
Bringing Intelligence to Wireless Sensor Nodes: Improving Energy
Efficiency and Communication Reliability in Sensor Nodes
DELAINO TODOROVIC, University of Twente, The Netherlands

Wireless Sensor Networks (WSN) are becoming more dense to enable many
new smarter use cases in industry, healthcare and agriculture. WiFi-based
wireless sensor networks are becoming very attractive because of high-
bandwidth, large coverage and low-powered sensors being cost-effective.
Even though WiFi offers low power consumption, resources are still limited
in wireless sensor networks and the identification of how to efficiently use
the energy of awireless sensor node has been an open research topic for years.
In this paper a lightweight distributed reinforcement learning framework for
wireless sensor networks is presented. This framework allows sensor nodes
to control their transmit power in such a way that they still communicate
reliably with minimum energy consumption which increases the network
life-span.

Additional Key Words and Phrases: Wireless Sensor Network, Wireless Sen-
sor Node, Distributed Machine Learning, Energy Efficiency, Communication,
Reliability

1 INTRODUCTION
Wireless sensor networks (WSNs) have been of great interest among
both consumers and manufacturers for a long time now [10]. This
technology is widely used for collecting and analysing data and
is considered one of the most promising technologies, because of
its size, cost-effective and easily deploy-able nature [1][7]. There
are many different applications for wireless sensor networks such
as in healthcare, environment and agriculture, military, industry,
and transportation systems. One example is an underwater sensor
network created for long-termmonitoring of coral reefs and fisheries
[18]. It is expected that these networks work autonomously for a
long period of time.

However, wireless sensor networks have, just like any other tech-
nology, limitations. A wireless sensor network consists of multiple
autonomous, small sensor nodes that monitor, gather information
and transmit that information to a base station (sink) for further
analysis. A single node is generally equipped with a limited and
unchangeable power source, a battery, and has low computational
power. Therefore, energy is the most valuable resource and must
be conserved as much as possible. Identifying how to efficiently
use this energy and extend the lifetime of the network is a critical
issue [7]. It is the communication between nodes and the sink that
requires the most energy [5]. The transmission power can be re-
sponsible for up to 70% of the total power consumption. It can affect
other important aspects like latency and throughput as well[17]. In
the desired situation the node transmits at such power that it can
still communicate reliably while minimising the amount of energy
used. Reliable communication meaning guaranteed packet delivery.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

By assigning a optimal transmit power per-node a lot of energy of
sensor nodes can be saved.

Transmission power control (TPC) in wireless sensor networks is
a popular research topic, however only few have applied machine
learning to TPC. The different applications of WSNs share com-
mon challenges such as dynamic environments and goals such as
network longevity [6]. This is where machine learning can play
an important role. Machine learning techniques can be applied at
network and node level which enables intelligent behaviour and
adaptability [14]. Machine learning allows a sensor network to learn
from previous experiences so it can learn and adapt to the dynamic
environment. By learning and adapting the transmission power
to the environment, sensor nodes can autonomously choose the
optimal transmit power as per their desired communication require-
ments. Machine learning, however, does come with a price which
are energy and computational power. The predictions and computa-
tions cost a considerable amount of energy which could do more
harm than good and shorten the network’s lifespan [3]. But this
is only when we speak of a centralized system which means that
all computations are done by one node in the whole network. To
solve the computational power issue it is possible to distribute the
machine learning workload across multiple machines. This means
that instead of a centralized system where a central node does all the
computational work, a decentralized system is used where the work-
load is distributed across multiple nodes. The benefit of distributed
machine learning is that it requires less computational power and
energy consumption since the nodes only consider information from
their own environment and not the whole network [7].The machine
learning techniques applied in WSNs generally speaking are only
Reinforcement Learning and Fuzzy. However, most contributions
are mainly focused on routing protocols[1] and sleep scheduling
[12].
In this paper a deep reinforcement learning algorithm (deep Q-

learning) is proposed and tested. The algorithm is implemented in
NS-3 which is a network simulator and the de-facto standard for
academic and industry studies in the areas of networking protocols
and communication technologies. With the help of NS-3-Gym [8]
important information like throughput, transmission power and
transmission energy cost is fed to the algorithm. Network perfor-
mance is then evaluated by analyzing energy conservation of each
node while ensuring their throughput requirements. In this paper
is the following research question answered: “How can distributed
machine learning help wireless sensor nodes communicate reliably
with minimal energy consumption?”.

