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Data augmentation has become an important tool to improve the robust-
ness of a model against corruptions in data and adversarial attacks. Most
of the previous research has focused on approaching data augmentation
from the spatial domain. This paper utilizes Fourier-Basis noise to augment
images. Fourier-basis noise consists of frequencies added to an image. We
define a new selection method by creating predefined frequency sets on
different criteria. These sets are simpler than other established methods and
have many possible configurations in which different frequencies can be
combined. We conduct experiments that are used to evaluate the effect of
those sets on the robustness against common corruptions. The results show
that high frequency noise augmentation provides a significant improvement
in robustness against corruptions compared to the baseline model. This
research shows positive results on the effect, Fourier-Basis noise can have
on corruption robustness and suggests further exploration of the method
for a better understanding of its impact.

Additional Key Words and Phrases: Data Augmentation, Noise Robustness,
Fourier-Basis Noise

1 INTRODUCTION
Convolutional neural networks are commonly used for image recog-
nition, but fail to generalize well outside of training data and are
susceptible to even small common corruptions occurring in nature
[2, 10]. Therefore, they cannot be employed in safety critical envi-
ronments, such as autonomous driving [5, 27, 30, 31]. Additionally,
in the medical domain, noise in X-ray images or histograms can
cause unexpected false classifications [6]. Common corruptions can
occur in nature, for example frosting on the camera or sunlight lead-
ing to high brightness in the image [14]. Various techniques, such
as expanding the training data, are utilized to improve robustness
against typical corruptions like noise or blur. Data augmentation is
a simple and efficient method to prevent overfitting [20, 24]. In the
past few years, it has been used more frequently to enhance robust-
ness against common corruptions and adversarial attacks [28, 36].
Originally, simple transformations, such as flipping [20], cropping
[12], and more have been utilized to extend the dataset. This ap-
proach is tedious, as it requires experts to select the appropriate
transformations manually for each dataset. As a result, new strate-
gies were created that adapt to various datasets more effectively.
One approach is the automation of the transformation selection,
where parameters of different transformations are learned from the
training data. The parameters can be a transformation’s probabil-
ity or intensity when applied to a single image. Different methods
have been proposed [3, 16, 22, 32], with the most prominent being
AutoAugment [3], developed by Cubuk et al., which uses policies
that can adapt to different datasets. The learning process requires
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another DNN to determine the appropriate combination of transfor-
mations. Thus, these methods cannot scale well to larger datasets [4].
RandAug [4], based on AutoAugment, reduces the number of vari-
ables that need to be learned with randomization, which decreases
the overall search space. Although it improves time efficiency and
scalability, the number of transformations is still limited, making it
not very flexible.
AugMix [15], proposed by Hendrycks et al., takes randomly differ-
ent augmentations to apply to an image and creates a random mix,
which is then again merged with the original image. This method
has shown improvements in various benchmarks without losing
accuracy to uncorrupted images [15, 36]. Another method, AugMax
[35], by Wang et al., combines the approach of AugMix with adver-
sarial training to achieve better coverage for weaknesses against
adversarial examples.
The methods that have been presented so far are part of an active
field of research that aims to develop robust machine learning sys-
tems. Most of the approaches are based on spatial transformations.
This research uses Fourier-Basis noise in the frequency domain,
which has been explored by Soklaski et al. [29]. They combine
Fourier-Basis noise with AugMix to improve robustness against
“Fourier-Basis attacks”. These kinds of attacks consist of images
added with frequency noise in the low, mid, or high frequency range.
They can cause heavy degradation to model performance. Although
this method shows success with regard to common corruptions, it
uses random combinations of different frequencies, which can be
either simple or complex.
This paper explores simple combinations of frequencies. We propose
a new method that selects different sets of frequencies from a pre-
defined limited set of all available frequencies that can be applied to
an image. This approach is simpler, in regard to the implementation
intricacy and computation time. The method consists of the manual
creation of different sets of frequencies based on certain criteria that
are going to be combined and evaluated in experiments. The advan-
tages include easier training and more flexibility to precisely target
the weaknesses of a model. We aim to not increase complexity, but
rather see if simple predefined sets can have similar performance to
already established methods. If it can provide similar improvements,
then it will not only give an insight into the effects of different fre-
quency ranges on images but also be much more efficient compared
to other, more complex methods.
To be able to utilize the frequency domain and generate noise with
different frequencies, we use a similar procedure as Yin et al. [36].
The dataset that is used for training and testing is the CIFAR-10
dataset [19] with 50000 training images and 10000 test images. The
common corruptions that will be considered are categorized into
Noise, Blur,Weather, andDigital corruptions, based on the CIFAR-10-
C dataset by Hendrycks et al. [14]. In addition to selecting frequency
sets and applying them to images, experiments will be conducted to
test the capability and explore the different effects of Fourier-Basis
noise on the robustness against common corruptions.
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The aims of this research can be formulated into three research
questions.

