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This paper extends Rosenthal’s [9] discrete congestion game model in which
sel�sh, rational players minimize travel time. We extend the model by includ-
ing electric vehicle charging stations. We study the in�uence of charging
station placements on the e�ciency of a Nash equilibrium. To that end, we
built a simulation tool that can �nd the social optimum, the worst case, and
a Nash equilbrium given an instance of the model.

We show that Braess’s paradox [1] can occur when placing electric vehicle
chargers, where extra charging facilities can paradoxically lead to higher
costs. We show Braess’s paradox in twoways: analytically in an example, and
in our simulations. Furthermore, we show that good placement of charging
stations can positively a�ect costs.

Additional Key Words and Phrases: Electric Vehicle Charging, Nash Equilib-
ria, Game Theory, Routing Games, Congestion Games

1 INTRODUCTION
Over the past decades, it has become common knowledge that hu-
man activities negatively a�ect the Earth’s climate. Of particular
interest is our reliance on fossil fuels, which is a large contributor
to climate change [5]. Electric vehicles are rapidly gaining ground
as a response to this, but they also bring new challenges. Some of
those are of a technical nature, such as the impact of charging on
electricity networks [3]. Other challenges include changing human
behaviour, as this is necessary for adoption of electric vehicles. For
example, Mashhoodi [4] looks into the impact of walkability from
the users’ home to a charging station on the use of the charging
station.

The driving range of vehicles is limited by the amount of energy
they can carry. When a conventional petrol vehicle is out of energy,
it can rapidly re�ll at a gas station, of which there are plenty. For
electric vehicles, substantial charging infrastructure still needs to
be built. It is paramount to place such infrastructure at strategic
positions. [3]

In this paper, we extend a well-studied congestion game1 model
from Rosenthal [9] to include electric vehicle charging facilities. We
show that correct placement of such charging stations can shift the
resulting Nash equilibria towards the social optimum, whereas poor
placement can worsen the situation in a manner similar to Braess’s
paradox [1]. The social optimum is the situation with the lowest
total cost, where the cost for a player is equal to their travel time.
Furthermore, we developed a program to simulate instances of

our model. The simulation tool can be used to plan new electric
vehicle charging stations and to test di�erent strategies for placing
charging stations. We studied two example graphs, varying the

1See Appendix B for a de�nition of congestion games and several other concepts from
game theory
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capacity and the number of charging stations to study the impact
on the costs.

2 LITERATURE REVIEW
The strategic placement of electric vehicle charging stations is inves-
tigated in this research. In a recent review of key challenges for the
adoption of electric vehicles [3], charging station placement is con-
sidered an important factor. One of the reasons that it is important to
strategically place charging stations, is that drivers may su�er from
so called "range anxiety", where users are scared to adopt electric
vehicles for fear of being stranded when vehicle charge runs out. [7]
This fear needs to be taken away by providing ample chargers at
the right locations.
In 1973, Rosenthal [9] introduced a discrete congestion game

model that has been studied well since. In the same paper, Rosenthal
shows that pure-strategy Nash equilibria exist for the model. The
model fromRosenthal has been analysed, for example in Christodoulou [2]
where the price of anarchy is studied. Rosenthal’s model has also
been extended, for example in Sche�er [10], where a model with
edge capacities and priority based on the previous edge is consid-
ered.

There are insights from game theory in electric vehicle charging,
for example in Xiong [11] where a game theoretic model is applied
to a case study of Singapore. However, little research has been done
into adapting Rosenthal [9] to include electric vehicle charging
stations. In this paper, we research whether the placement of electric
vehicle charging stations in a road network in�uences the Nash
equilibrium in an associated congestion game.

3 OUR MODEL
Our model is based on the congestion game model in Rosenthal [9].
A road network is modelled as a directed graph ⌧ = (+ , ⇢). The
edges 4 2 ⇢ all have an associated non-negative and non-decreasing
cost function 54 : if =4 players take an edge 4 , then the cost for taking
the edge is 54 (=4 ). Each edge 4 represents a road fragment, and the
cost of taking that road equals the time spent to reach the other end.
The vertices can be charging stations, in which case it is possi-

ble for a player to charge there. Charging station vertices have an
associated non-negative and non-decreasing cost function 2E : if =E
players charge at a vertex E , then the cost for charging at the vertex
is 2E (=E). To reduce complexity, several assumptions are made. First,
we assume that all players have identical charging times and that
both the charging time and the monetary cost, if applicable, are
included in the cost function. Furthermore, we assume that each
player shares the same start node B and target node C , so the game is
symmetric. Lastly, we assume that each player can travel from the
start node to the target note over any path, by charging at exactly
one charging station that is not the start or target node.
We consider a set of players ?1 ..?: 2 % . For each player ?8 , we

consider a set of strategies -8 , which consist of the combination of
an s-t path ⇢ and a charging vertex . . For a strategy G 2 -8 , the
cost that player 8 incurs from using that strategy is the sum of the
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cost for each edge plus the cost of charging at the charging vertex:
?8 (G) =