2 PARTIALLY OBSERVABLE MARKOV DECISION
PROCESS & REINFORCEMENT LEARNING

Like mentioned earlier are WSNs usually deployed in uncertain,
dynamic environments. With the help of a mathematical frame-
work called Markov decision process (MDP) can these dynamics

1



TScIT 37, July 8, 2022, Enschede, The Netherlands Delaino Todorovic

be modeled for decision making under uncertainty. Reinforcement
learning is used to solve the made MDP models [2]. In RL there
is an agent or multiple agents that interact with an environment.
The sensor nodes in this case serve as agents that interact with the
uncertain environment. At each decision time (T) the agent takes
in the environment which is represented as a state (S) and with
the knowledge that it has, it will perform an action (A) to reach a
certain specified end-goal. Each action taken has either a positive
or negative impact on the system. This impact is represented as a
reward (R) (or punishment). When the reward is received, the agent
will take in the next state (S’) at the next decision time. The MDP is
defined by a tuple (S, A, R, T) where,

• S is a finite set of states,
• A is a finite set of actions,
• R is the reward obtained after action A, and
• T is a finite or infinite set of decision epoch

The goal of the agent is to maximize the expected reward over a
number of decision epochs[2, 4, 17].

Fig. 1. Reinforcement learning: single agent model

In multi-agent MDP, each agents gets a full observation of the
environment state. However, in our distributed scenario each agents
only receives part of the environment state instead of the full state.
To be more specific, each agent only receives local information of
the environment state. Each agent will execute actions not knowing
what the other agents’ actions are. This is called Partially Observ-
able Markov Decision Process (POMDP), because each agents only
observes a specific part of the whole environment. When communi-
cation is costly, like in WSNs, POMPD is a good framework [2].

3 RELATED WORK
Increasing energy efficiency with the use of machine learning in
WSNs is a widely studied topic. In the previous section is explained
how RL is one of the possible solutions to MDP. It is therefore im-
portant to focus on other contributions that have addressed MDP
for power control and used RL for increasing energy efficiency in
general. Alsheikh et al. [2] divided all contributions into categories
of applications of MDP in WSNs. Most contributions use classic
MDP with some contributions using POMDP. The authors of [16]
use POMPD in their paper where an agent faces the issue that it
does not know the state of the channel. To get a better idea of the
state of the channel it carries out belief states as an estimation of the
environment to be able to make better decisions. The agent carries