• RQ1: How can frequencies be added to images as a means of
augmenting them for training?

• RQ2: To what extent can Fourier-Basis noise augmentation
improve the robustness to common corruptions of an image
recognition model in comparison to a base model?
– RQ2.1: Which frequencies contribute to an increased ro-
bustness?

The answer to RQ1, provides the basis for RQ2 and RQ2.1. First, a
baseline model will be used that consists of an image recognition
model that is trained on the CIFAR-10 dataset without Fourier-
Basis noise augmentation. The following experiments will then
provide results that can be compared to the performance of the
baselinemodel. Based on the results of RQ2,RQ2.1 can be answered,
depending on decreased or improved robustness.

2 RELATED WORK
This section looks at other methods that have been used for data
augmentation and the link from common corruptions to adversarial
attacks. This includes research that explores other data augmen-
tation methods from the Fourier perspective. We also take a look
at research that tries to improve robustness to corruptions by aug-
menting images with similar kinds of corruptions.

2.1 Data Augmentation Methods
Image Style Transfer [8] is a well-known method that can be used to
merge a texture from one image with the shape of another to create
a new image. Although it is more commonly used in art, it has also
been employed as a data augmentationmethod [9]. Jackson et al. [17]
use the shape of the original dataset together with random textures
to augment images. It was found to be improving the robustness of
the model when combined with other data augmentation methods.
Adversarial examples are forms of noise injections that are used to
perform an adversarial attack. In most cases, the noise cannot be
picked up by the human eye. However, image recognition models
are susceptible to it. This poses a risk, since one can inject noise into
an image without changing the semantic content [28]. Consequently,
it can be used to confuse a model to classify an image to the wrong
category without the human eye being able to detect it from the
input image [11]. The current state of literature does not have a
complete agreement on whether robustness to common corruptions
is related to robustness to adversarial examples.While some research
finds evidence for a relation [7], others find the opposite [18, 21].

2.2 Frequency Domain
Previous research has tried to understand the relation between com-
mon corruptions and the frequency domain. Yin et al. [36] compared
various currently used augmentation methods on frequency noise.
The results showed that AutoAugment caused the model to be ro-
bust against more types of noise than other methods. In general,
it has been found by Wang et al. [34] and others [37] that CNNs
are able to capture the high frequency components of an image and
are more vulnerable in that range. In other works, it has been also

suggested to increase the sensitivity of a CNN to the low frequency
range, since more robust models prefer low frequency information
[26].

2.3 Augmentation with Corruptions
A simpler method is to directly add noise to images in order to im-
prove robustness against similar types of noise [10]. Some literature
suggests minor generalization [7]. Rusak et al. [25] used Gauss-
ian and Speckle Noise to train a ResNet50 model on the ImageNet
dataset, which showed good results for various corruptions in the
ImageNet-C dataset. However, it did not perform well on certain
blur corruptions. Lopes et al. [23] combined cutting and Gaussian
noise to create Patch Gaussian noise, which is a scheme that applies
noise to only certain parts of an image. In contrast, Vasiljevic et al.
[33] showed that training on blur can improve the accuracy of the
computer vision model when receiving blurred images as input.

3 METHODS
The general method used to augment images in this research can
be divided into the noise generation process and the selection of
frequencies. With the selection, noise is created that is applied to im-
ages. The noise generation step creates Fourier-Basis noise ranging
from low to high frequency, which can be directly applied to images.
The second step does not only include selecting but also layering
frequencies, where multiple frequencies are combined in order to
augment images with a greater variety of noise. Both methods are
combined and used to augment images that are utilized to train a
model. The experimental setup and the training are described in
more detail in Section 4.