Õ
42⇢ 54 (=4 ) + 2. (=. ).

Each player sel�shly and rationally chooses a strategy, seeking
to minimise their cost. The social optimum is a situation where
the combined strategies of all players lead to the lowest possible
total cost. A Nash equilibrium is a situation where no players have
incentive to switch strategies.

4 RESULTS
4.1 Analytical results: Braess’s paradox
Braess’s paradox, where adding a road to a road network makes
the equilibrium costs of the network higher, can also occur in our
model. That is, adding a charger to a network can make costs higher.
Intuitively, adding a charger sounds like a good idea. It should give
motorists more freedom to choose their route, and less range anxiety.
However, a similar intuition holds for adding a road, and as Braess
has shown, this intuition is not always correct.
Consider the network in Figure 1. Charging at any charging

node is assumed to have a cost of 0; such that the players are not
in�uenced by the type of charger. The edge of cost 0 from node 1
to node 5 is not accessible when only the green nodes, 2 and 4, are
charging nodes. However, adding brown node 1 as a charger in the
network will make the edge from node 1 to 5 accessible.

0

1 2

3

4 5

5 (=)
= 1/10

0 ⇤ =

5 (=) = 0

5 (=) = 0

5 (=) = 45

5 (=) = 45

5 (=
) =

1/1
00

⇤ =

5 (=)
=
0

Fig. 1. A network where Braess’s paradox occurs. We consider 4000 players
travelling from node 0 to node 3.
If 4000 cars travel over the example network from node 0 to

node 3, with chargers at nodes 2 and 4 only, then they will be at
equilibrium by splitting up exactly over the upper path and the
lower path. After all, the edge that connects node 1 and 5 for a third
path is still inaccessible. This yields a cost of 2000/100 + 45 = 65 for
all players, or 260.000 in total. Players have no incentive to switch
paths, as both paths are as expensive as the other.

When we add the charger at node 1, players can travel on the edge
from node 1 to node 5. This results in all cars using the newly feasible
path, yielding a cost of 4000/100 + 4000/100 = 80 for each player, or
320.000 in total. Players will not switch to a di�erent path either,
because the cost would be higher. As such, the equilibrium now
equals the worst cost, while the social optimum has not changed.

4.2 Numerical results
We developed a Python program to simulate scenarios. Given an
instance of the model as described above, the program can calcu-
late the social optimum, the worst case cost and an equilibrium. It

is easy to change which vertices are charging stations, such that
comparisons can be made.
The social optimum and the worst case cost are calculated by

brute force. We calculate the costs for all combinations of strategies
and �nd the combinations with the lowest and the highest cost.

An equilibrium is found using best response dynamics. All players
select an initial strategy in turn. Next, players may switch strate-
gies if this bene�ts them, a process that we repeat until no player
switches strategies. Then, we have found an equilibrium.

In this section, we discuss the results of several simulations that
were run. For every setup where a charging vertex E had a limited
capacity⇠E , the cost for charging at that vertex 2E was given by the
charging time C2 if the number =E of cars at E was smaller than the
maximum capacity ⇠E . If the number of cars at a charger exceeded
the charger’s capacity, the cost was given by 2E = C2 + C2 ⇤ (=E �⇠E)
instead.

4.2.1 Braess. We �rst tested the results from the analysis section
about Braess’s paradox against results generated by our Python
program, giving some added validity to both of those results. We
decided to calculate a Nash equilibrium only, because calculating
the social optimum and the worst case by brute force was infeasible.
The number of calculations needed to simulate 4000 cars over three
possible paths is too large.

