gathered can be found in table 1. The value
in parentheses in the rows of maximal reduction and largest block
indicate how large the parity game strategy originally was.

Furthermore, there are scatter plots of all the data that can be
found in figures 4, 5 and 6. The set of the small games (with 1-10
states) is shown in fig. 4, the set of medium games (10-100 states)
is shown in fig. 5 and the set of large games is shown in fig. 6. The
red line in all plots indicates the line of no reduction (number of
states=number of blocks).

3.2 All games

In total 209 games were processed. Of these games, only half of
them were reduced in size. On one hand, this indicates that there
is a reduction possible but on the other hand, it means that half of
the games are not reducible and no improvement on them can be

TSclT 37, July 8, 2022, Enschede, The Netherlands

Fig. 5. Scatter plot of the set of medium games. The x-axis has the number
of states and the y-axis has the number of blocks. If a point is larger, there
are more games with the same amount of states and blocks

Ed o ED %0 00 20

Fig. 6. Scatter plot of the set of large games. The x-axis has the number of
states and the y-axis has the number of blocks

achieved. If however there is a possibility of reduction, the results are
more promising, namely, on average 28.8% of the states are reduced.
This greatly reduces the states and therefore greatly decreases the
number of gates that are required for the controller.

Another interesting result is the size of the blocks. The largest
block is 12 states in a game of 1250 states. This means that among
all the games there are mostly small groups of states belonging to a
bisimilar block. There are no large blocks that have a lot of states
in them since the largest block of all games is 12 states. Adding the
fact that 28.8% of the states are reduced (if there is at least some
reduction) we can reason that to gain such a high percentage there
are a lot of blocks containing a few states.

3.3 Small games

The set of the small games with 1-10 states is also the set with
the most games. It concerns 72% of all games processed. The first
noticeable thing is the low percentage of reduced games. Only 37.1%
of the games could be reduced. One of the reasons that this happens
is because there are games that are already reduced to only 1 state.
And logically a game with 1 state cannot be reduced. There are 20
games recorded where this happens which is already 13% of the
games. A speculation of why a part of the other 50% cannot be
reduced could be that since the games are already small, the chance

TScIT 37, July 8, 2022, Enschede, The Netherlands

‘ 1-10 states ‘ 11-100 states ‘ 100+ states ‘ All games ‘
Maximal reduction of states 6 (8) 29 (86) 551 (1250) | 551 (1250)
Average states reduced 0.66 4.64 143.18 9.06
Average states reduced if reduction is possible 1.79 5.89 143.18 18.2
Maximal percentage reduced 80% 50.8% 50.9% 80%
Average percentage reduced 12.7% 14.9% 33.8% 14.3%
Average percentage reduced if reduction is possible | 34.3% 18.9% 33.8% 28.8%
Largest block 7 (8) 7 (86) 12 (1250) 12 (1250)
Average block size 1.26 1.22 1.57 1.27
Number reduced games 56 37 11 104
Percentage reduced games 37.1% 78.7% 100% 49.8%
Total games 151 47 11 209

F. van Abbema

Table 1. Data gathered from minimising the games

that there is actually a state that has the same behaviour is quite
low since there are not many states to choose from.

There are also interesting results in the block size and maximal
reduction. The largest block is 7 states (for a game with 8 states)
which also was the maximal number of reduced states. The maximal
percentage reduced is 80%. These are both incredibly high numbers.
Therefore, it is possible to drastically reduce games to small sizes
even if the games are small.

Also, the average percentage of reduced states when reduction
is possible is quite high. If we combine this with the average states
that were reduced if reduction was possible we can also see the
reason why the percentage is so high. The average size of games
where reduction was possible was 5.21 states. Already reducing one
state of a game with 5 states means 20% is reduced. A percentage of
34.3% is therefore more easily achieved. Still, a reduction of 34.3% is
desirable to have.

3.4 Medium games

There are a total of 47 medium games containing 11-100 states. 78.7%
of those games are reduced which is very good. This means that a
majority of the medium-sized games can be optimised by reducing
the size. This makes up for an average reduction of 14.9% over all
games. The reduction varies from 0-50.8%.

The reduction of states is not substantial but at least is some
reduction available. The rest of the results for this set is not so
interesting.

3.5 Large games

The set of large games contains 11 games which is not much. In
order to make statements about this set, a bit more care has to be
taken into account.

The first result that stands out is the percentage of reduced games
which is 100%. We can conclude that large games can mostly be
reduced in size.

Next, the average percentage of reduction is also very large
namely 33.8%. Furthermore, the average number of reduced states
is 143, which is also high. We can conclude that large games can be
reduced highly in size and a lot of optimisation can be achieved if
bisimulation minimisation is applied here.

The maximal percentage of reduced states is 50.9% and the maxi-
mal reduction of states is 551 (of 1250 states). This means that there
are games that can be greatly reduced in size. Remember that there
are only 11 games in this set which means that if more games were
used there could be even more promising results. It could be that
60% or maybe even 70% can be reduced for some games.

3.6 Relations

Finally, the relations between the size of the games and the results
obtained will be discussed.