out actions like transmit in low power, transmit in high power, wait
idle, or listen to the channel. For instance, if the channel is busy then
the probability of successful packet delivery is low. If the channel
is in an idle state then the probability of successful packet delivery
is high and it should transmit. Every actions taken by the agent
has a cost and will affect its reward. The authors of [16] have done
another paper where they use classic MDP instead of POMDP. The
problem they want to solve this time is at what power level should
a node transmit to maximize the chances of successful packet de-
livery when there is interference. Since this is MDP, the node gets
all the information of the environment including the interfering
nodes which makes the problem a bit easier to solve than POMDP
[17]. The authors of [4] created QL-TPC, a Q-learning algorithm for
TPC. They want to increase energy efficiency of sensor nodes while
emphasising on Quality of Service (QoS) meaning that they want
to conserve as much energy as possible while still having reliable
communication. Their RL algorithm is also based upon POMDP.
They tested their QL-TPC in both NS-3 and in a real-life scenario.
In their NS-3 scenario they use IEEE 802.15 wireless personal ares
network (WPAN) as communication protocol which is ideal for
communication within a short range and it is private so there is not
interference from other devices. Their algorithm also makes use of
game theory meaning that all nodes work towards a common objec-
tive, minimal energy consumption. The spacing between the nodes
is around 2 to 4 meters and the packet size is 50 bytes. However, 2
to 4 meters is a fairly short distance meaning that the probability of
a successful packet delivery is higher at lower transmission power
level than if the distance between transmitter and receiver were
to be further. Also the amount of states is denoted as 68 meaning
that it is a discrete space and not a continuous space where the
number of states can be infinite. The authors of [11] focus on maxi-
mizing average throughput per total consumed energy. They use a
RL method called actor-critic where the node is an actor and every
time the actor chooses an action the critic will tell the actor whether
that action was good or not. The actor selects an action according
to the Gibbs softmax method. They propose a single agent point-
to-point communication scenario and a multi-agent scenario. In
their multi-agent scenario the agents learn the optimal transmission
power and modulation level by checking the channel gain of the
previous transmission, number of packets in the queue and the level
of interference. In the point-to-point scenario the only difference
is that interference is not considered. The reward function is set as
the total amount of successful transmission over the total energy
consumption. In [10] the authors considered a centralized approach
where certain power levels cannot be used when the battery is at
a certain percentage level. The problem is formulated as a MDP
where full information about the environment is available. The cen-
tral node calculates the optimal policy through solving the bellman
equation and sends it to all other nodes. The authors of [9] intro-
duce a reinforcement learning-based sleep scheduling algorithm.
They formulate their problem as a multi-agent MDP. All nodes re-
ceive information about the whole network. The agents learn when
to switch on and off based upon computational task and residual
energy. This algorithm consists of both a centralized and offline
distributed implementation.

2



Bringing Intelligence to Wireless Sensor Nodes: Improving Energy Efficiency and Communication Reliability in Sensor Nodes TScIT 37, July 8, 2022, Enschede, The Netherlands

These papers have researched TPC in WSNs and formulated the
problem as a MDP and solved it using RL. However, most papers
consider only one agent in a point-to-point communication model.
Another problem is that a centralized approach where information
from nodes is send to one sink node to do calculations is unfeasible.
If only one node would have to do all calculations in a large WSN it
would require a lot of computational power and energy, two things
sensor nodes to not possess. WSNs are deployed in uncertain en-
vironments and have to deal with that, this is why a decentralized
(distributed) approach is more appropriate. Each node only has to
deal with local information and does not have to be synchronized
with the whole network. Also, no papers have a solution of a con-
tinuous observation space where there are many states. This is why
deep Q-learning is used, to deal with a large number of state spaces.
The last point is that simulation parameters of the papers are not
realistic. A transmitter-node distance of 2-4 meters is not far enough
if transmit power level wants to have any significant value, even
though WPAN is used.
The contributions of this paper are:

• AdecentralizedDeep Reinforcement Learning algorithm (Deep
Q-learning) applied to TPC in WSNs based on Partially Ob-
servable Markov Decision Process. Since distributed learning
is used all nodes will only receive information about their
own local environment and not about the whole network
which makes the network partially observable.

• Utilization of Deep Q-learning method so that the POMPD
can be solved with a continuous state space.

• Large-scale network applicability such that networks improve
their battery life while performing their desired function.

• An algorithm tested on IEEE 802.11 WiFi communication
protocol.

• Realistic simulation environment with nodes distanced up
to 40 meters and with interference. The nodes will all try to
fight for the channel so they can transmit their packets to the
access point.

4 METHODOLOGY

4.1 Environment
It is important to create a good realistic environment to test the
algorithm. Without the environment no information can be passed
to the agents. So to begin with, the environment is created in NS-3
to the following scenario: the network consists of seven nodes of
which six are WiFi (IEEE 802.11a) stations that act as sensors and
one is an access point which will serve as a base station (Fig 2). All
six nodes send traffic to the base station. The distances between the
nodes and base station varies in such way that transmission power
has effect on the network. Also, because all six nodes try to transmit
to the access point at the same time there will be interference. It is
important that the traffic is not too light so if any packets are lost,
the sensor nodes can try to re-transmit them. Network performance
is evaluated by analyzing the throughput and energy consumption
of each node and the aggregated throughput of the whole network.