3.1 Noise Generation
The noise generation process is based on the method proposed
in [36]. Yin et al. describe adding perturbations to images with
𝑋𝑖, 𝑗 = 𝑋 + 𝑟𝑣𝑈𝑖, 𝑗 , where 𝑋 is the original image without noise.𝑈𝑖, 𝑗

is a 2D Fourier-Basis function, generated from a spectrum matrix,
with the frequency determined by the entry variables 𝑖 and 𝑗 . The
variable 𝑟 can have values randomly chosen between -1 and 1. The
variable 𝑣 determines the strength of the noise, which indicates
how much noise is added, similar to the severity of the corruptions
described in [14]. A visual representation of the noise generation
process is shown in Figure 1. The sample space of the set of all 2D
Fourier-Basis functions that can be selected contains 1024 functions
because the size of the spectrummatrix is 32×32, similar to CIFAR-10
images. This means that for every entry in the matrix, there is one
Fourier-Basis function. All of them are going to be used to evaluate
the model’s robustness to Fourier-Basis noise. The classification
error rates are placed in an error matrix that will be used to select
frequencies for augmentation. The Fourier heat map displays, based
on the error matrix, the sensitivity of the model to low, mid, and
high frequency noise. In the heat map, low frequencies are located
in the center, while the highest frequencies are located at the edge
of the map, corresponding to the spectrum matrix.
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Fig. 1. The process of applying noise to an image, consists of the original image𝑋 and the 2D Fourier-Basis function (in this case, 4 ∗ 𝑟 ∗𝑈4,4 with a strength of
4). Combining them results in an image augmented with Fourier-Basis noise 𝑋4,4. Generally, the 2D Fourier-Basis function is in RGB, but for visual purposes it
is represented in grey scale.

(a) Natural (b) High Frequency (c) Small Low and High Frequency (d) Low, Mid and High Frequency

Fig. 2. An image from the CIFAR-10 dataset augmented with different Fourier-Basis noise. Image (b) is from experiment High(4) and adds high frequency
noise with strength 4 (indicated by the experiment name) to image (a). Images (c) and (d) are from the experiments SLow(2.5, p=dec) & High(1.5) and L(0.5) &
M(1) & H(2.5), which combine the Small Low and High frequency sets and Low, Mid, and High frequency sets, respectively.

3.2 Frequency Selection
Single frequencies can be chosen individually by using the spectrum
matrix 𝑆 . We denote the interval of integers between 𝑥 and 𝑦, in-
cluding 𝑥 and 𝑦, as {𝑥,𝑦}. The spectrum matrix entries, denoted by
𝑆 (𝑖, 𝑗), can have values ranging from 0 to 31, such that 𝑖, 𝑗 ∈ {0, 31}.
The lowest frequency is the zero frequency and is placed in the
center of the matrix, corresponding to the entry (16, 16). To sim-
plify the indexing and selection of suitable frequencies, the range of
indices is shifted such that the zero frequency lies in (0, 0), so that
𝑖, 𝑗 ∈ {−16, 15}.
Different criteria are required to select sets of frequencies that can
be combined purposefully to create experiments. Five basic sets
of frequencies have been created, denoted as high frequency, mid
frequency, low frequency, small low frequency (SLow) and a set of
frequencies based on the error matrix 𝐸, as previously mentioned
in Section 3.1. The high frequency set includes all frequencies rang-
ing between 𝑖 ∈ {−16,−12} and 𝑖 ∈ {11, 15}, where 𝑗 ∈ {−16, 15}.
The mid-frequency set contains all frequencies ranging between
𝑖 ∈ {−11,−6} and 𝑖 ∈ {5, 10}, where 𝑗 ∈ {−11, 10}. Furthermore,
the low frequency set contains the rest, such that 𝑖, 𝑗 ∈ {−5, 4}.
For all frequency sets, (𝑖, 𝑗) and ( 𝑗, 𝑖) are added to the resulting set.