The first relation is the number of states that can be reduced. It is
logical to see that if the game increases in size there will be more
states that can be reduced. Looking at the fig 5 and 6, a non-linear
trend could be identified. With some imagination, a square root line
can be identified as average reduction. However, this would require
more data to confirm that the relation is non-linear.

If this relation is non-linear, it means that once games start to
get large, the reduction starts to increase faster than linear which is
promising. This means that how bigger the controller is, the higher
the percentage of reduction will be when applying bisimulation min-
imisation first. This is an interesting direction for further research.

The maximal percentage that was reduced is also interesting. For
small states, the highest percentage is 80% while the others sets do
not go above 51%. This indicates that small games can be greatly
reduced while larger games can only be largely reduced. It might be
that if there are more large games this might change because that
percentage might become higher with more data.

The percentage of reduced games also increases with game size.
This is a reason why the average percentage that is reduced over all
games increases with the game size. This indicates that the larger the
game, the more (possible) redundancy it has. The relation changes
when only the games where reduction is possible are considered.
Then the small games have the highest average reduction and the
medium games have the lowest reduction for which no logical rela-
tion can be found in the currently acquired data.

The block size remains constant over all the games which is also
interesting. No matter how big the games get, they will not have a
large block of bisimilar states. It will only have a lot of blocks with
a few bisimilar states.

Performing Bisimulation Minimisation To Parity Game Strategies To Improve Controller Quality

4 CONCLUSION

We have seen how to calculate bisimulation on parity games using
a signature-based partition refinement algorithm. The results of the
algorithm showed that it is possible to reduce the size of parity game
strategies. Generally speaking, half of the games can be reduced in
size. The probability that a game can be reduced in size, increases
as the size of the game increases.

When reduction is possible, on average, more than a quarter of
the game will be reduced in size which is a substantial amount of
reduction. The reduction can go up to 80% reduction and maybe
even further which allows some games to be greatly decreased in
size.

From this, the conclusion can be made that bisimulation minimi-
sation is a very good optimization technique to perform on parity
game strategies. If optimisation is possible the parity game strategy
size is greatly decreased.

There are multiple directions for future work that can be per-
formed.

Firstly, as we have seen in subsection 3.6 there is a possible non-
linearity in the relation between game size and the number of blocks.
We have seen that if the number of states increased the average
percentage of reduction also increased. Though this could not be
confirmed due to the lack of large games. It is interesting to inves-
tigate if this relation holds if it is tested against more and bigger
larger games.

Secondly, the algorithm discussed in this paper is sequential.
There is room for parallelisation in the algorithm. Ideas for paralleli-
sation are refining each block in parallel, computing the signatures

TSclT 37, July 8, 2022, Enschede, The Netherlands

of each state in parallel and computing the signature of the low edge
and the high edge in parallel. Furthermore, adding the states to new
blocks depending on their signature could also be done in parallel
but this requires the use of concurrency features like locks since
all the blocks are edited at the same time and it could be that the
overhead induced by concurrency slows the process down instead
of increasing its speed.

Lastly, this research focused on how many states can be reduced.
How the controller is affected is not yet researched. It could be that
the controller decreases with the same percentage as the BDD is
decreased in size but it could also be that the controller does not
improve or the quality even deteriorates. This depends on how the
new BDD is formed. A naive approach might give not so much
improvement as a smart approach to forming the new BDD.

REFERENCES

[1] R. Abraham. 2021. Symbolic LTL Reactive Synthesis. http://essay.utwente.nl/87386/

[2] S.Cranen,].]. A. Keiren, and T. A. C. Willemse. 2018. Parity game reductions. Acta
Informatica 55, 5 (2018), 401-444. https://doi.org/10.1007/s00236-017-0301-x 401.

[3] E. Gradel, W. Thomas, and T. Wilke. 2002. Automata, logics, and infinite games.
Springer, Berlin ;. https://doi.org/10.1007/3-540-36387-4

[4] T.van Dijk. 2016. Sylvan: Multi-core Decision Diagrams. Ph.D. Dissertation. Univer-
sity of Twente, Enschede, Netherlands. https://doi.org/10.3990/1.9789036541602

[5] T.van Dijk. 2018. Oink: An Implementation and Evaluation of Modern Parity
Game Solvers. In Tools and Algorithms for the Construction and Analysis of Systems,
D. Beyer and M. Huisman (Eds.). Springer International Publishing, Cham, 291-308.

[6] T.van Dijk and J. van de Pol. 2016. Multi-core symbolic bisimulation minimisation.
In TACAS (LNCS, Vol. 9636). Springer, 332-348. https://doi.org/10.1007/978-3-662-
49674-9_19

http://essay.utwente.nl/87386/
https://doi.org/10.1007/s00236-017-0301-x
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.3990/1.9789036541602
https://doi.org/10.1007/978-3-662-49674-9_19
https://doi.org/10.1007/978-3-662-49674-9_19

	Abstract
	1 Introduction
	1.1 Parity games and bisimulation
	1.2 Related work
	1.3 Contribution
	1.4 Approach and structure

	2 Measurement Environment
	2.1 Knor
	2.2 Algorithm: bisimulation
	2.3 Algorithm: signature computation

	3 Results
	3.1 Gathering data
	3.2 All games
	3.3 Small games
	3.4 Medium games
	3.5 Large games
	3.6 Relations

	4 Conclusion
	References