Fig. 2. Wireless sensor network model

4.2 Deep Q-learning
Deep Q-learning (DQL) is an extension of the Q-learning algorithm
that uses a deep neural network to calculate what the best action
would be given a certain state. The agents will act in the environment
stated in 4.1 as each will adopt a wireless sensor node. However, they
will not work together. All agents only receive local information
and calculate the best action it can make with this local information,
making it a decentralized POMDP. Like explained earlier, a MDP is
defined by a tuple. This tuple of (s,a,s’,r) is then saved in the replay
memory of the agent.
DQL works within a continuous space with a discrete set of

actions [13]. The state space is defined as a vector filled with three
values representing the local environment: throughput, transmission
power level (TxPower) and energy consumption.

𝑆𝑡𝑎𝑡𝑒 = [𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡,𝑇𝑥𝑃𝑜𝑤𝑒𝑟, 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛]
However, even though throughput is continuous, it is made dis-

crete for the sake of having a lower amount of states. Thus through-
put in range of {0, 250, 300, ..., 400, 500} kilo bit per second (kbps).
For energy used {0.070, 0.075, ..., 0.095, 0.100} joule has been done
the same.

The action space is also discrete. The agent can choose between
three actions: up the transmit power with one dBm, lower the trans-
mit power with one dBm or keep the same transmit power. Transmit
power levels range from {0, 1, ... , 14, 15}. The action space is de-
fined as a vector filled with only one value which is either 0, 1 or 2
meaning TxPower +1, TxPower -1 or do nothing respectively.

𝐴𝑐𝑡𝑖𝑜𝑛 = [𝑎𝑐𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒]
A wireless sensor node does not have much computational power

and memory. This is why the deep neural network only consists of
two hidden layer being of length 32 and 16, respectively.

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Delaino Todorovic

For action choosing the epsilon-greedy strategy is applied. This
way the agent will explore new situations from which it can learn.
The epsilon value determines the probability of taking a random
action over the best action. Epsilon will start out at 1.0 and will
decrement every iteration with 0.005 until it reaches a value of 0.1.

Fig. 3. Reinforcement learning: multi-agent model

5 NETWORK MODEL & NS-3 SIMULATION SETUP
A more in-depth explanation is given about the environment in this
section.

5.1 Setup
The setup consists of seven nodes that use (WLAN) protocol IEEE
802.11a for communication. Six are stations that act as sensors and
one is an access point which will serve as a base station (Fig 2). The
sensor nodes measure the temperature of parts that are placed in
an oven of a station in a production line.

5.1.1 Mobility model. At the start of each simulation are the six
wireless sensor nodes randomly placed with four nodes distanced
between 20-40 meters and two nodes a bit closer distanced between
0-20 meters from the access point. By having four nodes further
away the delay will increase which will mean that the through-
put will decrease since throughput is directly affected by latency
[15]. The agents will learn that they need more power which will in-
crease the throughput so that the nodes fit the minimum throughput
requirements.

5.1.2 Traffic generation. All nodes generate traffic of one packet of
100 bytes with an interval of 1ms for ten seconds long, making it a
total of 10.000 packets send to the access point per node. This much
traffic is send, because the network needs to be under load such that
the nodes need to fight for the channel since there is interference.

5.1.3 NS-3-Gym. NS-3-Gym is a framework that integrates both
Open AI gym and NS-3 for the usage of RL in NS-3. Open AI gym
is a toolkit which is used to test and train RL models in different
environments. The simulation will pass the state which is a vector
of throughput, transmit power and the transmission energy cost
via the NS-3-Gym framework to all the agents. All six agents are
initialized with hyper-parameter values stated in Table 1

5.1.4 Energy model. The energy model used is the standard WiFi
energy model provided by NS-3 called LinearWiFiTxCurrentModel.
This model calculates the energy costs of the nodes based on in
what mode they are in, transmitting, receiving or idle. The energy
draw of different power levels is calculated with

𝑃𝑜𝑤𝑒𝑟𝑙𝑒𝑣𝑒𝑙/(𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ∗ 𝑒𝑡𝑎)
with eta being the efficiency of the power amplifier which is set to
0.1 by default.