The graph used is the same as that in Figure 1, and chargers have
a cost of 0 as before. Indeed, the results from the Python simulation
are the same as those obtained in the analysis. This con�rms our
analytical results.
Name chargers cars Best case Worst case Equilibrium chargers
Braess 4000 2 4000 Skipped Skipped 260000 [2, 4]
Braess 4000 3 4000 Skipped Skipped 320000 [1, 2, 4]

Fig. 2. Results table for Braess’s paradox

4.2.2 Pigou. We ran simulations on a graph similar to Pigou’s
example [8], which is a well-studied network. The simulations were
run four times, where the distribution of cost functions over the
nodes varied throughout, while the cost functions for the edges
remained �xed. We then calculated the costs for all combinations
of charging nodes, using the previously appointed distribution of
cost functions. So, taking turns, each node was either included or
excluded from the set of chargers until we had calculated the cost
of each combination of chargers.

The complete results from the simulations can be found in Appen-
dix A. Summaries are also included in this section. A visualisation
of the graph can be found in Figure 3.

The result summary tables include several statistics. Under ’charg-
ers’, is the number of nodes that are appointed as chargers during
the simulation. Further, the tables include the average and mini-
mum best case cost found for the given number of chargers in the
network, and the maximum and average worst case cost for that
number of chargers. Lastly, the average, minimum, and maximum
cost at equilibrium for the number of selected chargers are included.
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Fig. 3. The Pigou-like network. We consider 100 players travelling from
node 0 to node 3.
The �rst simulation that we ran had chargers with unlimited

capacity and a cost of 1. This example is called ’cheap charging’.
We would expect that in this example, the equilibrium would be
determined wholly by the costs of the edges. After all, there is no
cost di�erence between the di�erent chargers. The results show
that this is correct and as long as a charger is available on both
paths, the equilibrium is the same as it would be without charging.
Naturally, when chargers are available on one of the paths only, all
players take that path. Concretely, this shows that if ample charging
is available on all paths, the equilibrium will not change.
chargers avg best min best avg worst max worst avg eq min eq max eq
1 850 600 850 1100 850 600 1100
2 641.667 537.5 1016.67 1100 683.333 600 1100
3 537.5 537.5 1100 1100 600 600 600
4 537.5 537.5 1100 1100 600 600 600

Fig. 4. Summary table for Pigou with cheap charging
The next simulation that we ran, had high charging costs. In

that simulation, there was a capacity of 20 and a charging time of
20. The limited capacity means that the cost increases rapidly for
each additional car above the capacity. Moreover, the base cost of
20 is higher than the maximum total cost for the edges. Now, the
equilibriumwas determined entirely by the cost of charging, leading
to a perfect split over the available chargers regardless of edge cost.
This clearly shows that we can in�uence the routes taken by the
placement of charging infrastructure in the system.

Figure 3 shows example output for this charger setup, with charg-
ers at nodes 2, 4 and 5. The players are neatly divided over the
chargers as this minimises each player’s cost, even though the ma-
jority of players are on the more expensive path in terms of edges.
This situation occurs due to the dominance of the charging cost
over the driving cost in his scenario.

Fig. 5. Example output for Pigou expensive where nodes 2, 4 and 5 are
chargers
chargers avg best min best avg worst max worst avg eq min eq max eq
1 182750 182500 182750 183000 182750 182500 183000
2 82583.3 82500 182917 183000 82583.3 82500 83000
3 49204.7 49123.9 183000 183000 49205.6 49125.6 49285.6
4 32500 32500 183000 183000 32500 32500 32500

Fig. 6. Summary table for Pigou with expensive charging
The third and fourth situations had asymmetric placements, that

made the lower or upper paths as visualised in Figure 3 more attrac-
tive. The preferred path was assigned signi�cantly cheaper chargers
than the other, at a costs of 1 and 20 respectively.
Note that the high worst case costs and maximum equilibrium

costs result from the cases where only expensive chargers are avail-
able. When 3 or 4 chargers are active, that means that a charger with
a cost of 1 must be available. Then, the charging cost is 1 for each
car, as the charging cost of the expensive chargers dominates the
edge cost in this example. This will cause all cars to select the path
with cheap charging. The di�erence in cost between the situation
with cheaper charging stations on the lower path (600), and the sit-
uation with cheaper charging on the higher path (1100), thus stems
entirely from the di�erence in edge costs for both paths. As such,
these situations show that by applying di�erent types of chargers,
players can be nudged towards a desired equilibrium regardless of
prior preferences. Clearly, this is contingent on the charging being
expensive enough to signi�cantly impact the cost. In reality, the
di�erence in charging cost would likely be smaller than in this ex-
ample, allowing for useful load balancing over the edges.