Duplicates of coordinates that occur in the set are removed, such
that all frequencies only occur in a set once. The sets have been
chosen in order to be flexible when creating experiments, while also
not being too complex to combine and to use.
The small low frequency set is a modified low frequency set that
consists of frequencies ranging between 𝑖, 𝑗 ∈ {−1, 1}, so that it only
covers the frequencies in the center. This is due to the sensitivity of
many corruptions, such as Fog and Contrast from the CIFAR-10-C
dataset [14], which are centered close to the zero frequency [36].
The set based on the error matrix is defined by setting an error
threshold 𝑡 , such that for every entry (𝑖, 𝑗) ∈ 𝑆 , if 𝐸 (𝑖, 𝑗) >= 𝑡 , then
(𝑖, 𝑗) is used for augmentation. The basis functions contained in
these sets can be utilized to add noise to the images. The strength
of the noise can be set for each frequency or for each set of frequen-
cies. For every epoch, a random frequency is selected from a set
to augment a single image. Additionally, sets can be combined to
add multiple frequencies of varying intensities to a single image.
The probability of choosing a certain frequency for an image can
be weighted separately for each set, but is by default uniformly
random.
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3.3 Evaluation Metrics
To evaluate the experiments, several metrics are utilized that reflect
the performance of the resulting model against common corrup-
tions. First, the accuracy of the natural test set is assessed with
the classification accuracy in order to see the model’s capability
of classifying natural images, i.e., uncorrupted images. It measures
the fraction of correctly classified images by the trained model. In
addition to the test accuracy, a benchmark is needed that can mea-
sure the changes in robustness compared to the base model. In this
regard, the corruption error with Equation 1 and mean corruption
error with Equation 2, from [13] are used, referred to as CE and
mCE. Both metrics are evaluated on the CIFAR-10-C dataset, which
is a dataset that contains images with 15 different corruptions. They
are categorized into Noise, Blur, Weather, and Digital. All 15 corrup-
tions have a severity level s from 1 to 5, indicating the strength of
the corruption. We define N to be a network trained with Fourier-
Basis noise. The corruption error measures the error rate E summed
over all five severity levels of a corruption c in comparison to the
naturally trained ResNet18 model, referred to as base.

CE𝑁𝑐 =

5∑︁
𝑠=1

E𝑁𝑠,𝑐/
5∑︁

𝑠=1
E𝑏𝑎𝑠𝑒𝑠,𝑐 (1)

To be able to compare different augmentation strategies better, the
mean corruption error is used, which is defined as the mean of all
CEs from each corruption, where the number of corruptions is
defined as R.

𝑚𝐶𝐸𝑁 =
1
𝑅

𝑅∑︁
𝑟=1

CE𝑁𝑟 (2)

The Fourier heat map, seen in Figure 3, is the final metric and will be
a visual aid. For each model, it provides information on the sensitive
frequency areas and how the different augmentation techniques
improve the robustness to high, mid, and low frequency range noise.
The heat map will use a strength of 4.0 for the noise that is applied,
and it will have a size of 31×31 to be able to center the zero frequency
and therefore be symmetric about the origin.

4 EXPERIMENTS
Several experiments are conducted to investigate the effectiveness of
Fourier-Basis noise on the robustness of a model. These experiments
give an insight into what can improve robustness and what might
be harmful and cause the opposite. A single experiment consists of
three phases, namely the augmentation step, the training step, and
the testing step.

4.1 Augmentation Setup
The augmentation step employs othermethods in addition to Fourier-
Basis noise. For all experiments, the augmentation procedure con-
sists of padding (with four pixels), random horizontal flipping, and
random cropping. Afterwards, the image is transformed to a tensor
for further augmentation, with some form of Fourier-Basis noise, fol-
lowed by normalization. The base model includes all augmentation
procedures except for the addition of Fourier-Basis noise. Padding,
flipping, and cropping are used to extend the training dataset and

achieve better test accuracy. The experiments are assigned to cat-
egories based on the number of frequencies that are applied to a
single image. For each image, up to three Fourier-Basis functions
can be selected and applied, each with a different strength. We de-
note the three categories as K1, K2, and K3, indicating the number
of frequencies that are layered on a single image.