Parameters Value
Number of WiFi stations 6
Number of access points 1

Packet payload 100 bytes
Interval time 1ms

Number of transmission levels 16
Simulation time 10 seconds
Discount rate 0.99
Epsilon start 1.0

Epsilon decrement 1.0 * 0.997
Memory size 2 kB
Learning rate 0.005
Iterations 30

Table 1. Simulation parameters

5.2 Reward function
The reward function of the agents is based upon the throughput
and the transmit power level. The minimum required throughput is
set to 300 kilo bit per second (kbps). Any value under 300 kbps does
not assure reliable communication between nodes. If the through-
put is under 300 kbps the agent will be punished. The goal of this
algorithm is to increase the lifespan of a sensor node. Transmitting
at a higher power level costs more energy. The goal is to find the
minimum available transmission power level that allows for reliable
communication. Every level has its small punishment such that
the agents learn that transmitting at a higher power level is not
encouraged. The access point also plays a role, namely as a critic.
Every agent that transmits at such power that minimum throughput
requirements are met will receive an extra reward of 1. The access
point will send one packet to each node every millisecond to check
the throughput. There are two reward functions defined.

𝑅 = 0.6 ∗ −𝑥 + 0.6 ∗ (𝑦 − 𝑝𝑜𝑤𝑒𝑟𝑙𝑒𝑣𝑒𝑙 ∗ 0.1) (+1)
𝑅 = 0.4 ∗ 𝑥 + 0.6 ∗ (𝑦 − 𝑝𝑜𝑤𝑒𝑟𝑙𝑒𝑣𝑒𝑙 ∗ 0.1) (+1)

Where x is -1, 1 or 2 if throughput < 300, 300 < throughput <= 500
and throughput > 500, respectively and where y is 1 if throughput
< 300 and 300 < throughput <= 500, and 2 if throughput > 500,
respectively.

The first function is for when the minimum throughput require-
ment of 300 kbps is not met. The second function is for when mini-
mum throughput requirements are met. In the functions, weights
are set for throughput and power level. If minimum throughput
requirements are not met then it is more important to get back
to that level than at which power level the node is transmitting.

4



Bringing Intelligence to Wireless Sensor Nodes: Improving Energy Efficiency and Communication Reliability in Sensor Nodes TScIT 37, July 8, 2022, Enschede, The Netherlands

This is why a weight of 0.6 is set to throughput and 0.4 to power
level. However, if minimum throughput requirements are met then
the weights are swapped. The agent can then focus on minimizing
energy consumption.

6 RESULTS
The results of the performance of the network with the DQL-agents
are compared with the performance of a network without any ma-
chine learning.

6.1 Energy consumption analysis
Transmission power level and the on-time of a node both affect the
energy consumption. The model used does not have any sleeping
techniques, so nodes stay on all the time. In figure 4 the transmis-
sions costs are plotted for every node. Node 2 and 3 do consume
more power, but there are nonetheless also stationed further away
from the access point. What is interesting is that Node 1, also a node
that is stationed further away, is consuming less energy than Nodes
2, 3 and 4. All nodes almost consume the same energy consumption.
In figure 5 transmission costs are plotted of a network that does not
use any machine learning. This network uses a fixed power level
which is 0 by default. Interestingly though are the closest nodes the
biggest energy consumers. This could be because of interference
meaning that they had to re-transmit packets which leads to longer
transmission and on-time.

6.2 Throughput analysis
As mentioned earlier is throughput affected by delay. In figure 6
and 7 the effect is clearly depicted. Nodes 1 and 2 get throughput
up to 1 Mbps since they are closer to the access point and thus
endure less delay. The DQL-agents look like they are struggling, but
this is actually how they learn. By trying all sorts of variation of
power levels and learning which ones are optimal. Throughput of
nodes 3 to 6 is fluctuating between 180 and 450 kbps. The minimum
required throughput of 300 kbps is met in over half of the iterations
and will only increase with more training. Nodes 3 to 6 in the
network without algorithm are fluctuating a lot between 200 and 600
kbps meaning that for many iterations they could not communicate
reliably.