chargers avg best min best avg worst max worst avg eq min eq max eq
1 91800 600 91800 183000 91800 600 183000
2 14333.3 600 152600 183000 14333.3 600 83000
3 600 600 183000 183000 600 600 600
4 600 600 183000 183000 600 600 600

Fig. 7. Summary table for Pigou lower path preference
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chargers avg best min best avg worst max worst avg eq min eq max eq
1 91800 1100 91800 182500 91800 1100 182500
2 14666.7 1100 152267 182500 14666.7 1100 82500
3 1100 1100 182500 182500 1100 1100 1100
4 1100 1100 182500 182500 1100 1100 1100

Fig. 8. Summary table for Pigou upper path preference

5 CONCLUSIONS
This research investigated the role of the placement of electric ve-
hicle chargers on Nash equilibria in our adapted congestion game
model. From our results, we can conclude that the placement of
electric vehicle charging stations in a congestion game model can
signi�cantly in�uence the resulting equilibrium negatively or posi-
tively, depending on the particular graph and the chosen placement.

Wrongly placed chargers can negatively impact travel times. This
is because placing a new charging station may redirect tra�c to-
wards di�erent paths than before, and the resulting equilibrium
can be worse than the prior equilibrium. We substantiated this
claim both through analytical results, adapting Braess’s paradox,
and through numerical results.

On the other hand, placing chargers strategically can be bene�cial.
The possibility of redirecting tra�c was shown in the Pigou example
of our numerical results section. This could be useful for load balanc-
ing, preventing congestion, or for keeping cars away from certain
areas where they are a nuisance. Enabling players to use preferred
paths can yield shorter tra�c times and save energy, which could
improve people’s daily lives and bene�t the environment.

6 DISCUSSION
6.1 Models
It is important to note that this research makes use of a model of real
world tra�c networks. Models inherently and intentionally leave
out certain details of the real world, allowing us to study particular
features in isolation. This is likely to in�uence the results, meaning
that they may not always completely align with the real world.
Our model, as speci�ed in section 4, imposes some limitations

on the numerical results. The Python program as we implemented
it, imposes several more. All together, the limitations for situations
that can be simulated are as follows:

• All cars have the same range, permitting them to take any
path if, and only if, they charge at exactly one node

• All cars have the same starting node and destination node
• Graphs can have a limited size, number of cars, and number
of charging stations, where if one grows considerably the
others need to shrink

The third limitation mentioned, which is essentially a limitation
on the scale of the simulations, stems from the method that is used to
compute the Social optimum, theworst case cost and the equilibrium.
Particularly, the social optimum and the worst case are currently
calculated by brute force. This means that for each extra possible
path, charging option, or car, the number of total options that are
checked increases rapidly.
Several factors may be problematic. Arrival time at a charging

station is critical for whether cars need to wait before they can
charge. This is di�cult to model in our case, as the cost function
impacts all cars in the same manner. This makes sense for edges, but
a congested edge will still have quite some spread in arrival times at

charging stations. It is important to consider this when modelling
the charging stations, and to try to come up with reasonable cost
functions.
Regardless of the challenges regarding models presented above,

Braess’s paradox has been observed in the real world [6]. As such,
the model presented in this paper may yet turn out to be useful
in deciding where to place charging stations in the real world. For
example, our model can help in gathering some suggested spots
or even in pointing out where not to place a charging station. It
could also help as part of checking a selected location for mistakes
or against several other options.

7 FURTHER RESEARCH
7.1 Removing limitations of the model
Further research could try to solve some of the limitations in the
model and in the Python program. For example, cars could be per-
mitted to have di�erent initial and maximum ranges, potentially on
a per car basis. However, that brings a challenge considering that
in reality the order of arrival at a charging station will now greatly
impact the charging time at that station. Still, it would be interesting
to see how the asymmetric feasibility of paths impacts the results.
Similarly, cars could have di�erent start and end nodes from

each other, to allow for modelling of real world tra�c which is
probably not symmetric. This would also allow for simulations on
more realistic road networks. For example, a small road network
such as that of Luxembourg seemed interesting at �rst and is feasible
in terms of complexity. However, it is not sensible to simulate tra�c
with symmetric start and end nodes on such a network considering
that the roads spread towards many directions.