4.1.1 K1. For the first category, K1, the four basic, previously dis-
cussed, Low, Mid, High, and Error Matrix based frequency sets are
used to train the model. The Small Low frequency set is, in this case,
not considered since it is designed to be used with other sets in K2
and K3. The noise of all four experiments has a strength of 4, which
is based on the default value, proposed in [36], that is used to create
the heat map. The error rate threshold is 0.5, which indicates that
all frequencies with an error rate higher than or equal to 0.5 are
considered for augmentation. An example of high frequency noise
applied to an image can be seen in Figure 2(b). During the training,
the model chooses uniformly at random one of the frequencies from
the selected set. As a result, the augmentation process is not static,
since each image can be applied with different frequency noise in
each epoch.

4.1.2 K2. The second category, K2, combines two frequency sets.
The selected sets are (the number following the frequency indicates
the strength): Low(2) & Mid(2), High(2) & Error(2, t=0.5), and Small
Low(2.5,p=dec) & High(1.5). An example image applied with Small
Low(2.5,p=dec) &High(1.5) frequency noise is displayed in Figure 2(c).
All experiments add, in total, noise with a strength of 4. The first
two experiments have both frequency sets contributing equally to
the image. In contrast, the third experiment shifts the focus to the
small low set, which has a strength of 2.5 while the high frequency
part has a strength of 1.5. Also, the weighting of the frequencies in
the small low set in experiment three decreases based on the sum of
the coordinates. The probability of selecting (0,0) is 0.65. Selecting
a frequency for which the absolute value of the coordinates sum
to 1 have a probability of 0.4 and 0.2 when the absolute sum is 2.
This is also indicated with p=dec in Small Low(2.5,p=dec), which
indicates the probability weighting that is decreasing for higher
frequencies. Based on the work of [26, 34] the high frequency set is
combined once with the small low and once with the error matrix
based frequency set. The combinations are created to see whether
the model generalizes well to high frequency and low frequency
corruptions. It is also investigated, whether adding low frequency
noise balances the low frequency sensitivity of the model trained
on high frequency only.

4.1.3 K3. In the third category, K3, three frequencies are com-
bined and applied to an image. The selected sets are: Low(0.5) &
High(2) & Error(2, t=0.5), Low(0.5) & Mid(1) & High(2.5), and Small
Low(2.5,p=dec) & Mid(0.5) & High(1.5). The total strength of exper-
iments one and three is 4.5, while the second experiment has a
strength of 4. The strengths are assigned to frequency sets based on
the influence each set has. In the first experiment, for example, the
emphasis is on the high frequency range (2.5), followed by the mid
(1.0) and low (0.5) frequency range. The small low set has the same
probability weighting as the corresponding experiment in K2. An
example image of the first experiment can be seen in Figure 2(d).
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Table 1. Natural Accuracy, Mean Corruption Error, and Corruption Error of every experiment, where the experiments are defined by Frequency(strength,
t=threshold of the error rate from the error matrix, p=probability weighting). SLow stands for Small Low in the experiment SLow(2.5,p=dec) & High(1.5). The
frequencies from K3 experiments have been shortened from Small Low, Low, Mid and High Frequency to SL, L, M, and H. The test accuracy for natural images
is measured in percentage (%). The abbreviated corruption types Gauss., Bright., Cont. and Pixel. refer to Gaussian, Brightness, Contrast and Pixelation. The
CE results that are less than 100 indicate a lower error rate than the base model, while values above 100 indicate a higher and therefore worse error rate.
The values that are bold indicate the best result from that column. In this case, Base is only given as a reference, and the best results are highlighted for
experiments with data augmentation.