6.3 Memory and computational requirements
A sensor node generally does not have a lot of memory available
and does not have a lot of computational power. An Esp32 micro
controller has about 520 kB of memory available. The algorithm’s
model of 32 and 16 hidden layers uses 42.8 kB of memory. The
replay memory is 2 kB which adds up to 44.8 kB. The total size of
the states, actions and rewards are 120 bytes * 180 states, 5 bytes * 3
action values, and 2 bytes * 15 rewards is 21,645 kB. 44.8 + 21,645 =
66,445 kB. Which means that the minimum required memory size
is roughly taken 67 kB. The algorithm can run on an Esp32.

7 DISCUSSION
The full potential of the algorithm has not been met yet. This is
due to limitations of the NS-3-Gym framework. A learning algo-
rithm needs many iterations before it shows what the improvements

Fig. 4. Transmission costs with DQL-agents

Fig. 5. Transmission costs without any RL

are, because it needs to go over every state that is available and
learn what the best action is in that particular state. 30 iterations is
unfortunately not enough to see actual improvement. The reason
why only 30 iterations are done are because of limitations of NS-3.
When the simulation is done it will destroy all objects created. A
solution could be to loop the simulation, however the environment
needs to be reset after each iteration in order to optimally learn.
This is why the simulation has to be manually started every each
iteration. To have at least 100+ iterations it would take a very long
time. However, the algorithm did show that there is an improvement

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Delaino Todorovic

Fig. 6. Throughput withouth any RL

Fig. 7. Throughput with DQL-agents

in energy conservation. The agents do manage to keep the overall
energy consumption lower than of the network without learning.
In short-term this will not matter, however in long-term this will
have a significant effect which is a longer network lifespan. The
algorithm uses roughly taken 67 kB of memory with 2 layers of size
32 and 16 respectively which is very lightweight since an Esp32
520 kB memory available. The layer sizes could be increased to
get better performance. A well-working autonomous sensor node
with TPC should be able to react to changes in the environment.
An issue that arises is when a sensor node is moved to a different

location further away from the access point. This would mean that
delay increases and throughput decreases. The sensor node will
adapt to this change and will transmit at a higher power level. The
issue is that because of the increase in power, the access point will
detect more interference. A solution could be that the other nodes
transmit at a lower power level, but lowering other nodes’ power
levels influences the network performance in a bad way. The benefit
of the algorithm proposed is that the nodes learn the minimum
power available for reliable communication without having to rely
on previous knowledge of the environment.

8 CONCLUSION
A lightweight distributed transmission power control algorithm
for wireless sensor nodes is proposed. The algorithm is tested in
a NS-3 environment. The environment is formulated as a Partially
Observable Markov Decision Process (POMDP) and is solved with
the use of reinforcement learning. The algorithm’s performance is
compared to the performance of a network without any machine
learning. It was shown that the algorithm performs better than
when no algorithm is used. Because of limitations, the algorithm
has not shown its full potential, however in its current state it con-
serves energy which is the most important goal. The answer to
the research question is with a distributed reinforcement learning
algorithm that teaches sensor nodes how to control their power ef-
fectively. By setting minimum desired communication requirements
the wireless sensor nodes can autonomously choose their optimal
transmit power which conserves a lot of valuable energy.

9 FUTURE WORK
Although the algorithm is not perfect, it has great potential. In this
future work section it is explained how to reach this potential.

9.1 Training
First and foremost the performance of the algorithm needs to be
measured when it has done more iterations. Only then we can really
reflect whether the algorithm works or not.

9.2 Cooperation
Right now there is no cooperation between the agents. All take
in the environment and do what they think is best for themselves.
However, if the agents have the same goal they can work together
towards that goal and adapt their actions to what is best for the
whole network and not what is best for themselves. So future work
will be implementing, for instance, game theory in such a way that
the agents have a mutual goal.