7.2 Adding user profiles and multiple cost functions
An extension to the model where di�erent user pro�les are con-
sidered could be interesting too. For example, some users could
prioritise the monetary cost over the time consumed on a road.
Including such factors in the model may yield new implications.
However, this would only be bene�cial in real world applications if
some statistics are known on preferences of drivers in a modeled
area. More generally, even without user pro�les, it would be valuable
to extend the model to include separate cost functions for energy
usage and time. After all, some roads will allow higher speeds than
others, yielding lower cost in terms of time. However, driving at
higher speeds also tends to consume more energy.

7.3 Accounting for the electric grid
Our model optimizes for a particular goal: total travel time. This
may not always be the only goal to keep in mind. Charging stations
also impact the electrical grid [3], which could lead to issues for
other energy consumers. It may not always be trivial or feasible to
compensate such shortages, and this may not always be possible in
a green and renewable manner.

7.4 Larger networks and more examples
It could be bene�cial to have a way of simulating larger networks.
This could be accomplished through applying various optimizations
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to the Python program, for example using approximation or im-
proved pre-processing. Additionally, more example graphs could be
tried in general, yielding a larger variation in results and potentially
some useful suggestions for real-world charger placement.
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A FULL RESULTS
A.1 Braess
Name chargers cars Best case Worst case Equilibrium chargers
Braess 4000 2 4000 Skipped Skipped 260000 [2, 4]
Braess 4000 3 4000 Skipped Skipped 320000 [1, 2, 4]

Fig. 9. Results table for Braess’s paradox

A.2 Pigou
A.2.1 Pigou cheap.
chargers avg best min best avg worst max worst avg eq min eq max eq
1 850 600 850 1100 850 600 1100
2 641.667 537.5 1016.67 1100 683.333 600 1100
3 537.5 537.5 1100 1100 600 600 600
4 537.5 537.5 1100 1100 600 600 600

Fig. 10. Summary table for Pigou cheap

Name chargers cars Best case Worst case Equilibrium chargers
Pigou cheap 1 100 1100 1100 1100 [1]
Pigou cheap 1 100 1100 1100 1100 [2]
Pigou cheap 1 100 600 600 600 [4]
Pigou cheap 1 100 600 600 600 [5]
Pigou cheap 2 100 1100 1100 1100 [1, 2]
Pigou cheap 1 100 1100 1100 1100 [1]
Pigou cheap 2 100 537.5 1100 600 [1, 4]
Pigou cheap 2 100 537.5 1100 600 [1, 5]
Pigou cheap 1 100 1100 1100 1100 [2]
Pigou cheap 2 100 537.5 1100 600 [2, 4]
Pigou cheap 2 100 537.5 1100 600 [2, 5]
Pigou cheap 1 100 600 600 600 [4]
Pigou cheap 1 100 600 600 600 [5]
Pigou cheap 2 100 600 600 600 [4, 5]
Pigou cheap 2 100 1100 1100 1100 [1, 2]
Pigou cheap 1 100 1100 1100 1100 [1]
Pigou cheap 2 100 537.5 1100 600 [1, 4]
Pigou cheap 2 100 537.5 1100 600 [1, 5]
Pigou cheap 1 100 1100 1100 1100 [2]
Pigou cheap 2 100 537.5 1100 600 [2, 4]
Pigou cheap 2 100 537.5 1100 600 [2, 5]
Pigou cheap 1 100 600 600 600 [4]
Pigou cheap 1 100 600 600 600 [5]
Pigou cheap 2 100 600 600 600 [4, 5]
Pigou cheap 2 100 1100 1100 1100 [1, 2]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 4]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 5]
Pigou cheap 2 100 537.5 1100 600 [1, 4]
Pigou cheap 2 100 537.5 1100 600 [1, 5]
Pigou cheap 3 100 537.5 1100 600 [1, 4, 5]
Pigou cheap 2 100 537.5 1100 600 [2, 4]
Pigou cheap 2 100 537.5 1100 600 [2, 5]
Pigou cheap 3 100 537.5 1100 600 [2, 4, 5]
Pigou cheap 2 100 600 600 600 [4, 5]
Pigou cheap 2 100 1100 1100 1100 [1, 2]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 4]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 5]
Pigou cheap 2 100 537.5 1100 600 [1, 4]
Pigou cheap 2 100 537.5 1100 600 [1, 5]
Pigou cheap 3 100 537.5 1100 600 [1, 4, 5]
Pigou cheap 2 100 537.5 1100 600 [2, 4]
Pigou cheap 2 100 537.5 1100 600 [2, 5]
Pigou cheap 3 100 537.5 1100 600 [2, 4, 5]
Pigou cheap 2 100 600 600 600 [4, 5]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 4]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 5]
Pigou cheap 4 100 537.5 1100 600 [1, 2, 4, 5]
Pigou cheap 3 100 537.5 1100 600 [1, 4, 5]
Pigou cheap 3 100 537.5 1100 600 [2, 4, 5]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 4]
Pigou cheap 3 100 537.5 1100 600 [1, 2, 5]
Pigou cheap 4 100 537.5 1100 600 [1, 2, 4, 5]
Pigou cheap 3 100 537.5 1100 600 [1, 4, 5]
Pigou cheap 3 100 537.5 1100 600 [2, 4, 5]
Pigou cheap 4 100 537.5 1100 600 [1, 2, 4, 5]
Pigou cheap 4 100 537.5 1100 600 [1, 2, 4, 5]