Noise Blur Weather Digital
Experiments Natur.(%) mCE Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright. Cont. Elastic Pixel. JPEG
Base 92 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Low(4) 91 142 117 127 109 157 147 155 183 148 158 117 112 107 151 177 166
Mid(4) 85 119 41 51 65 140 58 139 145 110 119 211 180 155 145 99 119
High(4) 90 81 42 46 63 79 43 86 72 86 79 142 125 116 95 52 83
Error(4, t=0.5) 88 98 36 44 59 114 61 124 119 89 96 153 141 142 119 78 90
Low(2) & Mid(2) 90 133 80 90 104 167 120 146 192 123 143 179 114 147 141 124 124
High(2) & Error(2, t=0.5) 89 94 27 34 51 103 51 107 100 83 84 211 132 170 117 64 76
SLow(2.5,p=dec) & High(1.5) 91 86 52 57 79 100 60 108 96 85 67 121 103 113 115 55 82
L(0.5) & H(2) & E(2, t=0.5) 88 102 28 36 49 114 53 117 111 94 95 226 148 174 130 71 83
L(0.5) & M(1) & H(2.5) 88 99 27 34 55 113 49 113 107 91 88 216 143 157 131 68 87
SL(2.5,p=dec)&M(0.5)&H(1.5) 90 91 40 45 74 108 60 112 103 86 69 147 116 130 125 61 84

The sensitivity to various noise types, such as Gaussian Noise or
Impulse Noise, ranges across the whole frequency spectrum [36].
Therefore, the high, mid, and low frequency combination is selected
to see whether the noise resistance can be substantially improved.
The Small Low(2.5,p=dec) & Mid(0.5) & High(1.5) experiment is a
combination of the small low and high frequency set from K2 to
investigate whether the addition of the mid-range has a positive
effect on the general robustness.

4.2 Training
The training and testing procedures are implemented with PyTorch.
Because of time limitations regarding the training procedure, the
ResNet18 architecture [12] is used. Adam is employed as the opti-
mizer with a learning rate of 0.0001 and a weight decay (𝐿2 regu-
larization) of 1e-4 to prevent overfitting. The loss function utilized
for the training is the Cross Entropy Loss. A scheduler reduces the
learning rate by a factor of 0.2 every time the model stops improving.
Every experiment consists of 100 epochs of training, with early stop-
ping occurring after 30 epochs of no improvement in the validation
loss. The training data of CIFAR-10 has a 90:10 split for the training
and validation sets. Training and testing is performed on an Nvidia
Tesla T4 and an Nvidia A10 GPU.

5 RESULTS
The results, together with the natural test set accuracy, are shown
in Table 1. For better visualization, Figure 4 contains the average
corruption error results for all four categories from the three exper-
iments with the best mCE results. Training with high frequency
noise has the bestmCE. In contrast, training with low frequency
noise has the highest error rates for almost all CEs and mCE. The
mCEs of Low(4) and High(4) are 142 and 81, respectively, which is
a significant difference. There is a general trend that experiments

Low(4), Mid(4) and Low(2) & Mid(2) have the highest error rates of
all corruption types, except for a few cases. In regard to the natural
test accuracy, it is surprising that High(4) achieved 90% natural ac-
curacy in comparison to the base model with 92%. Therefore, there
is almost no tradeoff in natural test accuracy. The addition of the
small low set to the high frequency set improved the accuracy by
1%. Overall, Mid(4) has the lowest natural test accuracy with 85%.
In Figure 3 Fourier heatmaps have been plotted that show the er-
ror rates for each of the 31×31 frequencies. While the heatmap of
High(4) shows low error rates for the range of frequencies that have
been selected, Mid(4) has low error rates in high frequency areas
that are not in the set. As expected, the Error(4, t=0.5) heatmap
displays constant low error rates for every frequency range. The
presentation of the results is separated into each corruption cate-
gory, followed by the average corruption accuracy results based on
the severity.

5.0.1 Noise. In the noise category, High(2) & Error(2, t=0.5) and
the mix of all frequencies (low, mid, and high) achieved the lowest
corruption error rate for Gaussian and Shot Noise. Concurrently,
L(0.5) & H(2) & E(2,t=0.5) has the best error rate for Impulse noise.
In general, Low(4) performed the worst, with each CE being sig-
nificantly higher than all other experiments. In this particular case,
Mid(4) performed better than Low(4). The two experiments that
include the small low frequency set in K2 and K3 have slightly
higher CE for Impulse noise than most of the other experiments.
The average error rate for K1, K2 and K3 decreases from K1 to K3.
Overall, High(2) & Error(2, t=0.5) performed the best for all
corruptions in the Noise category, with an average of 37. This
is closely followed by L(0.5) & H(2) & E(2,t=0.5) with an average of
38.