9.3 Sleep-scheduling
Transmission power control in combination with effective sleep-
scheduling would even conserve more energy. If the sensor nodes
are in idle more for a long time they can conserve more energy by
turning completely off.

9.4 Real-life application
The algorithm has only been tested in a network simulator where
conditions are always perfect. In real-life conditions are not always

6



Bringing Intelligence to Wireless Sensor Nodes: Improving Energy Efficiency and Communication Reliability in Sensor Nodes TScIT 37, July 8, 2022, Enschede, The Netherlands

perfect so it would be interesting to measure performance in a
real-life application.

REFERENCES
[1] Ali Forghani Elah Abadi, Seyyed Amir Asghari, Mohammadreza Binesh Mar-

vasti, Golnoush Abaei, Morteza Nabavi, and Yvon Savaria. 2022. RLBEEP:
Reinforcement-Learning-Based Energy Efficient Control and Routing Protocol
for Wireless Sensor Networks. IEEE Access 10 (2022), 44123–44135. https:
//doi.org/10.1109/access.2022.3167058

[2] Mohammad Abu Alsheikh, Dinh Thai Hoang, Dusit Niyato, Hwee-Pink Tan, and
Shaowei Lin. 2015. Markov Decision Processes With Applications in Wireless
Sensor Networks: A Survey. IEEE Communications Surveys &amp Tutorials 17, 3
(2015), 1239–1267. https://doi.org/10.1109/comst.2015.2420686

[3] Mohammad Abu Alsheikh, Shaowei Lin, Dusit Niyato, and Hwee-Pink Tan. 2014.
Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and
Applications. IEEE Communications Surveys &amp Tutorials 16, 4 (2014), 1996–
2018. https://doi.org/10.1109/comst.2014.2320099

[4] Michele Chincoli and Antonio Liotta. 2018. Self-Learning Power Control in
Wireless Sensor Networks. Sensors 18, 2 (Jan. 2018), 375. https://doi.org/10.3390/
s18020375

[5] Sultan Mahmood Chowdhury and Ashraf Hossain. 2020. Different Energy Saving
Schemes in Wireless Sensor Networks: A Survey. Wireless Personal Communica-
tions 114, 3 (May 2020), 2043–2062. https://doi.org/10.1007/s11277-020-07461-5

[6] Peter Corke, Tim Wark, Raja Jurdak, Wen Hu, Philip Valencia, and Darren Moore.
2010. Environmental Wireless Sensor Networks. Proc. IEEE 98, 11 (Nov. 2010),
1903–1917. https://doi.org/10.1109/jproc.2010.2068530

[7] Qianao Ding, Rongbo Zhu, Hao Liu, and Maode Ma. 2021. An Overview of
Machine Learning-Based Energy-Efficient Routing Algorithms in Wireless Sen-
sor Networks. Electronics 10, 13 (June 2021), 1539. https://doi.org/10.3390/
electronics10131539

[8] Piotr Gawłowicz and Anatolij Zubow. 2019. ns-3 meets OpenAI Gym: The Play-
ground for Machine Learning in Networking Research. In ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM) (Miami Beach, USA). http://www.tkn.tu-berlin.de/fileadmin/fg112/
Papers/2019/gawlowicz19_mswim.pdf

[9] Zhihui Guo and Hongbin Chen. 2022. A reinforcement learning-based sleep
scheduling algorithm for cooperative computing in event-driven wireless sensor
networks. Ad Hoc Networks 130 (May 2022), 102837. https://doi.org/10.1016/j.
adhoc.2022.102837

[10] A. Kobbane, M.-A. Koulali, H. Tembine, M. El Koutbi, and J. Ben-othman. 2012.
Dynamic power control with energy constraint for Multimedia Wireless Sensor
Networks. In 2012 IEEE International Conference on Communications (ICC). IEEE.
https://doi.org/10.1109/icc.2012.6363971