Fig. 11. Results table for Pigou cheap
Visualisation:

Fig. 12. Visualisation of Pigou cheap

A.2.2 Pigou expensive.
chargers avg best min best avg worst max worst avg eq min eq max eq
1 182750 182500 182750 183000 182750 182500 183000
2 82583.3 82500 182917 183000 82583.3 82500 83000
3 49204.7 49123.9 183000 183000 49205.6 49125.6 49285.6
4 32500 32500 183000 183000 32500 32500 32500

Fig. 13. Summary table for Pigou expensive

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Jelle van den Wijngaard

Name chargers cars Best case Worst case Equilibrium chargers
Pigou expensive 1 100 183000 183000 183000 [1]
Pigou expensive 1 100 183000 183000 183000 [2]
Pigou expensive 1 100 182500 182500 182500 [4]
Pigou expensive 1 100 182500 182500 182500 [5]
Pigou expensive 2 100 83000 183000 83000 [1, 2]
Pigou expensive 1 100 183000 183000 183000 [1]
Pigou expensive 2 100 82500 183000 82500 [1, 4]
Pigou expensive 2 100 82500 183000 82500 [1, 5]
Pigou expensive 1 100 183000 183000 183000 [2]
Pigou expensive 2 100 82500 183000 82500 [2, 4]
Pigou expensive 2 100 82500 183000 82500 [2, 5]
Pigou expensive 1 100 182500 182500 182500 [4]
Pigou expensive 1 100 182500 182500 182500 [5]
Pigou expensive 2 100 82500 182500 82500 [4, 5]
Pigou expensive 2 100 83000 183000 83000 [1, 2]
Pigou expensive 1 100 183000 183000 183000 [1]
Pigou expensive 2 100 82500 183000 82500 [1, 4]
Pigou expensive 2 100 82500 183000 82500 [1, 5]
Pigou expensive 1 100 183000 183000 183000 [2]
Pigou expensive 2 100 82500 183000 82500 [2, 4]
Pigou expensive 2 100 82500 183000 82500 [2, 5]
Pigou expensive 1 100 182500 182500 182500 [4]
Pigou expensive 1 100 182500 182500 182500 [5]
Pigou expensive 2 100 82500 182500 82500 [4, 5]
Pigou expensive 2 100 83000 183000 83000 [1, 2]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 4]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 5]
Pigou expensive 2 100 82500 183000 82500 [1, 4]
Pigou expensive 2 100 82500 183000 82500 [1, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [1, 4, 5]
Pigou expensive 2 100 82500 183000 82500 [2, 4]
Pigou expensive 2 100 82500 183000 82500 [2, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [2, 4, 5]
Pigou expensive 2 100 82500 182500 82500 [4, 5]
Pigou expensive 2 100 83000 183000 83000 [1, 2]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 4]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 5]
Pigou expensive 2 100 82500 183000 82500 [1, 4]
Pigou expensive 2 100 82500 183000 82500 [1, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [1, 4, 5]
Pigou expensive 2 100 82500 183000 82500 [2, 4]
Pigou expensive 2 100 82500 183000 82500 [2, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [2, 4, 5]
Pigou expensive 2 100 82500 182500 82500 [4, 5]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 4]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 5]
Pigou expensive 4 100 32500 183000 32500 [1, 2, 4, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [1, 4, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [2, 4, 5]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 4]
Pigou expensive 3 100 49285.6 183000 49285.6 [1, 2, 5]
Pigou expensive 4 100 32500 183000 32500 [1, 2, 4, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [1, 4, 5]
Pigou expensive 3 100 49123.9 183000 49125.6 [2, 4, 5]
Pigou expensive 4 100 32500 183000 32500 [1, 2, 4, 5]
Pigou expensive 4 100 32500 183000 32500 [1, 2, 4, 5]