5.0.2 Blur. For the blur category,High(4) has the best corrup-
tion error rates and outperformed the base model in all four
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(a) Natural (b) High Frequency (strength: 4) (c) Mid Frequency (strength: 4) (d) Error Based (strength: 4, t=0.5)

Fig. 3. Fourier Heat Maps (Section 3.3) from (a) base model, (b) High(4): adding high frequency noise, (c) Mid(4): adding mid frequency noise, and Error(4,
t=0.5): adding noise based on the error matrix where any frequency is considered, where its error rate (displayed with color) is less than or equal to 0.5. The red
color indicates a high error rate up to 1, and the blue color indicates a low error rate down to 0.

Fig. 4. The corruption error of the first three experiments with the lowest
mCE values, averaged for each corruption type. The line at y=100 displays
the base model reference value.

blur types. Also, it was the only experiment that outperformed
Base in Defocus and Motion blur. The improvement with respect
to high frequency noise can also be observed in K2. For example,
High(2) & Error(2, t=0.5) performed slightly better than other exper-
iments, despite Error(2, t=0.5) having a high CE for all blur types.
In contrast, Low(4) and Low(2) & Mid(2) are outperformed by Base
and have very high CEs, again with a large difference from the
rest. Mid(4) has similar high CEs for all blur types except for Glass,
which is 58. In general, the CEs of Glass appear to be significantly
better than all other blur types. Comparing High(2) & Error(2, t=0.5)
and L(0.5) & H(2) & E(2, t=0.5) shows that by adding low frequency
with low strength, the error rates of Defocus, Motion and Zoom
increased by 10, while Glass blur increased slightly by 2.

5.0.3 Weather. In this category, there are two types of results. Snow
and Frost have mostly enhanced robustness after applying Fourier-
Basis noise, but Fog and Brightness did not see any improvement.

Fig. 5. Average CIFAR-10-C corruption accuracy of all 15 corruptions over
all five severity levels for four experiments. The selection of the experiments
is based on the lowest mCE results, similar to Figure 4.

SLow(2.5,p=dec) &High(1.5) is on average performing the best
in the Weather category. In addition, combining the small low
frequency set with other sets has a positive effect on the performance
regarding Frost and Brightness. Low(4) performed the best in Fog
with 117, which is still worse than Base. The good results of Base are
also reflected, with the performance of L(0.5) & H(2) & E(2, t=0.5)
being more than two times worse than base model. Also, middle
frequencies seem to be damaging for robustness to Fog and overall
not well performing in the category.

5.0.4 Digital. Similar to Weather, there are again two types of
results. Fourier-Basis noise does not improve robustness against
Contrast and Elastic corruptions. However, robustness against Pix-
elation and JPEG is substantially enhanced. Low(4) has the best
CE in Contrast, while Error(4, t=0.5) and High(2) & Error(2, t=0.5)
have a CE of 170 and 174. High(4) has on average the lowest CE
in the Digital category. It also has the lowest CE in Elastic and
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Pixelation. In general, Fog, Contrast and Brightness turned out to be
very challenging for models with Fourier-Basis noise augmentation.

5.0.5 Corruption Severity. In Figure 5 the accuracy of the base
model and the first three experimentswith the bestmCE are selected
and plotted based on the five corruption severities. The base model
shows a considerable decrease in accuracy from the second severity
level on. The same happens for the other experiments, but to a much
lesser degree. High(4) has, again, the best results and the highest
accuracy in all five severity levels compared to the rest.