[11] C. Pandana and K.J. Ray Liu. 2005. Near-optimal reinforcement learning frame-
work for energy-aware sensor communications. IEEE Journal on Selected Areas in
Communications 23, 4 (April 2005), 788–797. https://doi.org/10.1109/jsac.2005.
843547

[12] S. Radhika and P. Rangarajan. 2021. Fuzzy Based Sleep Scheduling Algorithm
with Machine Learning Techniques to Enhance Energy Efficiency in Wireless
Sensor Networks. Wireless Personal Communications 118, 4 (Feb. 2021), 3025–3044.
https://doi.org/10.1007/s11277-021-08167-y

[13] Nimish Sanghi. 2021. Deep Reinforcement Learning with Python. Apress. https:
//doi.org/10.1007/978-1-4842-6809-4

[14] Claudio Savaglio, Pasquale Pace, Gianluca Aloi, Antonio Liotta, and Giancarlo
Fortino. 2019. Lightweight Reinforcement Learning for Energy Efficient Com-
munications in Wireless Sensor Networks. IEEE Access 7 (2019), 29355–29364.
https://doi.org/10.1109/access.2019.2902371

[15] M.B. Srivastava and M. Potkonjak. 1995. Optimum and heuristic transformation
techniques for simultaneous optimization of latency and throughput. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 3, 1 (March 1995), 2–19.
https://doi.org/10.1109/92.365450

[16] Adrian Udenze and Klaus McDonald-Maier. 2008. Partially Observable Markov
Decision Process for Transmitter Power Control in Wireless Sensor Networks.
In 2008 Bio-inspired, Learning and Intelligent Systems for Security. IEEE. https:
//doi.org/10.1109/bliss.2008.32

[17] Adrian Udenze and Klaus McDonald-Maier. 2009. Direct Reinforcement Learning
for Autonomous Power Configuration and Control in Wireless Networks. In
2009 NASA/ESA Conference on Adaptive Hardware and Systems. IEEE. https:
//doi.org/10.1109/ahs.2009.50

[18] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. 2008. Wireless sensor
network survey. Computer Networks 52, 12 (Aug. 2008), 2292–2330. https:
//doi.org/10.1016/j.comnet.2008.04.002

7

https://doi.org/10.1109/access.2022.3167058
https://doi.org/10.1109/access.2022.3167058
https://doi.org/10.1109/comst.2015.2420686
https://doi.org/10.1109/comst.2014.2320099
https://doi.org/10.3390/s18020375
https://doi.org/10.3390/s18020375
https://doi.org/10.1007/s11277-020-07461-5
https://doi.org/10.1109/jproc.2010.2068530
https://doi.org/10.3390/electronics10131539
https://doi.org/10.3390/electronics10131539
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf
https://doi.org/10.1016/j.adhoc.2022.102837
https://doi.org/10.1016/j.adhoc.2022.102837
https://doi.org/10.1109/icc.2012.6363971
https://doi.org/10.1109/jsac.2005.843547
https://doi.org/10.1109/jsac.2005.843547
https://doi.org/10.1007/s11277-021-08167-y
https://doi.org/10.1007/978-1-4842-6809-4
https://doi.org/10.1007/978-1-4842-6809-4
https://doi.org/10.1109/access.2019.2902371
https://doi.org/10.1109/92.365450
https://doi.org/10.1109/bliss.2008.32
https://doi.org/10.1109/bliss.2008.32
https://doi.org/10.1109/ahs.2009.50
https://doi.org/10.1109/ahs.2009.50
https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/10.1016/j.comnet.2008.04.002

	Abstract
	1 Introduction
	2 Partially Observable Markov Decision Process & Reinforcement Learning
	3 Related work
	4 Methodology
	4.1 Environment
	4.2 Deep Q-learning

	5 Network model & ns-3 simulation setup
	5.1 Setup
	5.2 Reward function

	6 Results
	6.1 Energy consumption analysis
	6.2 Throughput analysis
	6.3 Memory and computational requirements

	7 Discussion
	8 Conclusion
	9 Future work
	9.1 Training
	9.2 Cooperation
	9.3 Sleep-scheduling
	9.4 Real-life application

	References