Fig. 14. Results table for Pigou expensive
Visualisation:

Fig. 15. Visualisation of Pigou expensive

A.2.3 Pigou lower path preference.
chargers avg best min best avg worst max worst avg eq min eq max eq
1 91800 600 91800 183000 91800 600 183000
2 14333.3 600 152600 183000 14333.3 600 83000
3 600 600 183000 183000 600 600 600
4 600 600 183000 183000 600 600 600

Fig. 16. Summary table for Pigou lower path preference

Name chargers cars Best case Worst case Equilibrium chargers
Pigou asym
lower pref

1 100 183000 183000 183000 [1]

Pigou asym
lower pref

1 100 183000 183000 183000 [2]

Pigou asym
lower pref

1 100 600 600 600 [4]

Pigou asym
lower pref

1 100 600 600 600 [5]

Pigou asym
lower pref

2 100 83000 183000 83000 [1, 2]

Pigou asym
lower pref

1 100 183000 183000 183000 [1]

Pigou asym
lower pref

2 100 600 183000 600 [1, 4]

Pigou asym
lower pref

2 100 600 183000 600 [1, 5]

Pigou asym
lower pref

1 100 183000 183000 183000 [2]

Pigou asym
lower pref

2 100 600 183000 600 [2, 4]

Pigou asym
lower pref

2 100 600 183000 600 [2, 5]

Pigou asym
lower pref

1 100 600 600 600 [4]

Pigou asym
lower pref

1 100 600 600 600 [5]

Pigou asym
lower pref

2 100 600 600 600 [4, 5]

Pigou asym
lower pref

2 100 83000 183000 83000 [1, 2]

Pigou asym
lower pref

1 100 183000 183000 183000 [1]

Pigou asym
lower pref

2 100 600 183000 600 [1, 4]

Pigou asym
lower pref

2 100 600 183000 600 [1, 5]

Pigou asym
lower pref

1 100 183000 183000 183000 [2]

Pigou asym
lower pref

2 100 600 183000 600 [2, 4]

Pigou asym
lower pref

2 100 600 183000 600 [2, 5]

Pigou asym
lower pref

1 100 600 600 600 [4]

Pigou asym
lower pref

1 100 600 600 600 [5]

Pigou asym
lower pref

2 100 600 600 600 [4, 5]

Pigou asym
lower pref

2 100 83000 183000 83000 [1, 2]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 4]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 5]

Pigou asym
lower pref

2 100 600 183000 600 [1, 4]

Pigou asym
lower pref

2 100 600 183000 600 [1, 5]

Pigou asym
lower pref

3 100 600 183000 600 [1, 4, 5]

Pigou asym
lower pref

2 100 600 183000 600 [2, 4]

Pigou asym
lower pref

2 100 600 183000 600 [2, 5]

Pigou asym
lower pref

3 100 600 183000 600 [2, 4, 5]

Pigou asym
lower pref

2 100 600 600 600 [4, 5]

Pigou asym
lower pref

2 100 83000 183000 83000 [1, 2]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 4]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 5]

Pigou asym
lower pref

2 100 600 183000 600 [1, 4]

Pigou asym
lower pref

2 100 600 183000 600 [1, 5]

Pigou asym
lower pref

3 100 600 183000 600 [1, 4, 5]

Pigou asym
lower pref

2 100 600 183000 600 [2, 4]

Pigou asym
lower pref

2 100 600 183000 600 [2, 5]

Pigou asym
lower pref

3 100 600 183000 600 [2, 4, 5]

Pigou asym
lower pref

2 100 600 600 600 [4, 5]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 4]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 5]

Pigou asym
lower pref

4 100 600 183000 600 [1, 2, 4, 5]

Pigou asym
lower pref

3 100 600 183000 600 [1, 4, 5]

Pigou asym
lower pref

3 100 600 183000 600 [2, 4, 5]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 4]

Pigou asym
lower pref

3 100 600 183000 600 [1, 2, 5]