6 DISCUSSION
First, the method described in Section 3 has been successful at gen-
erating noise and applying it as a data augmentation method. As
the following analysis will show, it improved the base model’s ro-
bustness to common corruptions from the CIFAR-10-C dataset. The
results in Table 1 and Figure 4 suggest a vast improvement in cor-
ruption robustness for the high frequency experiment. At the same
time, the low frequency experiment and combinations with mid
frequency showcase the worst performance overall. This can be
explained by the results of the base model. Base has low error rates
around the zero frequency, which can also be observed in Figure 3(a).
As a result, the base model performed well on low frequency corrup-
tions such as Fog, Contrast or Brightness. Consequently, Low(4) has
relatively low CE in those corruptions, since it targets the extended
area around the zero frequency. However, the CEs are still worse
than the base model, which indicates that the corruptions are closely
centered around the zero frequency. This is also confirmed by the
experiment combining the small low frequency set with the high
frequency set that results in similar values for Fog, Contrast, and
Brightness.
The base model is very sensitive to high frequency noise, as indi-
cated in Figure 3. Therefore, training it on high frequency noise
improves the robustness against noise and blur corruptions. A rea-
son could be that the model ignores the relative high frequency
component of the image and could develop a bias towards the low
frequency component. Hence, the low frequency corruptions would
then perform worse, which explains the results obtained for Fog,
Brightness and Contrast for High(4). There is a performance tradeoff
for High(4) between Noise & Blur and Weather & Digital. With the
addition of the small low set, this tradeoff is weakened. Although
the combination improves robustness against Weather and Digi-
tal compared to High(4), the improvements in robustness against
Blur are diminished. Thus, combinations with small low or other
frequencies decrease the impact of the high frequency set on Blur.
This has a considerable effect, since High(4) is the only experiment
that performs better in Blur than the base model.
The heat maps and CIFAR-10-C results reveal an interesting link
between common corruptions and Fourier-Basis noise. Figure 3(d)
displays the heatmap from Error(4, t=0.5), which shows low error
rates for all frequencies. Nonetheless, it still performs average in the
benchmark. This could be explained by the impact some corruptions
have on images. For example, when blur is applied to an image, high
frequency information is to some extent removed from it. With our
method, we can only add frequencies to images. Therefore, reducing
the overall error rate of Fourier-Basis noise does not necessarily

imply an equal reduction in the error rate of the corruptions in
CIFAR-10-C.
As already found out by Yin et al. [36], different corruptions have
different frequency distributions, which support the good results for
Noise in K2 and K3. Ford et al. achieved improvement in robustness
to Noise and Blur corruptions by using Gaussian noise data augmen-
tation [7]. Since Gaussian noise is very similar to high frequency
noise, it confirms the results we got with the high frequency set.
Other research [34, 37] suggests that the baseline model is prone
to high frequency noise. In addition, Saikia et al. [26] confirm that
robust models prefer low frequency information, which explains
the overall good performance of high frequency noise.

7 CONCLUSIONS AND FUTURE WORK
This paper utilized a new method for data augmentation using
Fourier-Basis noise to investigate the robustness to common cor-
ruptions on the ResNet18 model [12]. The dataset that was used
to train the model is the CIFAR-10 dataset. Several experiments
have been designed that use different frequency sets to augment
images. For each image, there were up to three different frequencies
of noise that were applied. The corruption benchmark CIFAR-10-C
was used to evaluate the effects on the robustness against 15 dif-
ferent corruption types, while heat maps were created to visually
display the robustness against Fourier-Basis noise. The results indi-
cate that high frequency noise improves the base model’s corruption
robustness considerably, while low frequency noise worsens the
overall performance. The combination of different frequencies led
to no further improvement. It was deduced that training on high
frequency leads to a low frequency bias that shows more corrup-
tion robustness than the base model. The potential of this method
can be quite strong considering its simplicity and the results it has
achieved in the robustness against corruptions that can be compa-
rable to state-of-the-art results.

Nonetheless, this was just the first step, and many other aspects
can be explored. This research only provides a limited view on
the application possibilities. Therefore, further research should use
this method with various other datasets and models to be able to
make better conclusions as to how comparable this method per-
forms regarding other established methods. Especially with regard
to common corruptions, more benchmarks, such as CIFAR-10-P [13]
should be utilized to assess the performance of the method. Also,
using real-world corruptions could give valuable insights on the
practicality of potential applications, such as in medicine. This is
especially important, considering that Abello et al. [1] found that
frequency bias differs for every dataset. In this research, only ten
experiments have been conducted. Therefore, there is still room
for more detailed and better-informed frequency choices that can
incorporate the findings from this study. Another interesting aspect
that could turn out to be an advantage compared to other methods is
the training time. Since the overall augmentation process is simple
and the set of frequencies is predefined, it could be more efficient to
use and improve overall training time.
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