Pigou asym
lower pref

4 100 600 183000 600 [1, 2, 4, 5]

Pigou asym
lower pref

3 100 600 183000 600 [1, 4, 5]

Pigou asym
lower pref

3 100 600 183000 600 [2, 4, 5]

Pigou asym
lower pref

4 100 600 183000 600 [1, 2, 4, 5]

Pigou asym
lower pref

4 100 600 183000 600 [1, 2, 4, 5]

Fig. 17. Results table for Pigou lower path preference
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Visualisation:

Fig. 18. Visualisation of Pigou lower path preference

A.2.4 Pigou upper path preference.
chargers avg best min best avg worst max worst avg eq min eq max eq
1 91800 1100 91800 182500 91800 1100 182500
2 14666.7 1100 152267 182500 14666.7 1100 82500
3 1100 1100 182500 182500 1100 1100 1100
4 1100 1100 182500 182500 1100 1100 1100

Fig. 19. Summary table for Pigou upper path preference

Name chargers cars Best case Worst case Equilibrium chargers
Pigou asym up-
per pref

1 100 1100 1100 1100 [1]

Pigou asym up-
per pref

1 100 1100 1100 1100 [2]

Pigou asym up-
per pref

1 100 182500 182500 182500 [4]

Pigou asym up-
per pref

1 100 182500 182500 182500 [5]

Pigou asym up-
per pref

2 100 1100 1100 1100 [1, 2]

Pigou asym up-
per pref

1 100 1100 1100 1100 [1]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 5]

Pigou asym up-
per pref

1 100 1100 1100 1100 [2]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 5]

Pigou asym up-
per pref

1 100 182500 182500 182500 [4]

Pigou asym up-
per pref

1 100 182500 182500 182500 [5]

Pigou asym up-
per pref

2 100 82500 182500 82500 [4, 5]

Pigou asym up-
per pref

2 100 1100 1100 1100 [1, 2]

Pigou asym up-
per pref

1 100 1100 1100 1100 [1]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 5]

Pigou asym up-
per pref

1 100 1100 1100 1100 [2]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 5]

Pigou asym up-
per pref

1 100 182500 182500 182500 [4]

Pigou asym up-
per pref

1 100 182500 182500 182500 [5]

Pigou asym up-
per pref

2 100 82500 182500 82500 [4, 5]

Pigou asym up-
per pref

2 100 1100 1100 1100 [1, 2]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 4]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 5]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 4, 5]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [2, 4, 5]

Pigou asym up-
per pref

2 100 82500 182500 82500 [4, 5]

Pigou asym up-
per pref

2 100 1100 1100 1100 [1, 2]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 4]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 5]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [1, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 4, 5]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 4]

Pigou asym up-
per pref

2 100 1100 182500 1100 [2, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [2, 4, 5]

Pigou asym up-
per pref

2 100 82500 182500 82500 [4, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 4]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 5]

Pigou asym up-
per pref

4 100 1100 182500 1100 [1, 2, 4, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 4, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [2, 4, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 4]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 2, 5]

Pigou asym up-
per pref

4 100 1100 182500 1100 [1, 2, 4, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [1, 4, 5]

Pigou asym up-
per pref

3 100 1100 182500 1100 [2, 4, 5]

Pigou asym up-
per pref

4 100 1100 182500 1100 [1, 2, 4, 5]

Pigou asym up-
per pref

4 100 1100 182500 1100 [1, 2, 4, 5]

Fig. 20. Results table for Pigou upper path preference
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Visualisation:

Fig. 21. Visualisation of Pigou upper path preference

B GLOSSARY
• Strategy: Some way of playing for a player in a game, in
this paper a path that a player can take through a graph
representation of a road network and a charging station to
make that path feasible

• Nash equilibrium: A situation in a game where none of the
players can gain anything from switching strategies, which
is thus a stable situation

• Cost: The result a player playing a certain strategy, given the
chosen strategies of the other players in the game

• Social Optimum: The lowest possible total cost for all players,
choosing all players’ strategies to minimize not their own
cost but the total

• Price of Anarchy: The di�erence between the social optimum
and the worst possible Nash equilibrium

• Braess’s paradox: A paradox where adding a road segment
may lead to more congestion in a road network

• Congestion games: A class of games where players travel
through a graph. The players incur a certain cost depending
on their strategy, which is a path from their start node to
their end node.
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